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Chaos in inhomogeneous neutrino fast flavor instability
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In dense neutrino gases, the neutrino-neutrino coherent forward scattering gives rise to a complex flavor
oscillation phenomenon not fully incorporated in simulations of neutron star mergers (NSM) and core
collapse supernovae (CCSNe). Moreover, it has been proposed to be chaotic, potentially limiting our ability
to predict neutrino flavor transformations in simulations. To address this issue, we explore how small flavor
perturbations evolve in the nonlinear regime of the neutrino quantum kinetic equation within a narrow
centimeter-scale region inside a NSM and a toy neutrino distribution. Our findings reveal that paths in the
flavor state space of solutions with similar initial conditions diverge exponentially, exhibiting chaos. This
inherent chaos makes the microscopic scales of neutrino flavor transformations unpredictable. However,
the domain-averaged neutrino density matrix remains relatively stable, with chaos minimally affecting it.
This particular property suggests that domain-averaged quantities remain reliable despite the exponential

amplification of errors.
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I. INTRODUCTION

Neutrino flavor oscillation, proposed to explain the
missing flux of neutrinos coming from the Sun, has ushered
in a new era of neutrino physics beyond the standard model
[1,2] and a wide phenomenology of neutrino flavor trans-
formation in astrophysics. Neutrinos propagate in a quan-
tum superposition of weak interaction eigenstates that is
modified by the forward interaction of neutrinos with
charged leptons via the Mikheyev-Smirnov-Wolfenstein
(MSW) effect [3-5]. In addition, coherent neutrino-
neutrino forward scattering produces a not well understood
nonlinear flavor oscillation in dense neutrino gases [6—10].

Neutrinos play a pivotal role in neutron star mergers
(NSMs) (see [11-14]) and CCSNe (see [15-18]). These
represent the sole locations in the Universe, post the big
bang, where neutrinos are generated at densities high
enough to undergo strong interactions with each other.
CCSNe arise when the core of a massive star collapses
following the depletion of its nuclear fuel. The infalling
material halts abruptly as the core attains nuclear density,
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giving rise to a bounce and a shock wave that propagates
throughout the star. Neutrinos originating in the deep
regions of the star drive the explosion, transporting energy
from the collapsed core to the material falling below the
shock front. In the delayed CCSNe scenario, this mecha-
nism propels the stalled shock wave through the star,
inducing the explosion [19-22]. Numerous simulations
have yielded predictions for CCSNe explosion energies,
neutrino luminosities, electromagnetic signals, and ejected
material [23—-27]. Several sources of uncertainty necessitate
further investigation, including a consistent treatment of
quantum neutrino transport [28,29], the equation of state
for matter beyond nuclear densities (e.g., [30,31]), and the
nuclear reaction rates of heavy and highly unstable ele-
ments [32-35].

NSMs and CCSNe are prime candidates for the pro-
duction of much of the heavy nuclei of the Universe (e.g.,
[36,37]). Neutrinos emitted from the resulting hot accretion
disk and ejected material can significantly affect the
production of neutrons and protons via the reactions,

p+u,<n+e’ (1)
n+v,< p+e, (2)

that seed the conditions for slow and rapid neutron capture
processes. Given that heavy lepton neutrinos do not partake
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in the creation and annihilation of protons and neutrons, a
potential transformation of electron neutrinos into heavy
flavors could significantly impact the ultimate production
of heavy elements [38—42].

NSMs are also important multimessenger events, as they
emit gravitational waves, short gamma-ray bursts, kilo-
novae, electromagnetic afterglows and neutrinos [43—48].
The gravitational wave event GW170817 [49] of two
neutron stars colliding was widely studied in several
multimessenger observations (e.g., [50,51]). The observed
kilonova light curve that resulted from radioactive decay of
nuclei in the ejected material was the first direct detection
of the synthesis of heavy elements through a rapid neutron
capture process (r-process) [52,53]. From a theoretical and
computational perspective, several general relativistic mag-
netohydrodynamics simulations have attempted to forecast
the amount and composition of material ejected, the kilo-
nova signal, neutrino luminosity, gravitational waves, and
the final compact object resulting from the merger (e.g.,
[54-61]). However, the neutrino flavor transformations
have not yet been fully implemented in a NSM simulation.

Despite its importance, the neutrino flavor transforma-
tion in dense neutrino environments is not fully understood.
An ensemble of neutrinos that undergoes coherent forward
scattering is an interacting quantum many-body system that
could develop quantum entanglement. This can leave an
imprint on the evolution histories of the neutrino flavor (see
[62] for a recent review). Quantum many-body systems
exponentially increase complexity as the number of par-
ticles increases. Neglecting helicity and pair coherence the
Hilbert space of an ensemble of N interacting neutrinos and
antineutrinos with n, number of flavors has a dimension of
n}v . The exact solution for quantum many-body neutrino

simulations has not involved more than 20 neutrinos [62—65].
Approximations of the quantum many body problem are
based on compact representations of the wave function like
tensor networks [66—68] and other product state configura-
tions [69]. This allows hundreds of neutrinos to be simulated.
Neglecting quantum entanglement, i.e., approximating
expectation values of operator products as a product of the
expectation values of individual operators, the neutrino and
antineutrino ensemble can be described in the mean-field
approximation by evolving N pure quantum sstates as ny X ny
density matrices. This reduces the Hilbert space to a dimen-
sion of Nn.

The modeling approach for neutrino transport in mean-
field approximation is termed neutrino quantum kinetics.
This commonly applied approach enables the simulation of
dense neutrino environments while inherently disregarding
multiparticle quantum entanglement. Early many-body
studies also support the validity of quantum kinetic theory
for modeling dense astrophysical neutrino gases [70,71].
Recent studies have revealed discrepancies between sim-
ulations using the mean-field approximation and those
employing many-body treatments, casting doubt on the

validity of the former for modeling neutrinos in astro-
physical environments. However, arguments have emerged
suggesting that existing many-body calculations cannot be
used to validate mean-field methods [72,73], arguing that a
many-body neutrino system with a small number of
particles is expected to inherently differ from its mean-
field counterpart. Unlike the mean-field approach, a
self-consistent many-body framework should include
momentum-changing incoherent scattering between neu-
trinos as part of the Hamiltonian. Since kinematic collision
terms cannot reproduce many-body effects, these are
expected to be absent in the mean-field approach.
Furthermore, the limited number of neutrinos in many-
body simulations complicates direct comparisons with
environments suitable for mean-field approaches. In either
case, even under the mean field approximation, a global
implementation of the neutrino flavor transformation in
NSMs and CCSNe is challenging due to the non-linear
complexity of the flavor Hamiltonian and the small spatial
and timescale of the flavor transformations.

Although initial findings suggested that neutrino flavor
oscillations were not crucial for the dynamics of CCSNe
(e.g., [74,75]), in the last decade, the growing under-
standing of fast flavor instabilities [10,76—80] has ushered
the possibility of fast neutrino flavor transformations on
time and spatial scales of a few nanoseconds and centi-
meters in dense neutrino gases [8,81-87]. A prerequisite
for the emergence of fast flavor instabilities is the
existence of at least one direction in which equal numbers
of neutrinos and antineutrinos are in motion. This con-
dition manifests as a crossing in the angular distribution
[81,88-91]. Conditions conducive to fast flavor conver-
sion have been identified in the protoneutron star con-
vection region of CCSNe [92,93], beneath the shock wave
[94-96], above the shock wave [97,98], during the cooling
phase of the protoneutron star [99], and in the NSM
accretion disk [100-102].

The nonlinear evolution of flavor leads to intricate and
seemingly chaotic dynamics, posing challenges for achiev-
ing convergence in dynamical calculations (e.g., [103]).
While chaos in the context of fast flavor instabilities
remains unexplored, earlier investigations have hinted at
chaos in bipolar oscillations within two-beam models (i.e.,
two momentum states) [104,105]. Reference [104] presents
a method for obtaining the complete spectrum of twelve
Lyapunov exponents and covariant Lyapunov vectors
across various initial conditions with different symmetries
that either maintain or disrupt the periodicity of bipolar
oscillations. However, the long-term evolution of small
perturbations and their maximum magnitudes were not
explored. Reference [105] demonstrates that small pertur-
bations in neutrino flavor states yield a distinct flavor
evolution history in a model incorporating fast axial
symmetry-breaking modes. In such models, flavor oscil-
lation modes either lack regularity or exhibit features
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resembling periodic behavior for a brief duration. The
introduction of a small perturbation does not guarantee that
the system will evolve in a manner where its evolution
paths closely align.

Future observations of CCSNe and NSMs neutrinos
will provide crucial scientific insights into the collapsing
stellar core (e.g., [106]) and nucleosynthesis conditions.
The exponential amplification of errors in simulations,
due to chaos, may limit our ability to predict the evolution
of neutrino flavor within CCSNe and NSMs, hindering
our capacity to compare theoretical predictions with
observational data. To shed light on the problem, we
extend the study of chaos to a more realistic distribution of
neutrinos that exhibit fast flavor instabilities. We conduct
two simulations of dense neutrino gases with distinct
angular distributions, one of which involves a narrow
domain a few centimeters wide, capturing a snapshot of a
NSM. The resolution scale is defined by a domain of 1 x
1 x 64 cm divided into 1 x 1 x 1024 cells, each accom-
modating 24,088 momentum states. This setup allows for
flavor anisotropies and inhomogeneities. The primary
goal is to characterize the evolution of small perturbations
in neutrino flavor states over time, specifically quantifying
the sensitivity of the results to the initial conditions. This
endeavor will shed light on how chaos affects our
capability to predict the evolution of neutrino flavor in
dense astrophysical neutrino gases within simulations.

In Sec. II, we briefly overview the standard theory of
chaos in dynamical systems. Neutrino quantum kinetics is
reviewed in Sec. III, while Sec. IV outlines our numerical
approach to simulating neutrino flavor transformation.
Evidence of chaos is presented in two extensive one-
dimensional simulations in Sec. V. We further explore the
unpredictable nature of chaos and its impact on both large
and small scales of neutrino flavor transformation in the
same Sec. V. Concluding remarks are provided in Sec. VI.

II. CHAOS

The discovery by E. Lorenz of an atmospheric con-
vection model exhibiting irregular and unpredictable
behavior formally marked the beginning of the study of
chaotic systems [107]. Chaotic systems are nonlinear
dynamical systems characterized by erratic and irregular
complex behavior. Although these systems are fundamen-
tally deterministic—meaning precise knowledge of initial
conditions allows for the prediction of future behavior—
even a minute variation in these conditions, such as
measurement uncertainty, results in an entirely different
prediction. This contrasts with nonchaotic systems, where
the approximate present determines the future approxi-
mately. In chaotic systems, the approximate present leads to
an entirely different future (see [108-112] for modern
expositions of chaotic systems).

Since Lorenz’s findings, many dynamical systems have
been discovered to exhibit chaos, revealing how chaos and

%él

FIG. 1. Graphical representation of a chaotic dynamical system
governed by Eq. (3). Consider a 1-sphere of initial conditions Sfo
around 7,, where k = 1, 2. As time progresses, this 1-sphere
morphs into a 1-ellipsoid, as demonstrated at ¢; and ¢,, with each
perturbation (3,1 and ;S? ) experiencing variable expansion and
contraction. In a chaotic dynamical system, the transformation of
the 1-ellipsoid’s form is governed by the Eq. (4) and at least one
Lyapunov exponent (4;) is positive. The exponential divergence
of two nearly identical states implies that systems with minor,
barely perceptible differences in their initial conditions will begin
to exhibit divergent behavior in the near future, significantly
diminishing the capacity for accurate prediction.

complexity can emerge from seemingly simple dynamic
systems such as the logistic equation [113], a driven
damped pendulum [114], or a double pendulum [115].
Chaos, rather than being an isolated behavior of specific
dynamical systems, is a universal property of complexity in
all of them [112].

Consider a general nonlinear dynamical system charac-
terized by a state space of dimension n + 1 with coor-
dinates r;, which follows the governing equation,

F=F(r). (3)

The solution 7, with initial conditions 7, traces a path that
we assume confined to a finite volume in the state space,
ie. r; €la;, b;l.

A frequently used strategy to identify chaos involves
quantifying the sensitivity of the outcomes relative to the
initial conditions. One should contemplate an n-sphere of

o .. N 2k . N
initial conditions r, + &;, centralized at r,, (refer to a two-

dimensional depiction at #; in Fig. 1). Here, Sfo is a small
perturbation and k= 1,2,...n 4+ 1 symbolizes the state
space dimensionality of the dynamical system. As time
progresses, the dynamical system’s nonlinearity transforms
the n-sphere into an n-ellipsoid (observe the one-ellipsoids
at t; and t, in Fig. 1), with each dimension experiencing
varying rates of expansion and contraction. If the shape of
the n-ellipsoid evolves according to
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EARICALES (4)

Ar 18 a Lyapunov exponent of the dynamical system. A
positive Lyapunov exponent indicates instability, while a
negative one indicates stability. Neutral stable regions are
implied by a zero Lyapunov exponent. A nonlinear
dynamical system is chaotic if it possesses at least one
positive Lyapunov exponent. In chaotic systems, the
Lyapunov exponent characterizes the average rate of
exponential divergence of nearby trajectories in state space
[116]. If a perturbation evolves for an extended period, the
largest Lyapunov exponent will dominate the shape of the
n-sphere, and the perturbations will follow the direction of
maximum divergence [108,112]. The exponential diver-
gence of two nearly identical states suggests that systems
with subtle, hard-to-notice distinctions in the initial con-
ditions will soon start to behave differently, and the ability
to make forecasts will be rapidly reduced. The magnitude
of the Lyapunov exponent indicates the rate at which the
system’s behavior becomes unpredictable.

In contrast to linear stability analysis, where the
governing equations can be simplified to a linear form
with the aim of identifying the existence of growing
exponential modes at a specific point in the state space,
the analysis of chaos investigates the evolution of pertur-
bations in the nonlinear regime of the governing equa-
tions. Nonlinearity is a requirement for the appearance of
chaos, as is the confinement of the solution trajectories to
a finite volume in the state space r; € [a;, b;]. As demon-
strated in Appendix B, solutions of the neutrino quantum
kinetic formalism fall into this category when collisions
are not present.

We should also note that, given that the solutions of the
dynamical system are confined to a certain volume in the
state space, the perturbation cannot expand exponentially
beyond the size of the state space that limits the solutions.
Equation (4) is valid in this time domain. This constraint,
together with the exponential separation of the solutions,
implies that the solutions are continuously flexing and
unfurling over different regions of the state space, erasing
the intricate structure of the solutions and producing new
information. The Lyapunov exponent measures the rate at
which the system sheds information over time, usually
expressed in bits per second [116].

ITII. NEUTRINO QUANTUM KINETICS

A proper treatment of a flavor neutrino field in a dense
environment involves a seven-dimensional distribution
|

C12C13
U= | —sip003 — 012313523€i5“1’

is,,
§12823 = C12813523€ 7

function for neutrinos f,,(7,Xx,p) and antineutrinos
far(t.X,p) (np x np matrices, where ny is the number
of neutrino and antineutrino flavors) whose elements are
the expectation values of bilinear creation and annihilation
operators (aja,) and (bib,) in the mean field approach.
The diagonal terms (a = b) of f,,(t,x,p) and f; (¢, X, p)
represent the neutrino and antineutrino occupation numbers
for each flavor (a, b € {e, u, 7}), and the off diagonal term
(a # b) represents the flavor correlation [8,10]. The time
evolution of the neutrino distribution function is governed
by the quantum kinetic equation (QKE),

O+v- V) fur = Cop =3 .l (5)

Barred quantities (f,,, C,, and H) need to be substituted to
arrive at the equation for antineutrino distributions. The
matrix C,,(C,;) is the collision term which accounts for
the nonforward scattering of neutrinos (antineutrinos). The
first term on the left accounts for the explicit time
dependence of the distribution function and the second
term accounts for the drift that is caused by the particles that
are streaming freely. We ignore other external forces like
gravity and hypothetical electromagnetic interactions. The
Hamiltonian H ,;, accounts for the flavor transformation due
to mixing between mass and flavor eigenstates H5°"™, the
coherent forward scattering of neutrinos with background
matter (other than neutrinos) H7", and the coherent
forward scattering of neutrinos with others neutrinos and
antineutrinos H*,”. These are combined as

Hab — HZ?}cuum + Hgllftter + Hl(;—l/’ (6)

where

Hypm = U,w[\/m Seal Uy ()

(fa - fa)]5ab (8)

H2 % = \2Gp(he)?[(ng — i) — P -

HYV = 2Gp(he)[(ngy — 7%,) =P - (Fap — T5,)]. (9)

Repeated indices are summed. U is the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) unitary mixing matrix that for
np = 3 takes the form,

—i5,
$12€13 Spze
is,
C12C23 — 8128138523€ 77 C12523 ) (10)
i5,,
C12523 + S12813C3€" % C12C23
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where s;; = sin6;; and c;; = cos0;;. 0;; are the neutrino
mixing angles, &, is the charge-parity violation phase and
m, is the neutrino mass in the masses eigenstates for
ce{l1,2,3}. In this work we consider 6, = 33.82°
013 =8.61°, 0,3 =4833°, 5., =1222°, om3 =
739 x 107 eV? and &m3, =2.449 x 1073 eV? under
the neutrino normal mass ordering as in Ref. [117],
although the calculations are in a regime where these terms
are of negligible import. p is the neutrino momentum.
n,(#,) denote the scalar number density, and f,,(f,) denote
the number flux density for leptons(antileptons) of flavor a.
The Hermitian neutrino number density n,, and number
density flux f,, matrices come from the neutrino distribu-
tion function as follows:

o/ /2@nm (i)
/ /' Gt (1)

The antineutrino equations are given by substituting barred
quantities as

Ii]ﬁcuum — szcuum (1 3)
I:Izn}iitter — _ Hz}ﬁitter* (1 4)
Ho? = —H" (15)

In this work we suppress the matter term in the Hamiltonian
to focus on the flavor transformation produced by the
neutrino-neutrino coherent forward scattering mechanism.

IV. METHODS

We employ mean-field neutrino quantum kinetics, taking
into account two angular degrees of freedom and allowing
for spatial flavor inhomogeneities in one dimension, while
preserving homogeneity in the other two dimensions. We
carry out simulations of mono energetic neutrinos. We
make use of the multidimensional neutrino quantum
kinetics code Emu, which we describe in Sec. IVA. The
pair of initial conditions for the neutrino systems under
study is detailed in Sec. IV B.

A. Emu

Emu [82] is a particle-in-cell code designed for sim-
ulating neutrino flavor transformations. It solves the QKE
without considering collisions under the mean-field
approximation. Emu utilizes computational particles to
discretize the neutrino field into distinct packages and
tracks the evolution of each computational particle’s
position on a background grid. This approach efficiently
accounts for the advection term in the Liouville operator

v-V, by moving the computational particles in accor-
dance with the equation,

or
— =cp 16
5 =P (16)
op
= =0, 17
5 (17)

where r is the position vector of the particle and p is the
momentum vector of the particle. This implies that there is
no momentum exchange due to incoherent scattering,
creation and annihilation of neutrinos and antineutrinos
and energy exchange C,, = C,, = 0 so that each com-
putational particle in EMU satisfies

ON OoN
—=_=0 18
or ot (18)

oE
o (19)
where N and N are the number of physical neutrinos and
antineutrinos that a computational particle represents.
Each computational particle carries two quantum states
defined by the Hermitian density matrices p and p,
representing the physical neutrinos and antineutrinos car-
ried by the particles. The flavor quantum state evolves in
time according to the Schrodinger equation,

dap i
m —g[ P (20)
P A7 @)

To compute the Hamiltonian based on a discrete
approximation of the neutrino field, EMU employs a
deposition and interpolation algorithm to estimate the
number density of neutrinos and antineutrinos (n,, and
fi,;) and the number density flux (f,, and f,,) at every
position of the particle. During each simulation time step,
EMU models each computational particle with an extended
shape centered on the particle position, with an extent
comparable to the size of the grid cell. This is used to
combine the quantum states of the computational particles
that overlap over a single cell based on the parametrization
of a second-order shape function. This combination attrib-
utes a distribution of neutrinos and antineutrinos from each
particle to each cell of the grid. Subsequently, the neutrino
distribution moments are interpolated from the grid cell
distribution to the location of each computational particle,
using the same second-order shape function. The quantum
state is then integrated using a fourth-order Runge-Kutta
method in an efficient and scalable manner based on the
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AMReX framework, ensuring performance portability to
both CPU and GPU hardware.

B. Initial conditions

We study the presence of chaos in two separate simu-
lations. In the first (Sec. IVB 1) we look at a well-
understood toy model, and in the second (Sec. IV B?2)
we extract the neutrino distribution from a multidimen-
sional NSM simulation. In both cases, we construct a
simulation domain that is one-dimensional in space (i.e.,
assuming homogeneity in the x and y directions) using a
one-dimensional array of 1 x 1 x 1024 cells embedded in a
domain of 1 x 1 x 64 cm with periodic boundary con-
ditions. The final flavor content resulting from the flavor
instabilities in one-dimensional simulations provides a
reasonably accurate approximation compared to computa-
tionally expensive three-dimensional simulations [83]. We
simulate 24,088 computational particles initialized at the
center of each cell, with isotropically distributed direc-
tions ensuring that each computational particle represents
the same solid angle. This significantly larger particle
count per cell is chosen as we observe that the properties
of chaos are notably more sensitive to numerical errors
than the global distribution averages investigated in
previous works [82,83].

1. Fiducial simulation

In this simulation, the neutrino and antineutrino distri-
butions are purely electron flavor. The total neutrino and
antineutrino fluxes point in opposite directions with a flux
factor (f,,/n,, and f,,/7,,) of 1/3 and a number density
of 4.89 x 10°? cm™3. Although these parameters are purely
a toy problem, similar total neutrino number densities occur
in core-collapse supernovae at a radius of approximately
80 km between 200 and 300 ms postbouncing [118,119]
and at a radius of 40 km in neutron star merger accretion
disks [120]. In this problem, the initial neutrino angular
distributions satisfy

dn n
= (] 22
0= in (1 4 cos®) (22)
dn;e ng,
) —4ﬂ(1—cost9) (23)
dn,, dn, dn, dng  dng

0. (24)

dQ dQ dQ dQ  dQ

where n, (n;,) is the neutrino(antineutrino) number density
of flavor a. dQ is a differential solid angle in momentum
space centered on the momentum direction p. The direction
z defines the direction from which € is defined zero.
Figure 2 shows the initial angular distribution in the xz
plane. The linear angular distribution exhibits a strong
lepton-number crossing in the xy plane. Previous work

EA

FIG. 2. Initial angular distribution for neutrinos and antineu-
trinos in the one-dimensional fiducial simulation. A rotation of
the curves around the Z direction (Z axial symmetry) reproduces
the three-dimensional neutrino angular distribution. The neutrino
and antineutrino number density emitted per solid angle is
proportional to the distance of the curves from the origin.

shows that this distribution exhibit fast flavor instabilities
that match the unstable modes predicted by linear stability
analysis [82]. The input parameters of this simulation are
publicly available in the EMU code [121].

To seed the instability and set a small initial amplitude
for fast unstable flavor modes, the quantum state of
each computational particle is initialized in nearly the
pure electron flavor state, with a small random perturba-
tion on the nondiagonal electron-muon and electron-tau
components,

[1—€,—€e, a(Q+ Qi) a(Q+Qi)]

p= Peu €y 0 . (25)
Per 0 A
[1—€,—€e, a(Q+ Qi) a(Q+Qi)]

p= Py € 0 . (26)
Per 0 €&

Here, Q is a random number generated between —1 and 1
each time it appears, and « is the strength of the random
perturbation, which we set as 107°. €, and €, are computed
once the random nondiagonal components are generated
in order to satisfy the conservation of the length of the
flavor polarization vector and the unit trace of the density
matrix.

2. NSM snapshot simulation

We evolve the quantum flavor states of neutrinos in a
NSM snapshot after 5 ms postmerger from the classical
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TABLE L

Initial neutrino and antineutrino total number densities and fluxes for the NSM snapshot simulation.

Number density n,, (cm™)

Flux factor f,,/ng,

n, = 1.422 x 10%
n,, = 4913 x 1032
Ny, = 4913 x 1032
i, = 1.915 x 10*3
i, = 4913 x 10%?
i = 4.913 x 102

f,./n.. = 0.0974e, +0.04218, — 0.1343¢,
£,,./n,, = —0.02168, + 0.0743¢, — 0.5354¢,
f../n, =—0.02162, + 0.0743¢, — 0.5354¢,

f../n. =0.0723¢, +0.0313¢, — 0.3446¢,
f,./n,, =—0.0216e, +0.0743¢, — 0.5354¢,
f../n.. = —0.02162, +0.0743¢, — 0.5354¢,

global general relativistic two-moment radiation hydro-
dynamics simulation in [122], at a location approximately
40° from the accretion disk plane and at 30 km from the
compact object center as in [100]. The total number
densities and fluxes of neutrinos and antineutrinos is shown
in Table I.

To maintain consistency with the assumptions made in
the original NSM simulation, each computational particle
carries a number of neutrinos and antineutrinos that satisfy
the angular distribution determined by the maximum
entropy closure [123]. This maximizes the angular entropy
of the energy-integrated distribution while conforming to
the total neutrino and antineutrino number densities and
fluxes outlined in Table I. Specifically, the initial distribu-
tion function is given by

gl Naa Z Z-cos 0
D t) =5 *7, 27
fual®Pot) = e (27)

where n,, is the number density of flavor a, and 6 is the
angle between the momentum direction and the flux
direction. Barred quantities (f,, and 7,,) need to be
substituted for antineutrino distributions. The factor Z is
numerically calculated to yield the expected total number
density flux outlined in Table I. This distribution exhibits a
angular directions of equal fluxes of neutrinos and anti-
neutrinos [100], indicating its unstable to fast flavor
transformations (e.g., [88]).

V. RESULTS

We explore how small perturbations in the flavor state of
neutrinos and antineutrinos evolve over time using
Lyapunov exponents (see Sec. II), on both macroscopic
and microscopic levels of the neutrino flavor transforma-
tion. The macroscopic scales are represented by the
domain-averaged density matrix, while the microscopic
scales are computational particles that represent the small-
est spatial resolution of the neutrino distributions in the
simulations.

We first simulate the neutrino flavor transformation in a
domain a few centimeters wide, located above the accretion
disk 5 ms after the merger of two neutron stars [122] (see

Sec. IV B 2 for a description of the simulation setup). This
is a noteworthy area for the generation of r-process nuclei
[52,53], and the neutrinos are unstable to the fast flavor
instability, making this region an optimal testing ground
for researching chaotic properties in neutrino flavor evo-
lution. We also simulate a well-studied artificial neutrino
distribution in which one third of the total number of
neutrinos and antineutrinos travel in opposite directions
(see Sec. IV B 1 for a description of the simulation setup).
This is an extreme and unique initial condition that is useful
for understanding of the patterns of chaos. Although, the
three-dimensional neutrino flavor transformation for these
systems have been reported in [83,100], we conduct high-
resolution one-dimensional simulations to precisely com-
pute the Lyapunov exponents.

Essential data have been archived and are publicly
accessible at [124], with additional data available upon
request.

A. Overall dynamics

To start, we need to first examine the impact of the fast
flavor instability on the flavor distribution before delving
into the additional effects introduced by chaos. This
preliminary analysis will aid in interpreting the results
presented in the subsequent sections. Figure 3 shows the
neutrino density matrix averaged across the spatial domain,
denoted as (p). For flavor components i, j € {e, u, 7}, the
domain-averaged density matrix is defined as a sum over
the computational particles according to

(s = s 28
where
1 Npar
<N>ij =N Z ‘Nkpm- (29)
par =]

Here, N, represents the number of computational particles
in the simulation, N* is the number of physical neutrinos
represented by the computational particle k, and pfj denotes
the neutrino density matrix of particle k.
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FIG. 3. Density matrix averaged over the spatial domain of the
NSM snapshot (upper panel) and Fiducial (lower panel) simu-
lations. Individual components are visualized in distinct colors. In
the off diagonal components, flavor oscillation modes that start
the simulation with small amplitudes grow, creating a combina-
tion of modes that stop the exponential trend due to unstable
modes. The diagonal components reach a final state near
complete flavor mixing (indicated by the black dotted line)
and slightly fluctuate around it. The domain-averaged antineu-
trino density matrix follows the same trend.

As previously reported in [82,83,100], the evolution of
neutrino flavor exhibits three distinct phases: linear growth,
saturation, and decoherence of flavor oscillation modes.
During the linear growth phase, observed between 0.10 and
0.25 ns in both panels of Fig. 3, the off diagonal
components of the domain-averaged density matrix are
predominantly influenced by highly unstable flavor oscil-
lation modes that exhibit exponential growth as (p);; =
Ae™" with Im(w) # 0 and A a small initial amplitude. The
imaginary frequency of the dominant unstable modes can
be read from the slopes of the off diagonal curves during
the linear growth phase. In the upper panel, the measured
instability growth rates for the NSM simulation are
Im(w,,) ~58.8 ns™' and Im(w,,) ~ 59.6 ns~'. The bottom
panel shows measured growth rates for the fiducial sim-
ulation of Im(w,,) ~ 62.6 ns™' and Im(w,,) ~ 62.1 ns~'.
This is consistent with the previously reported values.

After the linear growth phase, the flavor oscillation
modes that begin the simulation with a negligible amplitude
become noticeable, provoking saturation of the flavor
oscillation modes. This saturation phase occurs between
0.25 and 0.30 ns in both simulations. Significant flavor
conversion does not take place until the conclusion of the
linear growth phase and the initiation of the saturation
phase. After the saturation phase, all the flavor oscillation
modes start evolving in an incoherent mixture. This is the
flavor decoherence phase. Coherent modes that grew in
the linear growth phase are disrupted, and the phase of the
oscillation modes is randomized, although long-lived
modes can exist after the saturation phase [125]. In the
decoherence phase, neutrinos and antineutrinos start evolv-
ing in a complex nonlinear relationship, archiving huge
amounts of flavor conversion. After about 0.3 ns, the
domain-averaged neutrino density matrix in the NSM
simulation reaches an incomplete flavor mixing state as
an equilibrium point and fluctuates slightly around that
state. The domain-averaged antineutrino density matrix
follows the same pattern. The dynamics of the fiducial
simulation are remarkably similar to that of the NSM
simulation, except that the equilibrium distribution of
flavors is very close to an even mixture.

B. Chaos

To quantify the evolution of the small perturbation 5;
over time, we introduce a mathematical vector henceforth
referred to as the flavor vector 7, with components given by

T6k+1 = Nka- (30)

Here, k€0, Npar) denotes the particle index, [€]0,7]
represents the Gell-Mann vector component of a single
particle’s neutrino flavor vector, and [/ € [8, 15] designates
the Gell-Mann component for a particle’s antineutrino
flavor vector. P;‘ = %Tr(pk G,) is the neutrino flavor polari-
zation vector for the computational particle k, where G,
refers to the Gell-Mann matrices (with the eight Gell-Mann
matrices being repeated for [€(8,15]). Given that
1 €0, 15], the flavor vector has 16N par components. The
flavor vector completely determines the flavor content of
our simulations, and its evolution can be thought of as
tracing a path through a 16N ,-dimensional state space.
Given that the length of the flavor polarization vector of
each particle is a constant of motion, the trajectories of the
flavor vector in the state space is bounded to the surface of a
16N ,,-dimensional sphere of radius the length of the flavor
vector (see Appendix B).

The evolution over time of small perturbations can be
obtained by simulating the paths in the state space of
two flavor vectors Yith initial conditions 7y,s(ty) = 7,
and 7y (tg) = 7y, + ;. Here, 7, is the initial flavor
vector of the NSM and fiducial simulations described in
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FIG. 4. Time evolution of small perturbations |g,| in the NSM (blue) and fiducial (orange) simulations. In the left panel, the
perturbation is applied at 7, = 0 ns (before the linear growth phase). Between 0.10 and 0.25 ns, the perturbation growth is exponentially
driven mainly by the fast flavor instability. In the right panel, to avoid the presence of unstable fast flavor modes, the perturbation is
applied in the decoherence phase at #, = 2.65 ns. The magnitude of the perturbation grows, following an approximate exponential trend.
This demonstrates that paths of similar flavor vectors in the state space diverge exponentially, illustrating the chaotic evolution of
neutrino flavor. As the simulation concludes, the magnitude of the perturbations approaches a constant value larger than the magnitude

of the flavor vector |7;| (dotted lines).

Secs. IV B 2 and IV B 1, respectively. The perturbation gt
can be obtained by computing

o = 7:per - 7bas- (31)
The first simulation, described by 7y, serves as the baseline
simulation for comparison. The other, described by ?per, is
randomly perturbed from the baseline simulation.

Specifically, we randomly choose the initial magnitude
of the perturbation so that

il

io|
=
rto‘

~ 10710, (32)

This choice of perturbation is sufficiently large to avoid
numerical errors (see Appendix A). The mathematical
maximum magnitude of the perturbation at any point in
time is 2|7,| (i.e., when 7,, is oriented opposite to 7y,). It is
important to note that the “‘chaos” perturbation is indepen-
dent of the perturbation used to seed the instability (see
Sec. IV), which is present in both the baseline and
perturbed simulations. In the following discussion, the
perturbations referred to are the ‘“‘chaos” perturbations
and not the initial instability seed.

If the neutrino flavor evolution is chaotic, the time
evolution of small perturbations follows an approximately
exponential trend [see Eq. (4)] with 4 > 0. To test whether
perturbations exhibit this exponential behavior, we

performed two simulations in which we apply perturbations
at t, = 0 and ¢y = 2.65 ns in both the NSM and fiducial
simulations. The first case represents a perturbation applied
before the linear growth phase, and the second a perturba-
tion applied in the decoherence phase.

The blue curve on the left panel of Fig. 4 shows the
evolution of a perturbation applied at 7, = 0 in the NSM
simulation. During the linear growth phase, between 0.10
and 0.25 ns, the perturbation follows an exponential trend
characterized by 1~ 59 ns~!. This trend is mainly driven
by fast flavor unstable modes and does not represent a
signature of chaos. Additionally, as previously exposed,
there is no significant flavor conversion at this time.
Towards the end of the linear growth phase, the perturba-
tion’s exponential trend abruptly transitions to a slower rate
(A~ 2.6 ns~!). At this point, as observed in Fig. 3, unstable
modes have vanished and the domain-averaged density
matrix evolves into a complex, incoherent mixture of flavor
oscillation modes that has attained an equilibrium distri-
bution, closely resembling flavor equipartition. This sug-
gests that the exponential growth of the perturbation in
decoherence phase is not driven by fast flavor unstable
modes and is a signature of chaotic flavor evolution in the
flavor vector. The fiducial simulation (orange) shows a very
similar trend for the same reasons. The growth rates before
and after saturation in this case are approximately 58 ns~!
and 2.6 ns~!, respectively.

To isolate the chaotic behavior from the fast flavor
instability, we perform another simulation where we apply
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FIG. 5.

The upper panel shows the time evolution of perturbations periodically normalized to keep the perturbation small. The blue

curve corresponds to the NSM simulation, while the orange curve represents the fiducial simulation. The lower panel shows the
Lyapunov exponent calculated over each interval between normalizations. The Lyapunov exponent of a perturbation in the state space
varies based on the direction of the perturbation. The presence of exponential divergence (4 > 0) and convergence (4 < 0 e.g. below the
blue and orange stars) is an expected result of the Liouville theorem of conservation of the state space volume of canonical variables.

the perturbation at 7, = 2.65 ns during the decoherence
phase (right panel of Fig. 4). In the NSM simulation (blue),
the perturbation amplitude exhibits an approximately
exponential growth with 4 = 0.44 ns~!, and in the fiducial
simulation (orange), the growth rate is A = 0.32 ns~!. This
observation highlights that the paths of similar flavor
vectors in the state space diverge exponentially, indicating
chaotic behavior. The Lyapunov exponent is 1 order of
magnitude smaller than the growth rate of the dominant
flavor unstable modes present in the linear growth phase.

It is also curious that the growth rates for perturbations
applied before the linear growth phase are so different from
those applied in the decoherence phase. The Lyapunov
exponent depends on the position in the state space of both
baseline and perturbed flavor vectors (i.e., the direction of
the 16N ,-dimensional perturbation vector &), so as the
system evolves A can change, and a single simulation is
not able to fully explore such a large parameter space.

To illustrate this, we run a third set of simulations in which
we periodically normalize the perturbation maintaining its
direction every 0.9 ns. The upper panel of Fig. 5 shows the
time evolution of the perturbation after each normalization,
while the lower panel provides an approximation of the
Lyapunov exponents calculated over each interval between
normalizations. Given the significant differences in the
initial conditions, it is remarkable how similar chaos
manifests in the NSM and fiducial simulations. The
Lyapunov exponents emerging from the presaturation
perturbations are larger because the fast flavor instability
causes the perturbation to grow in a very specific direction
that is closer to directions that exhibit the strongest chaos.
Randomly perturbing after the instability saturates simply
sets the stage with a random perturbation in a less chaotic
direction. In bipolar simulations involving only two beams
it is possible to obtain the full spectrum of Lyapunov
exponents [104] but that is infeasible with these large-scale
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simulations. However, we do find that random perturba-
tions produce consistent Lyapunov exponents across multi-
ple runs, leading us to believe that the numbers reported for
the postsaturation perturbations represent a lower bound for
the chaoticity of the system.

Although the exponential trend of the perturbations is
predominantly driven by positive Lyapunov exponents
(4 > 0), the upper panel reveals the existence of directions
with negative Lyapunov exponents (4 < 0). One such
direction is marked by each a blue and orange star.
Stable directions with negative Lyapunov exponents are
swiftly suppressed by divergent directions. In other words,
perturbations that initiate evolution in a stable direction will
eventually transition to a direction characterized by a
positive Lyapunov exponent. This is another illustration
of the dependence of the Lyapunov exponent on the state
itself and the direction of the perturbation.

Negative Lyapunov exponents arise from the conserva-
tion of the state space volume of the canonical variables, as
stated in the Liouville theorem. The QKE can be trans-
formed into a conservative classical Hamiltonian system
with the canonical coordinates and momenta given by any
function of the coordinates used to describe the flavor
polarization vector (see Sec. Il A of [104]). This implies
that for each direction in the state space with exponential
divergence, there will be a direction of exponential con-
vergence at the same rate, ensuring the conservation of the
state space volume of the canonical variables, even if its
shape is deformed. The exponential divergence of small
perturbations also has consequences for the integrability of
the QKE. In Hamiltonian systems, for each conserved
quantity, there exists one direction in the state space with a
zero Lyapunov exponent. Since integrable systems have
conserved quantities as degrees of freedom, the Lyapunov
exponent is zero for every direction in the state space. In
other words, the shape of the state space volume of the
canonical variables remains unchanged. Even though our
state space does not correspond to the state space of the
canonical variables, our finding that close flavor vector
paths in state space diverge exponentially suggests that the
QKE is a nonintegrable system.

Towards the end of the simulation, the magnitude of the
perturbation stabilizes, reaching a constant value (¢ 2 4 ns
in the left panel and ¢ Z 60 ns in the right panel). In both
cases, the perturbation’s magnitude asymptotically settles
to a value less than the maximum possible value of 2|7,| but

greater than |7,|. If we interpret &, as the uncertainty in the

flavor vector 7, + §,, the relative error in 7, can be up to
106% for the NSM simulation, and 142% for the fiducial
simulation. This implies that even small uncertainties are
exponentially amplified making the flavor vector unpre-
dictable on a timescale of the inverse of the Lyapunov
exponent. The fiducial simulation maximum perturbation
amplitude is considerably larger than in the NSM simu-
lation because the fiducial simulation experiences a higher

10! §
103
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1077

FIG. 6. The upper panel shows the magnitude of the non-
diagonal components of the neutrino density matrix for a single
computational particle in EMU, obtained from the NSM snapshot
simulation. The lower panel shows the diagonal components of
the neutrinos density matrix for the same computational particle.
The flavor transformation becomes evident at the end of the linear
growth phase and evolves with large amplitude, in contrast to the
domain-averaged quantities in Fig. 3.

amount of flavor conversion in all directions. All particles
in the fiducial simulation change flavor from a pure
electron state to a flavor-mixing equilibrium.

C. Individual particles

While the domain-averaged density matrices tend to a
flavor mixing equilibrium, this stationary state comprises
numerous particles whose flavor states undergo random
and incoherent fluctuations at small scales. The fine details
of these fluctuations, observable at the level of single
computational particles, remain highly chaotic.

This can be seen in Fig. 6, which shows the neutrino
flavor transformation of a single computational particle in
the EMU code for the NSM simulation. The upper panel
shows the magnitude of the off-diagonal components of the
neutrino density matrix, while the lower panel displays the
diagonal components. Similar to Fig. 3, the same linear
growth, saturation, and decoherence phases are discernable.
Flavor transformations become evident toward the end of
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the linear growth phase, around 0.25 ns. The amount of
flavor conversion that a computational particle experiences
is related to the direction of its momentum. The flavor
transformation follows a complex nonlinear trend with no
discernible pattern.

The Lyapunov exponent extracted from individual par-
ticles is similar to those obtained from the full state vector
in Sec. V B. The blue (NSM) and orange (fiducial) curves
in the upper panel of Fig. 7 show the difference between
the flavor state of a single particle extracted from the
baseline simulations and the simulations perturbed at
2.65 ns. To avoid focusing on a single flavor, we sum
over flavors and plot,

Tr|Ap| = |Aplee + [Ap],, + AP, (33)

0 20 100 150
t (1075)

FIG. 7. The upper panel shows the flavor-traced difference
between the neutrino density matrices [Eq. (33)] of single
computational particles extracted from the baseline and post-
saturation perturbed simulations. The lower panel shows the same
quantity, but using the domain-averaged density matrix (p). The
blue and orange curves denote the NSM and fiducial simulations,
respectively. The black dotted lines show the maximum possible
value. Both panels exhibit a comparable exponential trend, akin
to the perturbations observed in the flavor vectors (see the right
panel of Fig. 4), but late-time uncertainties in the domain-
averaged quantities are much smaller than in individual particles.

This can be interpreted as the combined uncertainty in the
average electron, muon, and tau flavors generated by the
perturbation in the flavor vector, whose maximum value is
2. This difference follows a similar exponential trend
(A~ 0.41 ns~! for NSM and 0.32 ns~! for fiducial) as
the full flavor vector (right panel of Fig. 4). Toward the end
of the simulation, this difference ceases exponential growth
and instead shows irregular and large-amplitude fluctua-
tions. The maximum combined uncertainty reaches values
of up to 0.17 for the NSM particle and 1.92 for the fiducial
particle. By tracking particles propagating in other direc-
tions (not shown), we note that computational particles
experiencing high-amplitude flavor oscillation modes reach
values of Tr|Ap| close to 2 (similar to the fiducial particle),
while particles undergoing low-amplitude flavor oscillation
modes exhibit small values of Tr|Ap| (like the NSM
particle).

D. Domain-averaged quantities

The flavor vector in Eq. (30) fully characterizes a many-
body flavor quantum state (which by construction never
builds multiparticle entanglement). However, in astrophysi-
cal applications, such as CCSNe and NSMs, this level of
detail is unnecessary and computationally infeasible. A
more relevant quantity is the domain-averaged density
matrix over a spatial domain greater than the flavor
oscillation length scale. The quantification of the impact
of chaos on these quantities is important for a reliable
implementation of the neutrino flavor transformation in
CCSN and NSM simulations, where even a small numeri-
cal error could propagate exponentially.

To investigate how small perturbations propagate on
macroscopic scales, we compute the domain-averaged
density matrices defined in Eq. (28) for the baseline
simulations and the simulations perturbed at 2.65 ns used
in the right panel of Fig. 4. The lower panel of Fig. 7 shows
the time evolution of the trace of the difference between the
baseline and perturbed neutrino density matrices averaged
in the domain, defined as in Eq. (33) but using the domain-
averaged density matrix (p). In the NSM simulation the
maximum value it reaches represents 0.07% of the maxi-
mum possible value of two, while in the fiducial simulation
it represents 1.3% of the maximum. This is considerably
smaller than the relative error of the flavor vector due to the
same perturbation, implying that small perturbations do not
escalate to large magnitudes in domain-averaged quantities.
The diagonal components of the domain-averaged density
matrix have a high degree of predictability compared to the
flavor vector even amidst chaotic flavor evolution. Due to
this distinctive feature, (i.e., small initial perturbations do
not reach large magnitudes) it is reasonable to use the
domain-averaged density matrix as a key variable in
simulations of neutrino flavor transformation in CCSNe
and NSMs. This is also encouraging for thermodynamic
theories of flavor transformation (e.g., [126]).
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VI. CONCLUSIONS

To inform simulations of neutrino flavor transformation
in CCSNe and NSMs, we delve into the chaotic nature
of neutrino flavor transformations in two distinct one-
dimensional dense neutrino gases. In the first simulation
(Sec. IV B 2), we extract the neutrino distribution from a
region above the accretion disk of a multidimensional NSM
simulation, and in the second simulation (Sec. IVB 1), we
examine a well-understood toy model. Both distributions
undergo significant fast flavor instabilities (see Sec. VA).

Using Lyapunov exponents, we study the stability of
paths in the state space of similar flavor vectors [Eq. (30)]
with similar initial conditions. These paths diverge expo-
nentially (see Sec. V B) showing that the neutrino flavor
transformation is chaotic. Interpreting the perturbation as
uncertainty results in a final relative error of over 100% in
the position of the flavor vector in the state space that grows
with a Lyapunov exponent with a lower limit of 0.44 ns~!
(NSM) or 0.32 ns~! (fiducial), as shown in Fig. 4. Since the
flavor vector completely characterizes the flavor content in
the simulations, we conclude that the long-term evolution
of neutrino and antineutrino flavors at this level of detail is
unpredictable.

We analyze how the Lyapunov exponents depend on the
direction in the state space of the perturbation (see Fig. 5).
In both simulations, we find that the time evolution of
perturbations is mainly driven by directions of positive
Lyapunov exponents. A perturbation applied in a stable
direction (4 < 0) will eventually move to an unstable
direction in state space (4 > 0).

We identify stable directions in state space in which the
perturbations briefly converge exponentially below the
stars in the upper panel of Fig. 5. Since the QKE can be
transformed into a classical Hamiltonian system [as in
Eq. (2) of [104]] several Hamiltonian mechanic theorems
can be applied. The Liouville theorem claims that the state
space volume of the canonical coordinates is a constant of
motion; i.e., the spectrum of the Lyapunov exponents is
symmetric,

(A1s Aoy A3,y evny =43, —Ao, —44), (34)
meaning that for each direction in the state space with
exponential divergence, there exists another direction of
exponential convergence at the same rate, so the volume of
the state space is conserved even though its shape is
deformed. One Lyapunov exponent is zero for each con-
served quantity, and all of them are zero for a stable or
integrable system where there exist conserved quantities as
degrees of freedom. The presence of a direction of
exponential divergence and convergence in our simulations
suggests that the QKE forms a nonintegrable system.

The unpredictable nature of chaos manifests differently
on the macroscopic and microscopic scales of neutrino
flavor transformation. The macroscopic scale is represented

by the domain-averaged density matrix, while the micro-
scopic scale is the quantum state of single computational
particles that represents the smallest spatial resolution of
flavor in the simulations. On single computational particles,
small perturbations grow exponentially (see Sec. V C),
reaching magnitudes of order unity for particles moving in
angular directions with a large amount of flavor conversion.
This implies a relative error of 100% on the quantum states
of neutrinos and antineutrinos, meaning that slightly differ-
ent initial flavor vectors reproduce a different flavor
evolution in single computational particles. Individual
computational particles destroy information at a rate of
Alog, e ~ 0.6 bits/ns, implying that initial variables speci-
fied with 64-bit floating-point precision (of which only
53 bits are used to store significant digits) cannot be
accurately predicted after approximately 100 ns.

In the domain-averaged density matrix, small perturba-
tions in the flavor vector grow exponentially reaching small
magnitudes compared to the maximum possible value. In
both simulations, this produces a combined maximum
uncertainty in the diagonal components of the domain-
averaged density matrix of less than 1.3% (see Sec. V D).
This suggests that CCSN and NSM simulations could
safely rely on domain-averaged quantities even if micro-
scopic details are unpredictable.
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APPENDIX A: CONVERGENCE TESTS

We are concerned with the numerical convergence of the
Lyapunov exponent. These convergence tests are con-
ducted for the fiducial simulation but can be generalized
to the NSM simulation since the numerical scheme in the
EMU code remains the same and both simulation exhibit
similar dynamics and numerical requirements.

Particle-in-cell neutrino simulations in EMU rely on
three imposed parameters: the domain size, the number of
cells, and the number of particles. These parameters must
be carefully chosen to ensure convergence in the physical
quantities under study. Another crucial aspect in computing
the Lyapunov exponent is the magnitude of the perturba-
tion. A small perturbation can lead to subtractive cancella-
tion errors, while large magnitudes result in saturation
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before a useful trend can be established. A balance between
these conditions needs to be achieved.

In the following sections, we examine the impact of
the domain size, the number of cells, the number of
particles, and the magnitude of the perturbation on the
Lyapunov exponent. This establishes the parameters for
which the simulation accurately reproduces the Lyapunov
exponent, minimizing numerical errors. To approximate the
Lyapunov exponent in Eq. (4), we employed the least
squares linear fit method for y = mx + b using the num-

py.polyfit () function. Here, y = In |3t|, m=Ax=t
and b =In|5,|. The numpy.polyfit() function
returns values of m and b that minimize the sum of the
squares of the residuals.

1. Number of particles

To determine whether the Lyapunov exponent is affected
by the number of particles, we conducted five simulations
wherein neutrinos are emitted in a roughly isotropic
distribution from the center of each cell. We considered
92, 378, 6,022, 24,088, and 54,202 particles per cell for
each case. The simulation domain is 1 x 1 x 64 cm,
divided into 1024 cells in the Z direction.

Starting at 7, = 2.65 ns, we applied the perturbation in a
random orientation with magnitude |, | /|7, | ~ 10710, We
evolved the perturbation until the simulation reached 20 ns
or until |3,|/|F,| = 107C.

Figure 8 shows the Lyapunov exponents for the five
simulations in this test. As the number of particles (and
hence the number of directions) increases, the Lyapunov
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FIG. 8. Test for convergence of the Lyapunov exponent with

the number of particles in the EMU simulations. The vertical
axis shows the Lyapunov exponent for five fiducial simulations.
The simulation domain is 1 x 1 x 64 cm divided into 1024 cells.
Convergence is attained for a number of directions
greater than 24,088.

exponent asymptotes to 0.6 ns~'. Around 24,088 direc-
tions, convergence is achieved. This represents a high-
precision simulation compared to the 92 particles needed to
achieve convergence in the long-term domain-averaged
density matrix [82].

2. Perturbation magnitude

To evaluate how the initial magnitude of the perturbation
affects the Lyapunov exponent, we perform three sets of
five simulations with initial perturbation magnitudes
16,,1/|7,,| on the order of 107!, 10~'2 and 107'°. The
simulation domain is 1 x 1 x 64 cm divided by 1024 cells.
Each cell is initialized with 24,088 particles at the center of
the cell and the perturbation is applied at ¢ = 2.65 ns. We

terminate the simulation at 20 ns or until |5,|/|7,| = 1075

Figure 9 show the Lyapunov exponent (blue, orange
and green) for three sets of five simulations with distinct
initial perturbation magnitudes (107'4,107'2, and 10710).
The blue, orange, and green shaded areas represent a spread
of 20 in the Lyapunov exponents of the same color. Larger
perturbation magnitudes result in less dispersion in the
Lyapunov exponent without significantly changing the
mean (0.61 ns™!), confirming their independence from
the perturbation magnitude. At a perturbation magnitude

|310| /|7,,| ~ 10719, the spread of in the Lyapunov exponent

is negligible (o ~ 6.2 x 107 ns~!). This can be considered
a convergence point.

0.66F
= 0.63F
= 0.60F
~ Tk
0.57
0.54 F
0.51 E~

IR

’(Sto|/’ﬁ0’

FIG. 9. Test for convergence of the Lyapunov exponent with
the magnitude of the perturbation. The vertical axis shows
the Lyapunov exponent (blue, orange and green) for three
sets of five simulations with distinct initial perturbation magni-
tudes (107410712, and 107'9). The simulation domain is
1 x1x64 cm, divided into 1024 cells with 24,088 particles
per cell. The shaded areas represent a 2¢ spread in the Lyapunov
exponents of the same color. Convergence is attained for

|5t0|/‘?t0‘ ~ 10710,

I
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FIG. 10. Test for convergence of the Lyapunov exponents with
the simulation domain size. The vertical axis shows the Lyapunov
exponents for three simulations with domain sizes of 16, 32, and
64 cm in the Z direction and 1 cm in the X and y directions. The 2
direction has 16 cells per centimeter, while the X and y directions
each have one cell per centimeter. Each cell contains 24,088
particles. The Lyapunov exponents remain relatively stable as the
simulation size increases.

3. Domain size

To investigate the impact of domain size on the
Lyapunov exponent, we conducted three simulations
with dimensions of 16, 32, and 64 cm in the Z direction
and 1 cm in the X and y directions. There are 16 cells per
centimeter in the Z direction and one in the X and ¥
directions. In each cell, 24,088 particles are emitted in an
approximately isotropic distribution from the center.
A perturbation with |5,0|/|7t0| ~ 10710 is applied at
t = 2.65 ns long after the saturation of flavor instability.
We allowed the perturbation to evolve until the simulation

reached 20 ns or until |5,|/|7,| ~ 10C.

Figure 10 shows the dependence of Lyapunov exponents
on the size of the simulation domain. The Lyapunov
exponents do not exhibit significant variation and remain
approximately constant as the simulation domain increases.
We consider convergence achieved for a simulation domain
of 1 x1x64cm.

4. Cell size

To investigate the impact of the cells size on the
Lyapunov exponents, we perform four simulations with
128, 256, 512, and 1024 cells in the Z direction and one in
the X and y directions. The domain size is 1 x 1 x 64 cm,
and there are 24,088 particles per cell. We introduce a

perturbation |, |/|7, | ~107'" in a random direction at
2.65 ns. The simulation concludes at 20 nanoseconds or

when |3,|/|7,| ~ 1075,

0.8F :
—~ 06F \//
' ; ]
EI: s
~ 04 3 ]
0.2F 3
O'O :n ...... [FTTTTTT Lusssass [T [FTTTTTT Lusssass [T [FTTTTTT [ FTTTTTT [FTTTTTT quul:
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Number of cells (10?)
FIG. 11. Test for convergence of the Lyapunov exponents with

the cell size. The vertical axis shows the Lyapunov exponents for
four simulations with 128, 256, 512, and 1024 cells in Z and one
in X and y directions. The domain sizeis 1 x 1 x 64 cm, and there
are 24,088 particles in each cell. The number of cells in the
simulation has a slight effect on the Lyapunov exponents. In this
work, we consider convergence achieved for 1,024 cells in a
domain size of 1 x 1 x 64 cm.

Figure 11 shows that the Lyapunov exponents are slightly
affected by the cell size. We consider convergence achieved
for 1,024 cells within a domain size of 1 x 1 x 64 cm.

APPENDIX B: FLAVOR VECTOR MAGNITUDE

We aim to demonstrate that the magnitude of the flavor
vector, as defined by Eq. (30), remains constant over time.
If this statement is true, the trajectories of the flavor vector
in the state space are bounded to the surface of a 16N .-
dimensional sphere of radius the length of the flavor vector.
This proof simplifies to show that the flavor polarization
vector P;‘ maintains a constant magnitude, given that the
number of neutrinos N* carried by each computational
particle in the simulation remains unchanged throughout.
To begin, we expand the density matrix and Hamiltonian as
vectors of coefficients of the Gell-Mann matrices G,

p = PG, (B1)

H — H iGl', (BZ)
where p; and H; are real numbers. Einstein summation
convention is assumed for repeated indices. The time
evolution of the density matrix is described by the follow-
ing expression:

o

ot
In terms of Gell-Mann vectors in (B1) and (B2) the
equation becomes

—i[H, p]. (B3)
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P,
ot

Gi — _lHij[Gj, Gk]? <B4)

here [G, G;] = 2if/*'G,, where the structure constants f7/*
are completely antisymmetric in the three indices. The time
evolution of P; is now given by

oP,

at Gi - 2H]Pkf]lel (BS)
This implies that
oP; o
5 = 2H P fk. (B6)

PP will be given by

oP; o
Pi—lzijPiPkf]kl :0,

5 (B7)

since HjPl'Pkfjki = HijPifjik = —HjPlPkfjkl This
demonstrates that P; and the flavor vector in Eq. (30) only
change their orientation but not their magnitude.
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