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An exciting possibility to constrain dark matter (DM) scenarios is to search for their gravitational
imprints on black hole (BH) observations. In this paper, we investigate the impact of self-interacting scalar
field DM on the shadow radius of a Schwarzschild BH.We implement a self-consistent formulation, paying
attention to the enhancement of the DM density due to the BH gravitational influence and the accretion
flow onto the BH. First, we calculate the first-order correction to the shadow radius caused by a general DM
environment. Then, we apply this perturbative method to the case of self-interacting scalar field DM and
derive analytical expressions for the critical impact parameter. We find that self-consistency requirements,
involving the lifetime and the mass of the central DM soliton, or the mass and the size of the extended
virialized DM halo, ensure that the impact of the DM environment on the shadow radius is below the
observational upper bound. This emphasizes the importance of taking into account the self-consistency
constraints of the underlying DM scenario, which can strongly limit the range of possible DM density
profiles and their impact on the shadow radius.
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I. INTRODUCTION

An intriguing prediction in general relativity (GR) is the
existence of BHs [1,2]. Apart from the physical concep-
tions encoded in the spacetime metric, BHs are an ideal
laboratory to study high-energy astrophysical phenomena
that take place in their strong field regimes. Furthermore,
the presence of nontrivial (e.g., scalar, vector) field profiles,
or fields that are nonminimally coupled to gravity, sur-
rounding BHs may modify the spacetime structure, leading
to long-lived hairs [3–5]. Hence, violations of the no-hair
theorem can provide evidence of new physics [4–7]. These
fundamental concerns have motivated different astro-
physical experiments, such as the Even Horizon Telescope
(EHT) [8–10], GRAVITY Collaboration [11] and the
LIGO and VIRGO Collaborations [12,13], among the most
important scientific projects, to test the properties of BHs.
So far all the data are consistent with GR, but cannot rule
out the possibility of other nontrivial metrics within the
current uncertainties (see e.g., [14]).
While convincing evidences for the existence of BHs

have finally been obtained through, among other observa-
tional inferences, the images of BHs Messier (M) 87⋆ and

Sagittarius (Sgr) A⋆ shadows, many fundamental questions
in physics are still under scrutiny. One intriguing problem is
related to the nature of the still elusive DM, which makes
up around 80% of the matter content of the Universe [15].
The standard cold DM (CDM) model is able to reproduce
most observational data at both cosmological and galactic
scales. However, it faces some tensions on small scales,
such as the inner structure of dwarf spheroidal and low-
mass spiral galaxies [16], the core-cusp [17–19] and the
too-big-to-fail problems [20,21]. Moreover, CDM particles
such as weakly interacting massive particles have not been
detected yet. Scalar field (SF) models are other well-
motivated candidates that arise in extensions of the standard
model of particle physics to describe the DM component of
the Universe. Thus, DM can be in the form of axionlike
particles [22–24], ultra light bosonic fields (Fuzzy DM)
[25,26] or self-interacting SF called also Bose Einstein
Condensate (BEC) DM [27–34] or superfluid DM [35].
An attractive feature of SFs is that they can condensate

into macroscopic structures (with macroscopic occupancy)
called soliton cores, providing a possible explanation for
the observed DM cores in some galactic halos [26,34] and
the anisotropic distribution of satellite galaxies [36].
Several works have studied how the gravitational influence
of a central supermassive BH can affect such DM solitons,
pointing out that the soliton core can survive cosmological
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time scales [7,37–39]. Thus, long-lived self-gravitating
configurations could reside at the center of galaxies in
company with BHs on time scales relevant for astrophysical
observations. In the case of self-interacting SF, the soliton
core is formed by the balance between self-gravity and a
repulsive self-interaction. The free case corresponds to a
class of fuzzy DM models where the soliton core is
supported by the so-called quantum pressure (due to the
wavelike dynamics associated with the Schrödinger equa-
tion) instead of the self-interactions. The dynamics and
phenomenological consequences of ultralight SFs sur-
rounding a BH have been studied extensively in the
literature, employing both Newtonian and relativistic
approaches [7,40–47], (see also references therein).
However, more limited attention has been given to the
self-interacting SF scenario. For instance, Brax et al. [48]
employed an analytical relativistic treatment to study the
infall of the SF onto the central Schwarzschild BH (see also
Ref. [49] for the case of charged BHs), while Chavanis
et al. used a Gaussian ansatz [50] and velocity dispersion
tracing [51] as part of their analytical approach.
Reference [52] considered the density profiles of super-
fluids with two-body and three-body self-interactions. In
this paper, following [48], we consider the repulsive self-
interacting model, as an alternative to fuzzy DM scenarios.
An exciting possibility for observing a smoking gun for

DM identification is to search for gravitational interactions
with BHs and simultaneously probe possible deviations
from the Schwarzschild (and Kerr) metric due to a DM
environment. Interestingly, the enhancement of the DM
density caused by BHs may lead to potentially detectable
signatures in observations of gravitational waves emitted
by BH binaries [53–55], the movement of S2 stars around
the Galactic center [43,56] and, of main interest in this
paper, the shadow size of BHs inferred by the observed
ring-like images of M87⋆ and Sgr A⋆ by the EHT (see
e.g., [57] for an early work). All these observations are
unprecedented examples of high-precision measurements
of the gravitational field of BHs in the strong-field regime.
The latter of the mentioned observational programs has
been the subject of intense research, after the release of the
first M87⋆ EHT results, due to the possibility of addressing
fundamental problems in physics [9,14]. Thus, DM can
affect in different ways BH observations whereby a self-
consistent modeling of the spacetime geometry where BH
and DM coexist is crucial.
It is important to mention that most of the existing works

describing the spherically symmetric spacetime metric
around a BH immersed in a DM halo have used a
Newtonian treatment to calculate the metric coefficients
from the tangential velocity and a given DM mass
distribution [58,59]. Consequently, the effect of the BH
on the DM distribution has not always been taken into
account in a self-consistent manner when computing some
BH astrophysical properties [60–64]. However, [57]

considered the spike CDM profile, which arises from the
adiabatic growth of BHs, to constrain the properties
of the DM distribution from the angular size of the BH
shadow. On the other hand, [65] used the Tolman-
Oppenheimer-Volkoff equations to construct the spacetime
metric describing a BH surrounded by a DM spike, while
[66–68] considered the solution of the Einstein equations
associated with an anisotropic halo (with only tangential
pressure) that behaves as a Hernquist or Navarro-Frenk-
White-like (NFW-like) profile at large radii. Recently, [69]
implemented a numerical treatment to study the effect of a
generic DM profile with accretion growth on geodesic
properties. In the context of SFs, [70] studied the effect of
the soliton core in the fuzzy DM model (or wave DM) on a
supermassive BH. They used empirical data for the shadow
diameter provided by EHT to constrain the DM properties.
However, the self-interacting SF model has not been
consistently studied yet. Some works have considered
the standard core halo to describe the DM distribution
around BHs [58,59]. Building on the self-consistent mod-
eling developed in [48], we present a theoretical approach
that incorporates two key aspects overlooked previously:
(i) the effect of the BH gravitational potential on the DM
soliton core; and (ii) the modification of the metric due to
the modified DM soliton core. We use a perturbative
treatment that takes into account the DM accretion and
self-gravity. From this formulation, we calculate the per-
turbed shadow radius associated with a soliton core as well
as with the outer virialized DM halo. We find that self-
consistency requirements, taking into account the loss of
matter to the central BH and the lifetime of the central DM
soliton, imply that the impact of the DM environment onto
the shadow radius is below the observational upper bound.
This paper is organized as follows. In Sec. II, we present

the perturbative scheme used to derive the dark matter
contribution to the metric and to the BH shadow radius.
This treatment is very generic and does not assume a
specific dark matter model. In Sec. III, we provide an
overview of the SF dark matter model and of the scalar field
profile at different radii. In Sec. IV we apply our perturba-
tive scheme to the SF dark matter model and present our
results for the shadow radius, examining the impact of both
the central soliton and the extended virialized halo. Finally,
we discuss the main findings of this work in Sec. V.

II. IMPACT OF THE ENVIRONMENT ON THE
METRIC AND BH SHADOW RADIUS

The results of this section are applicable to generic
spherically symmetric DM and/or baryonic distributions
around a Schwarzschild BH.

A. Perturbative scheme

In this paper we focus on spherically symmetric systems,
that is, a Schwarzschild BH at the center of a spherical DM
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cloud. Then, using Schwarzschild coordinates, the line
element can be expressed as

ds2 ¼ −fðrÞdt2 þ gðrÞdr2 þ r2dΩ2; ð1Þ

where fðrÞ and gðrÞ are the metric coefficients, r is the
radial coordinate and dΩ is the solid angle. As we consider
a finite-size scalar cloud, at large distance we must recover
the vacuum Minkowski metric, f → 1 and g → 1 for
r → ∞. Defining as usual the enclosed mass mðrÞ by

gðrÞ ¼
�
1 −

2GmðrÞ
r

�
−1
; ð2Þ

the Einstein tensor reads as

Gt
t ¼ −

2G
r2

∂m
∂r

; ð3Þ

Gr
t ¼

2G
r2

∂m
∂t

; ð4Þ

Gr
r ¼ −

2Gm
r3

þ
�
1 −

2Gm
r

�
1

rf
∂f
∂r

: ð5Þ

We use a first-order perturbative scheme to obtain the
metric perturbation due to the DM environment, taking
advantage of the fact that at all radii beyond the BH horizon
we can perform a perturbative expansion around the
Schwarzschild metric. This is because close to the BH
the gravitational field is dominated by the BH and the
metric is close to the Schwarzschild metric, whereas at
large radii, where the DM self-gravity comes into play, we
are already far in the weak gravity regime and the metric is
close to the Minkowski metric, which in this regime is also
close to the Schwarzschild metric. This perturbative
approach would break down at the horizon, where f ¼ 0
at zeroth order, but we only need to consider radii beyond
the photon sphere, which is greater than the Schwarzschild
radius by a factor 3=2. Therefore, this perturbative scheme
is well defined and sufficient for our purposes.
Thus, at zeroth order we consider the Schwarzschild

metric, which is the solution of the Einstein equations in
vacuum, around a spherically symmetric mass M0. This
gives the well-known expressions,

m0ðrÞ¼M0; g0ðrÞ¼
1

1− 2GM0

r

; f0ðrÞ¼1−
2GM0

r
: ð6Þ

Next, to include the effect of a generic DM distribution, we
write the metric functions as

f¼f0þδf; g¼g0þδg; m¼m0þδm; δg¼2Gδm
rf20

;

ð7Þ

and we work at linear order over all the perturbations. We
restrict our computations to radii above a radius rmin greater
than the BH horizon, so that f0 and g0 are finite and
nonzero and the perturbative scheme is well defined. Then,
the Einstein equations read δGμ

ν ¼ 8πGTμ
ν , where T

μ
ν is the

energy-momentum tensor of the DM (or more generally of
the environment). This gives

∂δm
∂r

¼ −4πr2Tt
t; ð8Þ

∂δm
∂t

¼ 4πr2Tr
t ; ð9Þ

−
2Gδm
r2f0

þ ∂δf
∂r

−
2GM0δf
r2f0

¼ 8πrGTr
r: ð10Þ

As we consider a finite-size cloud of radius Rcloud, at
radii r > Rcloud we must recover the vacuum Schwarzschild
solution, albeit with a shifted mass M0 þ δM0 because of
the dark matter mass. This implies

r≥Rcloud∶ δf¼−
2GδM0

r
; δm¼ δM0; δg¼ 2GδM0

rf20
:

ð11Þ

Assuming a steady state has been reached, the conservation
equation ∇μT

μ
t ¼ 0 leads to the condition of constant

inward flux F,

ffiffiffiffiffi
fg

p
r2Tr

t ¼ F: ð12Þ

Using f0g0 ¼ 1 we obtain

∂δm
∂r

¼ 4πr2ρ;
∂δm
∂t

¼ 4πF; ð13Þ

where we defined ρ ¼ −Tt
t. This gives

δmðrÞ ¼ mmin þ 4πFtþ 4π

Z
r

rmin

dr r2ρ; ð14Þ

where mmin is an integration constant. In the right-hand
side, the second and third terms correspond to the mass that
has fallen into the BH since time t and to the remaining
mass in the scalar cloud. Thus, the increase with time of the
second term is balanced by the decrease of the third term. In
practice, we can choose to work at the time t ¼ 0. The
constantmmin corresponds to the dark matter mass inclosed
below the arbitrary radius rmin. Using the boundary con-
dition (11) at Rcloud, we can also write Eq. (14) as

r ≥ rmin∶ δmðrÞ ¼ δM0 − 4π

Z
Rcloud

r
dr r2ρ: ð15Þ

For r ≥ Rcloud we recover the Schwarzschild solution (11).
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Using the boundary condition δf → 0 for r → ∞, in
agreement with (11), the Einstein equation (10) can be
integrated and gives,

r ≥ rmin∶ δf ¼ −f0
Z

∞

r
dr

r
f0

�
2Gδm
f0r3

þ 8πGP
�
; ð16Þ

where we defined the effective pressure P ¼ Tr
r. Using

δm ¼ δM0 and P ¼ 0 for r > Rcloud, we can check that we
recover the Schwarzschild solution (11) for r > Rcloud.
As expected, we can see that the results (15) and (16) do

not depend on the radius rmin introduced at an intermediate
step of the computation. They are valid at all radii r
sufficiently greater than rs, so that f0 and g0 are always of
order unity and different from zero.

B. Perturbed black hole shadow by dark matter

One of the most fascinating properties of BHs is the
shadow; a dark region surrounded by circular orbits of
photons known as the photon sphere. This bright region is
caused by gravitational light bending and photon capture at
distances close to the even horizon. We first consider the
radius rph of the “photon sphere”, associated with the
unstable circular orbits of light rays around the BH. This
radius is given by the implicit equation,

rph ¼ 2f

�
df
dr

�
−1
����
r¼rph

: ð17Þ

The radius of the BH shadow is then the minimal impact
parameter of photons escaping from the BH. Thus, the
boundary of the shadow viewed by a distant observer is
determined by the closest approach of photons before being
captured, and it is tangent to the spherical orbits of photons
close to the horizon [71]. Photons with smaller impact
parameters will eventually cross the horizon and fall onto
the singularity. This critical impact parameter can be
computed in terms of the photon sphere as [72]

bcr ¼
rphffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrphÞ

p : ð18Þ

Then, the shadow angular radius αsh measured by a distant
observer, at r ≫ Rhalo, is

αsh ¼
bcr
r
: ð19Þ

Thus, the BH shadow is determined by the critical impact
parameter bcr. As in Sec. II A, we compute the photon
sphere radius and the critical impact parameter at first order
over the dark matter perturbation. At zeroth order, we
recover the standard result for a Schwarzschild metric,

rph0 ¼ 3GM0 ¼
3

2
rs; rs ¼ 2GM0; ð20Þ

where rs is the Schwarzschild radius of the BH. At first
order, we obtain the deviation

δrph ¼
r3ph0
6GM0

�
∂δf
∂r

ðrph0Þ −
2GM0

r2ph0f0ðrph0Þ
δfðrph0Þ

�
: ð21Þ

Using Eq. (10), this simplifies as

δrph ¼ rph0
δmðrph0Þ

M0

þ 4πGr3ph0Pðrph0Þ: ð22Þ

As expected, using Eq. (14) with rs < rmin < rph0, we can
see that the location of the photon sphere only depends on
the metric functions and the dark matter distribution at radii
below rph. The term δmðrph0Þ is simply the enclosed mass
within the radius rph0. This is the generic effect due to the
shift of the mass within rph0 caused by the presence of dark
matter. The second term Pðrph0Þ, which would be zero for
pressureless dust, is an additional relativistic contribution
that depends on the equation of state of the matter.
For the critical impact parameter, we obtain up to first

order

bcr 0 ¼ 3
ffiffiffi
3

p
GM0; δbcr ¼ −

9
ffiffiffi
3

p

2
GM0δfðrph0Þ; ð23Þ

that is,

bcr ¼ 3
ffiffiffi
3

p
GM0

�
1 −

3

2
δfðrph0Þ

�
: ð24Þ

Notice that this result, along with Eq. (16), is independent
of the DM or baryonic properties of the environment. It
only assumes a Schwarzschild BH as the vacuum solution
at zeroth order and a spherically symmetric DM and/or
baryonic finite-size cloud.

C. Nondegeneracy with a Schwarzschild BH

In the computation described in the previous sections, we
denoted M0 the mass of the BH without the DM cloud.
However, in practice it may not be easy to measureM0, as it
can be contaminated by the dark matter close to the
horizon. To be more explicit, let us assume that from the
orbital dynamics of stars at a radius Rdyn one can measure
the total enclosed dynamical mass,

Mdyn ¼ M0 þ δMdyn; ð25Þ

with
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δMdyn ¼ δM0 − 4π

Z
Rcloud

Rdyn

dr r2ρ: ð26Þ

This dynamical mass measures the total mass located
in the central region, that is, the sum of the BH and dark
matter, which determines the gravitational potential felt by
neighboring stars. If Rdyn > Rcloud, δMdyn ¼ δM0 is the
total mass of the dark matter cloud, but if Rdyn < Rcloud,
δMdyn < δM0 is the fraction of dark matter that is
within the orbital radius of the observed stars. Then, one
can compare this mass Mdyn with the mass Msh that would
be measured from the shadow angle, assuming a
Schwarzschild BH in vacuum

Msh ¼
bcr

3
ffiffiffi
3

p
G
: ð27Þ

If these two measured quantities are equal, one can
conclude that the system is probably made of a
Schwarzschild BH of mass Mdyn ¼ Msh, or a degenerate
system that obeys the same relation Mdyn ¼ Msh, such as a
BH and a cloud of dust of size smaller than the photon
sphere. In contrast, if one measures Mdyn ≠ Msh, one can
conclude that the system is not a Schwarzschild BH in
vacuum. Therefore, to constrain a dark matter cloud such as
the one investigated in this paper, we must consider the
difference between these two observational definitions of
the system mass.
Assuming we measure the dynamical mass (25), the

predicted critical impact parameter would be

bdyncr ¼ 3
ffiffiffi
3

p
GðM0 þ δMdynÞ; ð28Þ

if we interpret the data as arising from a Schwarzschild BH
in vacuum. This must be compared with the result (24).
Therefore, the departure from the isolated BH hypothesis is
measured by the difference,

Δbcr ¼ bcr − bdyncr

¼ bcr 0

�Z
Rcloud

rph0

dr

�
Gðδm − δM0Þ
ðr − rsÞ2

þ 4πGr2P
r − rs

�

þ 4π

M0

Z
Rcloud

Rdyn

dr r2ρ

	
; ð29Þ

where we used Eq. (16). This quantity is nonzero when
there is some scalar mass beyond rph0 (δm ≠ δM0 at some
radii in the integration range) and some dark matter
pressure, or there is some dark matter beyond the stellar
orbits. As expected, this probes the dark matter distribution
between the photon sphere and the radius of the DM cloud,
which is the origin of the possible mismatch betweenMdyn

and Msh.

D. Observations

From the observational side, the EHT Collaboration, a
global very long baseline interferometer array, has imaged
for the first time the central BH at the heart of the elliptical
galaxy M87 [8,73]. This earth-sized telescope has the
capability of resolving the central compact radio sources
as an asymmetric bright emission ring. The observational
data released in 2019 at the event-horizon scale image is
consistent with theoretical predictions of GR for the
shadow of the Kerr BH. These unprecedented observations
were followed by the image of Sgr A⋆ reported in 2022
[9,10], with a bright ring also consistent with a Kerr BH
geometry. They calibrated the geometrical BH shadow and
the observed size of the ring images. In particular, the EHT
Collaboration reported values of the fractional deviation, δ,
for the Sgr A⋆ BH. This quantity measures any deviation
between the inferred shadow diameter and that of a
Schwarzschild BH of angular size θg ¼ GM=Dc2 (in
dimensional units). That is,

δ ¼ rsh
rsh;Sch

− 1; ð30Þ

where rsh;Sch ¼ 3
ffiffiffi
3

p
θg. They used prior information on the

mass to distance ratio of the Sgr A⋆ BH based on dynamical
analyses of the orbit of the Galactic center star S0-2,
resulting in a posterior distribution with a small discrepancy
of ∼4% for θg ¼ 5.125� 0.009� 0.020 μas (VLTI) and
θg ¼ 4.92� 0.03� 0.01 μas (Keck). See Ref. [74] for
more details. These inferences, in turn, translate into the
following constraints for the fractional deviation:

Keck∶δ ¼ 0.04þ0.09
−0.10 ; ð31Þ

VLTI∶δ ¼ 0.08þ0.09
−0.09 : ð32Þ

The goal of this paper is to use these observational values to
constrain the properties of a possible scalar DM cloud
around this supermassive BH. Thus, we will compare the
theoretical prediction of such a SFDM cloud, as given by
Eq. (29), with the above observational limits, which we can
summarize as ����Δbcrbcr

����
obs

≲ 0.1: ð33Þ

The mass of the central BH, or overdensity, is estimated
around

MSgr A⋆ ≃ 4 × 106M⊙; rs ≃ 4 × 10−7 pc: ð34Þ
This is obtained from the orbit of the S0-2 star, with a
semimajor axis

Rdyn ≃ 5 × 10−3 pc: ð35Þ
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III. SCALAR FIELD DARK MATTER

A. Enhancement of the soliton core by the BH

Scalar field dark matter scenarios predict the formation
of hydrostatic equilibrium configurations, often called
solitons, with a flat density core. These spherically sym-
metric equilibria are also called boson stars when their
radius is comparable to astrophysical scales. In the case of
fuzzy Dark Matter scenarios, with a scalar field mass
mϕ ∼ 10−22 eV, such solitons have a radius Rsol of the
order of 1 kpc and could partially explain the small-scale
tensions of the CDM model, such as the observation of flat
galactic cores instead of the cuspy density NFW profile
found in dark matter-only numerical simulations.1 In this
model, these solitons are supported by the so-called
quantum pressure and the soliton radius is set by the de
Broglie wavelength λdB ¼ 2π=ðmϕvÞ, where v is the virial
velocity of this DM halo.
In this paper, we focus instead on models with significant

self interactions, where the solitons are governed by the
balance between gravity and the effective pressure due to
the self-interactions. We do not assume a priori specific
values for the DM parameters and do not require these
solitons to reach kpc sizes. We will investigate which
general constraints can be derived from the observation of
the Sgr A⋆ shadow radius on the possible presence of such
a DM soliton, or more generally a DM halo, around the
central Galactic supermassive BH.
The soliton DM density profile is affected by the BH

at small radii, where the BH gravitational potential
becomes more important than the DM self-gravity. This
leads to a DM spike below some transition radius, whereas
the soliton profile remains unchanged at larger radii.
Various approaches have been implemented to study this
problem for the free case, mainly using numerical methods
[77,78]. However, few works have been devoted to study
the self-interacting case, with the exception of [48], which
investigated the infall of a self-interacting SF onto the
central Schwarzschild BH. We follow their approach,
focusing on the large scalar mass regime mϕ ≫ 10−17 eV
where their results apply, which we briefly recall below.

B. Equations of motion

We consider scenarios where the DM corresponds to a
real scalar field ϕ, with the relativistic action [32],

Sϕ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
gμν∂μϕ∂νϕ − VðϕÞ

�
; ð36Þ

where gμν is the metric tensor and

VðϕÞ ¼ m2
ϕ

ϕ2

2
þ λ

ϕ4

4
ð37Þ

is the SF potential with a quartic self-interaction coupling λ.
Here mϕ is the DM particle mass and we take λ > 0, which
corresponds to a repulsive self-interaction that can balance
gravity and give rise to hydrostatic equilibria. This defines
the characteristic density ρa and radius ra given by

ρa ¼
4m4

ϕ

3λ
; ra ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGρa

p : ð38Þ

The components of the energy-momentum tensor associ-
ated with the SF ϕ read as

Tt
t ¼ −

1

2f

�
∂ϕ

∂t

�
2

−
1

2g

�
∂ϕ

∂r

�
2

− VðϕÞ; ð39Þ

Tr
t ¼

1

g
∂ϕ

∂r
∂ϕ

∂t
; ð40Þ

Tr
r ¼

1

2f

�
∂ϕ

∂t

�
2

þ 1

2g

�
∂ϕ

∂r

�
2

− VðϕÞ; ð41Þ

and the scalar field obeys the nonlinear Klein-Gordon
equation of motion

∂
2ϕ

∂t2
−

ffiffiffi
f
g

s
1

r2
∂

∂r

� ffiffiffi
f
g

s
r2
∂ϕ

∂r

�
þ fm2

ϕϕþ fλϕ3 ¼ 0: ð42Þ

In this paper, we focus on the large scalar-mass limit,

mϕrs ≫ 1: ð43Þ

From Eq. (34) this corresponds to

mϕ ≫ 10−17 eV: ð44Þ

Thus, the Compton wavelength of the scalar field is smaller
than the BH horizon and we have ∂r ≪ mϕ. Then, at
leading order the solution of the nonlinear Klein-Gordon
equation (42) reads [48,79],

ϕðr; tÞ ¼ ϕ0ðrÞcn


ωðrÞt −KðrÞβðrÞ; kðrÞ�; ð45Þ

where cnðu; kÞ is the Jacobi elliptic function of argument u
and modulus k, KðkÞ ¼ R π=2

0 dθ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2 sin2 θ

p
is the

complete elliptic integral of the first kind, ϕ0 is the
amplitude of the oscillations and ω is the angular frequency
of this anharmonic oscillator. We recover the harmonic
oscillator when k ¼ 0 as cnðu; 0Þ ¼ cosðuÞ. Thus, cnðu; kÞ
allows us to describe the anharmonic oscillator associated
with a cubic nonlinearity, as in Eq. (42) or in the standard
Duffing equation.

1Such observations may also be explained by baryonic feed-
back effects. See e.g., [75,76].
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The angular frequencies ωðrÞ at different radii are
related by

ωðrÞ ¼ 2KðrÞ
π

ω0; ð46Þ

where ω0 is constant. On the other hand, at leading order in
the large scalar-mass limit, the temporal and radial deriv-
atives of the SF profile, Eq. (45), read as

∂ϕ

∂t
¼ ϕ0ω

∂cn
∂u

; ð47Þ

∂ϕ

∂r
¼ −ϕ0Kβ0

∂cn
∂u

þ…; ð48Þ

where the dots represent subleading terms. Substituting
Eq. (45) into the Klein-Gordon equation Eq. (42), one
obtains [48],

π2f
4g

β02 ¼ ω2
0 −

fm2
ϕπ

2

ð1 − 2k2Þ4K2
; ð49Þ

λ4ϕ
2
0

m2
ϕ

¼ 2k2

1 − 2k2
: ð50Þ

From the above expressions, the components of the energy-
momentum tensor can be computed.

C. Transonic scalar-field profile

1. Transonic solution

In the steady state, we recover the integrated form of the
continuity equation (12), where in the left-hand side we
replace Tr

t by its average hTr
t i over the fast scalar-field

oscillations. Then, as for the classical Bondi problem of the
spherical accretion of a gaseous cloud, we obtain a unique
transonic solution with a critical value of the accretion
rate [48],

Fc ¼ F⋆
r2sm4

ϕ

λ
¼ F⋆

3

4
ρar2s ; ð51Þ

with F⋆ ≃ 0.66. This result simply means that close to the
horizon we are in the relativistic and nonlinear regime,
where the dark matter density is of the order of ρa and the
velocity is of the order of the speed of light. In contrast with
the standard Bondi transonic solution for polytropic gases
with an adiabatic index 4=3 < γ < 5=3, the sonic point is
not much above the Schwarzschild radius. This is because
in the Newtonian regime the quartic self-interaction (37)
leads to an effective pressure with a stiff equation of state,
P ∝ ργ with γ ¼ 2.

2. Large radii

At large radii above a transition radius rsg given by

rsg ¼ rs
ρa
2ρ0

≫ rs; ð52Þ

the DM self-gravity dominates over the BH gravity and we
recover the soliton, or “boson star”, profile. This is the
spherically symmetric hydrostatic equilibrium of the
Schrödinger-Poisson system. For a quartic self-interaction,
in the Thomas-Fermi limit (43) where the self-interaction
dominates over the “quantum pressure”, one obtains the
density profile [33],

ρðrÞ¼ρ0
sinðπr=RsolÞ
πr=Rsol

; with Rsol¼πra¼
ffiffiffiffiffiffiffiffiffiffi
π

4Gρa

r
: ð53Þ

This gives a finite-size soliton of radius Rsol and bulk
density ρ0. Then, beyond the transition radius rsg of
Eq. (52) and below the soliton radius Rsol we have

rsg ≪ r ≪ Rsol∶ ρ ≃ ρ0; vr ∼ −
ρ0
ρa

r2sg
r2

: ð54Þ

The DM density is almost constant whereas the radial
velocity becomes negligible and falls off as 1=r2 as we
converge to the static soliton. The transition radius rsg
of Eq. (52) is much greater than the BH horizon when
ρ0 ≪ ρa (i.e., we assume that the bulk of the dark matter
cloud is nonrelativistic). The effective pressure P of the
dark matter fluid, associated with the self-interaction, reads

P ≃
ρ20
2ρa

¼ 1

2
ρ0c2s ; c2s ¼

ρ

ρa
; ð55Þ

where we introduced the sound speed cs.

3. Small radii

Below the transition radius (52), the BH gravity domi-
nates and the DM falls onto the BH increasingly fast. This
leads to a DM density spike [48],

rs ≪ r ≪ rsg∶ ρ ≃ ρa
rs
2r

; P ≃
ρ2

2ρa

�
1þ 9F2

⋆
rs
r

�
;

vr ∼ −
rs
r
: ð56Þ

The second term in the expression of the pressure is the
contribution from the radial inflow, which becomes neg-
ligible for r≳ rs as the flow becomes subsonic. These
expressions connect with the large-radii expressions (54)
and (55) at the transition radius rsg of Eq. (52). Close to the
BH the radial velocity is relativistic while the density is
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of the order of the characteristic density ρa introduced
in Eq. (38).

D. Variety of scalar DM profiles

1. Steady-state pressure-supported profile

Summarizing the results of the previous sections, we
approximate the dark matter density profile of the steady-
state solution (51) as

rs < r < rsg∶ ρ ¼ ρa
rs
2r

; rsg < r < Rsol∶ ρ ¼ ρ0;

r > Rsol∶ ρ ¼ 0; ð57Þ

and we have P ¼ ρ2=ð2ρaÞ throughout. It turns out that this
density profile defines a critical soliton massMc associated
with the case Rsol ¼ rsg, that is, the 1=r density spike
extends up to the radius Rsol of the DM halo. This gives

Mc ¼ πρarsR2
sol ¼

π2

2
M0 ≃ 2 × 107M⊙; ð58Þ

which is always of the same order as the BH mass and does
not depend on the scalar field parameters. This is because
the characteristic density ρa and radius Rsol are related by
Eq. (53) and they cancel out in the expression (58) ofMsol.
This means that if the DM cloud has an initial mass that is
below Mc it can never reach the Bondi-like pressure-
regulated infall over the full radius Rsol. Thus, the full
profile (57) can only apply to the DM clouds that have a
mass greater than Mc.

2. Free-falling DM cloud

If there is no central BH, a soliton of radius Rsol
can follow the hydrostatic profile (53) for any value
of the central density ρ0, hence the soliton mass
Msol ≃ ð4π=3Þρ0R3

sol. However, if a supermassive BH is
embedded in this DM cloud, we have seen in (58) that low
mass clouds below Mc cannot reach the full steady-state
solution (51). If the initial DM density ρ0 is too low, the
pressure P ∝ ρ2 is too low to slow down the infall onto the
BH. This corresponds to a fully supersonic free-fall
solution, which reads in steady state as

vr ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
2GM0

r

r
; ρ ¼ F

4πr2jvrj
; ð59Þ

where the flux F is below the critical flux Fc of Eq. (51).
The lifetime tsol of such a cloud of radius Rsol is given by

tsol ∼
Rsol

jvrðRsolÞj
: ð60Þ

Requiring this lifetime to be greater than the age of the
Universe tH gives

tsol > tH∶ Rsol > r1=3s t2=3H ≃ 16 kpc: ð61Þ

DM solitons should not have radii greater than 1 kpc to fit
inside observed galaxy density profiles. Therefore, realistic
free-falling DM clouds should have already been eaten by
the supermassive BH.

3. Truncated pressure-supported profile Rtrunc < Rsol

If the initial DM density is large enough but the DM
soliton is not very massive, depending on the initial
dynamics it may reach the transonic profile (56) truncated
to a radius Rtrunc < Rsol, so that the total DM mass

Mtrunc ¼ πρarsR2
trunc ð62Þ

is below the characteristic mass Mc of Eq. (58). The
lifetime of such a cloud is

ttrunc ∼
Rtrunc

jvrðRtruncÞj
∼
R2
trunc

rs
; ð63Þ

and requiring ttrunc > tH gives the lower bound

Rtrunc >
ffiffiffiffiffiffiffiffiffi
rstH

p
≃ 35 pc: ð64Þ

This implies that the cloud radii can be much smaller than
galactic sizes but are still much greater than the dynamical
radius (35).

4. Outer virialized DM halo

As found in numerical simulations, DM halos that form
from stochastic initial conditions through gravitational
instability, as on cosmological scales through hierarchical
structure formation, are not fully absorbed by a central
soliton. One typically obtains instead a central static
soliton, as in (53), embedded within an extended halo that
follows a NFW profile like for CDM. The quantum
pressure and the self-interactions are negligible on this
larger scale and this extended halo is instead supported by
the velocity dispersion of wave packets, which play the role
of the velocity dispersion of CDM particles [80]. In terms
of the Schrödinger equation obeyed by the scalar field,
where the potential is dominated by the DM gravitational
potential, these correspond to excited energy eigenstate
whereas the soliton corresponds to the ground state.
Although the soliton has a large occupation number and
contains a macroscopic mass, one often finds that a large
fraction of the DM can remain in this extended halo.

IV. IMPACT OF THE DARK MATTER
ENVIRONMENT ON THE SHADOW RADIUS

A. Low-mass DM soliton

If the DM soliton has a mass below the critical mass (58),
we have seen that it should be a free-falling cloud as
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discussed in Sec. III D 2 or a truncated profile as discussed
in Sec. III D 3. As noticed below Eq. (61), free-falling
clouds should have already been eaten by the supermassive
BH. Therefore, we do not consider them further. Truncated
clouds can survive until today if their radius is above the
lower bound (64). Therefore, we have the hierarchy
rs ≪ Rdyn ≪ Rtrunc. Then, we obtain from Eq. (29)

Δbcr
bcr0

≃
Mtrunc

M0

�
rs

Rtrunc
−

R2
dyn

R2
trunc

�
; ð65Þ

where the mass of the truncated DM cloud is
Mtrunc ¼ πρarsR2

trunc. Using the upper bound (58) for the
cloud mass and the lower bound (64) for the cloud radius,
we obtain ����Δbcrbcr0

����≲ 10−7: ð66Þ

Thus, the impact on the shadow radius of such low mass
and extended DM halos is completely negligible.

B. High-mass DM soliton

1. Long-lived DM solitons

We now consider massive DM solitons, above the critical
mass (58). These clouds follow the full profile (57), with a
constant density plateau ρ0 at radii rsg < r < Rsol. From
Eq. (54) the lifetime of this soliton is

tsol ∼
12GMsolR2

sol

π2r2s
; ð67Þ

and requiring tsol > tH gives

tsol > tH∶ MsolR2
sol >

π2r2stH
12G

≃ 1010M⊙pc2: ð68Þ

At the lower mass bound, Msol ¼ Mc, this gives
Rsol ≳ 20 pc, in agreement with (64). More massive clouds
can have a smaller radius and still survive until today.
The mass of the Milky Way is estimated at about

MMW ≃ 2 × 1011M⊙. We can expect the soliton mass to
be a small fraction of the total galaxy mass, therefore we
take the rather conservative upper bound on the DM soliton
mass

Msol<Mmax with Mmax¼0.1MMW≃2×1010M⊙; ð69Þ

With Eq. (68), this gives a lower bound on the radius Rsol
for the soliton to survive until today,

Rsol > Rmin with Rmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2r2stH

12GMmax

s
≃ 0.6 pc: ð70Þ

Therefore, the stellar orbital radius Rdyn of Eq. (35) is much
smaller than Rsol and we have the hierarchies rs≪ rsg<Rsol

and rs ≪ Rdyn ≪ Rsol. Then, we have two cases depending
on whether Rdyn is below or above the transition radius rsg,
which from Eq. (52) also reads as

rsg ¼
π2M0

3Msol
Rsol: ð71Þ

2. rs ≪ Rdyn < rsg < Rsol

We first consider the case Rdyn < rsg, which from
Eq. (71) gives

Rdyn < rsg∶ Rsol >
3Msol

π2M0

Rdyn: ð72Þ

Then, Eq. (29) gives

Δbcr
bcr0

≃
Msol

M0

�
3rs
4Rsol

−
3rsgR2

dyn

2R3
sol

�
: ð73Þ

This is bounded by

����Δbcrbcr0

���� ≤ 3Mmaxrs
4M0Rmin

þ π2R2
dyn

2R2
min

≃ 0.002þ 0.0003; ð74Þ

where we used Eq. (71) in the second term. This is always
much below the observational bound (33).

3. rs ≪ rsg < Rdyn ≪< Rsol

We now consider the case Rdyn > rsg, which from
Eq. (71) gives

Rdyn > rsg∶ Rsol <
3Msol

π2M0

Rdyn: ð75Þ

Then, Eq. (29) gives

Δbcr
bcr0

≃
Msol

M0

�
3rs
4Rsol

−
R3
dyn

R3
sol

�
: ð76Þ

This is bounded by

����Δbcrbcr0

���� ≤ 3Mmaxrs
4M0Rmin

þMmaxR3
dyn

M0R3
min

≃ 0.002þ 0.002; ð77Þ

which is again much below the observational bound (33).

C. Short-lived solitons

We have seen in the previous sections that long-lived
central solitons cannot be constrained by the measurement
(33) of the shadow radius, as clouds that are large enough to

CONSTRAINING SELF-INTERACTING SCALAR FIELD DARK … PHYS. REV. D 109, 103038 (2024)

103038-9



have a long lifetime are also too diffuse to make a
significant impact on the shadow radius. However, as
recalled in Sec. III D 4, numerical simulations show that
solitons are not isolated compact DM clouds but are
embedded within extended halos that behave like CDM.
Within the cosmological context, we expect such a virial-
ized DM halo to follow the mean NFW density profile as
for CDM scenarios and to extend beyond 50 kpc, forming
most of the mass of the Milky Way. Then, we can imagine
that a short-lived soliton can exist if it is continuously
replenished by the outer DM halo while it loses mass to the
supermassive BH. However, if this is the case, its mass
must be much smaller than the mass M0 of the central BH,
since by the same assumption the BH has already “eaten”
several generations of the soliton. Then, the impact on the
shadow radius is small, since it is clear from Eq. (29) that
we have the generic upper bound,

����Δbcrbcr0

����≲Msol

M0

: ð78Þ

This means that solitons with a lifetime below tH=10
should also have Msol < M0=10 and jΔbcr=bcr0j≲ 0.1.
Therefore, they automatically satisfy the observational
upper bound (33).

D. Outer DM halo

The extended virialized DM halo, which is supported by
its velocity dispersion instead of self-interactions or quan-
tum pressure, has a very long lifetime and a large mass.
Therefore, we briefly consider the constraints on this DM
halo that can be derived from the measurement (33) of the
shadow radius. For a generic treatment, we assume a
power-law dark matter density profile,

rs ≪ r < Rhalo∶ ρ ¼ ρ0

�
r
rs

�
−α
; ð79Þ

with

ρ0≪ρa; 1≤α<3; Mhalo≃
4πρ0
3−α

R3
halo

�
Rhalo

rs

�
−α
; ð80Þ

and we take the pressure to be negligible (nonrelativistic
dust). The halo mass is dominated by the outer shells.
If the DM halo radius Rhalo is smaller than the stellar

radius Rdyn used to estimate the central dynamical mass, we

obtain Δbcr
bcr0

≃ −Mhalo
M0

. Then the measurement of the shadow
radius implies that the DM halo mass is smaller than the BH
mass. However, this is not realistic, as the virialized DM
halo extends much beyond Rdyn and is more massive than
the central BH. Therefore, we have Rdyn ≪ Rhalo and we
obtain

Δbcr
bcr0

≃
Mhalo

M0

�
−
�
Rdyn

Rhalo

�
3−α

þ 3 − α

2ð2 − αÞ
rs

Rhalo

�
: ð81Þ

With Rhalo ≥ 10 kpc and Mhalo ≃ 2 × 1011M⊙, the second
term gives a contribution below 10−5 that is much below the
observational upper bound (33). The first term gives a
contribution below 10−7 for α ¼ 1 and below 0.025 for
α ¼ 2. These conservative results show that realistic DM
halos satisfy the observational constraint (33).

V. DISCUSSION

Adopting a phenomenological approach, we have inves-
tigated whether the observations of Sgr A⋆ from the EHT
Collaboration can provide competitive constraints on DM
models, focusing on the case of scalar DM. Firstly, we have
presented a generic perturbative scheme to examine the
influence of the environment (baryon or DM clouds) on the
metric and, consequently, on the BH shadow radius.
Secondly, in the case of scalar DM with non-negligible
self-interactions, we have recalled the properties of the
Bondi-like accretion flow onto the supermassive BH and its
dependence on the BH mass and the scalar-field parame-
ters. This applies to the large-mass limit, m ≫ 10−17 eV,
where the Compton wavelength is smaller than the
Schwarzschild radius. This accretion flow describes the
loss of matter from the central soliton—the ground-state
configuration (of the Schrödinger equation of motion that
governs the DM dynamics) that forms in the galactic
potential well—to the central supermassive BH. Thirdly,
we examined the impact of such a soliton onto the shadow
radius, as well as that of the outer virialized DM halo that
extends beyond the galactic radius as in standard CDM
scenarios.
We find that physical self-consistency conditions of the

underlying DM model strongly constrain the impact of the
DM environment on the observed shadow radius. First, we
noted that a full Bondi-like steady-state accretion flow can
only be realized for DM solitons that have a mass which is
greater than that of the supermassive BH. Smaller-mass
solitons either fall onto the BH as in free fall (the DM
density is too low for the effective pressure to slow down
the infall) and have a lifetime that is much smaller than
the Hubble time, or exhibit a truncated profile (they are
throughout dominated by the BH gravity). In this latter
case, requiring that their lifetime is greater than the Hubble
time implies a negligible impact on the shadow radius
(because a long lifetime implies a large cloud radius
whence a small DM central density).
We next found that solitons that are more massive than

the central BH (and thus show a complete Bondi-like
transonic accretion flow, which goes from free fall near the
horizon to hydrostatic equilibrium at large radii, dominated
by the self-gravity of the DM cloud) have a small impact on
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the shadow radius, somewhat below the observational
upper bound (33).
Taking into account the outer DM halo, which should

resemble the NFW profile found in CDM scenarios, we
find that if it can replenish short-lived solitons the latter
should have a small mass and a small impact on the shadow
radius, while the impact of this virialized DM halo itself
should also be small.
Our results agree with the simple estimates obtained

in [81], who found that for a generic spherical mass
distribution (in terms of the metric function mðrÞ, without
considering the equation of state of the fluid that would
solve the Einstein equations), a significant impact on the
shadow radius requires the DM cloud to be concentrated
near the BH. We have shown that, in the explicit case
of a self-interacting scalar-field DM model, this configu-
ration is not possible because of the infall onto the BH and
the finite lifetime of a central soliton, in addition to
conservative bounds on the NFW dark matter halo mass
and radius.

Thus, more generally, our results show the importance of
taking into account the self-consistency requirements of
underlying DMmodels. Within a given framework, it is not
possible to assume arbitrary DM density profiles. Taking
into account the accretion flow onto the BH and the lifetime
of peculiar configurations significantly limits the range of
possible DM profiles and the impact on the observed
shadow radius. In the specific case of scalar field DM,
which can form a high-density soliton at the center of the
galactic gravitational potential well, within an extend
NFW-like virialized halo, we have shown that such con-
straints are sufficient to ensure that the impact of the DM
environment on the shadow radius remains well within the
observational bounds.
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