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Collective neutrino oscillations are typically studied using the lowest-order quantum kinetic equation,
also known as the mean-field approximation. However, some recent quantum many-body simulations
suggest that quantum entanglement among neutrinos may be important and may result in flavor
equilibration of the neutrino gas. In this work, we develop new quantum models for neutrino gases in
which any pair of neutrinos can interact at most once in their lifetimes. A key parameter of our models is
γ ¼ μΔz, where μ is the neutrino coupling strength, which is proportional to the neutrino density, and Δz is
the duration over which a pair of neutrinos can interact each time. Our models reduce to the mean-field
approach in the limit γ → 0 and achieve flavor equilibration in time t ≫ ðγμÞ−1. These models demonstrate
the emergence of coherent flavor oscillations from the particle perspective and may help elucidate the role
of quantum entanglement in collective neutrino oscillations.
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I. INTRODUCTION

Flavor oscillations in a dense neutrino gas can be
described by the quantum kinetic equation that, at the lowest
order, gives the so-called “mean-field approximation”

ð∂t þ v⃗ · ∇!Þϱ ¼ −i½H; ϱ�: ð1Þ

Here ϱðt; r⃗; p⃗Þ is theWigner distribution of the neutrino field
of momentum p⃗ and velocity v⃗ ¼ p⃗=p at time t and position
r⃗, and H is the Hamiltonian that dictates the coherent flavor
evolution of the neutrino field [1]. Although there have been
some debates about the adequacy of this one-particle picture
in the past (e.g., [2,3]), most of the literature on collective
neutrino oscillations has adopted the mean-field approach
(see, e.g., [4–7] for reviews). However, some recent many-
body calculations suggest that the quantum entanglement
among neutrinos can be important for neutrino oscillations
and may even result in flavor equilibration (but not neces-
sarily flavor equipartition) (e.g., [8–12]; see [13] for a
review; see also [14,15] for some counterarguments).
One of the issues with existing many-body neutrino

models is that they involve a closed system of a limited
number of neutrinos that interact with each other

indefinitely. In a realistic astrophysical environment, such
as a core-collapse supernova (CCSN) or a binary-neutron
star merger (BNSM), a few neutrinos may interact for a
brief moment while their wave packets overlap, and those
neutrinos may never see each other again. With this in
mind, we develop new quantum models in which any pair
of neutrinos may have a once-in-a-lifetime encounter
(OILE). In the OILE models, each neutrino is treated as
an open quantum system with the rest of the neutrino gas as
its environment.
The limited goal of this paper is not to compute neutrino

oscillations in a realistic CCSN or BNSM environment nor
to resolve all the questions about the mean-field approach
and the existing many-body models, but rather to demon-
strate how the results of these models can appear as
appropriate limits in the same quantum model.

II. A FOREGROUND NEUTRINO THROUGH A
UNIFORM MEDIUM

We first consider a model in which a neutrino passes
through a uniform and dense neutrino medium. We assume
that the foreground neutrino travels along the z axis and
encounters a distinct background neutrino in each spatial
interval ½zn−1; znÞ where zn ¼ nΔz with Δz being a con-
stant and n a natural number. Inside the nth interval, the
foreground and background neutrinos coevolve with a
constant Hamiltonian Ĥn so that

ρ̂ðtÞ ¼ e−iĤnðt−tn−1Þρ̂n−1eiĤnðt−tn−1Þ; ð2Þ
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where tn−1 ¼ zn−1, and ρ̂ is the two-neutrino density
operator.
A key assumption of the OILE models is that the two

neutrinos participating in the interaction will not be further
correlated through future interactions and will not be
measured against each other for correlation. With this
assumption, the correlation between the foreground and
background neutrinos in the (n − 1)th interval has left the
foreground neutrino in a mixed state at the end of the
interval, which is described by the one-body density
operator

χ̂n−1 ¼ trη½ρ̂ðtn−1Þ�; ð3Þ

where trη denotes the partial trace over the background
neutrino. At the beginning of the nth interval, the two-body
density operator of the foreground neutrino and another
background neutrino is simply

ρ̂n−1 ¼ χ̂n−1 ⊗ η̂; ð4Þ

where η̂ is the one-body density operator of the background
neutrino before the interaction.
We employ the two-flavor mixing scheme (between νe

and νx) for simplicity. In this scheme, the one-body density
operators can be expressed in terms of the identity operator
Î, the Pauli operators σ̂j (j ¼ 1, 2, 3), and the Bloch vectors
P and Q as

χ̂ ¼ 1

2
ðÎ þ P · σ̂Þ and η̂ ¼ 1

2
ðÎ þ Q · σ̂Þ: ð5Þ

The purity of the foreground neutrino is measured by jPj,
which is also a measure of how strongly it is correlated with
the background neutrinos.
For the two-neutrino interaction, we adopt the constant

(forward-scattering) interaction Hamiltonian

V̂ ¼ μ

2
ð1 − v⃗ · u⃗Þσ̂j ⊗ σ̂j ð6aÞ

¼ μ

2
ð1 − v⃗ · u⃗Þ

0
BBBB@

1

−1 2

2 −1
1

1
CCCCA ð6bÞ

between the foreground and background neutrinos, where μ
is the interaction strength, and v⃗ and u⃗ are the velocities of
the foreground and background neutrinos, respectively.
Einstein’s summation over repeated indices is assumed
in Eq. (6) and throughout this paper.
The interaction Hamiltonian in Eq. (6) is the same as that

in [3] (up to a trace term) if the interaction strength is
defined as μ ¼ ffiffiffi

2
p

GF=V, where GF is the Fermi coupling
constant and V is the normalization volume. Although it is

not entirely clear what V should be in a general scenario, it
seems natural to take V ¼ Δz3 in this model with Δz
representing the size of the neutrino wave packet. This
implies μ−1 ∼ 0.1 cm for Δz ∼ 10−11 cm [16], and

kρ̂nþ1 − ρ̂nk ∝ γ ≡ μΔz ∼ 10−10: ð7Þ

To highlight the effect of the neutrino medium, we ignore
the vacuum Hamiltonian by setting Ĥn ¼ V̂ for now. We
also assume v⃗ · u⃗ ¼ 0 for simplicity. As a concrete exam-
ple, consider the case where the foreground neutrino has
pure electron flavor at t ¼ z ¼ 0, and the background
neutrinos are all in the quantum flavor state ðjνei þ
jνxiÞ=

ffiffiffi
2

p
before interacting with the foreground neutrino.

To demonstrate the effect of small γ, we employ three
artificially large γ values (γ ¼ 1, 10−1, and 10−3) and
compute PðtnÞ with these values. The results are shown as
dotted, dashed, and dot-dashed curves in Fig. 1. For the
cases where γ ≪ 1, Fig. 1 shows the coherent oscillations
of the foreground neutrino induced by the neutrino medium

FIG. 1. The three components of the (flavor-basis) Bloch vector
of the foreground neutrino at t ¼ nΔz for the three different
interaction interval sizes Δz ¼ γ=μ (as labeled). The foreground
neutrino is initially in jνei, and the background neutrinos are in
ðjνei þ jνxiÞ=

ffiffiffi
2

p
before the interaction. The thin solid curves

represent the solutions to Eq. (8).
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with a period of 2π=μ. This figure also shows that the flavor
of the foreground neutrino approaches that of the medium
on a timescale ≳ðμγÞ−1.
The above results can be understood through the

following master equation, which approximately describes
the flavor evolution of the foreground neutrino (see the
Appendix):

Ṗ ≈ μQ × P − γμðP − QÞ − γμ

2
Q × ðQ × PÞ ð8aÞ

¼ μQ × P − γμ

�
Pk þ

�
1 −

jQj2
2

�
P⊥

�
þ γμQ; ð8bÞ

where Pk and P⊥ are the components of P that are parallel
and perpendicular to Q, respectively. We plot the solutions
to Eq. (8) as thin solid curves in Fig. 1. They agree with the
simulation results for γ ≪ 1 and μt ≤ 30.
The first term on the right-hand side of Eq. (8b) describes

the coherent flavor oscillations of the foreground neutrino
induced by the neutrino medium. It is the same as the
neutrino-neutrino interaction term in the mean-field equa-
tion (1) if one defines μ ¼ ffiffiffi

2
p

GFnν with nν being the
number density of background neutrinos. This is indeed
true from the perspective of the foreground neutrino in our
model because it encounters one background neutrino in
each volume V. The second term in Eq. (8b) describes the
decoherence of the foreground neutrino due to the inter-
action with the background neutrinos. The third term has
the opposite effect and increases the coherence of the
foreground neutrino when the neutrino medium has a net
flavor polarization. The net effect of the second and third
terms is that the flavor of the foreground neutrino
approaches that of the medium on the timescale ðγμÞ−1.

III. COLLECTIVE OSCILLATIONS AND
DECOHERENCE

Having understood the effect of a uniform neutrino
medium in the previous model, we now would like to
see how collective oscillations can emerge from a similar
model. Because it is unrealistic to keep track of all
neutrinos in a CCSN or BNSM environment, we consider
an ensemble of N “particles” evolving in discrete time steps
with step sizeΔz. Each particle in the ensemble represents a
group of neutrinos with similar initial conditions. We again
assume that each pair of physical neutrinos interact with
each other at most once in their lifetimes, and we define the
total density operator of the ensemble at the beginning of
the nth time step as

ρ̂n−1 ¼ ⊗
N

a¼1
χ̂n−1ðaÞ; ð9Þ

where χ̂n−1ðaÞ is the one-body density operator of the ath
particle at the end of the previous step. The evolution of the

ensemble during the nth step is still given by Eq. (2), but
now with

Ĥn ¼ −
XN
a¼1

ωa

2
β̂a þ

X
a<b

ΘabðnÞV̂ab: ð10Þ

Here ωa is the vacuum oscillation frequency of the ath
particle, and

β̂a ¼
�
⊗
b≠a

ÎðbÞ
�

⊗ σ̂3ðaÞ ð11Þ

in the mass basis, where σ̂jðaÞ and ÎðaÞ are the Pauli and
identity operators for the ath particle, respectively. Also in
Eq. (10), ΘabðnÞ ¼ 1 if the particles a and b interact in the
nth time step and 0 otherwise, and

V̂ab ¼
μ

2
ð1 − v⃗a · v⃗bÞ

�
⊗

c≠a;b
ÎðcÞ

�
⊗ σ̂jðaÞ ⊗ σ̂jðbÞ: ð12Þ

As an example, we consider an ensemble of N ¼ 100
particles with random but fixed velocity directions. The
ensemble has a “bipolar” initial condition: one group of
60 particles is initially in jνei and has the same vacuum
oscillation frequency ω ¼ 0.1μ, and the other 40 particles
start as νx with ω ¼ 0.2μ. A small effective mixing angle
θ ¼ 10−3 is used to mimic the effect of the matter back-
ground [17]. In each time step, all particles undergo one
interaction in random, mutually exclusive pairs. The
evolution of the ensemble is calculated with three different
step sizes that correspond to γ ¼ 10−1, 10−2, and 10−3,
respectively. In Fig. 2 (left column, top three panels) we
show the average Bloch vectors hPi for the first group of
particles as dotted, dashed, and dot-dashed curves and their
ranges as shadows. We also show the magnitudes of the
average Bloch vectors jhPij as well as the averaged
magnitudes of the Bloch vectors hjPji for the first particle
group in the same figure (left column, two bottom panels).
The system with γ ¼ 10−3 demonstrates a flavor-pen-

dulum-like evolution [17] for μt≲ 30. Afterwards, the
Bloch vectors Pa of the individual particles with different
velocities v⃗a diverge from each other. This results in
kinematic decoherence, which is manifested as decreasing
jhPij [18]. In contrast, the evolution of the system with
γ ¼ 10−1 is dominated by quantum decoherence, which
shrinks the magnitudes of individual Bloch vectors jPaj
before the flavor pendulum falls. In general, kinematic
decoherence is bounded by quantum decoherence because

jhPij ≤ hjPji: ð13Þ

The results of the simulation with γ ¼ 10−2 lie between
these two cases.
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The numerical results can be understood through the following master equation:

Ṗa ≈ ð−ωaBþ μhð1 − v⃗a · v⃗bÞPbibÞ × Pa − γμ
�hð1 − v⃗a · v⃗bÞ2ibPa − hð1 − v⃗a · v⃗bÞ2Pbib

�
−
γμ

2

�hð1 − v⃗a · v⃗bÞPbib × ðhð1 − v⃗a · v⃗cÞPcic × PaÞ þ hð1 − v⃗a · v⃗bÞhð1 − v⃗b · v⃗cÞðPc × PbÞicib × Pa

�
; ð14Þ

where B ¼ ð0; 0; 1Þ in the mass basis and

hð1 − v⃗a · v⃗bÞsPbib ¼
1

N − 1

X
b≠a

ð1 − v⃗a · v⃗bÞsPb ⟶
N≫1 1

N

X
b

ð1 − v⃗a · v⃗bÞsPb: ð15Þ

We show the solutions to Eq. (14) as the thin solid curves in
the left panels of Fig. 2. They agree with the simulation
results reasonably well considering the random nature of
the model.
Because the neutrino-neutrino interaction Hamiltonian is

nonintegrable [12], the evolution of the individual Bloch
vectors is somewhat randomized and is not correlated with
the neutrino velocities after a sufficiently long time. Using
the ansatz

X
b

ð1 − v⃗a · v⃗bÞsPb ≈ hPi
X
b

ð1 − v⃗a · v⃗bÞs; ð16Þ

we rewrite Eq. (14) as

Ṗa ≈ ð−ωaBþ μhPiÞ × Pa −
4

3
γμðPa − hPiÞ

−
γμ

2
hPi × ðhPi × PaÞ ð17Þ

when the Bloch vectors are not correlated with the velocity
vectors, where h� � �i represents the average over the whole
ensemble. The above equation looks very much like Eq. (8)
except for the vacuum oscillation term, Q → hPi, and a
factor of

1

N

X
b

ð1 − v⃗a · v⃗bÞ2 ≈
4

3
ð18Þ

in the second term on the right-hand side of the equation.
In the right panels of Fig. 2 we show the results for the

same calculations as those in the left panels but over a
longer duration and for the quantities averaged over the
whole ensemble instead of the first group only. We also use
the Bloch vectors in the simulations at tμ ¼ 500 as initial
conditions and solve Eq. (17). The results are shown as thin
solid curves in the same panels and are in reasonable
agreement with the simulations.
Equation (17) shows that significant quantum

decoherence can occur at t≳ ðγμÞ−1, which is confirmed
by Fig. 2. Unlike the previous model where the foreground
neutrino approaches the flavor state of the constant back-
ground medium, Fig. 2 shows that quantum decoherence
drives the system toward the fixed point

Pa ⟶
γμt≫1 ð0; 0; hP3iÞ; ð19Þ

where hP3i is a constant of motion of both Eqs. (14) and
(17). However, for t≲ ðγμÞ−1, the system is well described
by the mean-field approximation, which is equivalent to
setting γ ¼ 0 in Eq. (14).
Naively, one may think that kinematic decoherence will

completely destroy collective oscillations at the mean-field
level. However, Fig. 2 (right panels) shows that hPi can
precess around B for a sustained period of time when
γ ≪ 1. This collective precession of the Bloch vectors is
known as flavor synchronization [19] and can be under-
stood as follows.
Summing Eq. (17) for all particles, we obtain

J̇ ≈ −B ×M; ð20Þ

where

J ¼
XN
a¼1

Pa and M ¼
XN
a¼1

ωaPa: ð21Þ

Assume γ ≪ ω=μ ≪ 1. According to Eq. (17), each Bloch
vector precesses around hPi or J on the short timescale μ−1.
Averaging over this fast motion, one expects M to be
parallel to J so that Eq. (20) becomes

J̇ ≈ −ΩB × J ð22Þ

on the intermediate timescale ω−1, where the synchroniza-
tion frequency is given by

Ω ≈
J ·M
jJj2 : ð23Þ

Interestingly, the quantum decoherence of individual neu-
trinos slows down during the synchronization regime where
Pa ≈ hPi. [See Eq. (17); see also the dashed curve in the
fourth panel in the right column of Fig. 2.]
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IV. DISCUSSION AND CONCLUSION

We have developed two OILE models to study flavor
oscillations in dense neutrino gases. Unlike existing many-
body models in literature, the OILE models treat each
neutrino as an open quantum system and the rest of the

medium as its environment. The results of our models
depend critically on the model parameter γ ¼ μΔz, where μ
characterizes the strength of the neutrino-neutrino inter-
action and is proportional to the neutrino density, and Δz is
the typical interaction duration of two neutrinos. Our

FIG. 2. The evolution of an ensemble of 100 particles with 60 νe’s and 40 νx’s initially. The dotted, dashed, and dot-dashed curves
represent the mean quantities in the mass basis (labeled by vertical axes) for the cases with γ ¼ 10−1, 10−2, and 10−3, respectively, and
the shadows in the top three panels represent the ranges of the corresponding quantities. The quantities in the left panels are averaged
over the particles that start as νe, and the right panels show the averages over the entire ensemble. The thin solid curves in the left and
right panels represent the solutions to Eqs. (14) and (17), respectively.
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models reduce to the mean-field approximation in the limit
γ → 0 and exhibit quantum decoherence at t≳ ðγμÞ−1.
In the first model, we considered a single neutrino

passing through a constant background neutrino medium.
This model seems to be well approximated by the master
equation (8b), which has three terms, each with its own
physical interpretation: a coherent term that survives at the
mean-field level, a term that reduces the coherence of the
foreground neutrino, and a term that drives the foreground
neutrino to the quantum flavor state of the medium
at t≳ ðγμÞ−1.
In the second model, we considered an ensemble of

particles that initially represent νe and νx. For the cases
where γ ≪ 1, we found that the system behaves like a
flavor pendulum before kinematic decoherence takes over.
On a longer timescale, the system exhibits flavor synchro-
nization before quantum decoherence eventually drives the
system to flavor equilibration.
There are some obvious limitations and potential

concerns for our models, some of which we plan to address
in future work. For example, we adopt the forward
scattering Hamiltonian of the neutrino. In reality, neutrinos
can have many different final momentum states after
scattering. Additionally, all neutrinos are paired to interact
in each time step of fixed duration in our models, whereas
in reality, the interaction times are probabilistic in nature.
Nevertheless, our models shed light on how coherent
neutrino oscillations and quantum decoherence can mani-
fest themselves as different limits of the same quantum
model from the particle perspective. These models may
also serve as a starting point for future studies of these
intriguing phenomena.
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APPENDIX: MASTER EQUATIONS

Here we briefly outline the derivation of the master
equations used in the paper. Using the identities

σ̂iσ̂j ¼ δij þ iϵijkσ̂k ðA1Þ

and

½σ̂k ⊗ σ̂k; σ̂i ⊗ σ̂j� ¼ 2iϵijkðÎ ⊗ σ̂k − σ̂k ⊗ ÎÞ; ðA2Þ

one can show that

χ̂nþ1 ¼ trηfe−iV̂Δz½χ̂n ⊗ η̂�eiV̂Δzg ðA3aÞ

≈ χ̂n − ðiΔzÞtrηf½V̂; χ̂n ⊗ η̂�g

þ ð−iΔzÞ2
2

trηf½V̂; ½V̂; χ̂n ⊗ η̂��g ðA3bÞ

¼ χ̂n − ðiμΔzÞ½η̂; χ̂n� − ðμΔzÞ2ðχ̂n − η̂Þ ðA3cÞ

for the one-body density operator of the foreground
neutrino in the first OILE model (Sec. II), where V̂ is
defined in Eq. (6) with v⃗ · u⃗ ¼ 0. Numerically, Eq. (A3c) is
consistent with the master equation

dχ̂
dt

≈ −iμ½η̂; χ̂� − γμðχ̂ − η̂Þ þ 1

2
γμ½η̂; ½η̂; χ̂�� ðA4Þ

up toOðΔz2Þ, which gives Eq. (8) for the Bloch vector P of
the foreground neutrino. Equation (14) can be derived in a
similar way by replacing η̂ with the average density
operators of the background neutrinos and taking into
account the geometry factors 1 − v⃗a · v⃗b in V̂.
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