
Detecting the third family of compact stars with normalizing flows
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We explore the anomaly detection framework based on the normalizing flow (NF) models introduced in
Morawski and Bejger [Phys. Rev. C 106, 065802 (2022)] to detect the presence of a large (destabilizing)
dense matter phase transition in neutron star (NS) observations of masses and radii, and relate the feasibility
of detection with parameters of the underlying mass-radius sequence, which is a functional of the dense
matter equation of state. Once trained on simulated data featuring continuousMðRÞ solutions (i.e., no phase
transitions), NF is used to determine the likelihood of a first-order phase transition in a given set of MðRÞ
observations featuring a discontinuity, i.e., to perform the anomaly detection. Different mock test sets,
featuring two branch solutions in theMðRÞ diagram, were parametrized by the NS mass at which the phase
transition occurs,Mc, and the radius difference between the heaviest hadronic star and lightest hybrid star,
ΔR. We analyze the impact of these parameters on the NF performance in detecting the presence of a first-
order phase transition. Among the results, we report that given a set of 15 stars with radius uncertainty of
0.2 km, a detection of a two-branch solution is possible with 95% accuracy if ΔR > 0.4 km.
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I. INTRODUCTION

Discovering the properties of the dense nuclear matter
realized inside neutron stars (NS) is yet a fundamental
unsolved question in nuclear physics. The present con-
straints on the high density nuclear matter equation of state
(EOS) are originated from NS observations. The existence
of hybrid stars, where a phase transition from nuclear
matter to deconfined quark matter in the star’s core occurs,
is yet to be validated. The nature of the hypothetical phase
transition depends on the surface tension between both
phases, which could be either a sharp (Maxwell construc-
tion) for large values, or a smooth mixed phase transition
for low values [1,2]. Assuming a large surface tension
value, the transition between nuclear and quark phases is
thus realized via a first-order phase transition. For some
hybrid stars models, depending on the energy density
discontinuity between both phases, a disconnected branch
may appear in the MðRÞ diagram [1–6]. The value of the
energy density discontinuity dictates the stability of the
hybrid star: for low values, the quark core is able to
counteract the gravitational pressure from the nuclear
mantle; otherwise, a too strong energy density discontinuity

destabilizes the hybrid star. The present work aims to
analyze the detectability of such first-order phase transi-
tions, specifically when the stable branch of hybrid stars is
separated from the hadronic branch, and to assess the
criteria for which the detectability statement is credible,
such as number of observations, observational errors, phase
transition parameters, by investigating the qualitative fea-
tures induced in the mass-radius diagram.
Generative machine learning models are promising tools

in tackling several challenges in high energy physics (see
Ref. [7]), e.g., in anomaly detection tasks in particle physics
problems [8]. Among the different generative models,
normalizing flow (NF) models [9,10] provide an analytic
description of the underlying data distribution, simulta-
neously enabling efficient sampling and probability density
estimation. In astrophysics, NFs have been employed for
rapid gravitational-wave parameter estimation parameters
from gravitational-wave data [11,12], showing the remark-
able versatility of this probabilistic generative model.
The recent study [13] combines NF with Hamiltonian
Monte Carlo methods to infer the complete posterior
distribution of the EOS and nuisance parameters directly
from telescope observations. Additionally, a novel frame-
work for detecting possible phase transitions based on NS
mass-radius observations was introduced in [14]. The
authors employed a flow-based model for anomaly detec-
tion, specifically testing NF models on multiple samples
of six EOSs exhibiting different phase transitions.
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The evaluation involved the analyses of the latent space to
determine if the model successfully detected anomalies.
The present work extends the NF methodology intro-

duced in [14], by applying it to generic MðRÞ diagrams
instead of specific hybrid EOSs. The generic MðRÞ dia-
grams are constructed to simulate phase transitions at a
specific NS mass and with a given radius difference
between the heaviest hadronic star and lightest hybrid star.
Furthermore, we use directly the NF ability to perform
probability density estimation on input vectors, determin-
ing whether anomalies are present in the input vectors.
The structure of this paper unfolds as follows: In Sec. II,

we provide an introduction to NF. Section III introduces the
dataset used, the underlying theory, and the process of
implementing mock observations. Section IV scrutinizes
the obtained results, elucidating the metrics and datasets
employed. Finally, Sec. V summarizes our findings and
concludes the study.

II. NORMALIZING FLOWS

NFs, extensively reviewed in [15], constitute a probabi-
listic generative model based on invertible transformations,
which has been explored in physics, e.g., [11,12,14]. Their
goal is to model the intricate data probability distribution
pxðxÞ by transforming random variables z from a simple
base distribution pzðzÞ—typically a multivariate standard
normal distribution—through a nonlinear yet invertible and
differentiable bijective transformation fθ∶ RN → RN .
These transformations are defined by neural networks
(see Ref. [7] for a comprehensive review with applications
in physics) and parametrized by θ. The transformation can
be expressed as

x ¼ fθðzÞ; where z ∼ pzðzÞ: ð1Þ

Applying the change of variables formula from probability
theory allows us to compute the probability distribution:

pxðxÞ ¼ pzðzÞ
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The second term represents the absolute value of the
Jacobian determinant, where ∂f−1θ ðxÞ=∂x is an N × N
matrix. This determinant captures the change in volume
resulting from the transformation applied to the probability
space. The transformation itself serves to morph the base
distribution into the target distribution.
The mapping fθ can be expressed as a composition of

invertible functions: fθ ¼ fθK∘ � � � ∘ fθ2∘ fθ1 . Consequently,
the target variable is obtained through the composition

x ¼ fθðzÞ ¼ fθK∘ � � � ∘ fθ2∘ fθ1ðzÞ: ð3Þ

The relation between x and z is then

z⟶
fθ1 h1⟶

fθ2 � � �⟶fθK−1hK−1⟶
fθK x, where h0 ¼ z and hK ¼ x.

The schematic representation of a flow-based model is in
Fig. 1. The logarithm of the probability distribution can
then be defined as

logpxðxÞ ¼ logpz
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The term logpzðf−1θk ðhk−1ÞÞ captures the logarithm of the
base distribution’s probability, while the summation over
the K terms represents the cumulative contribution of
Jacobian determinants from each invertible function in
the composition. The overall likelihood of the data under
the NF model is tractable and leads to the training objective
(loss function) being minimizing:

LðDÞ ¼ −
1

jDj
X

xϵD

logpxðxÞ; ð5Þ

FIG. 1. Schematic representation of a flow-based model illustrating the application of a transformation fθðzÞ across K coupling layers,
denoted as fθK∘ � � � ∘ fθ2∘ fθ1ðh0Þ. This process operates on samples from a base distribution pzðzÞ, yielding samples of the target
distribution pxðxÞ in the generative direction. The opposite direction is known as the normalizing direction f−1θ ðxÞ. The dataset elements
xi ∼ X are composed of N mass-radius observations, xi ¼ ½ðM1; R1Þ; ðM2; R2Þ;…; ðMN;RNÞ�; see Sec. III for details.
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which is the negative log-likelihood (NLL) for the training
dataset D.
While various implementations of NF exist, we select the

coupling neural spline flow [16] for the present work. In the
context of coupling transforms, the input variable is divided
into two parts, [x1∶k−1, xk∶K], where fθ is applied to the
second part, resulting in an output of [x1∶k−1, fθðxk−1∶KÞ].
Values are shuffled between each transformation using a
permutation layer. For the actual transformation, we uti-
lized a rational-quadratic spline function. For the actual
implementation, we have used the PyTorch [17] supple-
mented with the NFLOWS library [18].

III. DATASET

The possible existence of a first-order phase transition
between nuclear and quark matter in NS remains an open
question. Owing to the uncertainty on the value of the
surface tension at the interface, the phase transition
between two pure phases, say nucleonic and quark, could
be either sharp (so-called Maxwell construction, featuring a
large discontinuity in density profile) or a smooth one (via
the “mixed phase”, so-called Gibbs construction) [19].
Assuming a high surface tension scenario, and thus a sharp
phase transition, the appearance of a disconnected branch
of hybrid stars depends on the energy density discontinuity
value Δϵ at the transition [1].
The present work investigates the hypothesis of the

existence of hybrid star branches, and aims to analyze their
detectability from a set of NS observations. Since we are
only interested in accessing the degree of detectability of
such branches regardless of the details of both nuclear and
quark matter phases, we constructed a mock dataset that
simulates a continuity of solutions. We used, as a starting
point, a set of hadronic EOSs and emulate the appearance
of a second branch solution in the MðRÞ diagram as
illustrated in Fig. 2. We selected a NS mass Mc and shifted
the upper section by ΔR, which simulates the difference in
radius between the hadronic star and a hybrid star (with
quark matter core). This construction allows one to analyze
the impact of ðMc;ΔRÞ in the likelihood of observing such
scenarios given a set ofMðRÞ observations. Notice that this
hybrid star mass-radius curve construction may be consid-
ered conservative because in a realistic description of a
quark branch it is expected that (i) the second stable branch
may start atM < Mc as in [4] and (ii) the slope of the mass-
radius of the second branch will probably be quite different
from the one of the hadronic mass-radius behavior. We will
test our model with a mass-radius curve obtained from
microscopic models.
The key insight of using NF in the present task is the

following: once NF models are trained with samples from
MðRÞ diagrams originated by hadronic EOSs (red dots in
Fig. 2), we are capable of estimating the likelihood of any
other MðRÞ diagrams, such as the sample from a two-
branch solution (black triangles in Fig. 2)—a well trained

model attributes low likelihood to any samples that
deviate considerably from the statistical properties of the
training set.
The base set of hadronic EOSs consists of 25 287 nuclear

models based on a relativistic mean field description, which
we divide in 80% train and 20% test, where minimal
constraints were imposed [20]: several nuclear saturation
properties, the existence of a 2M⊙ NS, and a consistent
low-density pure neutron matter with N3LO calculations in
chiral effective field theory. The specific dataset used in our
study corresponds to Set 0 from the article [20], and the
dataset has been made available in [21] (Fig. 14 in [20]
shows the full MðRÞ posterior of this dataset).

A. Observation mock data

The generation of the mock datasets used to train the NF
models closely follows our previous works [22,23]. We
sample N mass values, M0

n=M⊙, from Uð1;MmaxÞ, where
n ¼ 1;…; N, since no NS for masses below 1M⊙ are
expected from stellar evolution. Then, we determine both
σn;M and σn;R from Uð0; σMÞ and Uð0; σRÞ, respectively.
The final fMn; Rng observations are obtained from Rn ∼
N ðRðM0

nÞ; σ2n;RÞ andMn ∼N ðM0
n; σ2n;MÞ. Basically, we are

creating a mock observation set with N stars whose
observations are Gaussian scattered around the true
Tolman-Oppenheimer-Volkoff (TOV) solution, with spe-
cific standard deviations for each star, σn;M and σn;R. We
generate ns ¼ 120 mock observation sets by repeating the
described procedure 120 times for each EOS.
In total, we have generated three different datasets, the

properties of which are detailed in Table I. While radius

FIG. 2. To simulate the existence of two branches in a given
TOV solution, we have defined a critical mass Mc, and the upper
part solution of a hadronic EOS was shifted by ΔR. To illustrate
the sampling procedure described in Sec. III A, we display a
sample from the purely hadronic EOS (red dots) and from the
hybrid MðRÞ solution (black triangles).
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uncertainties of ∼0.1 km or less are expected from future
observations (e.g., Einstein Telescope [24], Cosmic
Explorer [25]), we employed more conservative uncertainty
parameters for Set 1: σR ¼ 0.2 km and σM ¼ 0.1M⊙. Set 2
was derived using the methodology described in our prior
article [23]. For each set, we trained two models with
N ¼ 5 and 15 to investigate how the number of stars affects
the model performance in detecting a second branch in the
TOV solution.
Let us stress that the NF models were trained in datasets

in which only a single hadronic branch exists, i.e., they
were trained with ΔR ¼ 0. After training, we applied these
NF models in test datasets specified by ðMc;ΔRÞ in order
to access the model performance in detecting the existence
of a second branch. Contrarily to ns ¼ 120 mock obser-
vations used in the training sets, all test sets are composed
of ns ¼ 1 mock observations to mimic a real-world
scenario where we have access to a single mock observa-
tion of the “true” EOS.

B. Training procedure

The training process was conducted for three distinct
datasets (seeTable I) and twodifferent input sizes,N ¼ 5 and
15, as elaborated in Sec. III A, resulting in the training of six
distinct models. Throughout the training, the dataset for
trainingwas partitioned into 80% for actual training and 20%
for validation. A test on data normalization revealed superior
results with standardization than with the method employed
in the work [26] for our case. Our chosen architecture is a
concatenation of blocks featuring an invertible linear trans-
formation using lower–upper (LU) decomposition [27]
alongside a rational quadratic spline transform [16] employ-
ing eight bins. To obtain the parameters of the spline and the
respective fθ, we utilized a multilayer perceptron. Various
configurations were explored, including changes in the
number of hidden layers, neurons per layer, and activation
functions. Optimal results were achieved with three hidden
layers, each comprising 15 neurons, and the Softplus
function as the activation function. For input instances with
five stars (N ¼ 5), i.e., five fMi; Rig pairs, seven coupling
transformations were implemented, while for 15 stars
(N ¼ 15), i.e., 15 fMi; Rig pairs, we utilized ten. The
training setup involved a learning rate of 0.001, utilizing
the ADAM optimizer [28] with the AMSgrad improve-
ment [29]. The models undergo training for 500 epochs with
a batch size of 1024.

IV. RESULTS

After training the NF with NS data with no phase
transitions, i.e., with purely hadronic branches, we assess
the models’ performance in several mock datasets featuring
varying degrees of phase transitions, as detailed in Sec. III.
Specifically, we conducted tests with three critical masses
(Mc) representing phase transitions at 1.2, 1.5, and 1.8M⊙,
and with radius shifts (ΔR) ranging from 0.0 to 2.4 km, with
intervals of 0.2 km (see Fig. 2).We ensured that each sample
from the MðRÞ diagrams contains at least one star in each
branch, i.e., hadronic and hybrid. This procedure was
applied across all two-branch solution diagrams within
the different ðMc;ΔRÞ test sets, containing 2529 instances
each.
How can we precisely quantify anomalies in our NF

model? Leveraging the ability of NF to provide direct
probability density estimation on target inputs, we antici-
pate that fMn; Rng inputs from two-branch solutions yield
lower density values, signaling the presence of an anomaly
(phase transition). Calculating the NLL (see Eq. 5) on the
test sets, anomalies are anticipated to exhibit substantially
high NLL values. To quantify anomalies across different
ΔR values, we approach it as a binary classification
problem: the positive class represents the presence of an
anomaly, while the absence of an anomaly is the nega-
tive class.
We establish the anomaly detection threshold by fixing

the false positive rate (FPR)1 at 1%. The FPR, a metric that
quantifies the model’s tendency to incorrectly classify
negative instances as positive, thus defines the condition
for threshold determination on the test sets for the cases
with ΔR ¼ 0 (indicating no anomaly). Since we have three
sets (see Table I) and two input vector sizes, N ¼ 5 and 15,
we have trained a total of six NF models, each with its
corresponding threshold anomaly.
The process of anomaly detecting is illustrated in Fig. 3,

where we show the N ¼ 5 (left panel) and N ¼ 15 (middle
panel) NF models trained on Set 1, using Mc ¼ 1.5M⊙.
The gray histograms indicate the NLL of the test sets, and
the vertical lines indicate the corresponding threshold
values (FPR ¼ 1%). Note that both the gray histograms
and the thresholds are defined using the test sets of the one-
branch solutions (hadronic EOS), i.e., ΔR ¼ 0. The other
colored histograms represent the NLL of the different ΔR
sets. For instance, the detection rate of any two-branch
solution with ΔR ≥ 0.8 km is 100% for N ¼ 15 stars
(middle panel). The right panel represents a comparison
between the two NF models on the ΔR ¼ 2.4 km (purple)
sets. As expected, having access to 15 stars is more
informative in detecting a two-branch solution than just

TABLE I. Generation parameters for each dataset.

Dataset σM ½M⊙� σR [km]

Set 0 0 0

Set 1 0.1 0.2

Set 2 0.136 0.626

1The FPR is calculated as FPR ¼ FP=ðFPþ TNÞ, where FP
stands for false positive (the number of actual negatives predicted
as positives), and TN corresponds to true negative (the number of
actual negatives predicted as negatives).
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five stars. This is evident by analyzing the distance between
the model’s thresholds and the first histogram’s values
(represented as purple vertical lines): higher NLL values are
assigned to samples in which an anomaly (two-branch
solution) is most likely present.
For each threshold within one of the three possible

critical masses, we determined howmany true positives and
false negatives the model detects by counting the number of
values above or below the threshold across all different
values of ΔR. This allows us to determine the true positive
rate (TPR),2 also known as recall—a metric that quantifies
the ability of the model to correctly identify positive
instances—for each ΔR. The TPR for Set 1 is illustrated
in Fig. 4 for the three critical masses and in Fig. 5 for two
fixed critical masses but across all sets.
The observed increasing trend in Fig. 4, which presents

results exclusively for Set 1, aligns with expectations—it is
easier to distinguish a two-branch solution asΔR increases.
As expected, a larger size for the target vector (N) is more
informative and yields larger TPR values. Comparing the
different critical masses, the model shows inferior results
for 1.8M⊙ because the phase transition occurs at a higher
mass value, leading the model to statistically encounter a
fewer number of hybrid stars than hadronic stars, increasing
the difficulty in detecting any potential phase transition. In
the Mc ¼ 1.2M⊙ and 1.5M⊙ cases, we observe distinct
behaviors for the two different values of N. For N ¼ 5, the
TPR is higher for 1.5M⊙ as the critical mass is positioned
in the middle of the curve, making it more susceptible to

variations compared to 1.2M⊙, which tends to have only
one star below the critical mass for the majority of
instances. However, the behavior is different for N ¼ 15.
This can be attributed to the availability of more stars, and
the model is exposed to a greater number of instances
below 1.2M⊙. The model’s increased sensitivity to detect a
shifted curve, owing to its training with more information,
leads to similar results for the two critical masses.
Figure 5 shows consistently inferior results for TPR at

1.8M⊙, in agreement with earlier findings. Furthermore,
TPR values are consistently higher for N ¼ 15. Examining
the three distinct sets, a clear pattern emerges: Set 0 exhibits

FIG. 3. NLL histograms for theN ¼ 5 (left) andN ¼ 15 (middle) NF models on the differentΔR sets (colors) usingMc ¼ 1.5M⊙. All
test sets were generated according to Set 1 properties (see Table I). The gray regions represent the NLL of each NF model on the test sets
with ΔR ¼ 0 (purely hadronic solution), and the vertical black lines correspond to the respective threshold value defined in that region.
A comparison between N ¼ 5 (dotted) and N ¼ 15 (solid) NF models for ΔR ¼ 2.4 km (purple) is also shown (right), where the
vertical purple lines mark the first value of the histogram.

FIG. 4. True positive rate (TPR), phase transition detection rate,
as a function of ΔR for different Mc=M⊙ values: 1.2 (black), 1.5
(red), and 1.8 (blue) for Set 1. The use of N ¼ 5 or 15 stars is
represented by dotted and dashed lines, respectively.

2The TPR is determined as TPR ¼ TP=ðTPþ FNÞ where TP
is the true positives (instances correctly predicted as positives)
and FN is the false negatives (instances incorrectly predicted as
negatives).
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higher TPR than Set 1, which, in turn, outperforms Set 2.
This hierarchy is expected, as introducing more noise to the
model’s input makes it progressively challenging for the
model to effectively detect phase transitions. The results
indicate that, given 15 NS observations and Mc ¼ 1.5M⊙,
the trained NF models are capable of detecting a phase
transition with 100% accuracy if ΔR > 0.4 km (Set 0),
ΔR > 0.6 km (Set 1), and ΔR > 0.8 km (Set 2). The
accuracy gets considerably lower for Mc ¼ 1.8M⊙, requir-
ing a much larger ΔR to reach 100% accuracy: ΔR > 1 km
(Set 0), ΔR > 1.6 km (Set 1), and ΔR > 2.4 km (Set 2).
To evaluate our NF models using an alternative metric,

we employed the receiver operating characteristic (ROC)
curve [30]. Defined in the (TPR, FPR) space, where both
(0, 0) and (1, 1) represent extreme classifier models, this
curve provides valuable insights into the model’s perfor-
mance across different threshold settings. The point (0, 0) is
achieved by increasing the threshold to classify everything

as negative for the anomaly presence, resulting in both the
TPR and FPR being zero. The opposite occurs at (1, 1),
where the threshold classifies everything as an anomaly,
leading to both TPR and FPR being 1. The ideal point is
(0, 1), signifying a TPR of 1 and an FPR of 0. The ROC
curve is then calculated as (TPR, FPR) for a continuous
change of the threshold. An important aspect of this metric
is that it provides an overview of the model’s quality
without the need to select a specific threshold. The area
under the curve (AUC) [31] provided by the ROC curve
offers a straightforward classification of our models,
ranging from 0 to 1 (or as a percentage). An AUC value
of 1 indicates a perfect classifier, achieving a TPR of 1 with
no false positives, visually represented by an ROC curve
reaching the top-left corner. In contrast, a diagonal line
corresponds to an AUC of 0.5, indicating a random
classifier. By examining how the ROC curves approximate
toward the top-left corner, we can estimate the AUC value.
We use ROC curves to classify the differences between
various scenarios constructed within our different sets. In

FIG. 5. TPR as a function of ΔR forMc=M⊙ ¼ 1.5 (upper plot)
and 1.8 (bottom plot). The different datasets, which represent
different ðM;RÞ observation uncertainties (see Table I), are
distinguished by line type: Set 0 (solid), Set 1 (dashed), and
Set 2 (dotted). The use of N ¼ 5 or 15 stars is represented by red
and blue lines, respectively.

FIG. 6. ROC curves illustrating the performance of the six
different trained models, along with the corresponding AUC
values, for the critical masses of Mc ¼ 1.5M⊙ (top plot) and
Mc ¼ 1.8M⊙ (bottom plot).
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Fig. 6, we present the ROC curves and the corresponding
AUC values across the six distinct trained models for
Mc ¼ 1.5M⊙ (top plot) and Mc ¼ 1.8M⊙ (bottom plot).
The AUC values remain larger forMc ¼ 1.5M⊙, indicating
that the model adeptly discerns the presence of a phase
transition or anomaly with heightened precision. This
pattern persists across all sets, with AUC values ranking
in the order Set0> Set1> Set 2, further emphasizing that
higher noise levels in the input hinder the model’s ability to
detect phase transitions, and larger input sizes (N ¼ 15)
consistently yield better performance.
Figure 7 averages each of the six distinct trained models

over the Mc values. Therefore, the ROC curves and the
corresponding AUCs can be interpreted as an overall
measure of the model’s performance. The same pattern
of model performance is reinforced: increasing the set size
increases the performance, and noisier MðRÞ samples
decrease the anomaly detection rate. This robust perfor-
mance provides strong evidence supporting the model’s
capability to effectively detect phase transitions.
Lastly, we tested the NF model trained with Set 1 and

N ¼ 15 to a two-branch MðRÞ curve obtained from micro-
scopic models [4], based on the DD2 nuclear model [32]
and the Nambu–Jona-Lasinio quark model [33]. This
evaluation involved analyzing the behavior of the histo-
gram of the NLL in relation to the predefined threshold. To
conduct this test, we adapted the microscopic model set,
generating the same number of samples as in our test set
with the specifications of Set 1 and N ¼ 15. Additionally,
for a more comprehensive evaluation, we created a specific
test set with ðMc;ΔRÞ ¼ ð1.91M⊙; 0.77 kmÞ, matching the
critical mass and ΔR shift of the microscopic model [4].
The results in Fig. 8 show that the NF model detects the
two-branch solution for the microscopic model (yellow)
with higher confidence than our test set (green), producing

NLL values that are noticeably farther from the defined
threshold.
Our two-branch solutions can be seen as a lower bound

on the model performance, and any other two-branch
solution construction becomes easily detectable. This is
the case because we are attributing the same properties at
the two branches, and it is hard for the NF model to detect a
phase transition from a noise sample for small ΔR, which
may be easily and wrongly considered from a single one-
branch hadronic solution. In the case of the [4] results, the
considerable scattering of radii values for hybrid stars and
their small mass range make them easier to detect.

V. CONCLUSIONS

We employed NF to identify the presence of a second
and disconnected branch of hybrid stars in the NS mass-
radius diagram. NF are generative machine learning models
capable of generating new samples and estimating the
probability density of new data points. Our approach
involved training NF models initially on continuous and
unique hadronic branch solutions. The input samples
incorporate three levels of noise (see Table I) with two
possible sample sizes (five stars and 15 stars), resulting in
the training of a total of six NF models focused on hadronic
solutions. After the training phase, we evaluated each
model’s capability to detect possible phase transitions,
simulating diverse two-branch solutions by parametrizing
them using the star mass at the transition and the radius gap,
respectively ðMc;ΔRÞ. There is no quark model underlying
the hybrid branch because our focus was solely on the
general MðRÞ structure. The onset of the hybrid branch is

FIG. 8. NLL histogram comparing a test set generated for Set 1
and N ¼ 15 with ðMc;ΔRÞ ¼ ð1.91M⊙; 0.77 kmÞ in green and
the two-branchMðRÞ curves derived frommicroscopic models [4]
in yellow. The gray region represents the NLL of the NF model on
the test set with ΔR ¼ 0 (purely hadronic solution), and the
vertical black line corresponds to the respective threshold value.

FIG. 7. ROC curves illustrating the performance of the six
different trained models, along with the corresponding AUC
values, considering all the hypotheses for the critical masses.
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marked by the critical mass value Mc, with the radius gap
between the heaviest hadronic star and the lightest hybrid
star represented by ΔR. To quantify the model’s ability to
detect phase transitions, we approached it as a binary
classification problem, defining a threshold condition based
on 1% FPR for the NLL space.
The key findings of our investigation highlight the

model’s enhanced phase transition detection accuracy.
These outcomes include the model’s adept response to
the increase in ΔR across all scenarios, consistently
superior precision with an input size of 15 stars as opposed
to five stars, and the varied outcomes arising from distinct
critical masses—highlighting a lower susceptibility to
anomaly detection for Mc ≳ 1.8M⊙. Furthermore, another
anticipated observation was the reduction in model pre-
cision with the increase of the input noise. Furthermore, we
evaluated the reliance of our NF models using two-branch
MðRÞ curves obtained from microscopic models [4]. As
anticipated, our trained NF models demonstrated enhanced
detection capabilities for these two-branch solutions when
compared to our test sets. This observation aligns with the
straightforward phase transition method we implemented in
our study. In summary, our model demonstrated highly
expected outcomes, aligning with the anticipated behavior
we were expecting for each evaluation. The consistently
high AUC values further underline the reliability and
robustness of our approach.
In this study, we have not applied the NF models to real

observations due to the considerable uncertainty of the
present observational data, which could potentially yield
inconclusive results, as shown in [14]. A natural next step for

future work would be to expand the data input by gravita-
tional-wave observations, by including themeasurements of
tidal deformabilities (the mass-weighted tidal deformability
of a binary system Λ̃, and individual components’ tidal
deformabilities), in order to systematically investigate
regions of phase-transition EOS parameter space which
may be degenerate in this type of data [34,35], and directly
infer microscopic parameters, e.g., the size of the density
discontinuity from ΔR.
A noteworthy aspect not addressed in this study is the

quantification of uncertainty, a subject extensively explored
in our prior two works [22,23]. This aspect gains increased
importance for these models, as they involve multiple
neural network architectures within a single forward pass,
accentuating the importance of uncertainty quantification.
While acknowledging that implementing Bayesian neural
networks within the framework of NF would undoubtedly
pose computational challenges, it holds potential for future
investigations, as exemplified in the work by [36].
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