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We present applications of statistical data analysis methods from both bivariate and multivariate statistics
to find suitable sets of neutron star features that can be leveraged for accurate and equation of state
independent—or universal—relations. To this end, we investigate the ability of various correlation
measures such as distance correlation and mutual information in identifying universally related pairs of
neutron star features. We also evaluate relations produced by methods of multivariate statistics such as
principal component analysis to assess their suitability for producing universal relations with multiple
independent variables. As part of our analyses, we also put forward multiple entirely novel relations,
including a multivariate relation for the f-mode frequency of neutron stars with a reduced average relative
error of 0.010, compared to an error of 0.015 of existing, bivariate relations.
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I. INTRODUCTION

The successful detection of gravitational waves from
binary neutron star (BNS) mergers through the LIGO-Virgo
detectors [1,2] has opened a new avenue into probing and
understanding the structure of neutron stars and will
hopefully allow us to eventually uncover their true equation
of state (EoS).
Important tools for this task are EoS independent—or

(approximately) universal—relations that allow for the
inference of neutron star bulk parameters through infor-
mation extracted from gravitational waves. Inspired by
early work on such universal relations for isolated neutron
stars [3–8], the last five years have also given rise to
universal relations for BNSs [9–11]; they relate features of
the premerger neutron stars to the early postmerger rem-
nant, primarily relying on numerical relativity simulations.
Following our own recent work on universal relations for

BNSs using perturbative calculations [12,13], we found
that, with the increasing number of features and amount of
data that theoretical computations are able to produce, the
traditional method of relying on physical intuition to find
universal relations might not always uncover all possible or
the best universal relations for a given scenario: instead, an
automated approach fueled by statistical data analysis
might yield better results in finding highly correlated
features, and the best functional form to relate them with.
A recent work by Soldateschi et al. [14] demonstrated the
application of principal component analysis (PCA) to the
construction of universal relations with multiple indepen-
dent variables.

In this paper, we present applications of statistical data
analysis methods from both bi- and multivariate statistics to
find suitable sets of neutron star features that can be
leveraged for accurate and EoS independent relations. To
this end, we first analyze the effectiveness of four different
correlation measures—Pearson correlation, distance corre-
lation [15], mutual information [16], and maximal infor-
mation [17]—in identifying pairs of features amenable to
universal relations. We find that the conventional wisdom
that Pearson correlation only detects linearly correlated
features also applies to the use case of finding bivariate
universal relations for neutron stars. Furthermore, we also
find that mutual information based features are more suited
for finding nonlinear correlation between features, making
them more useful for this application.
In a second step, inspired by [14], we investigate the

application of principal component analysis (PCA) in
constructing multivariate universal relations, i.e., relations
with multiple independent variables. We find this method
suitable for constructing universal relations that combine
several features of a neutron star to predict a target feature.
Among others, we find the an entirely novel relation
between the average density ρ̃ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
, compactness

C ¼ M=R and the f-mode frequency ωf of a neutron star
of the form,

ωf ¼ 0.00017F̂2 þ 0.006F̂ þ 0.003 ð1Þ
with

F̂ ¼ 6.911
ρ̃

0.04
− 1.716

Cρ̃
0.01

: ð2Þ

Since the factor F̂ is approximately proportional to the
factor (1 − C), this relation could be considered a first
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order, relativistic correction to the original relation between
ρ̃ and ωf derived by Andersson and Kokkotas [3,4],
which was inspired from Newtonian gravity. In particular,
it can be considered a step towards the well-known
general relativistic universal relation between the f-mode
frequency ωf and the compactness C put forward by Tsui
and Leung [5].
We perform our analyses using two different datasets

from the literature [12,18], exemplifying the generalizabil-
ity of the methods discussed in this work. The results in this
work present a first step towards a automated, statistical
data analysis driven effort towards the identification and
construction of universal relations for neutron stars (and
other objects of astrophysical interest). In a time where the
amounts of theoretical model data for astrophysical objects
is drastically increasing, we expect having such robust and
automated methods available as tools will have a tremen-
dous effect on the quality and quantity of universal relations
that will become available in the future.

A. Outline

We begin by introducing the two datasets that we will
base our analyses on in Sec. II. We then introduce the
bivariate approach to finding universal relations in Sec. III,
and discuss the found relations and the implications for
the effectiveness of the analyzed correlation measures
in Sec. IV.
In Sec. V, we introduce the multivariate approach based

on PCA for finding universal relations, before we discuss
some exemplary universal relations we were able to
construct in Sec. VI. We finally conclude our work and
give an outlook into potential future directions in Sec. VII.
Note that, unless stated otherwise, we will assume

geometrized units in which G ¼ c ¼ 1 throughout this
paper.

II. NEUTRON STAR DATA

In this work we consider nonrotating neutron stars from a
wide range of equations of state. We here give a brief
description of the origin and shape of the datasets we utilize
for our analysis. For a detailed treatment of the computation
of the neutron star models we refer to the original
work [12,18].

A. Datasets

For our analyses, we utilize two different datasets that
were used in previous publications; dataset A contains a
subset of around 58 nonrotating neutron star models
contained in the dataset originally put forward in [19]
for the study of rotating and nonrotating neutron stars. This
subset covers five different EoSs.
Dataset B contains a subset of 126 nonrotating neutron

star models contained in the dataset originally put forward
in [18] for the study of f- and g-mode frequencies of

nonrotating neutron stars. This subset covers a wider range
of 15 EoSs.
Both datasets contain models of nonrotating stars of

different EoSs, providing the values of a wide range of
parameters of these neutron stars. There is some overlap in
the parameter space considered within each dataset, but
both datasets were generated independently as part of
different research projects.
While dataset A only covers a subset of the EoSs

considered in dataset B, it contains some additional features
of nonrotating neutron stars that we can include in our
analysis. For a comprehensive discussion of the EoSs
covered in each dataset we refer to each respective pub-
lication. For an overview, we show in Fig. 1 the mass-radius
relations of awider range of EoSs, taken from [18], of which
the EoSs considered in this work are a subset.
The main purpose of utilizing two different datasets is

that it allows us to investigate in how far our qualitative
observations regarding, e.g., the relative performance of
each correlation measure, generalize to different data. To
this end, we treat each dataset independently, and do not
merge the data to obtain one larger dataset. By observing
the same behavior independently in both datasets increases
the confidence that the observations made here also
generalize to other data.

B. Neutron star features

The features considered in our analysis are obtained
through either the direct integration of the TOV equations,
or through first-order perturbation of the nonrotating
neutron star models. The formal description on how these
features are obtained are presented in the previous pub-
lications that introduced this data [12,18]. We here sum-
marize the properties of these features. Table I gives an
overview of all the features mentioned here.
The first group of features is comprised of macroscopic

equilibrium features of the computed neutron star models.
In a first step, this includes the gravitational mass M
(typically normalized M̄ ¼ M=M⊙, where M⊙ is the solar

FIG. 1. Mass-radius relations taken from Fig. 1 in [18].

PRAVEEN MANOHARAN and KOSTAS D. KOKKOTAS PHYS. REV. D 109, 103033 (2024)

103033-2



mass), the radius R and the compactness C ¼ M=R. In a
second step, we here also consider other neutron star
features that have been identified in the literature as useful
in the construction of universal relations. This includes the
square root of the average density ρ̃ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
, the

moment of inertia I (typically normalized Ī ¼ I=M3)
and effective compactness η ¼

ffiffiffiffiffiffiffiffiffiffiffi
M3=I

p
of the neutron star.

All of these equilibrium features we try to correlate to
various perturbative features that are computed using linear
perturbations; this includes the tidal deformability λ (typ-
ically normalized λ̄ ¼ λ=M5), the (angular) f-mode fre-
quency ωf and the (angular) g-mode frequency ωg1 (we
here only consider the first g-mode frequency for brevity,
but keep the given notation to go along with the notation
presented in [18]). To keep in line with a commonly used
notion in the literature [3,4], we will denote relations
involving the latter as astroseismological relations.

III. BIVARIATE CORRELATION ANALYSIS

The simplest universal relations try to directly relate two
different features of neutron stars, i.e., they are bivariate
relations. We believe that by evaluating the correlation
between different features, we can automate finding such
bivariate relations to a high degree. The main issue,
however, is identifying which correlation measure is best
suited to the task of finding universal relations (for
neutron stars).
In this section, we first discuss the concept of linear

correlation and the corresponding linear correlation mea-
sure (Pearson correlation). We then introduce three addi-
tional nonlinear measures of relation that will allow us to
find universally related features that are not uncovered by
linear correlation.

A. Linear correlation

Throughout this paper, we differentiate between linearly
and nonlinearly related features. On a basic level, we will

use these two terms to describe the structure that is visually
apparent in the scatter plot of a given feature pair; we
consider two features to be linearly related if their func-
tional relation can be well-approximated by a linear
function, and non-linearly related if they show any other
kind of functional relation that is not represented by a linear
function.
The degree of linear relation between these features is

more formally quantified by their linear correlation, other-
wise known as Pearson correlation. Assume that the values
of the two considered features are given by two random
variables X and Y. Then the Pearson correlation coefficient
ρ of X and Y is given by

ρðX; YÞ ¼ covðX; YÞ
σXσY

; ð3Þ

where, given the means X̄ and Ȳ of the random variables,
covðX; YÞ is the covariance of the two random variables
given by

covðX; YÞ ¼ E½ðX − X̄ÞðY − ȲÞ�; ð4Þ

with E being the expected value of a random variable, and
σX and σY their standard deviations given by

σ2X ¼ E½X2� − E½X�2: ð5Þ

Note that, by definition, −1 ≤ ρ ≤ 1, and we generally
consider the absolute value jρj to quantify the degree of
linear relation; a value jρj ∼ 1 indicates a perfect linear
linear relation between the random variables, whereas
jρj ∼ 0 indicates no linear relation.
By considering features pairs with high correlation value

ρ, the Pearson correlation coefficient can be used to find
universally related feature pairs that show a sufficiently
strong linear relation. Typically, the threshold for the
Pearson correlation coefficient has to be chosen to be high
in order to avoid too many false positives, and as such only
feature pairs that show a high degree of linear relation will
be identified as universally related. The exact choice of this
threshold depends highly on the use case, and we will
explore this issue further in the following sections.

B. Measures of nonlinear relation

We denote the relation of any feature pair that shows
some type of universal relation, but that is not classified as
linearly related by using the Pearson correlation coefficient,
as nonlinear. Our hypothesis for this work is that by
utilizing suitable measures that quantify some type of
(not necessarily linear) relation between two random
variables, we will be able to identify such nonlinearly
related features.

TABLE I. Neutron star features considered in this paper. The
last column indicates whether these features are available in
datasets A or B.

Name Symbol Dataset

Gravitational mass M̄ ¼ M=M⊙ A, B
Radius R A, B
Square root of average density ρ̃ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
A, B

Compactness C ¼ M=R A, B
Moment of inertia Ī ¼ I=M3 A
Effective compactness η ¼

ffiffiffiffiffiffiffiffiffiffiffi
M3=I

p
A

f-mode frequency ωf ¼ 2πf2 A, B
g-mode frequency ωg1 ¼ 2πfg1 B
Tidal deformability λ̄ ¼ λ

M5
A, B
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1. Distance correlation

The first measure that we consider is distance correlation
(DistCor), which was specifically introduced as a gener-
alization of Pearson correlation to identify pairs of random
variables that show any kind of linear or nonlinear relations.
The distance correlation [15] dCor of two random
variables X and Y is defined similarly to the Pearson
correlation by

dCorðX; YÞ ¼ dCov2ðX; YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dVarðXÞdVarðYÞp ; ð6Þ

where, by definition, we have that 0 ≤ dCor ≤ 1, and
dCor ¼ 0 if and only if X and Y are statistically
independent.
For distance correlation, the standard notions of covari-

ance and standard deviation are replaced by sample dis-
tance covariance dCov and distance standard deviation
dVar. Similar to covariance and standard deviation, which
are computed based the distance of each sample from the
means of the random variables, dCov and dVar denote
quantities that are instead based on the pairwise distance of
all samples to each other as well as the sample means. As
their definitions are slightly longer, and do not necessarily
provide critical insight required for the rest of the paper,
we refer to the original publication [15] for their full
definitions.

2. Mutual information

The second measure that we consider is mutual infor-
mation (MI), which is an information-theoretic quantity
that measures how much we can learn about one random
variable Y by having knowledge of another random
variable X (or vice versa), and is zero exactly when the
two distribution are independent (i.e., knowledge about X
does not tell us anything about Y). As a quantity, it
measures how many bits can be saved if we try to binary
encode Y while assuming knowledge of X (in contrast to
binary encoding Y on its own without any further
knowledge).
The mutual information [16] IðX;YÞ of two random

variables X and Y is given by

IðX;YÞ ¼
X
x;y

PXYðx; yÞ log
PXYðx; yÞ

PXðxÞPYðyÞ
; ð7Þ

where PXY is the joint probability distribution of X and Y
given by

PXYðx; yÞ ¼ Pr½X ¼ x; Y ¼ y�; ð8Þ

and PX and PY are the marginal distributions given by

PXðxÞ ¼
X
y

PX;Yðx; yÞ: ð9Þ

By definition, we only have that 0 ≤ IðX;YÞ, i.e., this
measure is not normalized to a range between 0 and 1.
While there exist variations that transform mutual infor-
mation into a metric within this domain, we do not strictly
require these properties for our use case. As such, we
decided to remain with this basic definition. The notion of
maximal information discussed below presents an exten-
sion that is normalized to 1.
Technically, the above definition for mutual information

is for discrete variables, while our use case is centered
around continuous random variables. However, in practice,
the data vectors we use are discrete, and computational
methods can be used to estimate the continuous sample
distribution from the actual, discrete sample vectors. In this
paper, we rely on the MUTUAL_INFO_REGRESSION
method implemented in the SKLEARN Python package.

3. Maximal information

The measure of maximal information (MaxI) [17] is a
direct extension of mutual information to continuous
variables. It is based on the binning-based method to
estimate the mutual information where continuous random
variables are discretized by transforming them into histo-
grams of some fixed bin size. Instead of arbitrarily
choosing this bin size, leading to varying degrees of
accuracy in your mutual information estimate, maximal
information computes the mutual information for a series of
histograms of varying bin sizes and finally chooses the
binning that maximizes the mutual information. That is, the
maximal information coefficient (MIC) of two random
variables X, Y is given by

MICðX;YÞ ¼ max
B

IðX;YÞ
log2ðminðBX; BYÞÞ

; ð10Þ

where B is the total number of used bins (typically with
some upper bound, cf. [17]), and BX and BY are the number
of bins used for X and Y, respectively. By definition,
0 ≤ MICðX;YÞ ≤ 1, where a value of 0 indicates statistical
independence of the random variables, whereas a value of 1
indicates a strong relation. To compute the maximal
information between two vectors, we will utilize the
MINEPY package for Python [20].

C. Comparison of measures

As mentioned above, the main issue with the more
prominent Pearson correlation measure is that it only
identifies linearly related features. While we can adjust
to this to some degree by computing some function values
of our features (i.e., computing some polynomials or
exponential function on the features values), this can
become fairly cumbersome in practice. In recent years,
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especially with the advent of big data and the necessity of
finding nonlinear correlations in various applications, the
other above mentioned correlation measures have been
developed [15,17]. The main idea behind them is that
instead of looking for a global, linear correlation, they
instead approximate global correlation by finding local
(linear correlation), i.e., correlation of data points that are in
close proximity, and generalize it over the whole dataset.
This applies to both distance correlation, which to some
degree generalizes the Pearson correlation in such a
manner, and maximal information, which directly general-
izes the measure of mutual information.
A similar comparison has already been performed in the

past by Clark [21]. They find that, in particular for
nonlinear relations, distance correlation and mutual/maxi-
mal information outperform Pearson correlation in identi-
fying correlated variables. Our purpose for this work is to
verify that the same observations can also be made for the
use case of finding universal relations in neutron star model
data, and evaluate which correlation measure indeed
performs best for this use case.

D. General methodology

Our general approach to evaluating the different corre-
lation measures introduced above, and also for later
automatically finding bivariate universal relations, is the
following:
(1) Obtain neutron star model data with features

F1;…; Fn from theoretical/numerical computations.
(2) Compute the pairwise correlation of all feature pairs

using on of the above correlation measures. This
provides us with the correlation matrixM, where the
entry Mi;j is the correlation between features Fi

and Fj.
(3) Specify a correlation threshold τ above which we

will consider feature pairs correlated, i.e., find all
entries in M with

Mi;j ≥ τ: ð11Þ

This threshold will depend on the correlation mea-
sure used, and finding the best value for it is
something we want to achieve here, but might need
to be further explored in future work.

(4) For each selected feature pair, choose a suitable
model. Here, model denotes the expected functional
relation between the two selected features. This can
be, e.g., a linear, polynomial, exponential model, etc.
Model selection is a notoriously difficult task in data
analysis, and we will here simply choose to evaluate
a number of preset templates for the functional
relations, and choose the one with the best fit after
the following step.

(5) Fit the model to the given data to determine the
coefficients of the best fit for the universal relation.

IV. BIVARIATE UNIVERSAL RELATIONS

In the following, we inspect the universal relations found
by the correlation measures we discussed in the previous
section. For each relation, we will also indicate the
correlation value obtained by each respective measure.
This will allow us to inspect in which cases each of the
correlation measures succeed or fail in correctly identifying
features that are suited for universal relations.
Since the features we correlate cover very different

ranges of values, we will evaluate the quality of each
proposed universal relation through the average relative
error ē given by

ē ¼ 1

n

X
i

jŷi − yij
jyij

; ð12Þ

where ŷi is the value predicted by the universal relation, and
yi the actual data point.
In some cases, our automated approach will find an

exponential relation between two feature that we are
analyzing. We find that by instead fitting for the logarithm
of the target feature we achieve better universality. In such
cases, after performing the correlation analysis on the
regular features, we therefore manually fit a polynomial
relation between the logarithm of the target feature and the
independent feature. Note that the correlation values,
however, will still be given between the regular features,
and not after applying the logarithm, as this is how the
features are fed into the automatic method described in
Sec. III.
As discussed in Sec. II A, we derive relations independ-

ently for both datasets to demonstrate to some degree that
our approach generalizes across different data. For each
relation, we will indicate form which dataset it specifically
was derived. In most cases, the choice of data set for a given
relation was predicated by the features available within
each dataset (cf. Table I).
A table summarizing all universal relations presented in

this section can be found in the Conclusion (Sec. VII).

A. Tidal deformability relations

In Fig. 2 we show a universal relation between the
normalized tidal deformability λ̄ and the normalized
moment of inertia Ī, derived from dataset A. This relation
was also previously put forward by Yagi and Yunes [8] as
part of their I-Love-Q relations. The best fit for this relation
is given by the function,

Ī ¼ 0.019 log λ̄2 − 0.076 log λ̄þ 0.334: ð13Þ

This relation achieves an average relative error of 0.020.
In Fig. 3 we show a universal relation between the

effective compactness η and the logarithm of the normal-
ized tidal deformability log λ̄, derived from dataset A.
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A similar relation was also previously proposed by us in the
context of a binary neutron star merger connecting the
premerger binary tidal deformability to the postmerger
effective compactness [12].
This is a case in which the automated approach yields an

exponential relation between η and λ̄, and as discussed
above, we manually fit a polynomial relation for log λ̄,
yielding the relation,

log λ̄ ¼ −0.093η2 − 5.425ηþ 13.604: ð14Þ

This relation achieves an average relative error of 0.008. In
this case, the originally exponential relation between the
two features causes the Pearson correlation coefficient in

particular to give a comparatively low correlation value of
−0.763. In comparison, the other correlation measures still
assign a fairly high correlation value.
In Fig. 4 we show a universal relation between the

compactness C and the logarithm of the normalized tidal
deformability log λ̄, derived from dataset A. Such a relation
was put forward previously by Jiang and Yagi [22], and
follows directly from the definition of λ̄ in terms of the tidal
Love number k2, i.e.,

λ̄ ¼ λ

M5
¼ 2

3
k2

R5

M5
¼ 2

3
k2C5: ð15Þ

The automatic approach again finds an exponential relation
between the features C and λ̄, and as before, we find that
fitting for log λ̄ instead yields the more accurate, universal
relations. The manual fit yields the relation

log λ̄ ¼ 46.123C2 − 53.045Cþ 13.633: ð16Þ

This relation achieves a relative error of 0.020. As before,
the regular features have a nonlinear, exponential relation
for which the Pearson correlation measure again assigns a
comparatively low correlation value of −0.727, while the
other correlation measures still assign high correlation
values.

B. Astroseismological relations

We here present some of the astroseismological, univer-
sal relations we were able to find for the f-mode and
g-mode oscillation frequencies.
In Fig. 5 we show a universal relation between the

compactness C and the normalized f-mode frequency
M̄ωf, derived from dataset B. This relation was previously

FIG. 2. Universal relation between the normalized tidal de-
formability λ̄ and normalized moment of inertia Ī, derived from
dataset A and as given by Eq. (13) (cf. Yagi and Yunes [8]).

FIG. 3. Universal relation between normalized tidal deform-
ability λ̄ and effective compactness η, derived from dataset A and
as given by Eq. (14). The correlation values are given for the
correlation between η and λ̄.

FIG. 4. Universal relation between the logarithm of the tidal
deformability log λ̄ and compactness C, derived from dataset A
and as given by Eq. (16). The correlation values are given for the
correlation between C and λ̄.
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put forward by Tsui and Leung [5]. The best fit for this
relation is given by the function

M̄ωf ¼ 0.042 logC2 þ 0.222 logCþ 0.315: ð17Þ

This relation achieves an average relative error of 0.011.
While the optimal fit is given by a logarithmic relation,
visually the relation can still be fit fairly well by a linear
function. As expected, in this case even the Pearson
correlation coefficient assigns a high value of 0.999, and
the other correlation measures also identify a strong
relation between these two features.
In Fig. 6 we show a universal relation between the

normalized moment of inertia Ī and the normalized f-mode
frequency M̄ωf, derived from dataset A. This relation
follows straight-forwardly by combining the relation by
Tsui and Leung [23] between the f-mode and compactness

C, with the understanding that the compactness C and
effective compactness η can often be used interchangeably
in such general relativistic relations. However, to our
knowledge, this is the first time that this relation is
presented explicitly.
The best fit for this relation is given by the function,

M̄ωf ¼ 0.021 log Ī2 − 0.020 log Ī þ 0.032: ð18Þ

This relation achieves an average relative error of 0.007.
The best fit is given by a logarithmic relation, and visually
the relation also does not seem to allow a good fit by a
linear function. Still, in this case, the Pearson correlation
still applies a comparatively high value of −0.938. The
remaining measures also identify a strong relation between
the features.
Figure 7 shows a universal relation between the nor-

malized tidal deformability λ̄ and the normalized f-mode
frequency M̄ωf, derived from dataset B. This relation was
also previously put forward by Chan et al. [7]. The best fit
for this relation is given by the function,

M̄ωf ¼ 0.0003 log λ̄2 − 0.015 log λ̄þ 0.127: ð19Þ

This relation achieves an average relative error of 0.014.
The highly nonlinear, logarithmic relation between these
features causes the Pearson correlation coefficient to fail to
detect the correlation between these features, assigning a
value of −0.612 and even the distance correlation assigns a
comparatively small correlation value of 0.911, compared
to the previous relations.
Figure 8 shows a universal relation between the effective

compactness η and the normalized f-mode frequency M̄ωf,
derived from dataset A. This relation was also previously

FIG. 5. Astroseismological relation between the normalized
f-mode frequency M̄ωf and the compactness C, derived from
dataset B and as given by Eq. (17) (cf. Tsui and Leung [5]).

FIG. 6. Astroseismological relation between the normalized
f-mode frequency M̄ωf and the normalized moment of inertia Ī,
derived from dataset A and as given by Eq. (18).

FIG. 7. Astroseismological relation between the normalized
f-mode frequency M̄ωf and normalized tidal deformability λ̄,
derived from dataset B and as given by Eq. (19) (cf. Chan
et al. [7]).
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put forward in [6,19,24]. The best fit for this relation is
given by the function,

M̄ωf ¼ 0.015η2 þ 0.025η − 0.009: ð20Þ

This relation achieves an average relative error of 0.007.
Visually, this relation again appears to also allow a good fit
through a linear function, which is reflected by all corre-
lation measures (including Pearson correlation) assigning a
high correlation value.
Figure 9 shows a universal relation between the average

density ρ̃ and the f-mode frequency ωf, derived from
dataset B. This relation was also previously put forward by
Andersson and Kokkotas [3,4] and Benhar et al. [25]. The
best fit for this relation is given by the function

ωf ¼ −2.199ρ̃2 þ 0.985ρ̃þ 0.007: ð21Þ

This relation achieves an average relative error of 0.035.
Again, the fact that this relation appears to be mostly linear
is reflected in the fact that all correlation measures assign a
fairly high correlation value to these two features.
Figure 10 shows a universal relation between the

normalized f-mode frequency Rωf and the logarithm of
the normalized g-mode frequency log M̄ωg1, derived from
dataset B. This relation was also previously put forward by
Kuan et al. [18]. As was the case for the relations in
Eqs. (14) and (16), the automatic method finds an expo-
nential relation between the features Rωf and M̄ωg1 . As
before, we find that manually fitting the relation for the
logarithm log M̄ωg1 gives the more accurate relation,
yielding

log M̄ωg1 ¼ 16.052ðRωfÞ2 − 5.323Rωf þ 5.58908468:

ð22Þ

This relation achieves an average relative error of
0.004. Even though the automatic method finds an expo-
nential function to be the best fit between the original
features, visually it is apparent that the relation could, to
some degree, also be fit by a linear function. As such, even
the Pearson correlation coefficient achieves a fairly high
correlation value, however notably lower than the other
correlation measures.

C. Quantitative comparison of correlation measures

We can perform a more quantitative analysis and
comparison of the four different correlation measures
by considering some specific performance measures

FIG. 8. Astroseismological relation between the normalized
f-mode frequency M̄ωf and the effective compactness η, derived
from dataset A and as given by Eq. (20) (cf. Lau et al. [6] and
Krüger and Kokkotas [19]).

FIG. 9. Astroseismological relation between the f-mode fre-
quency ωf and the square-root of the average density ρ̃, derived
from dataset B and as given by Eq. (21) (cf. Andersson and
Kokkotas [3,4]).

FIG. 10. Astroseismological relation between the normalized
f-mode frequency Rωf and the logarithm of the normalized
g-mode frequency log M̄ωg1, derived from dataset B and as given
by Eq. (22) (cf. Kuan et al. [18]). The correlation values are given
for the correlation between Rωf and M̄ωg1 .
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commonly used in statistics. To define these, we first
introduce a few notions for binary classifiers. We define
them here in terms of our use case of identifying universally
related neutron star features; A true positive is a pair of
features that is universally related, and also identified as
such by a given correlation measure. The number of true
positives is denoted by TP.
A false positive is a pair of features that is not universally

related, but classified as such. The number of false positives
is denoted by FP.
A false negative is a pair of features that is universally

related, but not classified as such. The number of false
negatives is denoted by FN.
A true negative is a pair of features that is not universally

related, and also not classified as such. The number number
of true negatives is denoted by TN.
Given these notions, we can now define performance

measures that quantify how well our classifiers correctly
label pairs of features. Recall, or true positive rate (TPR) is
the rate at which the classifier correctly labels universally
related pairs of features as universally related. It is given by

TPR ¼ TP
TPþ FN

: ð23Þ

Precision, or positive predictive value (PPV), is the rate
of pairs of features classified as universally related that are
in fact universally related. It is given by

PPV ¼ TP
TPþ FP

: ð24Þ

Finally, the fallout, or false positive rate (FPR), is the rate
at which not related pairs of features are classified as being
universally related. It is given by

FPR ¼ FP
FPþ TN

: ð25Þ

We can now compute the precision, recall and fallout for
each correlation measure at a given classification threshold
τ, and compare how these performance measures develop
with τ. Ideally, we would like to achieve high recall, while
keeping precision high, and fallout low.
Typically, one considers the Precision/Recall and ROC

curves for a better understanding on how these quantities
evolve with each other. The Precision/Recall curves plot the
maximum precision achieved by a classifier for a required
recall, and allow us to understand how accurate a positive
prediction (i.e., classification as universal relation) is, given
a specific correlation measure and classification threshold.
We show the Precision/Recall curves for each correlation
measure, and one combined plot, in Fig. 11.
The ROC (or receiver operating characteristic) curve

plots the recall against the fallout of the classifier. This plot
allows us to better understand how many incorrectly
classified universal relations we should expect for a given
recall requirement. The ROC curves for each correlation
measure applied to each of the two datasets considered in
this work can be found in Fig. 12.
As we can see in all figures, the standard Pearson

correlation measure is outperformed by the other metrics
significantly for most of the recall range. The distance
correlation measures, in turn, is also outperformed by the
mutual information based measures. Both the kernel-based
mutual information measure, and the maximal information
measure show high precision and low fallout for high recall
values, identifying them as the preferred measures for the
task of identifying universally related features.
Note that the above analyses were performed by man-

ually labeling all feature pairs in our limited dataset as

FIG. 11. Precision/Recall curves for each correlation measure. (a) Precision/Recall curves for dataset A. (b) Precision/Recall curves
for dataset B.
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either being universally related or not in order to obtain the
true/false positive/negative counts. As such, the exact
values for each performance measure will most likely vary
with different datasets and labels. However, the difference
in behavior of each correlation measure appears to be
significant enough to warrant the conclusion drawn above.

D. Ideal classification thresholds

Closer inspection of both the Precision/Recall and the
ROC curves can also provide hints for an ideal classifica-
tion threshold that optimizes the trade-off between recall
and precision/false positive rate. This can be done by, e.g.,
considering thresholds at which precision or false positive
rate show drastic changes. This threshold will, however,
depend on whether one prioritizes higher recall over
precision/false positive rates, or vice versa. For our use
case of finding universally related features, we would
naturally prefer achieving a higher recall value as false
positives can usually be discarded after a simple visual
inspection of the corresponding plots. As an example, in
Tables II and III, we list the classification thresholds
manually selected from the data points of the respective
Precision/Recall and ROC curves.

Determining a generally optimal classification threshold,
however, will require further detailed analysis that is out of
the scope of this work as the optimal threshold can often
depend on the exact application and data that is used.

V. MULTIVARIATE CORRELATION ANALYSIS

Until now, we have only considered the functional
relation between two features, and tried to find such pairs
of features that allow for universal relations across different
equations of state. A straightforward extension then,
of course, is to look for multivariate relations, i.e., such
relations where one predicted/target features is described
in terms of a function that depends on more than one
explanatory feature.
The field of high-dimensional data analysis is a widely

studied field that in particular gained a lot of notoriety in
recent times due to the advent of the big data paradigm.
While many different approaches, theories and methods
have been developed to deal with high dimensionality in
data, we will here consider one very prominent method;
principal component analysis (PCA). PCA is a dimension-
ality reduction and feature extraction technique that has
been used to great success in various data analysis use

FIG. 12. ROC (Receiver operating characteristic) curves for each correlation measure. (a) ROC curves for dataset A. (b) ROC curves
for dataset B.

TABLE II. Classification thresholds τ and corresponding
performance measures derived from the Precision/Recall
[cf. Fig. 11(a)] and ROC curves [cf. Fig. 12(a)] for dataset A.

Measure τ Recall Precision FPR

Pearson 0.909 0.682 0.625 0.161
DistCor 0.939 0.864 0.613 0.214
MI 1.188 0.955 0.808 0.089
MaxI 0.960 0.955 0.808 0.089

TABLE III. Classification thresholds τ and corresponding
performance measures derived from the Precision/Recall
[cf. Fig. 11(b)] and ROC curves [cf. Fig. 12(b)] for dataset B.

Measure τ Recall Precision FPR

Pearson 0.939 0.808 0.955 0.011
DistCor 0.960 0.808 0.913 0.021
MI 1.333 1.000 0.929 0.021
MaxI 0.949 1.000 0.867 0.043
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cases [26]. Recently, Soldateschi et al. [14] utilized PCA to
construct multivariate universal relations for magnetized
neutron stars. Here, we will investigate how we can apply
PCA in general to identify potential universal relations, and
evaluate how well this approach performs on our own data.

A. Finding multivariate correlation using PCA

The main purpose of PCA is to identify the principal
directions in which a given dataset varies the most; the
principal components A of a dataset consisting of a set of
features F (i.e., the dimensions of the dataset’s underlying
vector space) are a sequence of vectors (called principal
component) Ai in the space span by F which:
(1) are orthogonal to all previous principal components

A0;…;Ai−1; and
(2) show in the direction of the line that best fits the data

set (using least squares regression).
As a consequence, the principal component A0 shows the
direction that maximizes the variance within the dataset,
while each subsequent principal component covers less and
less variance of the dataset. One can then choose them first
principal components as the basis vectors of a lower-
dimensional vector space into which the dataset can be
projected while retaining most of the variance (i.e., infor-
mation) within the dataset.
While the general use case of PCA does not directly

match our goal of constructing universal relations, we can
make use of the properties of the principal components to
potentially find multivariate universal relations. Note that
each principal component Ai represents a linear combina-
tion of the features F that assigning a weight ai;j to each
feature Fj, which, in this context, is also called the loading
of Fj in Ai. After computing all principal components, we
try to identify those that have a proportionally large loading
for our target feature F, if any such component exists;
usually, if there are no strong correlations within our data
that lead to a large variance for F, all principal components
will show a comparatively small loading for F. However, in
the case of a principal component that has a large loading
for F, we might be able to leverage it to construct a
universal relation. By projecting the considered features
onto the identified principal component and solving for F,
we potentially obtain a first-order multivariate universal
relations.
Soldateschi et al. [14] claim that such universal

relations should be found using the last principal compo-
nent. In the following we will also investigate if this claim
is true.

B. General methodology

We now describe the general methodology we follow for
finding multivariate universal relations using PCA:
(1) Select a number of explanatory variables F1;…; Fn

and a target feature F.

(2) Perform PCA on the feature set

F ¼ fF1;…; Fn; Fg. ð26Þ

(3) For each principal componentAi, solve the equation

Ai · F ¼
Xn
j¼1

ai;jFj þ ai;nþ1F

⇒ F ¼ −
�Xn

j¼1

ai;j
ai;nþ1

Fj

�

⇒ F ¼ â1F1 þ � � � þ ânFn ð27Þ

with

âj ¼ −
ai;j
ai;nþ1

; ð28Þ

where we denote the right hand side as the new
combined feature F̂

F̂ ¼ â1F1 þ � � � þ ânFn. ð29Þ

(4) Evaluate whether there exists a strong correlation
between F and a combined feature F̂ using bivariate
correlation analysis.

(5) If a strong correlation is found, choose a suitable
model and fit it for the relation between F and F̂.

In contrast to the bivariate case, this approach cannot be
fully automated yet. A lot of guesswork is involved in
identifying the principal components from which we can
derive suitable combined features. The most straight-
forward approach for this task is to simply construct the
combined feature for all principal components and then
perform a bivariate correlation analysis of the target feature
F with each found combined feature.
Also, this method will not always yield universal

relations: sometimes, there will be no principal component
that will suitably explain the variance in the target feature
F. This might happen in cases where (a) F simply does not
present much variance across the whole dataset, or (b) there
exist many colinearities within the selected set of features
F. We discuss some cases where the method described
above does not yield a universal relation in Appendixes B
and C.

VI. MULTIVARIATE UNIVERSAL RELATIONS

We present the results of using PCA to find multivariate
universal relations for neutron stars as described in the
previous section. A table summarizing all universal rela-
tions presented in this section can be found in the
Conclusion (Sec. VII).
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A. Multivariate universal relations for tidal
deformability

We here consider the case where we want to construct a
universal relation for the normalized tidal deformability λ̄,
using the featuresM, R, and C. To this end, we perform the
principal component analysis on all four features using
dataset A (cf. Sec. II). The resulting principal components
are given in Table IV by means of the loading of each
feature within the principal components. A visual repre-
sentation of the combined feature obtained from each
principal component is shown in Appendix A.
As we can see in Table IV, the target feature λ̄ has the

largest loading for principal component 2, with component
0 also showing a relatively large loading of λ̄. Performing
the bivariate correlation analysis of the combined features
derived from each principal component with the target
feature λ̄ shows that the best correlation is actually given by
principal component 0. However, through the visual
inspection of the combined features, as depicted in
Appendix A, we can see that component 2 could also be
leveraged for a universal relation, albeit with a larger error.
For the remainder of the text we will focus on the relation
with the lesser error, induced by component 0.
Since the automated approach finds an exponential

relation between λ̄ and the combined feature, and we again
fit for log λ̄ to obtain a more accurate relation. Through our
manual fit, we obtain the following universal relation for
the normalized tidal deformability,

log λ̄ ¼ −0.635F̂ þ 7.399 ð30Þ

with

F̂ ¼ 3.391
M
M⊙

− 5.241
R

10 km
þ 4.768

C
0.2

: ð31Þ

This relation is presented in Fig. 13 and achieves an average
relative error of 0.023. Compared to the bivariate relation
between the tidal deformability and compactness we
presented in Fig. 4, we essentially introduce a linear order
correction involving the radius and the mass. While the
overall relative error is approximately the same as for the
bivariate relation, the multivariate relation remains entirely

linear in all independent variables, reducing its sensitivity
to potential estimation errors for these quantities.

B. Relation with dataset B

We also perform the same analysis using the data by
Kuan et al. [18]. The principal components obtained from
the PCA are listed in Table V. The principal components
show a similar behavior to the previous examples using
dataset A, however we can observe some slight differences
caused by the different equations of state used in the
dataset.
As before, after performing the bivariate correlation

analysis on the combined features derived from each
principal component, we find that the combined feature
derived from principal component 0 shows the best
universality. Leveraging this component, we obtain the
universal relation

log λ̄ ¼ −0.939F̂ þ 6.521 ð32Þ

this time with the combined feature

F̂ ¼ 2.249
M
M⊙

− 4.316
R

10 km
þ 3.533

C
0.2

: ð33Þ

TABLE IV. Loadings of features in each principal component
obtained from performing PCA on the feature set F ¼
fM;R;C; λ̄g on dataset A.

Component M R C λ̄

0 −0.488 0.419 −0.571 0.511
1 0.596 0.793 −0.034 −0.119
2 0.322 −0.097 0.412 0.847
3 0.550 −0.431 −0.710 0.086

FIG. 13. Universal relation between logarithm of the normal-
ized tidal deformability log λ̄ and the combined feature given in
Eq. (31), derived from principal component 0 (cf. Table IV),
using dataset A [12,19].

TABLE V. Loadings of features in each principal component
obtained from performing PCA on the feature set F ¼
fM;R;C; λ̄g on dataset B.

Component M R C λ̄

0 −0.514 0.348 −0.593 0.513
1 0.555 0.799 0.145 0.182
2 0.127 −0.352 0.406 0.834
3 −0.642 0.342 0.681 −0.089
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The resulting best fit is presented in Fig. 14. It achieves an
average relative error of 0.043, which is slightly higher than
what we achieved for dataset A. We suspect this is caused
by some of the outlying neutron star models that are
introduced by the larger configuration space considered in
dataset B.
However, the fact remains that our approach for the

multivariate correlation analysis yields the same form for
the universal relation independent of which dataset is used.
This is indicative of this approach further generalizing well
for different datasets, and that the results presented here are
not dependent on the underlying data used for the analysis.

C. Multivariate astroseismological relations

Andersson and Kokkotas [3,4] previously proposed a
universal relation linking the average density ρ̃ to the
f-mode frequency of a neutron star. We here attempt to
apply the same method as above to potentially find
corrections to their original astroseismological relation that
improve its universality. To this end, we perform the
principal component analysis on the features ωf, M, C,
and ρ̃, aiming at finding corrections in terms ofM andC for
the universal relation.
The best relation is found for the combined feature

derived from the fourth principal component found through
PCA performed in the feature set F ¼ fM;C; ρ̃;ωfg. The
best fit for the relation between ωf and this combined
feature is shown in Fig. 15. The best fit shows a quadratic
universal relation for the f-mode frequency of the form,

ωf ¼ −0.00033F̂2 þ 0.013F̂ − 0.023 ð34Þ

with

F̂ ¼ 2.980
M
M⊙

þ 10.231
ρ̃

0.04
− 8.398

C
0.2

: ð35Þ

This relation achieves an average relative error of 0.015.
When compared to the old relation shown in Fig. 9, we can
clearly observe an improved universality, which is also
reflected in the average relative error that is reduced by half.
We thus achieve a significant improvement over the
existing relation by using our multivariate approach.

D. Improved astroseismological relations
for the f -mode frequency

We next consider another variation on the astroseismo-
logical relation we inspected above. This time, instead of
introducing mass and compactness as independent varia-
bles, we instead only introduce the product Cρ̃ of compact-
ness and average density as a new independent variable.
Our goal now is therefore to find a universal relation for ωf

using the average density ρ̃ and Cρ̃.
In this case, the best relation is found for the combined

feature derived from the third principal component found
through the PCA performed in the feature set
F ¼ fρ̃; Cρ̃;ωfg. The best fit for the relation between
ωf and this combined feature is shown in Fig. 16. The best
fit shows a quadratic universal relation for the f-mode
frequency of the form,

ωf ¼ 0.0002F̂2 þ 0.006F̂ þ 0.003 ð36Þ
with

F̂ ¼ 6.911
ρ̃

0.04
− 1.716

Cρ̃
0.01

: ð37Þ

When compared to the relation shown in the section
above (cf. Fig. 15) we observe an improved universality;

FIG. 14. Universal relation between the logarithm of the
normalized tidal deformability log λ̄ and the combined
feature given in Eq. (33), derived from principal component 0
(cf. Table V), using dataset B [18].

FIG. 15. Universal relation for the f-mode frequency ωf using
the combined feature of M, ρ̃, and C given in Eq. (35), obtained
from the PCA on dataset B [18].
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the previous relation has an average relative error of 0.015,
whereas the relation with the new combined feature
achieves an error of 0.010.
Considering that the original relation put forward by

Andersson and Kokkotas [3,4] was inspired by Newtonian
gravity, the additional factor in Cρ̃ could be considered a
first order correction to account for general relativity, since

F̂ ¼ 172.773ρ̃ − 171.650Cρ̃ ≈ 172ρ̃ð1 − CÞ: ð38Þ

Essentially, this new relation is a stepping-stone between
the relation by Andersson and Kokkotas [3,4], and other
general relativistic universal relations, such as the one
between the f-mode frequency ωf and the compactness C
put forward by Tsui and Leung [5].

E. Discussion of results

As we have demonstrated above, we can utilize the
principal components obtained from PCA to construct
multivariate universal relations for neutron stars. Since
the relations we construct are, for now, first-order relations,
this approach is also suited for finding first-order correc-
tions to existing universal relations, allowing an improve-
ment of the accuracy of the universal relations.
Despite these positive results, our approach here has only

been descriptive: while we provide a methodology that can
yield multivariate universal relations, the formal reasons for
why this approach works is still not fully clear. Gaining
further understanding of the mathematical underpinnings of
this approach can allow us to further improve its output, but
also better understand its limits.
For instance, our findings do not agree with the obser-

vations made in [14]; they claim that the best relations
would follow from the last principal component obtained
through the principal component analysis. In our findings,
however, the best universal relations can appear from any of

the principal components. It is therefore our belief that
further analysis of the PCA method and the structure of
its principal components is necessary to obtain a more
rigorous understanding of this approach. Until then, the
PCA approach should only be used to generate potential
candidate relations that have to be further analyzed for their
accuracy.
We have also seen that it is not always the principal

component with the largest loading for our target feature
that will induce the best universal relation: in the example
discussed in Sec. VI A, we had two principal components
with relatively large loadings for the target feature, but
ultimately the combined feature derived from the principal
component with the second largest loading offered the
relation with the smallest error. A test of all possible
combined features using the bivariate analysis therefore
remains necessary until we potentially devise alternative
criteria for deciding which principal component should be
used to induce a universal relation.
Finally, in Appendixes B and C, we show some cases

where our approach will not yield any universal relations.
Sometimes this is caused by the data used, as, ultimately,
not all feature combinations will be amenable to universal
relations. Furthermore, specific properties of the used data,
such as the existence of strong collinearities with the target
feature, can also hinder our approach from producing
universal relations. We currently can only provide super-
ficial reasons for why our approach does not perform well
in such situations, and we hope to obtain a more rigorous
understanding through future work.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this work, we discussed the potential of approaching
the task of constructing universal relations for neutron stars
from a statistical data analysis point of view. Instead of
relying on physical intuition, our goal was to approach
neutron star data using statistical methods only and thus
enable a more automated approach to finding universal
relations.
In a first step, we investigated the suitability of four

different correlations measures for identifying pairs of
features amenable to bivariate universal relations. We found
that the usual Pearson correlation measure will have
difficulties with nonlinear relations between features,
which has also been observed in the past in the statistical
data analysis literature for more general use cases [21].
Using generalized correlation measures that were explicitly
constructed to detect non-linear correlations proved more
useful; overall, mutual information and maximal informa-
tion both performed best in finding universally related
features, and while distance correlation did not perform as
well as the aforementioned ones, it still outperformed
Pearson correlation for our use case.
In a second step, we also approached the problem of

constructing multivariate universal relations. Inspired by an

FIG. 16. Universal relation for the f-mode frequency ωf using
the combined feature of ρ̃ andCρ̃ given in Eq. (37), obtained from
the PCA on dataset B [18].
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idea presented in [14], we used the principal components
found through PCA to construct a new combined feature
that we then related to a initially selected target feature.
While this approach is not yet fully automated and requires
manual considerations in some steps, our results show that
this approach can yield highly accurate, multivariate
universal relations. Our approach works particularly well
when we try to find first-order corrections to previously
known bivariate relations. For instance, we were able to
construct an entirely novel universal relation that allows us
to relate the f-mode frequency to the average density and
compactness of the neutron stars, significantly improving
the error of the relation compared to existing bivariate
relations.
In Table VI we give an overview of all universal relations

presented in this paper. For each relation, we indicate which
features are connected through these relations, their form,
and the average relative error achieved through our best fits.
We also give references to all corresponding equations and
figures in this paper. Finally, if a relation was already
presented previously in a different work, we also give a
reference to that work.
In a time where theoretical model data for various

(astro-)physical objects becomes more widely available,
finding useful data analysis tools for the specific use cases
that we are interested in will be an important direction of
work that will later enable more comprehensive data
exploration. The methods discussed in this paper present
a first step in this direction.
For future work, a straightforward extension is the

application of the presented methods to even more and
different neutron star data. While we have only considered
nonrotating neutron stars in this paper, the presented
methods should easily apply to other configurations

including rotation or magnetic fields. Furthermore, gaining
deeper understanding on why and under which constraints
the PCA approach will work well can allow us to, in the
future, reduce the amount of manual intervention that is still
required right now.

APPENDIX A: COMBINED FEATURES FROM
MULTIVARIATE CORRELATION ANALYSIS

We here show in Fig. 17 a visual representation of
correlating the combined features we obtained in Sec. VI A
with the target feature λ̄. From this figure we can clearly see
the strong correlation of the combined feature obtained
from both principal components 0 and 2 with λ̄. While the
purely visual inspection already points towards principal
component 0 allowing for the smaller error, a precise
analysis using the bivariate correlation method was ulti-
mately necessary to decide which component induces the
universal relation with the least error. However, a similar
visual analysis can and should be performed to assist in any
attempt to construct universal relations using multivariate
data analysis.

APPENDIX B: THE SPECIAL CASE WITH
STRONG COLLINEARITY

Unfortunately, the approach using multivariate statistical
analysis we described in this work (cf. Sec. V) does not
always produce conclusive results: in cases where there
exist strong correlations between features, the conditions
we formulated in Sec. V B will not necessarily or suffi-
ciently lead to the construction of universal relations.
For instance, let us consider the case where we want to

predict the compactness C given the features M̄ω and η.
The principal component analysis leads to the loadings

TABLE VI. List of all universal relations presented in this work.

Type Features Form Average relative error Equation Figure Reference

Bivariate λ̄, Ī Ī ¼ 0.019 log λ̄2 − 0.076 log λ̄þ 0.334 0.020 (13) 2 [8]
λ̄, η log λ̄ ¼ −0.093η2 − 5.425ηþ 13.604 0.008 (14) 3 [12]
λ̄, C log λ̄ ¼ 46.123C2 − 53.045Cþ 13.633 0.020 (16) 4 [22]

M̄ωf , C M̄ωf ¼ 0.042 logC2 þ 0.222 logCþ 0.315 0.011 (17) 5 [5]
M̄ωf , Ī M̄ωf ¼ 0.021 log Ī2 − 0.020 log Ī þ 0.032 0.007 (18) 6 � � �
M̄ωf , λ̄ M̄ωf ¼ 0.0003 log λ̄2 − 0.015 log λ̄þ 0.127 0.014 (19) 7 [7]
M̄ωf, η M̄ωf ¼ 0.015η2 þ 0.025η − 0.009 0.007 (20) 8 [6,19,24]
ωf , ρ̃ ωf ¼ −2.199ρ̃2 þ 0.985ρ̃þ 0.007 0.035 (21) 9 [3,4,25]

M̄ωg1 , Rωf log M̄ωg1 ¼ 16.052ðRωfÞ2 − 5.323Rωf þ 5.589 0.004 (22) 10 [18]

Multivariate λ̄, M, R, C log λ̄ ¼ −0.6345F̂ þ 7.399 0.023 (30) 13 � � �
F̂ ¼ 3.391 M

M⊙
− 5.241 R

10km þ 4.768 C
0.2

ωf, M, ρ̃, C ωf ¼ −0.00033F̂2 þ 0.013F̂ − 0.023 0.015 (34) 15 � � �
F̂ ¼ 2.980 M

M⊙
þ 10.231 ρ̃

0.04 − 8.398 C
0.2

ωf , ρ̃, Cρ̃ ωf ¼ 0.0002F̂2 þ 0.006F̂ þ 0.003 0.010 (36) 16 � � �
F̂ ¼ 6.911 ρ̃

0.04 − 1.716 Cρ̃
0.01
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given in Table VII, and the associated combined features
shown in Fig. 18. As we can see, each corresponding
combined feature is strongly correlated to C, however
inspection of the loading does not necessarily yield any
specific principal component for which C has a signifi-
cantly larger contribution. As such, not finding principal
component with a proportionally large loading for our

target feature does necessarily imply that no potential
universal relation exists.

APPENDIX C: COUNTEREXAMPLE FOR
MULTIVARIATE CORRELATION ANALYSIS

We now attempt to construct a universal relation for the
unnormalized tidal deformablity λ, using the featuresM, ρc,
and Ī. We again apply the principal component analysis on
all four features. The resulting principal components
are shown in Fig. 19. The loadings of each feature
corresponding to each principle component are given in
Table VIII.
As we can clearly see here, none of the combined

features derived from the principal components are well
correlated with λ. This is also reflected in the loadings:

FIG. 17. The combined feature derived from each principal component solved for the target feature λ after performing PCA on the
feature set F ¼ fM;R;C; λg. The corresponding loadings are given in Table IV. (a) Principal component 0. (b) Principal component 1.
(c) Principal component 2. (d) Principal component 3.

TABLE VII. Loadings of features in each principal component
shown in Fig. 18.

Component η M̄ω C

0 −0.577 0.578 −0.577
1 −0.687 −0.038 0.725
2 −0.441 0.815 −0.375
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FIG. 18. The combined feature derived from each principal component solved for the target feature C after performing PCA on the
feature set F ¼ fM̄ωf; η; Cg. The corresponding loadings are given in Table VII. (a) Principal component 0. (b) Principal component 1.
(c) Principal component 2.
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there is no principal component for which the feature λ
shows a significantly higher contribution than the other
features.
However, through bivariate analysis, we were previously

able to find the well-known I-Love [8] relation between the
normalized tidal deformability λ̄ and Ī (cf. Fig. 2). This
shows that typically employed normalizations can therefore
also not necessarily be overcome by simply employing the
PCA approach.

FIG. 19. The combined feature derived from each principal component solved for the target feature λ after performing PCA on the
feature set F ¼ fM; ρc; Ī; λg. The corresponding loadings are given in Table VIII. (a) Principal component 0. (b) Principal component 1.
(c) Principal component 2. (d) Principal component 3.

TABLE VIII. Loadings of features in each principal component
shown in Fig. 19.

Component ρc M Ī λ

0 −0.512 −0.448 0.539 0.497
1 −0.299 0.778 −0.132 0.537
2 0.790 0.090 0.441 0.417
3 −0.158 0.432 0.705 −0.540
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