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Quasiperiodic eruptions (QPEs) are intense, repeating, soft x-ray bursts with recurrence times of
about a few to ten hours from nearby galactic nuclei. The origin of QPEs is still unclear. In this work, we
investigate the extreme mass ratio inspiral (EMRI) + accretion disk model, where the disk is formed
from a previous tidal disruption event (TDE). In this EMRIþ TDE disk model, the QPEs are the result
of collisions between a TDE disk and a stellar mass object (a stellar mass black hole or a main sequence
star) orbiting around a supermassive black hole (SMBH) in galactic nuclei. If this interpretation is
correct, QPEs will be invaluable in probing the orbits of stellar mass objects in the vicinity of SMBHs
and further inferring the formation of EMRIs, which are one of the primary targets of spaceborne
gravitational wave missions. Taking GSN 069 as an example, we find the EMRI that is of low
eccentricity (e < 0.1 at the 3-σ confidence level) and a semimajor axis about Oð102Þ gravitational radii
of the central SMBH, which is consistent with the prediction of the wet EMRI formation channel while
incompatible with alternatives.

DOI: 10.1103/PhysRevD.109.103031

I. INTRODUCTION

In the past decade, x-ray quasiperiodic eruptions (QPEs)
have been detected in nearby galactic nuclei [1–5] which
host low-mass (≃105–107M⊙ at most) central supermassive
black holes (SMBHs) [6,7]. QPEs are fast, bright, soft x-ray
bursts repeating every few hours with peak x-ray luminos-
ity of 1042–1043 ergs s−1. QPEs have thermal-like x-ray
spectra with temperatures in the range kT ≃ 100–250 eV,
in contrast with the temperatures ≃50–80 eV in the
quiescent state. The presence of a narrow line region in
all QPE host galaxies implies that a long-lived active
galactic nucleus (AGN) likely plays an integral role in
the QPEs, while the absence of luminous broad emission
lines indicates that none of the central SMBHs is currently
actively accreting; i.e., they are likely all recently switched-
off AGNs [6]. In addition, QPEs similar to tidal disruption

events (TDEs) are preferentially found in post-starburst
galaxies [6], and two QPE sources (GSN 069 and XMMSL1
J024916.6-04124) and a candidate (AT 2019vcb) were
found to be directly associated with x-ray TDEs [5,7–10].
A recent XMM-Newton observation of GSN 069 identified
the reappearance of QPEs after being absent for two years
[7]. This observation shows that QPEs may only be present
below a quiescent luminosity threshold Lthr ∼ 0.4LEdd,
where LEdd is the Eddington luminosity, and a new phase
shows up in the QPE reappearance where the intensity and
the temperature of two QPEs become different. Long-term
observations yield more interesting features of GSN 069
[11]; e.g., the quasiperiodic oscillations (QPOs) in the
quiescent state following the QPEs, long-term evolution
of the quiescent level emission consistent with a TDE or
even possibly a repeating TDE, and QPEs measured in
higher energy bands, which are stronger, peak earlier, and
have shorter duration than when measured at lower energies.
Many models have been proposed for explaining the

physical origin of QPEs, based on different disk
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instabilities1 [13–17], self-lensing binary massive black
holes [18], mass transfer at the pericenter from stars or
white dwarfs orbiting around the SMBH [19–28], (peri-
odic) impacts between a stellar-mass object (SMO), a
star or a stellar mass black hole (sBH), and the accretion
disk that is formed following a recent TDE (dubbed the
EMRIþ TDE disk model) [29–33]. These models can
explain some of the features in the QPE light curves
(mainly GSN 069); there is no model that produces diverse
features of different QPE sources (see more discussions in,
e.g., Refs. [2–7,11,34]).
Recently, Linial et al. [32] and Franchini et al. [33]

pointed out that the EMRIþ TDE disk model is flexible
in recovering comprehensive features of different QPEs.
In this EMRIþ TDE disk model, the stellar mass object
(SMO) could be a sBH or a main sequence star, and the two
share many similar model predictions, e.g., the long-short
pattern in the QPE recurrence times and the strong-weak
pattern in the QPE intensities (see [32,33,35] for details);
therefore, it seems hard to distinguish the two with the
existing QPE observations. In the majority of this work,
we tend not to distinguish them, and we will briefly
discuss the different predictions that might be tested by
near future observations in the final part of this paper. We
first refine the flare model following the analytic supernova
explosion model developed by Arnett [36] and used in
modeling the optical flares of OJ 287 [37,38] and
SDSSJ1430þ 2303 [39]. With this refinement, we find
the model fitting to the QPE light curves with reasonable
precision, though the effective temperatures at the light
curve peaks in the best-fit model are in mild tension with
the observation values. Because of this limitation of the
plasma ball emission model, we consider an alternative
phenomenological model where the light curve consists of
a rising part and a decay part with different timescales.
We apply both models to the QPEs from GSN 069 and find
the starting time of each flare, with which we constrain the

EMRI orbital parameters. We find the EMRI orbit inferred
from these QPEs is of low eccentricity (e < 0.1 at the 3-σ
confidence level) and semimajor axis a ¼ Oð102ÞM•,
where M• is the gravitational radius of the central
SMBH. If the EMRIþ TDE disk is indeed the origin of
QPEs, the EMRI orbital parameters inferred from the QPEs
will be invaluable in probing the EMRI formation channels.
As for the GSN 069 EMRI, we find it is highly unlikely that
it comes from the loss-cone channel or the Hills mecha-
nism, while is consistent with the wet channel expectation
(see Figs. 5 and 6).
This paper is organized as follows. In Sec. II, we briefly

review the flare emission mechanism, introduce two
analytic models for fitting the QPE light curves and the
EMRI equations of motion (EOM). In Sec. III, we fit the
QPE light curves and find the starting time of each flare,
with which we constrain the EMRI orbital parameters.
In Sec. IV, we summarize this paper by evaluating the
performance of the EMRIþ disk model predictions, dis-
cussing the implications of QPEs on EMRI formation
channels, possible observable signatures for distinguishing
stellar EMRIs versus sBH EMRIs, and future work. In
Appendix A, we include the detailed corner plots of
emission model parameters and the flare timing model
parameters. In Appendix B, we analyze the orbital stability
of the SMO after a possible close-by scattering with a TDE
remnant star. In Appendix C, we show some hydrodynamic
(HD) simulation results of SMO-disk collisions and infer
possible observational features in the resulting light curves.
In this paper, we use geometrical units with G ¼ c ¼ 1 if
not specified otherwise.

II. QPE MODEL: EMRI+TDE DISK

Figure 1 displays the GSN 069 QPEs found in five XMM
Newton observations. The peak luminosity, recurrence
time, and duration of QPEs are Oð1042Þ ergs=s, Oð10Þ
hours, and Oð1Þ hour, respectively. In this section, we first
sketch the EMRIþ TDE disk model, identifying the
parameter space that is consistent with the above energy
budget and timescales; then, we explain the details of the

FIG. 1. QPE light curves from observations XMM 3–6 and 12, where we have aligned different observations at their last peak
locations and also rescaled the XMM 6 luminosity.

1The classical limit-cycle instability in AGN disks is disfavored
because the QPE periods, burst timescales, and burst profiles
cannot be reconciled with the limit-cycle prediction [3,12].
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emission models for fitting each individual QPE light curve
and the EMRI model for fitting the starting times of
all QPEs.

A. Emission model

As the SMO orbits around the SMBH and crosses the
accretion disk, the relative velocity between the SMO and
the local accretion flow, in general, is higher than the local
sound speed vvel > cs, and the gas in the disk will be
compressed and heated by the shock wave. For sBHs, the
accretion radius racc ≔ 2Gm=v2rel is, in general, much larger
than the geometrical size m. As shown by simulations in
Ref. [40], the heated gas expands along the shocked tunnel
and forms a hot, optically thick, radiation-dominated
plasma ball on each side of the disk. The hot plasma ball
cools down due to (nearly) adiabatic expansion and thermal
radiation. For stars, the whole process is similar except now
the geometrical radius R⋆ plays the role of the accretion
radius in the sBH case.
We consider the standard α disk model [41], where the

disk structure in the radiation-dominated regime can be
analytically expressed as [42]

ΣðrÞ ¼ 1.7 × 105 g cm−2α−10.01Ṁ
−1
•;0.1r

3=2
100;

HðrÞ ¼ 1.5M•Ṁ•;0.1; ð1Þ

where H is the scale height of the disk from the midplane,
Σ is the disk surface density, and we have defined
α0.01 ¼ α=0.01; r100 ¼ r=100M•; Ṁ•;0.1 ¼ Ṁ•=ð0.1Ṁ•;EddÞ,
with Ṁ•;Edd the Eddington accretion rate. The disk surface
density and the disk thickness will be used in the energy
budget estimates and the EMRI orbit inference.
For a star, the energy loss after crossing a disk is simply

δE⋆ ¼ 2 ×
1

2
δmgasv2rel

≈ 3 × 1046 ergs × Σ5R2
⋆;⊙r

−1
100 sin ιsd; ð2Þ

where the factor 2 in the first line takes both the thermal
energy and the kinetic energy of the shocked gas into
account, Σ5 ≔ Σ=ð105 g cm−2Þ; R⋆;⊙ ≔ R⋆=R⊙, δmgas ¼
2πR2

⋆Σ=sin ιsd is the mass of the shocked gas [32], and
we have used the approximation vvel ≈ vK sin ιsd, with vK
the local Keplerian velocity, where ιsd is the angle between
the sBH orbital plane and the disk plane.
For a sBH moving in a uniform gas cloud, the gravi-

tational drag from the perturbed gas is [43–46]

Fdrag ¼ −4π lnΛ
G2ρm2

v3rel

�
erfðXÞ − 2Xffiffiffi

π
p e−X

2

�
vrel

≈ −4π lnΛ
G2ρm2

v3rel
vrel; ð3Þ

where ρ is the gas density, m is the sBH mass, X ¼
vrel=ð

ffiffiffi
2

p
csÞ is the ratio of the relative velocity vrel over the

gas particle velocity dispersion (approximated by the local
sound speed cs), and we have used the approximation
vrel=cs ≫ 1 in the second line; lnΛ ¼ lnðbmax=bminÞ is the
Coulomb logarithm, with bmax=min the maximum/minimum
cutoff distance associated with the interaction. The cutoff
distance bmax is the maximum extent of the wake
2H sin−1 ιsd, while bmin is identified either as the accretor
size m [47–50] or as the standoff distance rso ≈ 1

2
racc [51].

With these two different identifications, we have lnΛ ≈ 13

or 5, where we have used the fiducial valuesM• ¼ 106M⊙;
m ¼ 30M⊙; H ¼ 1.5M•, and sin ιsd ¼ 0.1 in the approx-
imately equal sign. As a result, the sBH loses energy
after crossing a disk,2

δEsBH ¼ FdragΔL ¼ 4π lnΛ
G2m2

v2rel

Σ
sinðιsdÞ

≈ 2 × 1046 ergs

�
lnΛ
10

�
Σ5m2

30r100

�
sin ιsd
0.1

�
−3
; ð4Þ

where ΔL ¼ 2H=sinðιsdÞ is the length of the sBH orbit
inside the disk, and we have defined m30 ¼ m=30M⊙.
In order to find the starting time of each flare,

we consider the following two emission models: an
expanding plasma ball emission model and a phenomeno-
logical model.

1. Plasma ball model

In general, the postshock gas is not uniformly com-
pressed, heated, or accelerated depending on where it
crosses the shock front (see, e.g., Refs. [48,52–55] for
detailed simulations). For modeling the emission of the
shocked gas, we simplify the shocked gas as a uniform
plasma ball with initial size R0 and initial surface temper-
ature Te0. Following Arnett [36], we model the plasma ball
expansion, cooling, and radiation as follows.
Considering a spherical plasma ball expanding uni-

formly, the evolution of the expanding shell follows the
first law of thermodynamics, which states, in Lagrangian
coordinates,

Ėþ PV̇ ¼ −
∂L
∂m

; ð5Þ

2In estimating the sBH energy loss in crossing the disk, one can
easily use the approximation δEsBH ¼ 1

2
δmgasv2rel. In fact, δmgas is

merely the amount of gas that is supposed to be accreted by the
sBH, which is only a fraction of the shocked gas (the shock size is
larger than the accretion radius racc by quite a few times (see, e.g.,
Refs. [48,52–55]). A more accurate estimate of the sBH energy
loss is Eq. (4), which was derived in Ref. [44] and verified with
hydrodynamic simulations (see, e.g., Refs. [47,48,50,54,55]).
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where E and V are the specific energy and volume, P and L
are the pressure and the radiation luminosity, and m is the
total mass enclosed by the shell we consider. In the
diffusion approximation, L is

L
4πr2

¼ −
ac
3κρ

∂T4

∂r
; ð6Þ

where κ is the opacity dominated by Thomson scattering.
Adiabatic homologous expansion of a photon-dominated

gas (γ ¼ 4=3) gives T ∝ RðtÞ−1 and ρðtÞ ∝ RðtÞ−3, where
RðtÞ is the boundary of the plasma ball. With these two
relations, we can now write

Tðx; tÞ4 ¼ ΨðxÞϕðtÞT4
00

R4
0

RðtÞ4 ; ð7Þ

ρðtÞ ¼ ρ0
R3
0

RðtÞ3 ; ð8Þ

V̇
V
¼ 3

Ṙ
R
; ð9Þ

where x ¼ r=RðtÞ is a dimensionless comoving radial
coordinate. In the timescale we are considering, the outer
boundary of the plasma ball expands at a constant speed,

RðtÞ≡ R0

�
1þ t

τh

�
¼ R0 þ vsct; ð10Þ

where τh is the expansion timescale and vsc ¼ R0=τh is the
expanding velocity scale. In Eq. (7), we separate the space
and time dependence of temperature.
Plugging Eqs. (6)–(9) into Eq. (5) and separating the

PDE, we have

α ¼ −
1

x2Ψ
d
dx

�
x2

dΨ
dx

�
; ð11Þ

dϕ
dt

¼ −
RðtÞϕ
R0τ0

; ð12Þ

where α is the eigenvalue determined by the boundary

condition and τ0 ≡ 3ρ0R2
0
κ

αc is the diffusion timescale. We
consider the “radiative zero” boundary condition [36]
[Ψð1Þ ¼ 0]. Together with the trivial boundary condition
at the center, Ψð0Þ ¼ 1; dΨ=dx ¼ 0, the solution to
Eq. (11) is

ΨðxÞ ¼ sinðπxÞ
πx

; ð13Þ

with the eigenvalue α ¼ π2. The time evolution equa-
tion (12) can be solved with the trivial initial condition
ϕð0Þ ¼ 1, whose solution is

ϕðtÞ ¼ exp

�
−

t
τ0

�
1þ t

2τh

��
: ð14Þ

With Eqs. (10), (13), and (14), the temperature distri-
bution and evolution are obtained. We now return to the
surface luminosity. Plugging Eqs. (7), (10), (13), and (14)
into Eq. (6) and taking x ¼ 1, we have

Lð1; tÞ ¼ 4πR0aT4
00c

3κρ0
ϕðtÞ≡ Lð1; 0ÞϕðtÞ: ð15Þ

Next, we choose the effective temperature as the parameter
of our model, which can be directly obtained from the
surface luminosity

Te ¼
�
Lð1; 0Þ
4πσR2

0

�
1=4

ϕ1=4

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t

τh

r
≡ Te0ϕ

1=4

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t

τh

r
:

ð16Þ

Applying this model to QPEs, we find the soft x-ray
(0.2–2 keV) luminosity

LX ¼ 8π2hR2

c2

Z
2 keV

0.2 keV

ν3dν

ehν=kBTe − 1
; ð17Þ

where the effective temperature Te is determined by
Eq. (16) and the plasma ball radius R is determined by
Eq. (10). The intrinsic parameters of our model are
fR0; Te0; τ0; τhg in addition to the flare staring time t0.
For the purpose of model parameter inference, we find
that parameters ft0; R0; Te0; τm ≔ ffiffiffiffiffiffiffiffiffi

τ0τh
p

; vsc ≔ R0=τhg are
better constrained, so they are chosen as the model intrinsic
parameters hereafter.

2. Phenomenological model

In additional to the above expanding plasma ball
emission model, we also consider the following alternative
phenomenological light curve model [4,56],

LXðtÞ¼

8>><
>>:
0 if t≤ tp− tas

Lpe
ffiffiffiffiffiffiffiffi
τ1=τ2

p
eτ1=ðtp−tas−tÞ if tp− tas<t<tp

Lpe−ðt−tpÞ=τ2 if t≥ tp;

ð18Þ

where tas ¼ ffiffiffiffiffiffiffiffi
τ1τ2

p
. Following Ref. [56], we define the

flare starting time as the time when the flux is 1=e3 of the
peak value, i.e., LXðt0Þ ¼ Lp=e3. Therefore, only three
out of the four time variables are independent, and
we take ft0; tp; τ2g and Lp as the independent model
parameters.
In addition to the QPEs, QPOs have been identified in

the quiescent state luminosity; we therefore model the
background luminosity as

LbgdðtÞ ¼ Bþ A sin ð2πðt − t0Þ=PQPO þ ϕQPOÞ; ð19Þ
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where B is the average background luminosity, and A,
PQPO, and ϕQPO are the QPO amplitude, period, and initial
phase, respectively.

B. Flare timing

In general, the sBH collides with the accretion twice per
orbit, and the propagation times of the two flares produced
by the collisions to the observer are different due to
different propagation paths.
For convenience, we model the motion of the sBH as a

geodesic in the Schwarzschild spacetime. Considering an
orbit with semimajor axis a and eccentricity e, the peri-
center and apocenter distances ra;p ¼ að1� eÞ are the roots
to the effective potential [57],

VðrÞ ¼ r4E2 − ðr2 − 2rÞðr2 þ L2Þ; ð20Þ

where all the radii or distances are formulated in units of the
gravitational radius M•. From the effective potential, it is
straightforward to obtain the orbital energy and angular
momenta Eða; eÞ; Lða; eÞ. The EOMs in the Schwarzschild
spacetime can be derived from the Hamiltonian

Hðr; θ; pr; pθÞ ¼
1

2
gμνðr; θÞpμpν; ð21Þ

where gμν is the Schwarzschild metric. Considering the
simple case where the orbit lies on the equator, we obtain

ṙ ¼
�
1 −

2

r

�
pr

�
dt
dτ

�
−1
;

ψ̇ ¼ L
r2

�
dt
dτ

�
−1
;

ṗr ¼ −
�
p2
r

r2
−
L2

r3
þ E2

ðr − 2Þ2
��

dt
dτ

�
−1
; ð22Þ

where dt=dτ ¼ E=ð1 − 2=rÞ and dots are the derivative
with respect to time t and ψ is the azimuth angle.
Combining this with the initial condition ðr;ψ ; prÞjt¼tini ¼
ðra; 0; 0Þ (i.e., starting from the apocenter), we obtain the
orbital motion rðtÞ, ψðtÞ.
Assuming the accretion disk lies on the equator x − y

plane (the disk angular momentum is in the z direction, i.e.,
n⃗disk ¼ e⃗z), the orbital plane lies on the x0 − y0 plane, and
the two coordinate frames are related by Euler rotations
RzðγÞRxðβÞRzðαÞ, where

RzðαÞ ¼

2
64
cos α − sin α

sin α cos α

1

3
75 ð23Þ

and

RxðβÞ ¼

2
64
1

cos β − sin β

sin β cos β

3
75: ð24Þ

The orbital motion in the two frames is

ðx0; y0; z0Þ ¼ rðcosψ ; sinψ ; 0Þ ð25Þ

and

ðx; y; zÞT ¼ RzðγÞRxðβÞRzðαÞðx0; y0; z0ÞT; ð26Þ

respectively. Specifically, β is the angle between the disk
plane and the orbital plane, i.e., ιsd ¼ minfβ; π − βg.
We use a coordinate frame such that the line of sight

(LOS) lies in the x − z plane with n⃗los¼ðsinθlos;0;cosθlosÞ.
The observable collisions happen when zðtÞ ¼ �H, where
the � sign depends on whether the observation is on the
upper or lower half plane. The propagation times of
different flares at different collision locations rcrsn⃗crs to
the observer will also be different. We can write
tobs ¼ tcrs þ δtgeom þ δtshap, where

δtgeom ¼ −rcrsn⃗los · n⃗crs;

δtshap ¼ −2M• ln½rcrsð1þ n⃗los · n⃗crsÞ� ð27Þ

are corrections caused by different path lengths and differ-
ent Shapiro delays [58], respectively.
To summarize, there are eight parameters in the flare

timing model: the intrinsic orbital parameters ða; eÞ, the
extrinsic orbital parameters ðα; β; γÞ, the LOS angle θlos, the
time tini at the apocenter right before the first flare is
observed, and the mass of the SMBH M• or, equivalently,
the Newtonian orbital period Tobt ≔ 2πða=M•Þ3=2M•.
Without loss of generality, we set θlos ≤ π=2 (i.e., the
observer is located in the upper half plane), and the observed
flares start when the EMRI crosses the upper surface of the
disk z ¼ H (we set the disk thickness as H ¼ 1.5M•).

III. APPLYING THE EMRI+TDE DISK MODEL
TO GSN 069 QPEs

For a given EMRI system and a TDE accretion disk, we
can, in principle, predict the collision times between the
SMO and the disk, the initial condition of the plasma ball
from each collision, and the resulting QPE light curve. Both
the EMRI orbital parameters and the disk model parameters
can be constrained simultaneously from the QPE light
curves. In this work, we choose to constrain the EMRI
kinematics and the plasma ball emission separately: We
first fit each QPE with the flare model and obtain the
starting time of each flare t0 � σðt0Þ, which is identified as
the observed disk crossing time. In this way, the EMRI
kinematics is minimally plagued by the uncertainties in the
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disk model because the disk crossing time inferred from
the QPE light curve is not expected to be sensitive to the
disk model.
According to the Bayes theorem, the posterior of

parameters is

PðΘjdÞ ∝ LðdjΘÞπðΘÞ; ð28Þ
where LðdjΘÞ is the likelihood of detecting data d given
a model with parameters Θ and πðΘÞ is the parameter
prior assumed. For the emission model, the likelihood is
defined as

LemissionðdjΘÞ ¼
Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðFσiÞ2

p exp

�
−
ðLðtiÞ − diÞ2
2ðFσiÞ2

	
;

ð29Þ
where di, σi are the measured QPE luminosity and error bar
at ti, respectively, LðtiÞ ¼ LXðtiÞ þ LbgdðtiÞ is the model
predicted luminosity [Eqs. (17) and (19)], and F is a scale
factor taking possible calibration uncertainty into account.
Therefore, we have model parameters Θ ¼ ft0; R0; Te0;
τm; vexp; B; A; PQPO;ϕQPO; Fg for each flare in the expand-
ing plasma ball model, and Θ ¼ ft0; tp; τ2; Lp; B; A; PQPO;
ϕQPO; Fg for each flare in the phenomenological model.
The posterior t0 � σðt0Þ of each flare is then fed into the
flare timing model.

For the flare timing model, the likelihood is defined in a
similar way as

LtimingðdjΘ̃Þ ¼
Y
k

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðFtσðtðkÞ0 ÞÞ2

q exp

(
ðtðkÞobs − tðkÞ0 Þ2
2ðFtσðtðkÞ0 ÞÞ2

)
;

ð30Þ

where tðkÞobs is the model’s predicted starting time of the kth

flare in the observer’s frame [Eq. (27)], and tðkÞ0 and σðtðkÞ0 Þ
are the flare starting time and the uncertainty of the kth flare
(see Table I). In the same way, we have included a scale
factor Ft taking possible systematics and unmodeled
physics processes into consideration. Therefore, we have
parameters Θ̃ ¼ fa; e; α; β; γ; Tobt; tini; θobs; Ftg in the flare
timing model. The model parameter inferences are per-
formed using the dynesty [59] and nessai [60] algorithms in
the Bilby package [61].

A. GSN 069 QPE light curves

GSN 069 is the first QPE source discovered, and it has
been monitored extensively in the past decade, including
XMM 1–12 and Chandra [7,11]. From the quiescent state
light curves, it is likely that two (partial) TDEs have occurred.
QPEs are found only in XMM 3–6 and 12 and the Chandra
observation, when the quiescent state luminosity is low.

TABLE I. Median values and 1-σ uncertainties of the flare starting times t0 [s], the QPO periods PQPO [ks], and the
intervals Tshort;long;sum [s] of GSN 069 QPEs in XMM 3–6 assuming the plasma ball model.

Plasma ball model t0 PQPO Tshort T long Tsum

XMM3 flare 1 662030843þ91
−86 51þ8.53

−9.91 29820þ123
−126

2 662060666þ67
−62 48þ9.24

−11.39

XMM4 flare 1 664003075þ105
−82 34þ5.84

−7.17 31448þ99
−98 32648þ96

−99 64092þ74
−68

2 664035779þ87
−89 26þ1.18

−1.07

3 664066973þ89
−85 44þ6.26

−4.20

4 664099564þ84
−75 53þ4.87

−6.98

5 664131264þ92
−87 32þ6.54

−6.95

XMM5 flare 1 675727215þ188
−130 21þ3.44

−2.31 30393þ124
−132 33519þ104

−101 63915þ92
−106

2 675756904þ90
−87 31þ1.65

−1.41
3 675790441þ79

−78 52þ7.48
−7.67

4 675821554þ105
−98 33þ2.29

−1.84

5 675855051þ83
−78 43þ11.41

−10.75
XMM6 flare 1 695049958þ154

−142 43þ1.70
−1.37 28567þ260

−245 36382þ236
−255 64935þ250

−249

2 695076440þ132
−161 13þ0.76

−0.62
3 695104985þ163

−141 30þ4.48
−2.76

4 695141378þ132
−166 32þ6.70

−7.23
XMM12 flare 1 773633586þ181

−210 61þ7.31
−7.56 20069þ223

−196

2 773653655þ74
−71 27þ3.78

−2.32
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We reprocessed the raw data from the EPIC-pn camera
[62] of the XMM-Newton mission, using the latest XMM–
Newton Science Analysis System (SAS) and the Current
Calibration Files (CCF). The photon arrival times are all
barycenter-corrected in the DE405-ICRS reference system.
The count-rate-luminosity conversion is accomplished with
XSPEC [63]. The resulting light curves are shown in Fig. 1.3

During XMM 3–5 and Chandra (regular phase), the
quiescent state luminosity slowly declines, and the QPEs
show a clear long-short pattern in the occurrence times and
a strong-weak pattern in the intensities. During XMM 6, the
quiescent state luminosity likely increases in the rising
phase of the second TDE, and the QPEs become irregular in
the sense that the alternating strong-weak pattern is not well
preserved, where the first flare does not fit in either the
strong or the weak ones, though flares 2–4 still follow the
alternating long-short and strong-weak patterns (see Fig. 1).
During the recent observation epoch XMM 12, only two
QPEs were detected, limited by the short exposure time,
and it is unclear whether the QPEs have settled into a new
regular phase or not.
From Fig. 1, it is evident that there is an alternating

long-short pattern in the QPE recurrence times with
T long − Tshort ≈ 2 ∼ 8 ks, and T long þ Tshort is approxi-
mately a constant. To quantify these features, we fit the
QPEs with the two flare models. In Fig. 2, we show the
0.2–2 keV light curves of GSN 069 QPEs from XMM 3–5
along with the best-fit emission model (see the corner plot
of the model parameter posterior in Fig. 8). From the

residue plots in the lower panels, we see that the fits are
reasonable for the majority of the light curves except
around the peaks where the sharp turnovers are not
captured by the fits, and around the flare staring times t0
where the precursor-like features prior to the main flares
cannot be captured either. These limitations also motivate
us to consider the alternative phenomenological light curve
model [Eq. (18)]. In Fig. 3, we show the results of the best-
fit phenomenological model, which largely improves the
residues around the light curve peaks and yields flare
starting times t0 consistent with those from the plasma ball
model. The residues that stand out around the flare starting
times imply possible processes that are not modeled in
either model (see discussion in Appendix C where we
conduct hydrodynamic simulations of SMO-disk colli-
sions, trying to identify the unmodeled processes by
comparing the simulations with the light curves).
In Tables I and II, we list all the flare starting times t0,

the QPO periods PQPO, and the intervals Tshort;long;sum fitted
from theQPE light curves with the plasma ball model and the
phenomenologicalmodel, respectively.With the flare starting

times tðkÞ0 , we quantify the long-short pattern in the QPE
recurrence times. In XMM 3, two flares are observed;
therefore, only the short time Tshort can be calculated. In
XMM 4, five flares are observed, and we define

T long ¼
1

2



tð2Þ0 − tð1Þ0 þ tð4Þ0 − tð3Þ0

�
XMM4

;

Tshort ¼
1

2



tð3Þ0 − tð2Þ0 þ tð5Þ0 − tð4Þ0

�
XMM4

;

Tsum ¼ T long þ Tshort; ð31Þ
and the definitions are similar in XMM 5. In XMM 6,
four flares are observed, with the first being an outlier,
and we define

FIG. 2. Top panel: all the light curve data from XMM3-5 and the best-fit results (solid lines). Vertical bands denote the flare starting
times t0. Bottom panel: residues of the best fit. We have changed the reference time to the starting time of the XMM3 observation.

3We did not include the Chandra observation on 14 February
2019 in our analysis because the data quality is much lower
compared with that in XMM-Newton observations, especially the
discontinuous features in the count rates around the background
level, which make it hard to pin down the flare starting times.
This is attributed to the much smaller effective area of Chandra.
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T long ¼


tð4Þ0 − tð3Þ0

�
XMM6

;

Tshort ¼


tð3Þ0 − tð2Þ0

�
XMM6

;

Tsum ¼ T long þ Tshort: ð32Þ

The measured time intervals PQPO and Tshort;long;sum are
consistent with each other, assuming two different light
curve models. To quantify the evolution of period Tsum,

we fit the TsumðtÞ with a linear relation and find that the
slope/change rate Ṫsum is consistent with zero as

Ṫsum ¼
� ð1.5� 2.6Þ× 10−5 plasma ball model

ð−4.7� 6.7Þ× 10−5 phenomenological model

ð33Þ

at the 1-σ confidence level.

FIG. 3. Same as Fig. 2, but for the phenomenological model.

TABLE II. Same as Table I, but for the phenomenological model.

Phenomenological model t0 PQPO Tshort T long Tsum

XMM3 flare 1 662030429þ104
−114 51þ7.50

−8.91 30025þ150
−158

2 662060452þ78
−82 52þ6.80

−10.37
XMM4 flare 1 664001278þ397

−326 34þ8.88
−8.08 31589þ154

−146 33243þ236
−252 64842þ186

−210

2 664035220þ158
−180 26þ1.19

−1.03

3 664066491þ96
−97 45þ6.50

−4.15
4 664099063þ136

−163 50þ8.15
−8.65

5 664130961þ73
−74 51þ7.19

−10.46
XMM5 flare 1 675726607þ357

−331 18þ9.23
−2.51 30258þ217

−215 33651þ152
−154 63895þ221

−201

2 675756547þ86
−95 33þ2.54

−1.96
3 675790212þ81

−86 55þ4.96
−6.66

4 675820783þ148
−162 31þ1.74

−1.43
5 675854426þ171

−191 16þ5.66
−2.70

XMM6 flare 1 695049346þ220
−224 43þ1.38

−1.22 28345þ983
−919 36847þ491

−505 65175þ947
−881

2 695075342þ790
−783 18þ2.27

−5.41
3 695103697þ352

−341 26þ1.61
−1.34

4 695140539þ264
−262 38þ24.37

−25.53
XMM12 flare 1 773633107þ245

−268 54þ5.23
−5.05 20267þ300

−260

2 773653374þ83
−87 39þ13.81

−8.84
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B. EMRI orbital parameters

As explained in the previous subsection, QPEs found in
XMM 3–5 are in the regular phase, and we focus on the
QPE timing in these three observations for our EMRI orbit
analysis (see Sec. IV for more discussions about observa-
tions XMM 6 and 12).
In Fig. 4, we show the EMRI orbit of the best-fit flare

timing model (with orbital parameters a¼171M•;e¼0.04;
Tobt¼63.7 ks, and the corresponding SMBH mass M• ¼
1.05 × 106M⊙), along with the starting time t0 of each flare
(Table I). In this model, Tsum is simply the orbital period
Tobt which is a constant if the TDE disk lies on the equator
and stays in a steady state as assumed, while the alternating
recurrence times are the result of a noncircular orbit plus
the different photon propagation times to the observer, and
the variation of T long;short is the result of the SMO orbital
precession.
From Fig. 4, we also see that the brighter peak is

sometimes associated with the ascending node and some-
times with the descending node of the orbit. The reason for
this is that the QPE luminosity is mainly determined by
the relative velocity between the SMO and the disk at the
collision point as well as the local gas density. From
simulations in [40] and the HD simulations shown in
Appendix C, the amount of gas bursting out from both sides
of the disk after a collision is found to be roughly
symmetric; therefore, the collision direction plays a minor

role in the QPE luminosity. The collision location and the
collision velocity will be modulated on the SMO orbital
precession timescale; therefore, the QPE intensities will be
modulated on the same timescale as explicitly shown
in [33].
The posterior corner plot of all the model parameters

is shown in Fig. 10 in Appendix A, where the orbital
parameters are constrained as

a ¼ 311þ100
−181M•;

e ¼ 0.04þ0.04
−0.03 ;

Tobt ¼ 63709� 5 sec; ð34Þ

at the 2-σ confidence level, respectively. The constraint of
the SMBHmass is thereforeM• ∈ ð2.4 × 105; 1.4 × 106ÞM⊙
at the 2-σ confidence level. In fact, the flare timing contains
more information about the SMBH mass than what
the simple confidence level shows: There are three peaks
in the posterior of the semimajor axis located at a ¼
f160; 220; 330gM•, respectively, which correspond to three
favored values of the SMBH mass M• ¼ f106; 6.2 × 105;
3.4 × 105gM⊙.
For comparison, we performed a similar analysis using

the flare starting times tðkÞ0 in Table II, and the posterior
corner plot of the model parameters is shown in Fig. 11,

FIG. 4. Top panel: light curve data along with the best fit of the emission model, where the vertical lines are the starting times of
the QPEs. Bottom panel: zðtÞ of the best-fit orbit (a ¼ 171M•; e ¼ 0.04; Tobt ¼ 63.7 ks), where the horizontal line denotes the disk
surface z ¼ H.

PROBING ORBITS OF STELLAR MASS OBJECTS DEEP … PHYS. REV. D 109, 103031 (2024)

103031-9



which is completely consistent with the result shown
in Fig. 10.

IV. SUMMARY AND DISCUSSION

In this section, we first summarize different aspects of
QPE observations in addition to the recurrence timescales
(about a few hours) and the luminosity magnitudes of QPE
flares in soft x rays (∼1042 ergs=s), and we evaluate the
performance of the EMRIþ TDE disk model in interpret-
ing these observations. Based on the orbital parameters
inferred from the flare timing, we then examine which
formation channel the EMRI may come from. We conclude
this section with a brief discussion about possible ways to
distinguish the two and limitations of the flaring time
model used in this paper.

A. Observations versus model predictions

A reasonable model must be able to naturally explain,
or at least be compatible with, the observations. In the
EMRIþ TDE disk model, there are two components
needed: a TDE disk and a SMO in a proper position. In
this subsection, we examine whether the model can
naturally explain the QPE observations.
(1) Alternating long-short occurrence times: In all the

confirmed QPE sources to date with more than three
flares detected (GSN 069, eRO-QPE1, eRO-QPE2,
and RX J1301.9þ 2747), QPEs have two alternat-
ing occurrence times, T long and Tshort [2–4,34]. In the
EMRIþ TDE disk model, the secondary SMO
crosses the accretion disk twice per orbit, and two
different occurrence times T long and Tshort alternate
as a result of the noncircular orbit and different
delays of two consecutive collisions [see Eq. (27)].

(2) Alternating strong-weak QPE intensities: Strong-
weak QPEs alternately occur [2–5,34]. In the
EMRIþ TDE disk model, the secondary BH crosses
the accretion disk twice per orbit, producing two
different flares because the two disk crossings are
not identical to each other, depending on the orbit
eccentricity.

(3) Spectral evolution: QPEs measured in higher energy
bands are stronger, peak earlier, and have shorter
duration than when measured at lower energies
[2–5,11,34]. The QPE spectral evolution perfectly
matches the flare model prediction where the QPE
emission comes from an expanding and cooling
plasma ball.

(4) Light curve profile: A common feature of QPEs is
the fast rise and slow decay light curve profile with a
low QPE duty cycle (a few percent) [2–5,34].
Similar to supernova explosions, the thermal radi-
ation from a freely expanding and cooling plasma
ball naturally produces the fast rise and slow decay
light curve.

(5) Association with TDEs: Two QPE sources (GSN
069 and XMMSL1 J024916.6-04124) and a candi-
date (AT 2019vcb) have been directly associated
with x-ray TDEs [5,7–10]. In the EMRIþ TDE disk
model, two components are needed to produce
QPEs: a TDE disk and a SMO in a proper position.
Therefore, we do not expect to see QPEs in all
TDEs. The fraction depends on the availability of the
second component. From the QPEs that are asso-
ciated with TDEs, we may statistically infer the
distribution of SMOs around SMBHs and therefore
the EMRI formation rate. In this aspect, QPEs might
be a unique probe to EMRIs in the pre-LISA era.

(6) Association with past AGN activities and not with
ongoing AGNs: The presence of narrow lines in all
QPE host galaxies and the absence of luminous
broad emission lines indicate that they were recently
switched-off AGNs [6,64] (but see also [25] for a
different interpretation). In ongoing AGNs, the
majority of SMOs in the vicinity of the SMBH
are those captured on the AGN accretion disk [65].
As a result, the number of SMOs crossing the AGN
disk is suppressed; therefore, there is no QPE
association with ongoing AGNs. Past AGN activities
are expected to boost the EMRI formation by
accelerating the inward migration of SMOs (known
as the wet EMRI formation channel [65–68]). In
recently turned-off AGNs, SMOs are accumulated
on the equator of the SMBH with a ∼Oð102ÞM•

(see [65,66] for the full Fokker-Planck calculation or
Sec. IV B for a sketch), while the accretion disk
formed from a TDE is, in general, not exactly
aligned with the equator; therefore, QPEs are pro-
duced as the SMO crossing the TDE formed
accretion disk. As we will show in Sec. IV B, the
GSN 069 EMRI orbit is consistent with the wet
channel prediction while incompatible with alter-
natives. This adds more independent evidence for
the past AGN activities in GSN 069.

(7) (Anti)association with SMBH mass: QPEs are pref-
erentially found in nuclei of dwarf galaxies, where
the SMBHs are relatively light, with a mass no more
than a few times 106M⊙ [6,7]. In the EMRIþ TDE
disk model, this antiassociation with the SMBH
mass comes from the TDE rate dependence on
the SMBH mass and the finite size of the TDE
formed accretion disk. TDEs have been found to be
preferentially around lighter SMBHs (see, e.g.,
Refs. [69,70]). Assuming an α disk of total mass
md, we have the disk size

rd ¼ 102M•

�
md

0.35M⊙

α

0.01
Ṁ•

0.1Ṁ•;Edd

�
2=7

×

�
M•

3 × 106M⊙

�
−4=7

: ð35Þ
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For more massive SMBHs, the disk is smaller, and
rd=M• < 102 for a SMBH heavier than ∼3×106M⊙.
The chance of SMOs with a ∼Oð102ÞM• crossing
the TDE formed disk around a more massive SMBH
is lower.

(8) (Anti)association with the SMBH accretion rate
in the quiescent state: Long-term observation
of GSN 069 shows that QPEs may only be
present below a quiescent luminosity threshold
Ldisk;bol ∼ 0.4LEdd [7]. There are two possible
origins of this antiassociation: The ratio of the
QPE luminosity to the disk luminosity in the same
energy band LQPE=Ldisk;X depends on the disk
accretion rate [33], or QPEs are delayed relative
to the TDE by a time interval (which is about a few
years in the case of GSN 069).
In the α disk model, the disk surface density

Σ ∝ Ṁ−1
• and the energy deposited in the SMO-disk

collision δESMO ∝ Σ [Eqs. (2) and (4)] are therefore
lower for the higher accretion rate case. The thermal
luminosity from the accretion disk Ldisk;bol ∝ Ṁ• is
higher in the higher accretion case, and the depend-
ence is more sensitive for the soft x-ray luminosity
Ldisk;X. As a result, the QPE is harder to identify
from the luminous background in the higher accre-
tion rate case (see [33] for the explanation in terms of
QPE temperatures and the disk temperature).
The SMO orbit is, in general, not aligned with the

TDE disk. The misaligned disk initially precesses
like a rigid body before settling down to a non-
precessing warped disk [71–73]. In a recently
turned-off AGN, the sBHs are preferentially found
on the equator of the SMBH. As a result, the sBH is
expected to be highly inclined with respect to the
new TDE disk when the sBH-disk collisions are
less energetic [Eq. (4)], and QPEs emerge only
when the two become nearly aligned and the
collisions are sufficiently energetic. This scenario
works for sBH EMRIs only, where the emergence
of QPEs is delayed by the disk alignment timescale,
the accurate value of which is not accurately
calculated [74,75].

(9) Stability: During the observations XMM 3–5 (regu-
lar phase dubbed in [7]), the QPE occurrence times
Tsum ≔ T long þ Tshort are stable with the variation
rate Ṫsum consistent with zero [see Eq. (33)]. The
sBH orbital period change rate due to disk crossing
turns out to be [Eq. (4)]

Ṫobt¼
dTobt

dEsBH
ĖsBH¼3

δEsBH

EsBH
≈−3×10−6

�
lnΛ
10

�

×α−10.01Ṁ
−1
•;0.1M

−7=3
•;6 T7=3

obt;20

�
m

30M⊙

��
sin ιsd
0.1

�
−3
;

ð36Þ

where Tobt;20 ≔ Tobt=20 hr. The orbital change rate
is consistent with the observed Ṫsum. The star orbital
period change rate is given by [76]

Ṫobt ≈ −2 × 10−5α−10.01Ṁ
−1
•;0.1M

−1
•;6Tobt;20m−1

⋆;⊙

× R2
⋆;⊙ sin ιsd; ð37Þ

where m⋆;⊙ ≔ m⋆=m⊙; R⋆;⊙ ≔ R⋆=R⊙. The orbital
period change rate is also consistent with the current
observation constraint.

(10) Association with QPOs in the quiescent state: In the
old phase (XMM 3–5), quiescent level QPOs were
detected with a period close to the corresponding
QPE recurrence times PQPO ∈ ðTsum=4; TsumÞ (see
Tables I and II), and a 8–10 ks delay with respect to
the QPEs [7,11]. It is unclear whether the periodic
EMRI impacts on the accretion disk are able to
produce the quiescent level QPOs with correct time
delay, period, and amplitude.4

(11) New QPE phase in GSN 069: During the old
phase (XMM 3–5), both the QPE intensities and
occurrence times alternated with T long ≈ 33 ks,
Tshort ≈ 31 ks, and Tsum ≈ 64 ks. During the irregu-
lar phase (XMM 6), which is on the rise in TDE 2,
the QPE occurrence times observed do not follow
the alternating patterns exactly, with the first flare
fitting in neither the strong ones nor the weak ones,
though flares 2–4 still follow the alternating long-

short and strong-weak patterns with TðirgÞ
long ≈ 36 ks,

TðirgÞ
short ≈ 28 ks, and TðirgÞ

sum ≈ 64 ks. After disappearing
for two years (XMM 7–11), QPEs reappeared
(XMM 12) with quite different occurrence times
from those in the old phase or the irregular phase:

TðnewÞ
short ≈ 20 ks and TðnewÞ

long ð>27 ksÞ, which are not
fully resolved because only two QPEs have been
detected [7]. By fitting the variation in the quiescent
level with a sine function, the period is constrained

to be PðnewÞ
QPO ¼ 54� 4 ks; however, this period

suspiciously coincides with the exposure time,
and the statistical quality of the fit is poor, with
reduced χ2ν ≈ 2.9 (χ2 ¼ 140 and Ndof ¼ 49) [7,11].
This QPO period has been speculated to be same as

the QPE period in the new phase, PðnewÞ
QPO ≈ TðnewÞ

sum ,
though this speculated relation was not observed in
the previous phases where the QPO periods PQPO

were found in the range of ðTsum=4; TsumÞ (see
Tables I and II). Further measurements with longer

4Previous simulations show that the accretion rate Ṁ• of
the central BH is indeed modulated by periodic stellar-disk
collisions [29].
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exposure times are needed to confirm whether a
different QPE period emerges in the new phase.

In the EMRIþ TDE disk model, the shorter TðnewÞ
short is a

result of a puffier disk due to the higher accretion rate
sourced by the TDE 2, and consequently, a larger fraction

febd ≈
4H= sin ιsd

2πr
≈
1

3
×

H
5M•

102M•

r
0.1

sin ιsd
ð38Þ

of the EMRI orbit is embedded in the disk. As a result,
about 1=3 of the orbit stays above the disk, which is visible

to the observer, making a shorter TðnewÞ
short ≈ Tobt=3, and the

remaining ≈2=3 is hidden in or below the disk, which is
invisible. This geometrical effect of the disk thickness may

also contribute to the shorter TðirgÞ
short in XMM 6, which is on

the rise in TDE 2.
To identify the true origin(s) of QPEs, all the existing

models should be tested against these observations. Taking
GSN 069 as an example, the alternating long-short recur-
rence pattern and a stable T long þ Tshort (see Fig. 1) together
pose a huge challenge for the single-period models. In these
models, there is no natural explanation without a twofold
fine-tuning: alternating delay-advance in the recurrence
times for producing the alternating long-short pattern, and
cancellation of consecutive delay-advance for producing a
stable Tsum. In the EMRIþ TDE disk model, the alternat-
ing long-short pattern and the constant T long þ Tshort are
natural consequences of a noncircular orbit, and most of the
QPE observations summarized above can be quantitatively
recovered, though it is unclear whether quiescent-state
QPOs can be naturally generated.
In addition to the common properties shared by most

QPE sources, GSN 069 is special in the sense that two TDE
flares ∼9 years apart have been observed. Considering the
low TDE rate, the two TDEs are likely two consecutive
partial disruptions of the same star. This is similar to
another confident repeating partial TDE (pTDE) AT
2020vdq [77], where two consecutive TDEs are found
with an interval of ∼3 years. The relatively tight orbits are
unusual for stars that enter the loss cone driven by two-
body relaxation because the TDE rate should be dominated
by stars on much wider orbits (see Ref. [78] for a detailed
review, and Fig. 5 and the discussion therein for a pictorial
understanding). A natural explanation is that the tidally
disrupted star comes from a previously tidally disrupted
binary (see Refs. [77,79] and Fig. 5).
There are other models where the second TDE flare is

due to runaway envelope stripping of the impactor star
instead [32]. In this model, there is no need for repeating
partial TDEs, and the resumption of QPEs could be due to
a surviving stellar core. To distinguish the two models,
longer monitoring of GSN 069 and other QPE sources of
shorter periods is necessary: (1) After the second flare,
a large change in the orbital period is expected in the

runaway envelope stripping model; (2) in QPE sources
of shorter periods, the second flare should be common
because the runaway envelope stripping is more prone to
happen.

B. Implications of QPEs on EMRI formation

If QPEs are indeed sourced by impacts of SMOs and
accretion disks formed from TDEs, the EMRI orbital
parameters will be invaluable for inferring the EMRI
formation channels. These SMOs may be captured by
the SMBH via the (dry) loss-cone channel [81–86], the
Hills mechanism [80,87], or the (wet) AGN disk channel
[65–68,88–92]. The EMRI orbits inferred from the six QPE
sources have similar properties, with low eccentricity e and
pericenter distance rp=M• ¼ Oð102Þ [32,33]. These orbital
parameters are roughly consistent with the (wet) EMRIs
formed in AGN disks, where the wet EMRIs are expected
to be nearly circular and concentrate around r ¼ Oð102ÞM•

at the end of an AGN phase [65–68], while they are distinct
from those EMRIs formed via the loss-cone channel, where

FIG. 5. Following Ref. [28], we use the rp − a phase diagram
to analyze the possibility of GSN 069 EMRI formation via the
loss-cone channel and the Hills mechanism. As an example, we
consider a 106M⊙ SMBH and the tidal disruption radius rt ¼
ðM•=m⋆Þ1=3R⋆ ≈ 47M• of a solar-type star. In the loss-cone
channel, there are, in general, two fates of the stars: (1) loss-
cone TDEs, most of them being dominated by 2-body scatter-
ings (tJ < tGW) and tidal disrupted by the SMBH when
scattered into a low-angular momentum orbit with rp < rt,
and (2) stellar EMRIs, a small fraction of which are scattered
into the GW emission dominated regime (tJ > tGW), gradually
circularizing and losing mass via partial TDEs. Stars residing in
a tiny phase space (r < 300M• and e ≈ 0) can possibly become
GSN 069-like EMRIs. In the Hills mechanism, the bounded star
after a binary disruption is highly eccentric, with eccentricity
e ≈ 0.98 [80] (the black dashed line). The star faces the same
two fates, a loss-cone TDE or a stellar EMRI, neither of which
ends as GSN 069-like EMRIs.
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the EMRIs are expected to be highly eccentric (e → 1) and
sharply concentrate around rp ¼ 10M• for sBH EMRIs
and around the tidal radius rp ¼ rtidal ¼ R⋆ðM•=M⋆Þ1=3 for
stellar EMRIs. A more quantitative analysis for GSN 069
EMRIs is outlined as follows.
In a single-component stellar cluster, the relaxation

timescale at radius r due to 2-body scatterings is [93]

trlxðrÞ ¼
0.339
lnΛ

σ3ðrÞ
m2

⋆n⋆ðrÞ
; ð39Þ

where σðrÞ is the local velocity dispersion (≈
ffiffiffiffiffiffiffiffiffiffiffi
M•=r

p
within the influence radius rh of the SMBH), n⋆ðrÞ is
the star number density, and lnΛ ≈ 10 is the Coulomb
logarithm. Using the empirical M• − σ⋆ relation [94,95],
the influence radius rh ≔ M•=σ2⋆ turns out to be

rh ≈M0.5
•;6 pc: ð40Þ

For a highly eccentric orbit, the angular momentum only
needs to change slightly to make an order unity difference
in the orbit, and the diffusion timescale in the angular
momentum, in general, is shorter than the relaxation
timescale in the energy as tJ ≈ ð1 − e2Þtrlx. For comparison,
the energy dissipation timescale of the star due to GW
emission is [96]

tGW ¼ −
a
ȧ
≈

a4

M2
•m⋆

�
rp
a

�
7=2

; ð41Þ

where rp ¼ að1 − eÞ is the pericenter distance. Assuming
the Bahcall-Wolf (BW) density profile n⋆ðrÞ ∝ r−7=4 [97],
one can find the ratio [28]

tJ
tGW

≈
�
rp
M•

�
−5=2

�
a
rh

�
−5=4

: ð42Þ

To analyze the formation rate of GSN 069-like EMRIs
in the loss-cone channel, a rp − a diagram proposed in
Ref. [28] is useful. As shown in Fig. 5, most stars are
dominated by 2-body scatterings and become tidally
disrupted when scattered into a low-angular momentum
orbit with rp < rt; a small fraction of stars are scattered into
the GW emission dominated regime (dubbed as stellar
EMRIs), gradually circularizing and finally losing mass via
partial TDEs. The GSN 069 EMRI is one of the stellar
EMRIs. The TDE rate and stellar EMRI formation rate can
be estimated as

R⋆ð< rÞ ≈ N⋆ð< rÞ
trlxðrÞ

∝ r; ð43Þ

from which we find the ratio of the formation rate of
GSN 069-like EMRIs (EMRIs with orbital parameters
e < 0.1 and Tobt > 63 ks that are confidently consistent
with that of the GSN 069 EMRI and, of course, in the GW

emission dominated regime with tJ > tGW) to the total
TDE rate as

R⋆ð< 300M•Þ
R⋆ð< rhÞ

≈ 10−5; ð44Þ

where we have used the fact that only stars in the range
of r < 300M•; e ≈ 0 can possibly become GSN 069-like
EMRIs (see Fig. 5). The ratio becomes even lower if we
consider the mass-segregation effect where the star density
is expected to be suppressed at small radii [81–86].
Therefore, the stellar EMRI in GSN 069 unlikely comes
from the loss-cone channel, and a similar analysis also
applies to sBH EMRIs.
The Hills mechanism has been proposed as an efficient

EMRI formation channel, and the sBH EMRIs at coales-
cence from this channel were speculated to be nearly
circular due to the long inspiral phase [80]. However,
recent simulations that take the mass segregation effect into
account show that the orbital eccentricity of sBH EMRIs at
coalescence actually peaks at high eccentricity, following a
distribution similar to in the loss-cone channel [87]. For
EMRIs in the earlier inspiral phase with orbital semimajor
axis a ¼ Oð102M•Þ, the orbital eccentricity should be even
higher, which is in contrast with low-eccentricity EMRI
in GSN 069. From Fig. 5, the same conclusion can be
obtained. In the Hills mechanism, the bounded stars after
binary disruptions are highly eccentric, with eccentricity
e ≈ 0.98 [80]. The stars face the same two fates, and neither
of them ends as GSN 069-like EMRIs: Most stars end as
loss-cone TDEs, and the remaining small fractions of stars
evolve into stellar EMRIs; however, they are too eccentric
to become GSN 069-like EMRIs. A similar analysis also
applies to sBH EMRIs.
In the wet EMRI formation channel, a SMO orbiting

around an accreting SMBH can be captured by the accretion
disk as interactions (dynamical friction and density waves)
with the accretion disk tend to decrease to the orbital
inclination angle with respect to the disk. After captured
on the disk, the SMO migrates inward, driven by the density
waves and gravitational wave emission. The orbital eccen-
tricity is expected to be damped by the density waves
to e ∼ h, where h is the disk aspect ratio. The number
NSMOð< rÞ of SMO captured is determined by

∂

∂t
NSMO þ ∂

∂ ln r

�
NSMO

vr;mig

r

�
¼ FcapðrÞ; ð45Þ

where FcapðrÞ is the capture rate of SMOs from the nuclear
stellar cluster and vr;mig is the migration velocity in the radial
direction. The migration is dominated by the GWemission at
small separations and by the type-I migration at large
separations [67], vr;mig ¼ vr;GW þ vr;I, with

vr;GW ¼ −
64

5

mM2
•

r3
ð46Þ
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and

vr;I ¼ −ð2.7þ 1.1αsÞ
mΣr3Ω
M2

•h2
; ð47Þ

where αs ≔ d lnΣ=d ln r, ΩðrÞ is the disk angular velocity,
and hðrÞ is the disk aspect ratio [98,99]. To obtain the SMO
number NSMOð< rÞ, SMOs captured by the disk (disk
component) and those residing in the cluster (cluster
component) should be evolved self-consistently (see, e.g.,
Refs. [65–68]). Here, we focus on the distribution of disk-
component SMOs in the vicinity of a SMBH (r < 103M•),
where the capture rate is negligible and the distribution is
clearly NSMO ∝ r=vr;mig, in a steady state. As a result,
we obtain NSMO ∝ r4 in the GW emission dominated
regime and NSMO ∝ r−4 in the type-I migration dominated
regime for an α disk. In Fig. 6, we show the distributions
dNSMO=d ln r for a few AGN examples, where
dNSMO=d ln r, in general, peaks at r ¼ Oð102M•Þ for
SMBHs with masses in the range of 105−7M⊙. After the
AGN turns off, the SMOs will migrate inward, driven solely
by GWemissions, and the distribution of SMOs in the radial

direction will be reshaped, with the peak moving outwards
to a larger radius. Therefore, the EMRI in GSN 069 is
consistent with the wet channel expectation.
In the above analysis, we did not take the tidal circu-

larization process of the stellar orbit into account, which
turns out to be subdominant. As shown in Ref. [100],
the tidal circularization rate of the stellar orbit around a
SMBH is

dlne
dt

����
tide

≈−0.09T4=3
eff;5800M

2=3
env;0.02M

−1
⋆;⊙

�
M•

M⋆

�
2
�
R⋆

a

�
8

yr−1

≈5×10−10T4=3
eff;5800M

2=3
env;0.02

×

�
Tobt

64 ks

�
−16=3

M−2=3
•;6 M−3

⋆;⊙R
8
⋆;⊙ yr−1; ð48Þ

where Menv is the mass of the stellar convective envelope
and Teff is the stellar effective temperature. In comparison
with the circularization rate driven by GW emission [96],

d ln e
dt

����
GW

¼ −
304

15

M2
•M⋆

a4
gðeÞ

≈ −2 × 10−7gðeÞ
�

Tobt

64 ks

�
−8=3

M2=3
•;6 M⋆;⊙ yr−1;

ð49Þ

where

gðeÞ ¼ ð1 − e2Þ−5=2
�
1þ 121

304
e2
�
; ð50Þ

we find

ėjGW
ėjtide

≈ 400T−4=3
eff;5800M

−2=3
env;0.02

�
Tobt

64 ks

�
8=3

×M4=3
•;6 R

−8
⋆;⊙M

4
⋆;⊙gðeÞ: ð51Þ

Therefore, the tidal circularization was never dominant
compared with the GW emission, and it can be safely
ignored.
For the SMO settling down to a low-eccentricity orbit

around the central SMBH, Kozai-Lidov oscillations driven
by a third body must be quenched, e.g., by the apsidal
precession of the SMO. The quench condition that the
precession period is shorter than the Kozai-Lidov oscil-
lation period Ppre < PK−L has been derived as [101]

a33
a3

>
3m3að1 − e23Þ3=2
4M2

• ð1 − e2Þ3=2 ; ð52Þ

where m3, a3, and e3 are the mass, the semimajor axis,
and the orbital eccentricity of the third body. For the
EMRI system in GSN 069 with a ¼ Oð102ÞM•, the above

FIG. 6. Distribution dNSMO
d ln r of SMOs that are captured on an

AGN disk, where we have normalized the total number NSMO to
be unity. Stars follow the same distribution if they are not
destroyed in collisions with the AGN disk and with other stars
or sBHs. The AGN disk is modeled as an α disk with viscosity
parameter α and accretion rate Ṁ• (in units of Ṁ•;Edd).
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condition is guaranteed as long as m3 ≲M• (and of course
a3 > a). As shown in Ref. [102], the maximum orbital
eccentricity that could be excited turns out to be
emax ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ppre=PK−L

p
≪ 1, assuming an initial circular orbit

and a stellar mass third object m3 ≲ 102M⊙. Therefore,
Kozai-Lidov oscillations are not expected to drive the SMO
off the low-eccentricity orbit.
To summarize, the low-eccentricity EMRI with semi-

major axis a ¼ Oð102ÞM• [Eq. (34)] in GSN 069 seems
unlikely to be from the loss-cone channel or the Hills
mechanism, and it is consistent with the wet EMRI
channel prediction. In Fig. 7, we tentatively display the
whole history of GSN 069 EMRI formation in a previous

AGN phase and the ongoing QPEs from EMRI and TDE
disk collisions.

C. sBH EMRIs versus stellar EMRIs

In the EMRIþ TDE disk model, the secondary object
could be a normal star [32] or a sBH [33], which can predict
similar QPE properties and are not easy to be distinguished
from current QPE observations (see the above two refer-
ences for more detailed arguments). Identifying the nature
of the secondary object will be invaluable for accurately
predicting the rate of EMRIs detectable by spaceborne GW
detectors and for distinguishing different accretion disk
models in light of the increasing number of QPE detections.
Both models predict a decay in the orbital period due to

energy loss in the collisions with different rates Ṫobt [see
Eqs. (36) and (37)]. The current constraint is not suffi-
ciently accurate for distinguishing the two [see Eq. (33)].
Longer monitoring of the existing QPE sources is necessary
to pin down the orbital period decay rate Ṫob and,
consequently, identify the nature of the SMO.
In the two models, the lifetime of QPE activities might be

different. In general, three timescales are relevant to the
QPE lifetime [32,33]: the SMO orbital decay timescale
tdecay, the TDE disk lifetime tTDE disk, and the star survival
timescale t⋆;sur (for stellar EMRIs only). The decay time-
scale tdecay ≔ jTobt=Ṫobtj ¼ Oð103–104Þ yr [Eqs. (36)
and (37)] is much longer than tTDE disk ¼ Oð1–10Þ yr.
The star survival timescale interacting with the TDE disk
is rather uncertain. In Ref. [32], t⋆;sur is estimated as the star
mass ablation timescale,

t⋆;sur ≔
m⋆

Δm⋆

Tobt

2

≈ 160α0.01M
4=3
•;6 Ṁ

2
•;0.1T

2=3
obt;20m

2
⋆;⊙R

−4
⋆;⊙ yr; ð53Þ

within which the star loses most of its mass as it crosses the
TDE disk, and a small amount of gas Δm⋆ gets stripped
away each time due to the ram pressure. In this estimate,
the star survives sufficiently long, and the lifetime of QPE
activities will be roughly tTDE;disk. In Ref. [33], t⋆;sur is
estimated by comparing the impact energy δE⋆ with the
star binding energy Ebind ≔ Gm2

⋆=2R⋆,

t⋆;sur≔
Ebind

δE⋆

Tobt

2

≈12α0.01Ṁ•;0.1M
1=3
•;6 T

2=3
obt;20ðsin ιsdÞ−1m2

⋆;⊙R
−3
⋆;⊙ d: ð54Þ

This estimate gives a much shorter star survival time and
disfavors the stellar EMRI model. Therefore, the lifetime of
QPE activity is roughly equal to the TDE disk lifetime
Oð1–10Þ yr in the sBH EMRI model, while it is much more
uncertain in the stellar EMRI model due to the uncertain
star survival time. Detailed simulations of star-disk

FIG. 7. Cartoon plot showing the whole history of GSN 069
EMRI formation and QPE production. (1) In a previous AGN
phase, a SMO is captured on the AGN disk and migrates inward,
driven by density waves, until r ¼ Oð102ÞM•, where GW
radiation takes over; (2) after the AGN turns off, the SMO
resides on a nearly circular orbit with radius r ¼ Oð102ÞM•; (3) a
star is partially tidally disrupted, and the stripped gas forms a
TDE disk later; (4) the regular phase of QPEs starts when the gas
settles down into a TDE disk, which takes a few years to be
aligned on the equator; (5) the regular QPE phase is disturbed by
the second tidal disruption of the star; (6) a new regular QPE
phase starts after the gas from the second (p)TDE settles down.
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collisions are necessary for figuring out the star survival
time. Once confirmed, the lifetime of QPE activities will be
useful in distinguishing the two models.
Both models predict the strong-weak pattern in the

QPE intensities, though with different dependence on the
orbital eccentricity: δEsBH ∝ Σr ∝ r5=2 and δE⋆ ∝ Σr−1 ∝
r1=2 from Eqs. (2) and (4). Therefore, the strong-weak
QPE intensity contrasts are ðIstrong=Iweak − 1Þ ≤ ðra=rp −
1Þ5=2or1=2 ≈ 5e or e in these two models, respectively. For
GSN 069, the intensity contrasts are roughly 30% (see
Fig. 1), requiring an orbital eccentricity e ≈ 0.06 for the
sBH EMRI and e ≈ 0.3 for the stellar EMRI. The EMRI
orbital eccentricity obtained from the QPE timing is e ¼
0.04þ0.04

−0.03 at the 2-σ confidence level, which favors the sBH
EMRI. However, this inference depends on the standard α
disk assumption, with the disk surface density Σ ∝ r3=2, the
accuracy of which is not yet confirmed for TDE disks.
For example, in the β disk model where Σ ∝ r−8=5 [42], the
conclusion will be the opposite. An important consequence
of this dependence on the disk surface density profile is that
the QPEs can be used as a probe to different accretion disk
models as long as the nature of the SMO is confirmed, say,
via the orbital change rate Ṫobt or the star survival time t⋆;sur
as explained in the previous paragraphs.
In the above intensity analysis, we have implicitly

assumed the symmetry of the emissions about the midplane
of the disk after being shocked by the SMO from either
direction, i.e., I↑γ↓v ¼ I↓γ↓v and I↑γ↑v ¼ I↓γ↑v, where ↕v denote
the SMOmoving directions and the ↕γ denote the emission
directions. The (approximate) symmetry has been veri-
fied in local simulations of sBH-disk collision [40]
but may not be true for star-disk collisions, where the
emission could be preferably on one side of the post-
collision disk due to the large geometrical size of the star.
Such kinds of asymmetry are indeed observed in our
global HD simulations with different geometrical sizes of
SMO colliding with the disk (see Appendix C for more
details). Specifically, with a large softening/sink particle
radius to mimic the star-disk collision, the integrated
density and temperature perturbations from the lower and
upper disks behave more asymmetrically than the smaller
softening case. However, this kind of asymmetry is not as
strong as we expect. We suspect that this could be due to
the fact that we have not explored the extremely large
geometry size contrast for these two scenarios, which is
unlikely feasible in our global HD simulations.
In the above intensity analysis, we have also assumed a

steady axisymmetric accretion disk. In fact, the TDE
disk might be lopsided or eccentric [103]. Though the
nonaxisymmetric nature of the disk does not change the
alternating strong-weak pattern in the QPE intensities,
it is expected to modulate the QPE intensities on the
SMO orbital precession timescale as the collision posi-
tions vary.

D. Model imitations and future work

In this work, we have focused on the analysis of the QPE
source GSN 069. In principle, one can conduct a full
parameter inference on the EMRI orbital model and the
flare emission model. In fact, it is not straightforward to
accurately model the QPE light curves with simple emis-
sion models. In this work, we used an expanding plasma
ball model and a phenomenological model, both of which
might be subject to some systematics in determining the

flare starting times tðkÞ0 � σðtðkÞ0 Þ (see discussion about
identifying possible systematics from HD simulations in
Appendix C). To mitigate the impact of these potential
systematics, we multiply the uncertainties by a scale factor
Ft in inferring the EMRI orbital parameters from the flare
starting times. Another degree of freedom we did not
consider in this work is the SMBH spin, which drives
Lense-Thirring precession and consequently modulates the
QPE recurrence times.
We will improve these model limitations and apply the

improved analysis on all the existing QPE sources in a
follow-up work, where the SMBH spin is straightforward
to take into consideration in the EMRI orbits. The emission
model systematics may be improved with a simulation
motivated model and/or a hierarchical inference method
[104] widely used in the GW community.
Recently, QPEs with recurrence times of ∼3 weeks were

found in the source Swift J0230þ 28 [105,106], and it is
interesting to see whether these QPEs fit in the same
framework.
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APPENDIX A: CONSTRAINTS ON THE
PARAMETERS OF THE EMISSION MODEL

AND THE FLARE TIMING MODEL

Figure 8 displays the posterior corner plot of the plasma
ball model parameters for the second flare in XMM 5. In
Fig. 9, we show the evolution of the plasma ball size RðtÞ
and the effective temperature TeffðtÞ, and its spectral
evolution in the best-fit model of the second flare in
XMM5. Around the peak of the QPE luminosity, the

plasma ball effective temperature is ≈0.5 keV, which is
higher than the observed value by a factor of 2–3, though
the uncertainty in the initial temperature is large (see
Fig. 8). This tension implies the limitation of the simple
expanding plasma ball emission model. This is one of the
reasons we consider an alternative phenomenological
model for fitting the QPE light curves.
Figure 10 displays the posterior corner plot of the EMRI

orbital parameter constrained by the flare starting times tðkÞ0

FIG. 8. Corner plot of the emission model parameters of the second flare in XMM5: t0½sec�; R0½cm�; Te0½keV�; τm½hour�;
vsc½c�; B½erg=s�; A½erg=s�; PQPO½ks�;ϕQPO; F, where each pair of vertical lines denotes the 2-σ confidence level.
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shown in Table I. All the angles defining the orbital plane
orientation and the LOS direction are not well constrained
saturating their priors, but the posteriors of the intrinsic
orbital parameters yield important clues about the EMRI
formation history as explained in Sec. IV.

APPENDIX B: SCATTER EXPERIMENTS
OF THE REMNANT STAR AND SMO

If the new period TðnewÞ
sum in XMM 12 turns out to be

largely different from those in the old regular phase and in
the irregular phase, this new phase will pose a challenge to
many existing models, including the EMRIþ TDE disk

model. There was some speculation that the shorter TðnewÞ
short

and TðnewÞ
sum are the result of a large change in the EMRI

orbital (∼10% decrease in the semimajor axis and ∼0.2
increase in the eccentricity) after a close encounter with the
remnant star at its pericenter during TDE 2. We examine
this speculation using scattering experiments, and we find
that such a large orbital change seems unlikely.
In order to test whether the orbital eccentricity of the

SMO can be excited during the close encounter with the
remnant star, we perform scatter experiments with N-body
simulations to follow the orbital evolution of the sBH or the
star during and after the TDE 2 event.

We use a fourth order Hermite integrator with a block
time step [107] to calculate the orbital evolution of the two
bodies. We first consider the case where a remnant star
that has experienced TDE 1 and a sBH are orbiting a
SMBH. The masses of the remnant star, the sBH, and the
SMBH are set to 2.5M⊙, 10M⊙, and 106M⊙, respectively.
The remnant star has a pericenter distance of 100M• and an
orbital period of 9 years, which yields an eccentricity of
0.9954. The orbital inclination of the star is set to 0. The
sBH has an initially low eccentricity of 0.05 and a semi-
major axis of 160M•. The orbital inclination of the sBH is
randomly chosen from 0 to π. The other orbital elements
(the longitude of the ascending node, the argument of the
pericenter, and the time of the pericenter passage) are
randomly chosen from 0 to 2π. We also consider the case
where the remnant star encounters another star instead of a
sBH near the pericenter. In this case, the sBH is replaced by
a star of 1M⊙. The orbital parameters remain unchanged.
In both cases, we integrate the system for roughly half an

orbit of the remnant star to capture the orbital change of the
SMO before and after the close encounter with the remnant
star at the pericenter. A softening parameter ϵ ≃ 2R⊙ is
used for the close encounter. In each case, 1000 simulations
are performed. No close encounters lead to a 10% decrease
in the orbital semimajor axis or a 0.2 increase in the orbital
eccentricity.

APPENDIX C: HD SIMULATIONS
OF SMO-DISK OSCILLATIONS

We carry out a few 3D hydrodynamical simulations for
the SMO-disk collision using Athena++ [108]. The thin
disk is initialized with an aspect ratio of h=r ¼ 0.03, and an
α viscosity [41] is implement with α ¼ 0.1. For simplicity,
the SMO collides vertically with the disk around the central
SMBH. The SMO is initially far above the midplane such
that the gravitational interaction between the SMO and the
disk is weak. The motion of the SMO is prescribed by only
the vertical velocity −vk while fixing cylindrical R ¼ r0
and azimuthal ϕ ¼ 0 locations in time, where vk is the local
Keplerian velocity.
The gravitational potential of the SMO is softened with

the classical Plume potential, with a softening scale of ϵ,
and the accretion of the SMO is modeled as a sink particle
with the same softening radius ϵ. The softening/sink radius
mimics the physical size of the SMO. We adopt different
softening/sink radii (ϵ ¼ 0.1RH and ϵ ¼ 0.3RH) to quan-
tify the effect of the different physical size of the SMO on
the collision-induced emission, where RH is the Hill radius
of the colliding object. With a mass ratio of q ¼ 10−3 and
RH ¼ 0.07r0, this leads to ϵ ¼ 0.007r0 and ϵ ¼ 0.02r0,
respectively. A relatively large mass SMO is adopted to
save the computational cost, as it is very challenging to well
resolve the sink radius of the realistic mass ratio object even
with grid refinement, e.g., q≲ 10−5. The softening scale

FIG. 9. Details of the best-fit model of the second flare in
XMM5. Top panel: evolution of the plasma ball radius and
effective temperature, RðtÞ; TeffðtÞ. Bottom panel: spectral evo-
lution of the plasma ball emission, where eruptions measured in
higher energy bands are stronger, peak earlier, and have shorter
duration than when measured at lower energies.

ZHOU, HUANG, GUO, LI, and PAN PHYS. REV. D 109, 103031 (2024)

103031-18



adopted here is still too large compared to the size of the
sBH, which is way too small to simulate numerically. For
stellar-mass black hole collision, the sink hole radius could
be as small as the event horizon of the sBH and orders of
magnitude smaller than the Bondi/Hill radius of sBH. The
case with a larger softening size is adopted for the case of
star-disk collision, for which the physical size of the star is
usually much larger than the Bondi radius.

We evolve the gas adiabatically, with an adiabatic
index γ ¼ 4=3. The disk is resolved with a root grid of
½nr; nθ; nϕ� ¼ ½128; 16; 512�, where the radial domain is
½0.5; 2.5�r0, and a 3.5 disk scale height is modeled in the θ
direction.Three levels of static refinementwith a refine sphere
of δr ¼ 0.07r0 around the midplane are adopted to well
resolve the collision location.As such,we canwell resolve the
Hill radius of the SMO with 40 grids in each dimension.

FIG. 10. Posterior corner plot of the flare timing model parameters: a½M•�; e; α; β; γ; Tobt½sec�; tini½sec�; θobs; Ft, where each pair of

vertical lines denotes the 2-σ confidence level. The data used are the flare starting times tðkÞ0 shown in Table I.
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After the SMO-disk collision, there exists strong shocks
which heat the gas around a narrow band of the collision
site. By checking the vertical density and pressure distri-
bution as shown in Figs. 12 and 13, the postcollision
perturbation is asymmetric above and below the disk
midplane. There is a dense blob above the midplane before
t ¼ 0.5, i.e., prior to the collision at the midplane. The hot
blob expands radially and vertically, suffering from shear-
ing motion of the disk, which can induce spiral arms in the
disk. The perturbation then becomes stronger at the lower

half plane of the disk, i.e., after the collision at the
midplane. This asymmetric pattern is slightly stronger for
the star-disk collision with a larger ϵ (at time t ¼ 0.6 of
Figs. 12 and 13).
The shocked-heated dense blob will be responsible

for the x-ray emission in observations. To quantify the
emission features, we calculate the perturbed disk mass
around the collision site r ¼ ½0.8; 1.2�r0, and we integrate
the disk mass from the upper and lower halves of the disk
for two different softening/sink radii, shown in Fig. 14.

FIG. 11. Similar to Fig. 10, except the data used are the flare starting times tðkÞ0 in Table II.
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It is clearly seen that the perturbation is most prominent
in the upper half of the disk before the collision and then
becomes stronger later at the lower half of the disk. As
expected, there is a time delay between the peaks of the
perturbed disk mass for the upper and lower disks, though
this time the delay may suffer from the boundary
condition effect in the θ direction as we do not simulate
the full θ domain of the disk. The difference of the
integrated mass is not that large, although the local

asymmetry of the density and pressure shown in
Figs. 12 and 13 is stronger.
In addition, along the moving direction of the SMO, the

burst actually consists of two components: a “precursor”
burst at the moment of the shock breaking out of the disk
surface (t ¼ 0.6 in Figs. 12 and 13) followed by a main
burst sourced by the heated gas in the shocked column. In
either light curve model, the former component is not
modeled, and this is a possible reason that Ft > 1.

FIG. 12. Density (upper panels) and pressure (lower panels) distribution in the R�Z plane with a slice along the azimuth of the
colliding object, i.e., ϕ ¼ 0. The colliding object has a softening/sink radius of ϵ ¼ 0.007r0. Different columns correspond to different
times in units of the local Keplerian orbital period. The small open circle denotes the position of the colliding object.

FIG. 13. Similar to Fig. 12, but with ϵ ¼ 0.02r0.
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