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In this paper, we explore the prospect for improving the measurement accuracy of masses and radii of
neutron stars. We consider imminent and long-term upgrades of the Laser Interferometer Gravitational-
Wave Observatory (LIGO) and Virgo, as well as next-generation observatories—the Cosmic Explorer and
Einstein Telescope. We find that neutron star radius with single events will be constrained to within roughly
500 m with the current generation of detectors and their upgrades. This will improve to 200, 100 and 50 m
with a network of observatories that contain one, two or three next-generation observatories, respectively.
Combining events in bins of 0.05M⊙ we find that for stiffer (softer) equations-of-state like ALF2 (APR4), a
network of three XG observatories will determine the radius to within 30 m (100 m) over the entire mass
range of neutron stars from 1M⊙ to 2.0M⊙ (2.2M⊙), allowed by the respective equations-of-state. Neutron
star masses will be measured to within 0.5% with three XG observatories irrespective of the actual
equation-of-state. Measurement accuracies will be a factor of 4 or 2 worse if the network contains only one
or two XG observatories, respectively, and a factor of 10 worse in the case of networks consisting of
Advanced LIGO, Virgo KAGRA and their upgrades. Tens to hundreds of high-fidelity events detected by
future observatories will allow us to accurately measure the mass-radius curve and hence determine the
dense matter equation-of-state to exquisite precision.

DOI: 10.1103/PhysRevD.109.103035

I. INTRODUCTION AND BACKGROUND

An outstanding problem in nuclear astrophysics is the
equation-of-state of neutron star (NS) cores, believed to
contain matter at several times the nuclear saturation
density [1–3]: near the core the density reaches 4 to 6
times the nuclear saturation density and in the outer core it
would be twice the nuclear saturation density. This makes
them the densest objects anywhere in the Universe.
Decades after their discovery, the radii of neutron stars
are still uncertain1 by about ∼10% [4–10], and the
composition of their dense cores likely depends on the
neutron star mass and could be composed of hadrons or
deconfined quarks [3,11–14]. Indeed, it is not clear whether
the matter at such densities undergoes a phase transition

from a hadronic phase to quark-gluon plasma and the
critical neutron star mass and temperature at which the
transition might occur [3,11,12,12–16].
Neutron stars in binaries are studied either as radio

pulsars or x-ray sources and both have helped in our
understanding of the structure of neutron stars [17–23]. The
Neutron Star Interior Composition Explorer (NICER)
space observatory is providing precision x-ray data on
neutron stars [24]. Precise general relativistic modeling of
the x-ray pulsation of neutron stars has been used to
constrain their masses and radii as well as the equation-
of-state (EOS) of their dense cores [4,10,25–29]. The best-
measured NICER radius errors are about 1 km.
At the same time, advances in gravitational-wave obser-

vations from merging neutron stars are allowing new
approaches to resolve this puzzle. Indeed, the detection of
binary neutron stars (BNSs) [30–34] and neutron star-black
hole binaries (NSBHs) [35] by the Laser Interferometer
Gravitational-Wave Observatory (LIGO) and Virgo has
opened up a new and independent window for exploring

1Note that some authors, who claim a 5% uncertainty in the
radius, are quoting one-sided, one-σ credible intervals. The 10%
to which we refer corresponds to a two-sided, 90% credible
interval, which is the standard in LIGO-Virgo Collaboration
publications.
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neutron stars. Gravitational waves emitted in the final tens of
milliseconds of the inspiral and coalescence of BNSs can be
used to explore the composition and EOS of dense matter in
neutron star cores [36–40]. Encoded in the phase evolution of
the waves is the (dimensionless) tidal deformability Λ1;2 of
the two stars, which is a measure of the quadrupole
deformation imparted on the stars due to the tidal field of
their companions. The leading order finite size effect in the
post-Newtonian (PN) approximation of the waves’ phase
evolution is a highly subdominant effect. In terms of the post-
Newtonian expansion parameter ðv=cÞ < 1, it is, in fact, an
order Oðv=cÞ10 effect beyond the dominant quadrupole
term [39–42], yet it is significant when the instantaneous
gravitational-wave frequencies are ∼100 Hz or greater
(v=c ∼ 0.16 or larger) for a typical BNS system comprising
a pair of 1.4M⊙ companions [43].
The tidal deformability goes as the inverse fifth power of

the star’s compactness, i.e., Λk ∝ ½Gmk=ðc2RkÞ�−5, k ¼ 1,
2, where mk and Rk are the masses and radii of the
companion stars in a binary system [41,44]. Matched
filtering the data with gravitational-wave templates cali-
brated to numerical relativity simulations [45–52] of BNS
mergers can be used, in principle, to measure the tidal
deformabilities of the companions, in addition to their
masses.2 In practice, however, it is not possible to accu-
rately measure the individual tidal deformabilities, but only
a certain linear combination of the two called effective tidal
deformability Λ̃, defined by:

Λ̃ ¼ 16

13ð1þ qÞ5 ½ð1þ 12qÞΛ1 þ q4ð12þ qÞΛ2� ð1Þ

where q≡m2=m1 ≤ 1 is the mass ratio [39,42,44,53].
Although the dominant tidal effect, which depends only on
Λ̃, is measured accurately, the PN correction, required to
measure the individual tidal deformabilities, cannot be
inferred with any accuracy. This is because of two reasons:
On the one hand, it is a higher order PN correction, an
Oðv=cÞ12 effect, compared to the dominant quadrupole
term and, on the other hand, the PN correction vanishes for
binaries with comparable masses. In fact, the tidal PN
correction depends on δΛ̃ defined by:

δΛ̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
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where η≡m1m2=ðm1 þm2Þ2 ¼ q=ð1þ qÞ2 is the sym-
metric mass ratio. For BNS systems in general, companion

masses are similar, and hence q ≃ 1 and Λ1 ≃ Λ2, giving
Λ̃ ≃ Λ1;2 and hence δΛ̃ ≃ 0. Additionally, the tidal deform-
ability of a neutron star depends not only on its mass, but
also the (unknown) EOS. For neutron stars of 1.4M⊙ and
over a wide range of equations-of-state (EOSs), typical
values are Λk ∼ 200–2000 [44]. While the first post-
Newtonian correction is already subdominant as a sixth
post-Newtonian order effect compared to the leading order
quadrupole [44], this range of Λk also results in the term
being at least two orders of magnitude smaller compared to
the leading order tidal term. These effects combined make
the term difficult to measure. Consequently, only the
leading order tidal term, is readily available, making it
necessary to supplement gravitational-wave observations
with other input in order to infer the individual tidal
deformabilities and the radii of neutron stars. Several such
approaches have been proposed in the literature and applied
to GW170817 [32,54].
The BNS coalescence event GW170817, at ∼40 Mpc

and a signal-to-noise ratio (SNR) of 33, provided the first
opportunity to constrain the tidal deformabilities from
gravitational-wave observations, and hence the radii, of
neutron stars [32–34]. Theoretical models of the EOS of
neutron stars are plenty and varied and they allow tidal
deformabilities in the range of 10≲ Λ1;2 ≲ 10000 [40,41],
depending on the mass, being larger for lighter neutron
stars and stiffer EOSs. Analysis of the event GW170817
found that the 90% credible range of the companion masses
were 1.36M⊙ ≤ m1 ≤ 1.89M⊙ for the primary and
1.00M⊙ ≤ m2 ≤ 1.36M⊙ for the secondary [33], the effec-
tive tidal deformability had a 90% credible upper bound
of Λ̃≲ 600 and the radius was constrained to be R1 ¼
11.9þ1.4

−1.4 km [32,55]. Unfortunately, the second BNS event
GW190425 [56] was farther and had a significantly lower
SNR than GW170817 and did not yield tighter constraints
on the tidal deformability on its own.
However, constraints have also been derived by combin-

ing LIGO-Virgo results of GW170817 and GW190425 with
additional observations. Including NICER observations
[4,5,10,25–29] bound the radius of a 1.4M⊙ neutron star
to the range R1.4 ¼ 12.33þ0.76

−0.81 km. Likewise, combining
nuclear physics experiments and gravitational-wave data has
found R1.4 ¼ 11.0þ0.9

−0.6 km [57], and R1.4 ¼ 12.75þ0.42
−0.54 km

[58] while combining data from GW170817, its companion
gamma-ray burst GRB170817A, and subsequent kilonova
AT2017gfo, the same radius was determined to an accuracy
of less than about a km at 90% credible interval [59].
However, see Vinciguerra et al. [60] for sensitivity of
NICER results on model hypotheses.
The planned upgrades of LIGO and Virgo, the addition

of observatories currently under construction, KAGRA
[61] in Japan and LIGO-Aundha in India [62], and new,
longer-arm facilities that are currently being conceived,
have the potential to make new discoveries of both sources
and science. In this study, we explore the accuracy with

2Neutron stars inmerging binaries are not expected to have large
spins. Consequently, the only intrinsic parameters that we will
consider in this paper are the masses and the tidal deformabilities.
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which future observatories are able to measure the radii of
neutron stars, an important step in constraining their
equation of state. The networks considered in this work
include the imminent upgrade of LIGO and Virgo over the
next five years called Aþ [30,31], the Voyager upgrade to
LIGO detectors that would be possible within the next ten
years [63], and the next-generation (XG) observatories such
as the Einstein Telescope (ET) [64–66] or Cosmic Explorer
(CE) [67] that are expected to operate in the mid-2030s in
tandem with the fully upgraded versions of current
observatories. Given the rate of BNSmergers as determined
by the events GW170817 and GW190425, we expect the
future observations to constrain the neutron star radius to
within 600 m (Aþ generation), 400 m (Voyager generation),
200 m (one XG observatory) and<100 m (two or more XG
observatories), with the high-fidelity events observed by the
respective networks of observatories. At the same time,
neutron starmasses will bemeasured to better than 10%, 5%,
3%, and 0.5% [68]. Themass-radius relation is a proxy to the
EOS of ultradense matter in neutron-star cores that will be
tightly constrained with high-precision measurements of the
masses and radii with future networks of gravitational-wave
observatories (see, e.g., [69]).
When combining information from a multiple set of

events it is necessary to employ a population model for the
observed sources in addition to the unknown equation of
state. For binary neutron stars, the population model will
involve the astrophysical distribution of neutron star masses
(or, equivalently, the neutron star central densities), the
pairing probability as a function of the total mass and mass
ratio and the distribution of neutron star spins. Moreover,
gravitational-wave detectors and the analysis pipeline used
to detect binary neutron stars have selection effects. For
example, it is easier to detect equal-mass systems compared
to mass-asymmetric systems of the same total mass.
Likewise, binaries with a larger total mass produces a larger
signal-to-noise ratio compared to a binary of smaller total
mass but the same mass ratio. Bayesian inference of the
source parameters for a single event will also be affected by
the unknown hyperparameters of the populationmodel since
the posterior distribution depends on the assumed prior
model. Thus, one has to simultaneously determine the
population model and the EOS. For the EOS, this means
one has to marginalize over the population model.
Additionally one must also account for the selection effects
to assure that the model selection of EOS is unbiased.
We are ignoring these effects in this work since our

Fisher matrix approach currently does not allow for the
inclusion of systematic biases. We also envisage that in the
XG era the selection effects would have been better
understood. Our goal, instead, is to provide the statistical
uncertainty that we expect in the determination of the EOS.
We are currently in the process of preparing a mock data
challenge for XG observatories. The mock data challenge
will allow us to address the aforementioned issues.

We also note that the estimation of intrinsic source
masses requires the use of a cosmological model. Since
we detect BNS events to a significant cosmological dis-
tance, cosmological parameters must be inferred together
with the parameters of a BNS event [70,71]. As explained
in Sec. V E, we find that the bias introduced due to an
unknown cosmological model is negligible.
The rest of the paper is organized as follows. In Sec. II

we describe the cosmic BNS population used in this study
together with the distribution of companion masses, the
merger rate and its variation with redshift and the waveform
model used. This is followed by a brief summary of
detector networks considered in Sec. III, focusing on the
efficiency of the networks in detecting BNS systems. In
Sec. IV we present the capabilities of the different observa-
tories in characterizing the source properties. We describe
in Sec. V the method to infer the radii of neutron stars from
the measurement of effective tidal deformability using a set
of EOS independent universal relations with corrections
and how we combine the results from a population to obtain
joint bounds. In Sec. VI we present the application of the
methods to events expected to be observed in detector
networks considered in this study. The results are obtained
by combining radius measurements of a small sub-pop-
ulation of observed events: either the loudest 100 events or
the 100 events for which tidal deformability is best
measured, to infer the radii of neutron stars. A summary
of the results and conclusions is presented in Sec. VII.

II. NEUTRON STAR POPULATION AND
WAVEFORM MODEL

In this section, we describe the neutron star population
and the waveform approximations used in the study. We
begin by recalling how the redshift dependence of the
merger rate is computed using the observed star formation
rate as a function of redshift as a proxy for the redshift
evolution of the rate. The redshift dependence is not exactly
the same as the star formation rate since binaries that form
from stars only merge after a certain time delay, which is
essentially the gravitational radiation back reaction time-
scale. This is followed by a summary of the distribution of
neutron star masses used in the study. We conclude the
section with a description of the waveform model used,
which is built upon the point-particle approximation but
includes finite-size tidal effects with the waveform model
parameters calibrated to hydrodynamical numerical rela-
tivity simulations of BNS mergers.

A. BNS merger rate

The merger rate density r0 in the local Universe (i.e., at
zero redshift) inferred from LIGO-Virgo observations of
BNS coalescences during the second and third observing
runs is r0 ¼ 10–1700 yr−1 Gpc−3 [72]. The two BNS
events observed during this period, GW170817 and
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GW190425, were localized to luminosity distances of
40 Mpc and 159 Mpc, respectively, and corresponding
redshifts of z ≃ 0.01 and z ≃ 0.036. Thus, the LIGO-Virgo
rate is essentially the local merger rate density, i.e., at
redshift z ¼ 0. In this work, we will consider mergers up to
a redshift of z ¼ 1. The merger rate density over this
redshift range is expected to increase since the rate of star
formation ψðzÞ, from which compact binaries form,
increases with redshift up to about z ¼ 2 [73].
To model the variation of the merger rate with redshift,

we assume that it follows the star formation rate except that
a binary that forms at redshift z1 merges at redshift z < z1.
This is because there could be a significant time-delay td
between the binary’s initial formation and eventual merger
as driven by gravitational radiation back reaction. The time
delay td for a specific binary depends on a number of
astrophysical processes that take place between the for-
mation of the companion stars, their common evolution,
and survival following supernova kicks they receive.
Therefore, td will not be the same for every binary and
the time delay distribution is not well known either due to
the complexity of how the progenitors of compact binaries
evolve. However, making reasonable assumptions about
the intervening processes, i.e., neutron stars form with no
delay after the formation of their progenitor stars, their orbit
decays due to the emission of gravitational waves only, and
the semimajor axis of their orbit follows a uniform in log-
space distribution, td follows the distribution PðtdÞ ∝ 1=td
[74,75]. Thus, the merger rate density in the source’s
frame3 rzðzÞ is given by:

rzðzÞ ¼ A
Z

tmax
d ðzÞ

tmin
d ðzÞ

ψðz − tdðzÞÞPðtdðzÞÞ
dtd
dz

dz; ð3Þ

where a subscript z is included to clarify that rzðzÞ is the
rate density with respect to an observer at z, tmin

d and tmax
d

are the minimum and maximum time delays, A is a
normalization constant (see below), and ψðzÞ denotes the
star formation rate (whose dimensions are not important to
us but only its dependence on redshift). For ψðzÞwe use the
fit proposed in Ref. [76]:

ψðzÞ ∝ a exp ðbðz − zmÞÞ
a − bþ b exp ðaðz − zmÞÞ

ð4Þ

where a ¼ 2.8, b ¼ 2.46, and zm ¼ 1.72. For the minimum
time-delay we use tmin

d ¼ 0.2 Gyr and for the maximum we
use tmax

d ¼ 10 Gyr. The normalization constant A is deter-
mined so that this expression is consistent with the local
rate density, i.e., r0ðz ¼ 0Þ ¼ r0. The merger rate, rzðzÞ,
peaks at a slightly lower redshift than ψðzÞ because of the

time-delay. The dependence of the cosmic time t on redshift
is determined by the Planck 2015 cold dark matter
cosmology:

dt
dz

¼ 1

H0ð1þ zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ þ ΩMð1þ zÞ3

p ; ð5Þ

with the Hubble constantH0 ¼ 69.6 Kms−1Mpc−1, ΩΛ ¼
0.714 and ΩM ¼ 0.286.
Next, the merger rate (as opposed to rate density) in a

redshift interval dz is given by:

dRzðzÞ ¼ rzðzÞ
dV
dz

dz ð6Þ

where dV ¼ ðdV=dzÞdz is the comoving volume element
corresponding to redshift range dz. To convert this to the
rate as measured by an observer at z ¼ 0 we must divide by
(1þ z) to take into account the redshift of the rate due to
cosmological expansion: dR0ðzÞ ¼ dRzðzÞ=ð1þ zÞ. The
cumulative merger rate is given by:

RðzÞ ¼
Z

z

0

dRðz0Þ ¼
Z

z

0

rzðz0Þ
ð1þ z0Þ

dV
dz0

dz0: ð7Þ

Within z ¼ 1 the merger rate is about ∼105 per year. Not
all of these mergers would be detectable by a gravitational-
wave detector (or a network) but only a certain fraction
depending on its sensitivity which we will discuss in
Sec. III.

B. Waveform models and mass distribution

In order to characterize the capability of various detector
networks to measure the tidal deformability and the
companion masses, it is important to choose an appropriate
waveform model that includes the relevant physical effects.
As in the case of binary black holes, BNS waveforms are
based on approximate solutions to Einstein equations. They
include the dominant tidal effects and incorporate additional
parameters in the phase evolution which are calibrated by
matching the analytical solution against numerical relativity
simulations. We chose the frequency-domain phenomeno-
logical waveform model IMRPhenompv2NRTidalv2 [47–49] for
the generation of simulated signals as well as templates for
Fisher-matrix based inference. This model is based on the
IMRPhenomPv2 BBHwaveform [77,78] with tidal effects up to
7.5 post-Newtonian order (or to Oðv=cÞ13 beyond the
leading quadrupole term), making it appropriate for use in
BNS analysis. An earlier version of this waveform was used
for the analysis of GW170817 [79].
The waveform model takes as input the intrinsic masses

of the companions and their tidal deformabilities. In this
paper, the companion masses are drawn from a uniform
distribution over a range of masses whose lower limit is
1M⊙ and the upper limit is the maximum allowed by the

3In what follows lower case letters are used to denote the
merger rate densities while capital letters are used to denote the
merger rates.
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EOS used in the simulation (see below): m1; m2 ∼
Uð1M⊙;MEOS

max Þ. Although the masses of neutron stars in
the Milky Way seem to be concentrated around 1.4M⊙,
there is a priori no physical reason to assume that this is the
preferred value in other galaxies. Theoretically, neutron star
masses are allowed to be as large as 2.9M⊙ [80], although
the largest measured masses tend to be significantly lower.
The heaviest neutron stars among astronomical observa-
tions are in range 2.01–2.35M⊙ [81–83], while from
gravitational-wave observations the companion masses in
BNS systems are as large as 1.6M⊙, and 1.4M⊙ in the case
of GW170817, and 1.9M⊙, and 1.7M⊙ in the case of
GW190425. Neutron-star masses in neutron star-black hole
systems GW200105 and GW20015 [84] are both 2.2M⊙.
In this small population there seems to be no preference for
the Galactic value of ∼1.4M⊙ and it would be more prudent
to assume a wider range for the mass distribution. We have
chosen the widest range allowed by the model EOSs
considered in this paper.
We assume, however, that the dimensionless spin mag-

nitudes of neutron stars are negligible. The fastest-spinning
Galactic pulsar has a rotational frequency of just over
700 Hz. Its dimensionless spin angular momentum is still
roughly a ¼ cI2πω=Gm2 ≃ 0.4—far smaller than the
maximum spin neutron stars could, in principle, have;
here I is the principal moment-of-inertia of the star
(roughly equal to 2

5
mR2, where m and R are the neutron

star’s mass and radius, respectively), and ω is its spin
angular frequency. Neutron star spins in other galaxies
could be far greater than those in the Milky Way but the
waveform models that are currently available are calibrated
against numerical relativity simulations of BNSs with small
spins (dimensionless spin, χ < 0.1) [47–49].
In addition to masses and spins, we also have to specify

the distance to the source, its orientation relative to the
detector frame, and its position in the sky. Sources are
assumed to follow the redshift distribution determined by
Eq. (6) and uniformly distributed over the angular param-
eters describing the sky position and orientation of the
binary.
Given the mass, the radius of the neutron star is calculated

for a given EOS by solving the Tollmann-Oppenheimer-
Volkoff (TOV) equations [85,86]. In practice, this is com-
putationally too expensive since our simulations have to deal
with hundreds of thousands of systems. Thus, it is more
practical to solve the TOVequations to obtain radii for a set of
masses and then use an interpolating function to find the
radius for an arbitrary value of mass.We have confirmed that
the fractional difference in the radius, for a given mass,
obtained from numerical solution to the TOV equation and
the interpolating function are below 0.1% over the full range
of neutron star masses allowed by the EOS.
We consider three EOS used for injection, and an addi-

tional seven EOS used for reference that are still allowed by
x-ray and gravitational-wave data: the injection set of ALF2,

APR3, APR4 and reference set of DD2,H4, S220, PP2, PP5,
SFHo, and SLy.We then plot the corresponding mass-radius
curves in Fig. 1. ALF2 (APR4) represents a stiffer (softer)
EOS allowing for larger (smaller) radii, while APR3 allows
intermediate radii. The reference EOS then provide good
coverage of the mass-radius parameter space between the
three, allowing for stronger model discrimination tests
with our methods. Given the mass Mi and radius Ri, the
dimensionless tidal deformability is computed using the
expression:

Λi ¼
2k2ðRiÞ

3

�
c2Ri

Gmi

�
5

; ð8Þ

where k2ðRÞ is the tidal Love number, which also depends on
the radius of the neutron star and is fixed for a givenmass and
EOS [41].

III. FUTURE OBSERVATORIES AND THEIR
REACH FOR THE BINARY NEUTRON

STAR POPULATION

Advanced LIGO (aLIGO) and Advanced Virgo (AdV)
are currently taking data and are expected to reach their
design sensitivity goals (see Fig. 2) in late 20234 [30]. At
that sensitivity, the network of LIGO-Hanford, LIGO-
Livingston, and Virgo (HLV) [31] could detect ∼40
BNS mergers per year from within a distance of about
400 Mpc. Both projects have concrete plans to upgrade
their sensitivity over a period of two years, which we will
refer to as the HLVþ network, enhancing the detection
rate by about a factor ∼5 by about 20274.

FIG. 1. Mass-radius curves for EOS used in this paper. Please
note that our choice of three injections EOS here (ALF2, APR3,
APR4 shown with thicker lines) are motivated by the
conservative constraint on Λ1.4 < 800 as put forward by [79].
We also consider the fact that these three EOS covers a significant
range in the maximum masses while the inclusion of addtional
seven EOS provide good coverage of the rest of the mass
radius space.

4For up to date schedule of the runs see https://rtd.igwn.org/
projects/userguide/en/latest/capabilities.html.
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A. Upgrades and new facilities

The Japanese KAGRA detector, currently being com-
missioned, and LIGO-India are expected to join the HLVþ
network over the 2020-2030 decade and the five detectors
would be together referred to as the HLVKIþ network.
HLVþ and HLVKIþ networks will begin to observe
events with SNRs large enough to facilitate accurate
measurement of the tidal deformability.
Further upgrades to LIGO beyond Aþ have been studied

and they involve the development of new technology to
mitigate thermal noise and gravity gradient background.
Voyager [87] is one such concept that could lead to a further
increase in the sensitivity by a factor of ∼2–5 over the
frequency range 10 Hz to a few kHz (see Fig. 2. At the
moment we are not aware of any plans to upgrade Virgo or
KAGRA and hence we will consider a network of five
detectors: the three LIGO detectors operating with Voyager
technology and Virgo and KAGRA in Aþ mode. We will
refer to this as the Voyager network, which will have access
to several loud binary merger events. The Voyager network
could constrain neutron star radius to within about 5% or
roughly 500 m for neutron stars between 1.5M⊙ and
2.0M⊙, as seen in Fig. 8.
Improvements in sensitivity beyond the level of Voyager

would require, among other technologies, longer arms and/
or underground facilities, neither of which would be
possible with the infrastructure that exists at the location
of current detectors. The boldest of the new concepts are the
Einstein Telescope (ET) in Europe and Cosmic Explorer
(CE) in the U.S. and, possibly, Australia. ET is an under-
ground facility hosting three V-shaped detectors at the

vertices of an equilateral triangle of 10 km sides [66], while
CE is a over-ground, L-shaped detector with 40 km arms
[67]. ET and CE will be roughly 10 to 30 times more
sensitive than advanced detectors (cf. Fig. 2) with the
capability to observe hundreds of thousands BNSs mergers
each year, many with SNRs larger than 100.

B. Detector networks

Advanced LIGO, Advanced Virgo and KAGRA (LVK)
have been taking data, albeit intermittently, since 2015,
2017, and 2019, respectively. They are expected to operate
at design sensitivity during 2023-2024. We have not
included the measurement capability of this network as
the number of loud (i.e., SNRs in excess of 25) BNS
coalescences expected to be detected during the next
science run (O4) is only ∼ few.
LIGO-India, currently under construction, could join the

upgraded Aþ versions of the LVK network in the latter half
of this decade; we shall call this the HLVKIþ network.
Both LIGO and Virgo are planning for a further upgrade
beyond 2030, referred to as Voyager in the US. A network
in which Virgo and KAGRA operate at Aþ sensitivities and
LIGO-Hanford, LIGO-Livingston and LIGO-India operate
at Voyager sensitivity, will be called VKþ HLIv. This
network will have the same performance as the one in
which any three of 5 detectors are upgraded to Voyager and
the remaining two operate at Aþ sensitivity and we do not
consider them separately.
Beyond 2035 one or more next generation observatories

could begin to operate. To understand the relative merits of
operating one or more such observatories we consider four
different networks in which a subset of the current detectors
operate at Aþ sensitivity at the same time as one CE (which
we shall denote VKIþ C), one ET (denoted HLKIþ E),
one each of CE and ET (denoted KIþ EC) and a network
consisting of one ET, one CE in the US and one CE in
Australia (denoted ECS) without any Aþ detectors. In all,
we consider six networks as enumerated in Table I. For the
ET and CE, we use fiducial locations and orientations as
given in Ref. [88]. We will next discuss the expected
performance of various detector networks in detecting
signals from and measuring the parameters of BNSs.

C. Network efficiency

Gravitational wave detectors have a wide field of view of
the sky but they are not equally sensitive to all directions.
An interferometric detector like LIGO has a quadrupole
antenna pattern and is able to detect only a fraction of all the
sources from within a given distance. A network of
noncollocated detectors increases the sky coverage and
the five-detector network of HLVKIþ has an almost
isotropic response.
The efficiency of a detector network is a function of the

luminosity distance (or redshift) and is defined as the
fraction of all sources within a certain luminosity distance
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FIG. 2. Strain sensitivity of three generations of ground-based
gravitational wave detectors: (i) Advanced Virgo (AdV), Ad-
vanced LIGO (aLIGO) and Aþ, (ii) Voyager, and (iii) Einstein
Telescope (ET) and Cosmic Explorer (CE). In the case of ET the
sensitivity shown is that of an L-shaped detector with 10 km
arms. The three V-shaped arms make the effective strain
sensitivity a factor 3=2 better (and the noise floor lower by
the same factor).
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that can be (confidently) detected by the network, say with
an SNR above a threshold SNR. In order to compute the
efficiency of a detector network we simulate BNS events
with their parameters distributed as described in Sec. II B.
The network SNR of an event is simply the quadrature sum
of the SNRs in each detector:

ρ2 ¼
XnD
A¼1

ρ2A; ρ2A ¼ 4

Z jh̃AðfÞj2
SAhðfÞ

df; ð9Þ

where h̃AðfÞ is the Fourier transform of the response of
detector A to an incident gravitational wave [cf. Eq. (12)],

SðAÞh ðfÞ is the one-sided noise power spectral density of
detector A as in Fig. 2, ρA is the matched filter SNR of the
signal in detector A, nD is the number of detectors in the
network, and ρ is the network SNR. The efficiency of a
detector is then defined as:

ϵðzÞ ¼ 1

N

X
k

ΠðρkðzÞ − ρTÞ; ð10Þ

where N is the total number of simulated events, ρkðzÞ is
the network SNR for the kth event, ρT is the SNR threshold
and Π is the step function, ΠðxÞ ¼ 0, if x < 0 and
ΠðxÞ ¼ 1, if x > 0. The SNR of an event depends not
just on the redshift but on all other parameters of the source.
In computing the network efficiency, we bin the SNR by
redshift and ignore its dependence on all other parameters.
The SNR threshold ρT serves as a proxy for detection
confidence, larger SNRs are generally detected with greater
confidence. We choose the threshold to be ρT ¼ 12—the
minimum SNR required for a network of detectors to make
a confident detection. While the SNR of 12 used here is
required for a confident detection, it is not necessarily the
SNR at which we can make the accurate measurements of
tidal deformability necessary to determine a neutron star’s
radius and its EOS. In later sections, we will choose the best
subset of all events to evaluate how well a network is able to
measure the radii of neutron stars.

The efficiency of a network then also determines its
detection rate. Within a given redshift, a network does not
observe all the possible sources, but only a fraction DR
given by:

DR ¼
Z

z

0

rzðz0Þ
ð1þ z0Þ

dV
dz0

ϵðz0Þdz0: ð11Þ

We call DR the detection rate of a network and it is
essentially the same as Eq. (7) except that the integrand is
weighted with the efficiency of the network.
Table II lists the number of events detected over a period

of two years, as a function of detection threshold. An SNR
of 12 is required for a confident detection, and at that level,
the Aþ network would observe about 800 sources over two
years while the Voyager network would observe almost ten
times as many. Meanwhile, a network containing at least
one XG detector would observe about half all the sources
within z ¼ 1, (70,000 if XG is ETand 100,000 if XG is CE)
(see Table II), and a network containing one ETand one CE
would observe 30% more sources than that. The ECS
network would additionally observe about 10% more
sources than a network containing two XG detectors and
50% more than a network containing a single XG detector.

IV. BNS MEASUREMENT CAPABILITY
OF FUTURE DETECTOR NETWORKS

In this section we assess the measurement capabilities of
different networks of gravitational-wave detectors intro-
duced in Sec. III. We begin with a brief discussion of the
distribution of the SNR in various detector networks
followed by the accuracy with which parameters can be
measured, in particular the effective tidal deformability.
In the rest of the paper, we will only consider sources up

to a redshift of z ¼ 1. Within this redshift, we expect about
150,000 BNS mergers over a two-year period but the
current rate uncertainty means this number could be 50%
larger or 25% smaller. This is a redshift that is far greater

TABLE I. Upgraded and future gravitational-wave detectors
whose ability to measure the EOS of matter in neutron star cores
is evaluated in this study. The timescale of operation of the
various networks is our best guess estimate of when a given
network is likely to operate; they do not correspond to any official
projections.

Detectors Network Name

LIGO (HLIþ), Virgoþ, KAGRAþ HLVKI+
LIGO (HLI-Voy), Virgoþ, KAGRAþ VK+HLIv
ET, LIGO (HLIþ), KAGRAþ HLKI+E
CE, Virgoþ, KAGRAþ LIGO–Iþ VKI+C
ET, CE, KAGRAþ, LIGO–Iþ KI+EC
ET, CE, CE-South ECS

TABLE II. We list the number of events expected to be detected
as we increase the SNR of events. Even with one Cosmic
Explorer and/or Einstein Telescope, the number of BNS detec-
tions increases by an order of magnitude. In the bulk of this work,
we focus our analysis on top 100 events with the highest SNR for
each detector network. This cut corresponds to SNR of 100 or
more for networks with at least on XG-era detector and about 50
or below for Aþ detectors.

ρT HLVKI+ VK+HLIv HLKI+E VKI+C KI+EC ECS

12 840 7400 67,000 100,000 130,000 146,000
30 50 600 10,000 25,000 40,000 65,000
50 10 100 2,500 8000 12,000 23,000
100 0 10 300 1000 1,800 3800
300 0 0 10 50 70 150
500 0 0 1 5 10 30
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than the horizon distance of Aþ and Voyager networks
while a network containing one or more of XG detectors
would observe a vast majority of mergers within it.
However, only a small fraction of them will have large
enough SNRs to be useful for measuring the EOS.

A. Signal to noise ratio distribution
for nearby BNS mergers

Figure 3 plots the cumulative distribution of the SNR for
the population of BNS mergers up to a redshift of z ¼ 1.
The VKIþ C network should observe 10% of the events
with SNRs greater than 30 and 1% of the events with SNRs
greater than 60. In contrast, in the Aþ network less than
0.1% of events will have SNRs greater than 10. Cosmic
Explorer and its southern counterpart operating along with
Einstein Telescope would observe thousands of events each
two years with SNRs greater than 100.
One must multiply the expected number of mergers

within this redshift with the corresponding value of the
CDF to get the number of sources expected to be observed
each year. An estimate of actual number of events along
with their SNR distribution is also given in Table II.

B. Fisher information approach
for measurement accuracy

Our goal is to estimate the accuracy with which
parameters of an event can be measured by gravita-
tional-wave detector networks. To this end, we employ
the Fisher information matrix approach [89], which allows
a reliable estimation of errors when the SNRs large (say
more than about 30 or 50). We use the open source software
GWBENCH [88] to generate and sample posteriors for a set
of randomly selected signals. GWBENCH is a software
package that computes the Fisher information matrix
(FIM) F whose inverse gives the variance-covariance
matrix. The starting point of the computation is the
response of a detector to incident gravitational wave with
polarizations hþ and h×:

hAðt; θÞ ¼ FAþðt; α; δ;ψÞhþðt; μÞ þ F×ðt; α; δ;ψÞh×ðt; μÞ
ð12Þ

where A is an index denoting the detector in question. Here
Fþ;× are the plus and cross antenna pattern functions
of the detector that depend on the right ascension α and

FIG. 3. This plot shows the distribution of the measurement accuracy of the chirp massM, combined tidal deformability Λ̃, symmetric
mass ratio η, and the SNR for 160 000, events expected over a two year period, up to a redshift of z ¼ 1. The source parameters are
distributed as described in Sec. II B.
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declination δ of the source, and the polarization angle ψ .
The time dependence of the antenna pattern functions are
only important when the motion of the detector relative to
the source is perceptible, and for sources that last for more
than 30 minutes. The polarization amplitudes hþ and h×
depend on the intrinsic parameters of the sources such as
the masses m1 and m2 of the companion stars,5 and the
effective tidal deformability Λ̃, but also the extrinsic
parameters that include the orientation ι of the binary’s
orbit relative to the line-of-sight from the Earth to the
source and the source’s luminosity distance DL. These are
all combined in the parameter μ ¼ fM; η; Λ̃; ι; DLg, where
instead of the companion masses we have used the
symmetric mass ratio η≡m1m2=M2, and the chirp mass
M≡ ν3=5M (M ≡m1 þm2). The parameter set θ captures
all the parameters describing the response of a detector to
an incoming gravitational wave (see below for the full list
of parameters).
Given the Fourier domain representation hAðf; θ⃗Þ of the

detector response, the Fisher matrix is given by:

FA
ij ¼

�
∂hAðfÞ
∂θi

;
∂hAðfÞ
∂θj

�
; ð13Þ

where the inner product of any two functions aðfÞ and bðfÞ
is defined as

haðfÞ; bðfÞi ¼ 2

Z
fhigh

flow

aðfÞ�bðfÞ þ aðfÞbðfÞ�
SAhðfÞ

df: ð14Þ

where a�ðfÞ denotes the complex conjugate of aðfÞ. The
Fisher matrix of a network of detectors is simply the sum of
the matrices corresponding to individual observatories in
the network, i.e.,

F ij ¼
X
A

F ij: ð15Þ

Given the Fisher matrix, the covariance matrix Cij among
the parameters is the inverse of the Fisher matrix, i.e.,
Cij ¼ F−1

ij .
To construct the Fisher likelihood surface, we choose

a low-frequency cutoff, flow, of 10 Hz for Aþ and
Voyager detectors and 5 Hz for XG detectors. The high-
frequency limit is taken to be the maximum allowed
frequency given the sampling rate (typically chosen to
be 4096 Hz), but the signal model never extends to
such high frequencies even for the lowest-mass neutron
stars considered in this paper. We then compute a 10-
dimensional Fisher likelihood consisting of the parameter

set θ¼fM;η;Λ̃;DL;ψ ;cos ι;α;δ;ϕc; tcg, where tc, and ϕc
are the fiducial time of coalescence, and the gravitational-
wave phase at coalescence, respectively.

C. Measurement accuracy of simulated population

Figure 3 plots the errors on the parameters of the
simulated population in the form of distribution functions.
We have shown the results for a subset of all the parameters
that are relevant to the measurement of the mass-radius
curves. These are the chirp mass M, the symmetric mass
ratio η and the effective tidal deformability Λ̃. We see a
clear delineation in the measurement capabilities of current
and upgraded networks and XG observatories. The precise
measurement of the parameters is, of course, accomplished
by tracking the phase evolution of the binary. The chirp
mass and mass ratio are most accurately measured if the
number of cycles in the band is large (i.e., if the signal’s
phase can be tracked over longer periods) and a good
improvement in low-frequency sensitivity for XG detectors
is responsible for this vast improvement in the measure-
ment of the mass parameters. The reduced tidal deform-
ability measurement comes from the signal’s phase
evolution close to merger, or the high-frequency part of
the signal, which will be clearly visible in XG detectors.
The remaining parameters—sky position, distance, and

orientation of the binary in the plane of the sky—also show
a clear delineation between detector generations, except the
instance where the addition of CE without ET performs
similar to Voyager networks.6

a. Sky localization For very short transient signals, the
sky localization is measured using the gravitational-wave
travel times between different detectors and, therefore,
depends on the number of non-collocated detectors. Thus,
the 5-detector network of VKþ HLIv, achieves greater
precision than a 4-detector XG network VKIþ C, although
the signal strengths in the latter are much greater. For longer
signals thatmake a discernible trail on the sky, thevariationof
the antenna response across the sky can be used to improve
the sky position of the source. Since ET is more sensitive
between 5 Hz and 8 Hz, where a typical BNS signal
(1.4M⊙ þ 1.4M⊙) spends more than an hour (∼75minutes),
a trail spanningmore than15° on the sky (or, a fifth of the total
variation in the antenna pattern) is clearer in the presence of
an ET detector. Moreover, HLKIþ E is composed of five
detectors, which accentuates the sky resolution.
b. Inclination angle The measurement of the inclination

angle is dependent on the distinguishability of the two
gravitational-wave polarizations. Since ET is a triangular
detector that measures three independent strains, each strain
has different polarization content, leading to an accurate

5In principle the companions can have spin angular momenta,
but neutron stars are not expected to have large spins and they are
not included in this study.

6The performance equivalence argued here is for a fraction
relative to the total number of detected events. In absolute terms,
even a single CE will have outstandingly more events with a
given measurement error.
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estimate of the polarization content and, thereby, the
inclination angle. A CE detector alone cannot distinguish
between the two gravitational-wave polarizations and it is
the 2G background (inclined with respect to each other and
CE) that provides crucial assistance to the VKIþ C net-
work in the polarization measurement. However, a mutu-
ally inclined 5-detector network VKþ HLIv still achieves
greater precision than a 4-detector VKIþ C network.
c. Luminosity distance The luminosity distance param-

eter is most correlated with the inclination angle. Hence, a
precise measurement of the inclination angle also leads to
an accurate measurement of the luminosity distance. Thus,
the measurement trends for the luminosity distance across
networks follows the trends in the inclination angle.

V. INFERRING NEUTRON STAR EOS FROM
MASS-RADIUS CURVES

The Bayesian inference of the chirp mass M, and
symmetric mass ratio η of the BNS events detected by
LIGO and Virgo are the most precise measurements among
all parameters of BNS events. While the effective tidal
deformability is not measured as precisely, upcoming
gravitational-wave detector networks promise vastly
improved measurements (cf. Fig. 3). To measure the radii
of component stars, however, it is necessary to know what
the individual tidal deformabilities Λ1 and Λ2 are as well as
the tidal Lover number k2 [cf. Eq. (1)]. Unfortunately,
gravitational-wave observations can only provide a reliable
estimation of the linear combination Λ̃. This problem has
been resolved temporarily via the proposal of a set of
quasiuniversal relations for neutron stars, which are
approximately obeyed by hundreds of current models of
the EOS [90].
In this set, there are basically two universal relations.

The first of these relates the asymmetric combination of the
individual tidal deformabilities7 Λa ≡ ðΛ2 − Λ1Þ=2 to the
symmetric combination Λs ≡ ðΛ2 þ Λ1Þ=2 via the mass
ratio q

Λa ¼ FnðqÞΛs

aþP
3
i¼1

P
2
j¼1 bijq

jΛs
−i=5

1þP
3
i¼1

P
2
j¼1 cijq

jΛs
−i=5 ; ð16Þ

where the function FnðqÞ is given by

FnðqÞ ¼
1 − q10=ð3−nÞ

1þ q10=ð3−nÞ
: ð17Þ

The fitting parameters bij; cij; a and n are given in Table I
of Ref. [91]. The second universal relation [92] relates the

compactness C≡GM=ðc2RÞ of an individual neutron star
to its tidal deformability:

CðΛÞ ¼
X2
k¼0

akðln ΛÞk; ð18Þ

where the fitting parameter ak are also given in Table I of
Ref. [91] (also see Ref. [93] for similar relationships).
The first of the universal relations Eq. (16) can be used to

decouple the effective tidal deformability into individual
tidal deformabilities. Then the second universal relation
Eq. (18) can be used to compute the radius. These universal
relations, however, have been shown to introduce system-
atic errors [94] that must be corrected in order to obtain an
unbiased estimation of the EOS [95]. In the rest of this
section, we describe our simulation method to assess the
radii measurements for a set of future gravitational-wave
observatories with corrections for these errors.

A. From gravitational wave measurements
to neutron star radii

We begin with the Fisher information matrices (FIM),
computed using the GWBENCH software, for the entire
simulated BNS population and all the detector networks
described in Sec. II for a set of three EOS models and the
IMRPhenompv2NRTidalv2 waveform model. Diagonal elements
of the covariance matrix (inverse of the FIM) are the
standard deviations of the source parameters: ðM; η; Λ̃;ϕc;
tc; DL; cos ι;α; δ;ψÞ. In order to obtain radii of the
companion stars from the parameters measured via gravi-
tational-wave observation, we simulate posterior samples
by generating a multidimensional Gaussian sample using
the injection values as mean values and the inverse of the
FIM as the covariance matrix. We need only three of these
parameters (M; η; Λ̃) for the estimation of radii. To break
the degeneracy between two tidal deformabilities and get
individual radii, we follow the procedure described in [95]
(see also [79] for an alternative method), which is briefly
described below.
First, in the expression for Λ̃ we eliminate Λ1 and Λ2 in

terms Λs and Λa. We then use the first universal relation in
Eq. (16) to replace Λa with Λs in the expression for Λ̃,
thereby writing Λ̃ as a function of only Λs and q. Since
gravitational-wave observations measure Λ̃, we can invert
the expression for Λ̃ ¼ Λ̃ðΛs; qÞ to get ΛsðΛ̃; qÞ. Thus,
from gravitational-wave measurements of the mass ratio
and the effective tidal deformability we can extract the
symmetric combination Λs and then, using Eq. (16), also
Λa. These two are then inverted to obtain the individual
tidal deformabilities of the component stars. Thereafter, we
use the C–Λ universal relation in Eq. (18) to derive the
compactness and, with the individual masses, obtain the
posterior probability distribution of the radii for component
neutron stars.

7We follow the convention m1 > m2 and, consequently,
Λ1 < Λ2.
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B. Correcting systematic errors in neutron star radii

Universal relations introduce systematic errors in the
estimation of individual tidal deformabilities and radii
which will dominate the source of errors in the era of
XG observatories [95]. Due to the fact that δΛ̃ cannot be
measured accurately, it is not possible to obtain a truly,
arbitrarily precise, model-agnostic measurement of neutron
star radii or compactness using only gravitational-wave
measurements.8 However, it turns out that for the purpose
of EOS model selection the systematic errors can be
corrected as we will briefly argue below (see Ref. [95]
for details).
As discussed before, the GWBENCH framework is used to

create a population of BNS events in which the tidal
deformabilityΛ of each neutron star of massm is computed
for a specific EOS model (one of ALF2, APR3 or APR4).
Out of the 150,000 simulated events, we choose 100 events
that have either the greatest SNR or the best-measured tidal
deformability. For the 100 events, we will have 200 mass-
radius posteriors, one for each of the companion stars. We
then sample a discretized mass-radius curve containing 200
points by randomly sampling each star’s mass-radius curve
and repeat the process to generate a large number of
realizations, representing the mass-radius curve supported
by the 100 chosen events. Sampling in this manner can
form mass-radius curves which violate causality, and
thermodynamic constraints. However, we note that this
makes our estimates more conservative, and curves which
differ greatly from the true EOS as a result of this will be
rejected by the chi-square statistic described in the follow-
ing section. The radii used to construct these mass-radius
curves then contain the systematic errors introduced by our
use of the universal relations, so the resultant mass-radius
curve will also be biased. Given an EOS, we can determine
the exact value of this bias by comparing the mass-radius
curve for an EOS generated using the TOVequations to that
of a curve generated using the universal relations. With this
in hand, we can calculate the correction necessary to
account for the systematic errors introduced by the uni-
versal relations which, when applied to a mass-radius
curve, will closely match the exact TOV curve.
In this work, we thus correct for these systematic errors

by applying these corrections to the calculated mass-radius
curves per EOS. For example, if we would like to determine
whether the underlying equation of state of our mass radius
curve is ALF2, we first apply the known correction for
ALF2 to our mass-radius curves and then complete the
comparison described in the next section. If the true
underlying EOS is not the one for which we have applied
the correction, then the correction will not correctly account
for the systematic errors and we can only assume that most

similar resulting mass-radius curve is the closest to the
excluded true model.
We will consider the true model in turn to be one of the

10 EOS models shown in Fig. 1 and show how the
corrected-mass-radius curves compare with the true EOS
model. In practice, one has to compare the curves with the
full set (of millions) of curves. In order to clearly illustrate
the power of the method, we have not done so and instead
reserved a more detailed and careful Bayesian statistical
analysis of model selection in an upcoming publication.

C. EOS model selection using χ 2 statistic

After generating a mass radius curve as described in the
previous section, we must compare it to a set of EOS
models in order to determine the true EOS of the pop-
ulation. We complete this comparison with the following
statistic:

χ2k;M ¼ 1

N

XN
i¼1

ðrki − rMi Þ2
σ2i

ð19Þ

Here, N is the number of events, k stands for one of the
realizations constructed from the mass-radius posterior and
σi are 1-σ uncertainty in the radii calculated after applying
the systematic bias correction. We generate 500 realizations
of the mass-radius curve and obtain a distribution of the χ2

statistic for each of the 10 EOS models.
If a realization of the mass-radius curve is close to the

model to which it is compared to, the numerator of Eq. (19)
becomes zero. If, however, the uncertainties in the tidal
deformability are large, the χ2 again becomes small
regardless of the position of m-Λ posterior distribution
with respect to the model m-Λ curve. This is a drawback in
our model and leads to the underestimation of near-future
LVK upgrades in distinguishing EOS models. Therefore,
when comparing against a collection of EOS, the smallest
χ2 value should correspond to the injected EOS for XG
detector configurations in which statistical errors are much
smaller and recovery of EOS in the data is more accurate,
but for near-LVK upgrades, this may not be true due to the
large errors in tidal deformability. We discuss our results in
the next section and defer the improvement to the Bayesian
formulation of our χ2 method to future studies.

D. Combining results from multiple events

The accuracy of radii posteriors depends to a large extent
on the accuracy of tidal deformability measurements,
which in turn depends on mass-posteriors. Heavier com-
ponent masses have smaller tidal deformabilities, which are
difficult to measure. The low accuracy of the tidal deform-
abilities results in poorer radii measurements, which con-
strain the high-density regime of the EOS, while lighter
component masses typically result in better measurement of
the radii. The correct reflection of the radii uncertainty,

8Note that even if Λ1 and Λ2 are measured by gravitational-
wave observations the tidal Love numbers of the two neutron
stars will still be unknown and hence the radii cannot be inferred.
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therefore, cannot be at some fiducial mass but will be a
function of the companion mass. Having measured the radii
of several hundred neutron stars, it is possible to get a better
handle on the radius at a fixed mass.
Evidence from the observation of multiple events, in

principle, can be combined to give us integrated evidence
of the constraints on neutron star radii. In this paper, we bin
the selected set of events over the range of companion
masses from 1.0M⊙ to the maximummass supported by the
EOS in steps of 0.05M⊙ wide bins and assume that all
neutron stars in a given bin have the same radius. The
uncertainty in the radius in each bin is computed as the
quadratic harmonic sum of individual 1-σ uncertainties in
the radius of individual neutron stars that lie within the bin.
This procedure is equivalent to combining the posteriors of
radii corresponding to all the NSs in a particular mass bin
assuming priors are the same for all NSs. While not ideal,
this method improves upon the method used in [55], which
assumes that radii of neutron stars over the entire mass
range from 1.1M⊙ to 1.6M⊙ are the same. We note that this
latter assumption could introduce an intrinsic systematic
error of 200 m (Eq. (6) of [55])—a value much larger than
the measurement uncertainty we find in the case of XG
detectors. We report the results of this calculation in the
next section. The accuracy of radii measurements can be
translated to the accuracy in the estimation of nuclear
physics parameters [96,97] which we defer for future work.

E. Impacts of assumed cosmology

To obtain the error in the radius measurement, we need to
convert the uncertainties in the detector-frame chirp mass to
that of the source-frame chirp mass. In doing so, we have
assumed that the cosmological parameters, like the Hubble
constant (H0), are known exactly (see Sec. II A). Although
advancements in gravitational-wave detector networks are
expected to achieve sub-percent precision in measuring
cosmological parameters [98–103], the associated uncer-
tainties may still impact radius measurements.
Note that the two most precise measurements ofH0, from

the Planckmission [104] and the SH0ES project [105], are in
disagreement at the 5-σ level, which is called the Hubble
tension. To obtain a liberal estimate of how the uncertainty in
H0 can affect radius measurements, we perform Bayesian
parameter estimation with BILBY [106,107] for a ð1.45;
1.35ÞM⊙ BNS system, at 400 Mpc, with APR4 as the
assumed EOS. For this zero noise analysis, the system is
injected in a network with one Einstein Telescope and two
Cosmic Explorer observatories (SNR 330). The injected
system is made to obey the SH0ES estimate of H0 ¼
73.3 km s−1Mpc−1, whereas the recovery is performed
assuming the Planck18 value of H0 ¼ 67.4 km s−1Mpc−1,
i.e., a fractional error in H0 of ∼8%. Employing the same
analysis as in the current study, we obtain the 68%-credible
region for radius estimate to be 370m (ΔR=R3%). In
contrast, the bias in the estimate due to inference with the

incorrect cosmology is 60m. Thus, even at an exaggerated
uncertainty of 8% inH0, we see that the statistical uncertainty
in the radius measurement outweighs the resulting bias.
Therefore, at the forecasted precision levels of cosmological
parameter measurement with next-generation observatories,
we do not expect the uncertainty in their estimation to play a
significant role in the estimation of the radius of the
neutron star.

VI. RESULTS FROM A POPULATION STUDY

In this section, we present the accuracy of radius
measurements inferred from a sub-population of 100 best
events, for six different detector networks and three differ-
ent EOS models. The sub-population is chosen to be either
events with the best-measured tidal deformabilities or the
largest SNRs. In order to gauge Monte Carlo errors, we
start with a set of 500 events satisfying the aforementioned
criteria and then bootstrap several realizations of 100
events. We present the results in a series of plots that
compare the measured mass-radius curves to those derived
from different EOS models, the χ2 histogram between the
measured and model radii, and precision with which radius
can be measured by combining events in 0.05M⊙-wide
mass bins for different EOS models.

A. Radius measurement

Figures 4 and 5 plot the uncertainties in the measurement
of masses and bias-corrected radii for 100 random events
drawn from the 500 events, with the largest SNR and the
best-measured tidal deformability, respectively, for a pop-
ulation of BNS described in Sec. II. The cumulative
distribution of the measurement uncertainties in the param-
eters used in this calculation are shown in Fig. 3. Multiple
realizations of the 100 events (out of 500) do not show
significant differences in the mass-radius curves and hence
we have shown the plots for just one realization. Results are
shown for the six different detector networks. In each case,
the true model is in turn chosen to be ALF2 (blue), APR3
(orange), or APR4 (green). In these plots, we show the bias-
corrected radii using only the injected models as described
in V B. Otherwise, the plot would be too busy; the chi-
square plots, to be discussed below, will compare the bias-
corrections applied to radii assuming the true EOS model to
be any one of the three candidates. Measurement uncer-
tainties in mass and radius are plotted in gray.
Figures 10 and 11 in Appendix show the same result but

plotted in the chirp mass-symmetric mass ratio space, while
Figs. 12 and 13 show the results in the chirp mass-
combined tidal deformability space. Figures 10 and 12
are for events with the best-measured tidal deformability
while Figs. 11 and 13 are for events with the largest SNRs.
The color shade of the dots in these plots represents the
radius uncertainties while the size of the dots is a measure
of the SNR of the events as shown in the legend.
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Note that these results are based on the Fisher Matrix
calculation of the measurement uncertainty. Therefore, the
results we see here can be taken as a lower bound of what
we might actually expect from a full Bayesian analysis of
parameter estimation of these events.
From Figs. 4 and 5, there is an evident trend of marked

improvement in the measurement of the radii as the detector
networks themselves improve. The recovered radii fall
closer to the injected EOS curve, and the measurement
uncertainties vastly decrease as the number of XG observa-
tories in a network rises from 0 to 3. Notably, the maximum
uncertainty in the radii, most easily read from the color bars
of Figs. 10–13, vary from, in the worst detector, about
2500 m to, in the best network, only about 300 m. At low
masses, the disparity is especially clear, and this is a natural
result for these networks—particularly the improvement
once at least one XG detector added to the network.
It is notable that in networks which contain just one XG

detector, the HLKIþ E network slightly outperforms that
of VKIþ C in the measurement of radius error. This is
expected for two reasons. First, the HLKIþ E network

contains one additional detector than that of VKIþ C,
which inherently improves its sensitivity. Second, the ET
sensitivity curve, as seen in Fig. 2, contains a long tail in the
low-frequency regime not present in the CE curve. This
increases the time neutron star signals spend in the band,
and results in a better-measured chirp mass and, therefore,
better-measured radii. The evidence of this can be seen
in the chirp mass and radii CDFs of Fig. 3. There, the
HLKIþ E chirp mass CDF shows clearly a smaller relative
error than that of VKIþ C, and where the HLKIþ E tidal
deformability CDF shows on level or slightly smaller
relative error than that of VKIþ C.
In the datasetwith the loudest SNR events (Figs. 4, 11, and

13), higher-mass systems are less constrained—especially in
radius—than lower-mass systems, while this is not neces-
sarily true for the set of best-measured tidal deformability
events (Figs. 5, 10, 12). Again, this is an expected result, as
we accumulate most SNR for BNS systems during the low-
frequency inspiral phase, while the best measurements of
tidal deformability come from the high-frequency part of the
waveform during the merger. Thus, a high SNR does not

FIG. 4. TOV mass-radius curves of ALF2(blue), APR3(orange), and APR4(green) overlaid with the bias-corrected recovered mass
and radius as well as their errors (gray bars) in a subset of near-future and XG detector networks, for a set of 100 random events drawn
from the 500 loudest SNR. There is a clear trend of improving radius error as the detector networks improve left to right, top to bottom.
Additionally, in the best detector networks, radius errors also improve with decreasing mass, as is to be expected with higher accuracy in
the measurement of higher tidal deformability.
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beget a well-measured tidal deformability or radius.
Additionally, although gravitational-wave amplitudes for
high-mass systems tend to be larger compared to low-mass
ones, thevalue of their tidal deformability tends to be smaller.
These small values combined with short inspiral times result
in larger relative errors in the measurement of tidal deform-
ability and radii despite the boost in SNR from higher
amplitudes. This trend is especially clear in Figs. 12
and 13 where in Fig. 13 the highest radii errors for each
panel (inyellow) are always seen in the right, or thehighmass
and low tidal deformability, portion of the plot while in
Fig. 12 the worst measured events (again in yellow) are
spread throughout parameter space.
Similarly, in Figs. 10 and 11, it appears that a high

symmetric mass ratio, and high chirp masses may result in
poorly measured tidal deformability for the highest SNR
events, but not necessarily for those with the best measured
tidal deformability. In Fig. 11, large radii errors (in yellow)
are typically grouped in the upper right-hand corner of most
plots, with a small spread along the right-hand edge in the
ALF2 and APR4 EOS, and a small line along the upper-
edge in the VKIþ C network of ALF2. This is again due to
the previously discussed issue with taking the loudest SNR

events, but whether this is individually caused by either the
high symmetric mass ratio or the large chirp masses is not
immediately clear. As previously mentioned, a high chirp
mass comes with a small tidal deformability and therefore
large relative error. However, a high symmetric mass ratio
can also decrease the inspiral time, or time in a frequency
band, and therefore again the accuracy of the measurements
becomes low. Notably, in the set of best measured tidal
deformability shown in Fig. 10, the large errors are
distributed more evenly throughout the plot and have lower
maximums than their high SNR equivalent.

B. Model selection

Figures 6, and 7 show the primary results from our model
selection procedure. Here we plot the distribution of the χ2

statistic defined in Eq. (19) between the observed mass-
radius curve and the one predicted by the chosen EOS
model. The separation of the distribution for any two EOS
signifies the effectiveness of a detector in distinguishing
between the injected and test EOS models. In these figures,
each row corresponds to a particular detector network,
while each column corresponds to a specific injected EOS

FIG. 5. Same as Fig. 4 except the 100 out of 500 events with best measured tidal deformability are chosen. Again, there is a clear trend
of improving radius error as the detectors network improves left to right, top to bottom. Note that the trend of improved radius error with
decreased mass is not clear here as it was with the loudest in the SNR set. This is a natural result from the selection of only the best
measured combined tidal deformability systems as opposed to those with the best SNR as in Fig. 4.
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FIG. 6. Chi-square histograms for 100 events from those 500 with the smallest error in combined tidal deformability. The injected EOS
is listed along the top, and the colored histograms represent the result assuming a second EOS model, including the original injection.
Detector networks are organized by sensitivity row-wise with the most sensitive network at the bottom. In every EOS and network
scenario including at least one XG detector, the injected EOS is recovered correctly and easily distinguishable from the other nine via
this test. In our two least sensitive and nearest future detector networks, HLVKIþ and VKþ HLIvc, the opposite is clearly true and all
models are indistinguishable.
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FIG. 7. Chi-square histograms for 100 events from those 500 with the smallest error in combined tidal deformability. The injected EOS
is listed along the top, and the colored histograms represent the result assuming a second EOS model, including the original injection.
Detector networks are organized by sensitivity row-wise with the most sensitive network at the bottom. While the peak of the injected
EOS histogram is generally recovered with the smallest χ2 value despite detector sensitivity, in the two networks which do not contain at
least one XG detector, the histograms are not distinguishable and we cannot claim that this test is effective in distinguishing EOSs at loud
SNRs. However, in networks with at least one XG detector, the correct EOS is consistently recovered with its distribution clearly
separated from other EOS models. The same trend is also seen in Fig. 6.
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(label at the top of the column). The χ2 histograms in each
panel are additionally colored to match the EOS color
scheme as in Fig. 1, with the count on the y-axis and the χ2

(in log-scale) on the x-axis.
For detector networks in the top two rows the inferred

radius rk is very different from that predicted radius rM by
any of the models (see top left and middle panels in Figs. 4
and 5) which would cause χ2 to be large. However, at the
same time, the uncertainties in the measurement (σi) are
also large. Consequently, for networks with poorer sensi-
tivity, the χ2 will tend to be equally small no matter which
EOS model the events are compared to.
The story is different when the radius uncertainty σ of a

detector network is small. For such detectors, the bias-
corrected radius differs significantly from the predicted
radius found using a model other than the true one, but
agrees very well with the predicted radius of the true model.
Consequently, the ratio within the sum in Eq. (19) is small
only when the set frMi g corresponds to the true EOS. This
is the reason why the χ2 distributions for the models other
than the true one have far greater values than they are for
the true model in the bottom two rows. We find that the
method accurately recovers the injected EOS model among
a larger set of models than was used for injection. In
addition, we have also used a much larger sample of events
for our work compared to previous studies [69,108–110].
We stress that the power of the χ2 statistic introduced lies

in discriminating between the different EOS models when
measurement uncertainties are small; with less sensitive
detector networks there is no way to distinguish one EOS
model from another. The absolute value of the χ2, however,
has no significance.
Across different detector networks, when the injected

EOS is close in the M-R parameter space to the com-
parison EOS, the distribution is most often confused with
the true EOS as show by the proximity of its histogram to
the true one. For example, in the least sensitive detector
networks, or top rows of Figs. 7 and 6, the overlap
between the resultant three distributions of ALF2, SLy,
and PP5 is total, and even with one XG detector, they still
overlap significantly. It is only in the best detector net-
works (bottom two rows) that they begin to become
indistinguishable. Meanwhile, comparing ALF2 to
APR4 or H4, even in some of the least sensitive networks,
their distributions already diverge from the true ALF2
one. This follow from the simple fact that at low mass in
the mass-radius curve, ALF2 lies very close to PP5 and at
high mass close to SLy and would therefore naturally
match more closely with its nearest neighbors while the
distance between ALF2 and APR4 or H4 is significant and
therefore not well matched (Kashyap et al. [95] discuss
how distinguishability of EOS models changes with
respect to the L2 distance between them).
In general, as the sensitivity of the networks increases, so

too does the separation of the posterior distributions. In the

lower sensitivity networks from both the highest SNR and
best measured tidal deformability datasets, the distributions
overlap significantly, and it is only with the inclusion of at
least one XG detector that the distributions become at all
distinguishable. Across EOS and datasets in networks with
at least one XG detector, the smallest χ2 value always
corresponds to the injected EOS and its peak is distinguish-
able from the EOS with the next smallest χ2 value. There is
not a significant separation of the true EOS from its
neighbors, however, until we begin to include at least
two XG detectors in the network. In these most sensitive
networks, the true EOS centers around one, effectively
recovering the EOS, and there are an order of one hundred
separations between it and its neighbors, giving hope that
XG detector networks may be able to distinguish clearly
between these, and other EOSs.

C. Combining radii errors from multiple events

In Fig. 8, we present the results of combining the radius
uncertainties of multiple events binned in individual masses
of neutron stars in the range 1.0M⊙ to the maximum mass
supported by the EOS used for the injection, using the
method described in Sec. V D. We plot the effective errors
in the radii of a particular mass bin for three EOS models,
with the colors the same as in Fig. 1. The color bands show
the variation in the combined error due to bootstrapping
while selecting 100 events out of 500 best events according
to two different criteria (best SNR and best measured Λ̃) as
described in the previous sections. We have found that this
selection of events does not make a significant difference to
the results.
One of the crucial features of these plots is the increase in

the effective radius uncertainty with the increase in the
masses of the individual neutron stars. This is again due to
the small tidal deformability of heavy neutron stars and
poor accuracy in their measurements irrespective of the
EOS and the detector network, leading to the poor
measurement of radii via the C–Λ universal relation.
Smaller radii and tidal deformabilities at higher masses
result in poorer constraints of the EOS at higher densities,
which is usually near the neutron star core. As expected, we
find an improvement in the radii uncertainties for all mass
bins according to the

ffiffiffiffi
N

p
law, where N is the number of

events combined in each mass bin.
We find the uncertainties to be smaller than 1 km by

combining 5 or more events in any mass bins irrespective of
the network chosen. The HLVKIþ network has typical
errors to be around 1 km for all masses and becomes as
large as 3 km even after combining multiple events. The
addition of one XG detector to the network improves the
radii uncertainties by an order-of-magnitude with a typical
value of 100 m, the smallest value of 30 m, and the largest
value of 1 km. The best radius measurement, however, is
accomplished by combining both ET and CE. We show
the results for two such networks of detectors where
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uncertainties could be as small as 20 m with almost all of
the bins having uncertainties smaller than 100 m (i.e.,
∼1%). We emphasize again that in these calculations, we
use the Fisher information matrix to approximate the
uncertainties, which are a lower bound. We defer the work
of accurate analysis using Bayesian Monte Carlo methods
to future work.

D. Discussion

The result of our analysis for the best-SNR and best-
measured tidal deformability datasets is promising for
networks including XG observatories. Advanced LIGO
and Virgo and their upgrades in the near future are expected
to observe tens of events with moderate SNR (i.e.,
SNR > 40) and a handful of high-fidelity (SNR > 100)

FIG. 8. Cumulative radius error in each mass bin by square harmonic sum assuming constant radii in each mass bin. The upper panel
shows the 100 events randomly selected from the 500 events with the best measurement of Λ̃ while the bottom panel shows the same
result for 100 events randomly selected from 500 events with the best SNR. The band for each EOS shows the uncertainty due to random
sampling. The color encodes the results for each EOS and is the same as Fig. 1. We find generically that errors in radii are larger for
larger masses across detector networks and datasets due to smaller accuracy in the measurement of smaller tidal deformability.
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events over a two-year period (cf. II, columns 2 and 3).
Without any XG observatories, the best fractional uncer-
tainty in radii measurements for the top 100 events with best
measured tidal deformability is 5–10%, with more than half
above 10%, as seen in Fig. 9. This means it will be difficult
for these networks to distinguish between even the most
disparate set of EOS models considered in this paper.
However, with the inclusion of just one XG detector, the
best results showonly a 0.8%uncertainty in radii,with half of
the events reporting only 6% or less, allowing EOS to
become partially distinguishable.Meanwhile, networks with
at least two XG detectors tell a completely different story.

In our most sensitive networks, we will be able to
measure the radii of neutron star sources to 0.5%, with
half at 3% or less, as seen in Fig. 9. However, we have not
taken into account the models of the crust of neutron stars
which themselves can be 100 m (i.e., 1% of the radius), so
further work is required to better characterize the meaning
of measurement accuracies below this accuracy. These
precise measurements, however, result in χ2 distributions
that are easily distinguishable, well separated, and centered
for both the loudest SNR and best-measured tidal deform-
ability event sets. Consequently, XG networks will be able
to distinguish between different EOS models (even ones

FIG. 9. Upper: cumulative histograms of the uncertainty in neutron star radii in km (top two panels) and masses in solar mass (bottom
two panels) multiplied by the total number (860) of neutron stars in the 430 selected BNS events. The left panels are for events with the
best measured tidal deformability and the right panels are for events with the highest SNRs. The different curves correspond to different
detector networks considered in this study. These plots show that even the inclusion of just one XG detector (VKIþ C or HLKIþ E)
leads to a vast improvement in the precision of radii measurements. Such detectors could measure the radius to within about 200 m for
several events. A network containing two or three XG detectors would improve by a factor of a few. On the other hand, companion
masses are better measured by a network that has ET (0.01M⊙ to 0.001M⊙) whose lower frequency performance helps in more accurate
determination of the chirp mass and the mass ratio.
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that are sufficiently close to each other in L2 measure of
distance) and place stringent constraints. Overall, the
results of these datasets reveal an avenue for future research
that deserves to be pursued further.

VII. SUMMARY AND CONCLUSIONS

In this work, we report on the improvements in the
inference of the dense matter equation of the state of
neutron stars with the current and next-generation gravi-
tational-wave detectors based on their expected design
sensitivity curves. We evaluate the measurement uncertain-
ties for hundreds of thousands of events and consequently,
it is not possible to carry out a Bayesian inference analysis
of the events as that would currently take a formidable
amount of time. Instead, we use the Fisher matrix approxi-
mation to compute the 1-σ uncertainties and correlations
of the binary neutron star parameters, including the
companion masses and the effective tidal deformability
Λ̃ using the IMRPhenompv2NRTidalv2 waveform. The multi-
variate distributions of the binary parameters obtained from
gravitational-wave observations, together with two univer-
sal relations, namely, Eqs. (16) and (18), allow us to infer
the mass-radius posteriors of companion neutron stars.
Since the universal relations are not exact, the inferred radii
posteriors have systematic biases. We have shown that
these systematic biases can be corrected for when compar-
ing the measured mass-radius posteriors with that predicted
by a specific equation-of-state model. Our bias-correction
method is equivalent to comparing the model mass-tidal
deformability predictions directly with the gravitational-
wave data but computationally inexpensive since bias
corrections are known a priori and do not need to be
generated on the fly. Moreover, the method avoids having
to repeat the likelihood calculations and computations of
posteriors for every plausible equation-of-state.
We employed this new method to compare three dis-

parate model equations of state with simulated gravita-
tional-wave measurements for assuming the true equation
of state to be one of the 10 models. Our results demonstrate
that the method can uniquely identify the correct equation-
of-state when the detector network contains at least one
XG observatory (either Einstein Telescope or Cosmic
Explorer). It will be difficult to distinguish between differ-
ent plausible equations of state with the current network of
LIGO, Virgo and KAGRA observatories or their proposed
improvements (Aþ or Voyager). However, with the addi-
tion of at least one XG observatory, it will be possible to

draw firm conclusions about the true equation-of-state
describing dense matter in neutron star cores. Moreover,
we find vast improvements in the measurement uncertain-
ties of neutron star radii with two or more next-generation
observatories in the network. More specifically, we find
that radius uncertainties are a few hundred meters for
networks with one or more next-generation observatories,
while this would be 1 km in a network with the LIGO-
Virgo-KAGRA network and their future upgrades.
However, we found that the overall accuracy of radii
measurements decreases with increasing neutron star mass.
This is because tidal deformabilities are smaller and more
difficult to measure for more massive neutron stars.
Building more sensitive gravitational-wave observatories

is crucial to constraining plausible EOS models—measure-
ments that can inform not only the gravitational-wave
community but also the nuclear physics and astronomy
communities at large. In this light, the radius of a typical
NS can be constrained to better than 30 m, at the lower end
of the expected range of neutron star masses, with joint
detections of events over two years in Einstein Telescope
and Cosmic Explorer.
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APPENDIX: MISCELLANEOUS PLOTS

In this section we assemble a list of four additional plots
to gain a better understanding of the results presented in the
main body of this paper. These plots show the measurement
uncertainty in radius either as a function of chirp mass and
symmetric mass ratio in Figs. 11 (for 100 randomly chosen
events out of the 500 loudest events) and 10 (for 100
randomly chosen events out of 500 events with the best
measured tidal deformability) or as a function of the chirp
mass and tidal deformability in Figs. 13 (for 100 randomly
chosen events out of the 500 loudest events) and 12 (for 100
randomly chosen events out of 500 events with the best
measured tidal deformability).
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FIG. 10. The plot shows the radius error (in color) for 100 events with the smallest error in the combined tidal deformability as a
function of the symmetric mass ratio and chirp mass. Results are shown for the six detector networks (labeled in each panel) and three
different EOSs (labeled at the top of each column). We recover an approximate trend of increasing radii error with increasing chirp mass
and symmetric mass ratio.
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FIG. 11. Radius error (in color) for 100 random events out of the 500 which are loudest in SNR for our six 3G detectors and three EOS
of choice: left ALF2, middle APR3, right APR4. Detectors are ordered top to bottom as follows: ESa4cCa4c, KIþ ECa4c, VKIþ Ca4c,
HLKIþ E, VKþ HLIvc, HLVKIþ. We see the same trend of increasing radii error with increasing chirp mass and symmetric mass
ratio as seen in Fig. 10, but it appears more clearly in this dataset, especially in increasing chirp mass.
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FIG. 12. Radius errors (in m) are shown in color for 100 random events out of the 500 which are best measured in tidal deformability
for our six 3G detectors and three EOS of choice: left ALF2, middle APR3, right APR4. Detectors are ordered top to bottom as follows:
ESa4cCa4c, KIþ ECa4c, VKIþ Ca4c, HLKIþ E, VKþ HLIvc, HLVKIþ. The relative error in radius naturally decreases for systems
with larger combined tidal deformability, and again we see larger radii errors at higher chirp mass. Additionally, we naturally see the
largest radii errors and smallest SNRs in near-future detector networks, and significantly better ones in networks with XG detectors.
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FIG. 13. Radius error (in color) for 100 random events out of the 500 which are loudest in SNR for our six 3G detectors and three EOS
of choice: left ALF2, middle APR3, right APR4. Detectors are ordered top to bottom as follows: ESa4cCa4c, KIþ ECa4c, VKIþ Ca4c,
HLKIþ E, VKþ HLIvc, HLVKIþ. The same trends appear here as in Fig. 12. Radius error increases with chrip mass, and decreases
with combined tidal deformability. Additionally, as the detector networks themselves improve, we see clear improvements radius error
and SNR.
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