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The equation of state dependence of a neutron star’s astrophysical features is key to our understanding of
isospin asymmetric and dense matter. There exists a series of almost equation of state independent relations
reported in the literature, called quasiuniversal relations, that are used to determine neutron star radii and
moments of inertia from x-ray and gravitational wave signals. Using sets of equations of state constrained
by multimessenger astronomy measurements and nuclear-physics theory, we discuss quasiuniversal
relations in the context of future gravitational wave detectors Cosmic Explorer and Einstein Telescope, and
the Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays.. We focus on relations that
involve the moment of inertia I, the tidal deformability Λ, and the compactness C: CðΛÞ, IðΛÞ, and IðCÞ.
The quasiuniversal fits and their associated errors are constructed with three different microphysics
approaches which include state of the art nuclear physics theory and astrophysical constraints.
Gravitational-wave and x-ray signals are simulated with the sensitivity of the next generation of detectors.
Equation of state inference on those simulated signals is compared to determine if it will offer a better
precision on the extraction of a neutron star’s macroscopic parameters than quasiuniversal relations. We
confirm that the relation IðΛÞ offers a more pronounced universality than relations involving the
compactness regardless of the equation of state set. We show that detections with the third generation
of gravitational wave detectors and future x-ray detectors will be sensitive to the fit error marginalization
technique. We also find that the sensitivity of those detectors will be sufficient in that using full equation of
state distributions leads to significantly better precision on extracted parameters than quasiuniversal
relations. We also note that nuclear physics theory offers a more pronounced equation of state invariance of
quasiuniversal relations than current astrophysical constraints.

DOI: 10.1103/PhysRevD.109.103029

I. INTRODUCTION

As the densest stars in the Universe, neutron stars are
particularly well suited to investigate ultradense matter. Our
understanding of the innermost layers of neutron stars
remains uncertain due to limitations of nuclear physics
laboratories to reach equivalent regimes of temperature and
density. Neutron star astrophysical features strongly depend
on the equation of state of ultradense matter, thus offering
the opportunity to probe the neutron star interior with
multimessenger astronomy. On the other hand, a series of
relations between various neutron star observables, referred
to as quasi (or almost) universal relations, were empirically
found to depend weakly on the exact equation of state [1].
While the perfect universality (as per the no-hair theo-

rem) of isolated and stationary black holes in the gravita-
tional theory of general relativity is, in principle, not
applicable to compact stars, their external gravitational
field presents features that are almost independent of the
neutron star’s interior. This (almost) universality applies to

nonmagnetized neutron stars on a static metric in general
relativity and holds for magnetized (e.g., [2]) and spinning
neutron stars (e.g., [3–5]), as well as in modified gravity
theories (e.g., [6]). The underlying physics of this univer-
sality has been connected to approximate no-hair relations,
where high order multiple moments of compact stars are
approximately determined by low order multipole moments
(e.g., [7,8]), and to the self-similarity of isodensities in
compact stars (e.g., [9]). For a detailed introduction and
history of universality in compact stars, as well as the
derivation of the approximate no-hair relations, details on
the I-Love-Q relations and also on the black-hole limit of
this almost universality, we refer to the extensive review
and work of Ref. [10] and references therein.
Quasiuniversal relations between macroscopic properties

of neutron stars are well suited to extract one parameter
from the measurement of others. The era of multimessenger
astronomy has allowed for the detection of various astro-
physical neutron star features and is expected to provide
increasingly more precise observational data in the future.
The measurement of post-Keplerian parameters in binary
systems via pulsar timing has provided the most precise*lsuleiman@fullerton.edu
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measurements of neutron star’s gravitational mass M, see
e.g., Refs. [11–15]. Various wavelengths of the electro-
magnetic spectrum (radio, x-ray, and optics), as well as
gravitational wave signals from binary neutron star merg-
ers, have provided a large number of mass measurements.1

The Neutron Star Interior Composition Explorer (NICER)
telescope, which relies on the effects of general relativity
on the detection of hot spots on the surface of a rotating
neutron star, has provided the simultaneous measurement
of both the gravitational mass and the radius R for
J0030+0451 [16,17] and of R for J0740+6620 [18,19]
with an independent mass measurement based on radio
pulsar timing [20]. The future Spectroscopic Time-
Resolving Observatory for Broadband Energy X-rays
(STROBE-X) [21] is expected to offer measurements of
mass-radius contours two to three times tighter. The tidal
deformability Λ of a neutron star was constrained for the
first time from the gravitational wave measurement of the
double neutron star binary merger source GW170817 [22].
The significant increase in sensitivity of the next genera-
tion of gravitational wave detectors, such as the Cosmic
Explorer (CE) [23] and the Einstein Telescope (ET)
[24–26], is expected to increase the number and precision
of such observations by orders of magnitude. Double pulsar
binaries are the most promising systems to detect the star’s
moment of inertia I; the famous double pulsar PSR J0737-
3039, for which more than 15 years of data was gathered
[27], has not yet permitted the direct measurement of the
moment of inertia. However, Ref. [28] has been able to use
a quasiuniversal relation that involves I,M, andΛ to extract
constraints on the moment of inertia of J0737-3039A.
In this paper, we assess the quasiuniversality of three

relations and discuss their usefulness in the context of next
generation of detectors. We compare the precision achieved
on the radius and moment of inertia of a source when using
quasiuniversal relations to that derived from full equation
of state inference. In Sec. II, the quasiuniversal relations
used in this paper and the equation of state sets, on which
they are based, are discussed. We then give details on
quasiuniversal relations fits and how to introduce a fit error
based on the set of equations of state considered. In Sec. III,
we compare the quasiuniversal relations designed with
different equation of state sets. We simulate next-generation
detections and demonstrate the use of quasiuniversal
relations to extract parameters that are not directly mea-
sured. We then discuss the impact of different margin-
alizations of the fit error on the extraction of neutron stars
macroscopic parameters. Finally, we use equation of state
inference from the same simulated detections and compare
to the accuracy of parameter extraction with quasiuniversal
relations. In the Appendix, we present the mass, radius,

tidal deformability, and moment of inertia modeling, as
well as parameters for the quasiuniversal relation fits.

II. METHODS

In this paper, we explore astrophysical features of a
neutron star within the theory of general relativity. The
mass M and radius R are found using the Tolman-
Oppenheimer-Volkov (TOV) [29,30] differential equations
closed by an equation of state (EOS). The moment of
inertia I is determined in the slow-rotation approximation
of Ref. [31] and the tidal deformability follows the quadru-
pole perturbation derivation of Ref. [32] derivation. For
details on the modeling of macroscopic parameters, see
Appendix B.

A. Quasiuniversal relations

1. CðΛÞ, IðΛÞ, and IðCÞ
In this paper, we study the following quasiuniversal

relations:
(1) The relation between the compactness and the

dimensionless tidal deformability CðΛÞ, with
C ¼ GM=ðRc2Þ. In the assumption that this relation
is equation of state independent, it has been used to
extract the radius of a neutron star from the gravi-
tational wave measurement of its mass and tidal
deformability, see e.g., Ref. [33].

(2) The relation between the dimensionless moment of
inertia Ī ¼ Ic4=ðG2M3Þ and the dimensionless tidal
deformability ĪðΛÞ. In the assumption that this
relation is equation of state independent, it can be
used to extract the moment of inertia from the
gravitational wave measurement of the mass and
tidal deformability, see e.g., Ref. [28].

(3) The relation between the dimensionless moment of
inertia and the compactness ĪðCÞ. In the assumption
that this relation is equation of state independent, it
can be used to extract the moment of inertia from the
simultaneous measurement of the mass and radius
by telescopes such as NICER or STROBE-X, see
e.g., Ref. [34].

Not all of the above mentioned relations are equally
equation of state independence (see Refs. [10,35]), but they
are all described in the literature as quasiuniversal. It is
also possible to parametrize them using what is referred to
as fits, see, e.g., Refs. [1,10,36–40] or Sec. II C 2 of the
present paper. Universality suggests that the relations
studied in this paper should relate astrophysical features
of neutron stars for any description of the neutron star
interior, i.e., for any EOS. It should then be possible to use
widely varying EOSs (only causal and thermodynamically
consistent) and still retain the quasiuniversality in the
relations. Such relations would not change due a decreased
EOS variability related to our increasing knowledge on the

1For a list of neutron star mass measurements with reported
precision, see https://compose.obspm.fr/resources.
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behavior of ultradense matter, or our bias in considering
certain EOSs. However, in practice, the introduction of
astrophysical and nuclear constraints on the EOS lead to
updated fits of the quasiuniversal relations. This reflects a
observation-driven narrowing of the EOS range rather than
full universality. Observations can include both astrophysi-
cal data and nuclear physics data; see, e.g., Refs. [37,40].

B. Equations of state sets

In this paper, we compare quasiuniversal relations
established from several observation-informed EOS sets.

1. Nuclear physics based set

The first set comprises 61 EOSs established from full
nuclear physics calculations. The EOSs are gathered from
Ref. [41] to which we add seven EOSs presented in
Ref. [42]. They describe cold and catalyzed β-equilibrated
matter as such thermodynamic conditions are relevant for
isolated “adult” (not proto) neutron stars and for the inspiral
phase of a neutron star merger.2

The EOSs of this set were computed with two different
nuclear physics approaches: relativistic mean field theory
(x39) and Skyrme force energy density functionals (x22).
Among the relativistic mean field models are included ten
EOSs with a hyperonic core (for a recent review on
hyperonic compact stars, see Ref. [43]) and 14 hybrid
models with a core quark phase transition (see, e.g.,
Refs. [44,45]); the rest have nucleonic cores.
All EOSs of this set follow thermodynamic consis-

tency; note that the Skyrme density functional is based on
a nonrelativistic approach that does not guarantee sound
speed causality. They are unified, meaning that the crust
(low density) and the core (high density) have been
calculated with the same nuclear physics model; we refer
to Ref. [46] for a discussion on the role of nonunified
EOSs in neutron star modeling. A large majority of them
also permit the direct Urca process, a neutrino emission
reaction, which x-ray observations indicate exists in
neutron stars [47]. They all meet at least the mass
constraint imposed by the 1σ pulsar timing measurement
of the millisecond pulsar J0740+6620 with a mass of
2.08� 0.07M⊙ [20].3 Overall, this set comprises various
core compositions and nuclear approaches, with reason-
able microphysics parameters when compared to modern
nuclear physics laboratory (see Ref. [46]) and astrophysics

measurements, while keeping a certain variability in their
nuclear physics features.

2. Agnostic sets

The two other sets are based on an agnostic approach,
that is to say that the EOSs are not constructed with specific
nuclear physics calculations. The point of such sets is to
explore the parameter space of pressure and density and to
go beyond our usual EOS constructions. In the following,
we discuss two agnostic sets: one parametric which we will
refer to as the “metamodel” set, and one nonparametric,
later on referred to as the “Gaussian process” set.
The first of the agnostic sets is based on Ref. [49]. To

construct one EOS, the nuclear empirical parameters that
are the saturation density, the energy of symmetric matter at
saturation density, the symmetry energy, the isoscalar and
isovector incompressibility, skewness and kurtosis, the
nucleon effective mass, and the effective mass isosplit
are randomly thrown in intervals determined by nuclear
physics laboratory experiments. Taking advantage of chi-
ral-effective-field theory calculations presented in Ref. [50]
for pure neutron matter, the β-equilibrated EOSs can be
constrained. For a given collection of nuclear empirical
parameters, the low density part of the EOS is reconstructed
according to the metamodeling approach discussed in
Ref. [51], with a compressible liquid drop model for the
inhomogeneous crust. The high density part is constructed
with five polytropes for which the adiabatic index and the
polytropic constant are randomly thrown. The metamodel
set, respects thermodynamic consistency, sound speed
causality, and provides EOSs in accordance with nuclear
physics laboratory experiments while keeping the freedom
permitted by the unknown core behavior and the error bars
of nuclear experiments at low density. It is a parametric
approach, that is to say it follows a specific functional,
which implements bias. This set is constrained by the
pulsar timing mass measurement of the millisecond pulsar
J0740+6620; it is composed of 5 × 104 EOSs and is
denoted MMþ χ þ PSR.
The second agnostic set is publicly available and con-

structed with the Gaussian process approach discussed in
Ref. [52]. Contrary to a parametric approach, the Gaussian
process EOSs are not bound by the functional chosen to
parametrize and therefore avoids the sort of bias inherent to
parametrized constructions [53,54], e.g., the discontinuous
sound speed of piecewise polytropes in the metamodel set.
The Gaussian process set at high density is trained on fifty
nuclear physics based EOSs; the selection of EOSs con-
stitutes a bias, but the training is believed to be sufficiently
loose that this bias is tamed. The low density part of the
EOS is conditioned on three crust EOSs. Contrary to the
metamodel, this set does not enforce nuclear physics
constraints on the crust, a connected core-crust transition,
or χEFT constraints. It follows thermodynamic consistency
and sound speed causality. This set of EOSs is constrained

2We acknowledge that a global thermodynamic equilibrium
(catalyzed) neutron star crust may not be appropriate to describe
some of the potential STROBE-X sources located in accreting
binaries, but nevertheless, we reasonably neglect the impact of an
accreted crust on the modeling of macroscopic parameters.

3In Ref. [41], the mass constraint follows J1614 − 2230
measured at 1.908� 0.016M⊙ [48], which is why in our set
we did not include H3, hyperonic DD2 and FSU2H, BSk19,
KDE0v1, SKOp and BCPM.
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by the mass of J0740+6620, NICER measurements, and by
the tidal deformability measurement of GW170817, we
refer to it as GPþ astro.
The relation between the pressure P and the baryonic

density nB for the two agnostic sets is presented in Fig. 7 in
Appendix A.

C. Parameter extraction

1. Parameter extraction from future astrophysical
detections

We refer to parameter extraction as determining the value
of an astrophysical parameter from the measurement of one
or several others. To do so, one can either use:

(i) Quasiuniversal relation fits: the measurement of two
neutron star parameters lets us extract the measure-
ment of a third directly from the relation.

(ii) EOS inference: the detection of two neutron star
parameters is used to additionally constrain the set of
EOSs using Bayesian inference, and the constrained
EOSs are used to compute the third parameter based
on the measured values.

For example, using a mass and tidal deformability meas-
urement, we can estimate the radius from the quasiuniversal
relation CðΛÞ, or we can use hierarchical inference to
update the set of possible EOS and use the resulting set to
find the radius from the mass measurement.
The relations presented in Sec. II A 1 are preferred in

parameter extraction because of their simplicity of use and
the idea that we can count on the universality to retain a
tight error bar on the extracted parameter. In previous
usage, quasiuniversal relations were broadly equivalent in
parameter extraction when compared to direct EOS infer-
ence (for example, in GW170817 Ref. [33]). But in the
context of increasing detector precision, we have to assess
whether the detector precision overcomes the EOS depend-
ence of the relations discussed in this paper. In other
words, we study if quasiuniversal relations conditioned on
state of the art astrophysics and nuclear physics will be
sufficient for a precise parameter extraction in the context
of current and future detectors or if EOS inference with
next-generation astrophysical measurements provides sig-
nificantly better error bars on the extracted parameters.
To assess those two points, we will simulate neutron-star

gravitational wave and x-ray detections and estimate their
associated errors:

(i) A GW170817-like double neutron star binary
merger emitting gravitational waves, for which
individual masses and tidal deformabilities are
recovered. One of the neutron stars of the binary
has a massMgw ¼ 1.5M⊙ to which the tidal deform-
ability Λgw ≃ 470 is determined by the unified
equation of state model DD2 [55] as presented in
Ref. [46]. We use the precision reported in Ref. [40]
as well as parameter estimation operated with the

public software B ilby [56] to simulate the error
associated to the mass and tidal deformability, along
with a bivariate normal distribution peaked on Mgw

and Λgw. We use two detector sensitivities: projected
O4 sensitivity of Laser Interferometer Gravitational
Wave Observatory (LIGO) and Virgo facilities
(denoted GW-O4) and third generation telescopes
Cosmic Explorer and Einstein Telescope sensitivity
(denoted GW-3G).4

(ii) An x-ray source with a neutron star mass Mxray ¼
1.4M⊙ and a radius established from the equation
of state model DD2 Rxray ≃ 13.16 km. We use the
precision reported in Ref. [17] for the detector
sensitivity denoted NICER and the projected sensi-
tivity reported in Ref. [21] denoted STROBE-X to
simulate a distribution of masses and radii using
a bivariate normal distribution peaked on Mxray

and Rxray.

2. Performing fits on agnostic equation of state sets

The usual approach for parameter extraction with qua-
siuniversal relations is to use parametrized functions
(usually a polynomial) fitted to macroscopic parameters
computed with a set of EOS and reported with a precision
that attests to the largest difference between the fit and the
set’s macroscopic parameters.
The first fits available were based on a limited number of

EOS models. For example, the fits presented in Ref. [36]
used three EOSs with purely nucleonic cores; the reported
precision of 2% for the relation CðΛÞ was shown in
Ref. [46] to be too small when compared to several
EOSs of various stiffness. Recognizing that the so called
“universal” relations were only quasi-independent of the
description of neutron star’s interior, efforts were made to
fit to larger sets of nuclear physics based EOSs, including
various core compositions thus increasing the reported
error of the fits; for example, in Ref. [10], the fits were
performed using 20 EOSs with nucleonic cores, seven
EOSs with hyperonic or kaon cores and three quark stars; a
reported precision of 6.5% is given for neutron stars and
15% for quark stars. As a neutron star’s core composition
remains unknown, a bias may be introduced by performing
the fit on sets containing more nucleonic models than
hybrid or hyperonic ones. Bias may also be introduced by
the nuclear physics approach used for the set of EOSs on
which the fits are based: relativistic mean field based
models tend to be stiffer than, e.g., Skyrme energy density
functional models. To mitigate the impact of these choices,

4The sensitivity curves for Cosmic Explorer (CE) and Einstein
Telescope (ET) (ET-D design [57]) used to simulate the signal in
this paper can be found at https://dcc.ligo.org/LIGO-T1500293/
public.Updated sensitivityET-Dcurveswere provided inRef. [26],
recently, but conclusions of our paper remain robust.
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we choose sets of EOSs that are more agnostic, as has been
done, e.g., in Refs. [35,37,58].
In this paper, we fit each of the three relations presented

in Sec. II A 1 with the different EOS sets considered in this
paper. For each relation and each set, a nonlinear least
square method is used to determine the parameter ak with
k∈ ½0; 5� in

Cfit ¼
X5
k¼0

akðlnΛÞk; ð1Þ

ln Īfit ¼
X5
k¼0

ak lnðΛÞk; ð2Þ

Īfit ¼
X5
k¼0

akC−k: ð3Þ

The fits are performed using macroscopic parameters of
neutron stars with at least a mass of 1.0M⊙ up to the last
stable mass configuration. An error range is associated to
each fit and denoted ðΔXfitÞS with X the fitted quantity and
S the set of EOSs. The error is assessed from the full range
of the (finite) nuclear set and the 99% percentiles of the
GPþ astro set and MMþ χ þ PSR set. For the GPþ astro
and MMþ χ þ PSR sets, there are no defined edges to the
range because the EOSs are drawn from an underlying
distribution that can, in principle, extend to infinity. The fit
parametrizations for CðΛÞ, ĪðΛÞ, and ĪðCÞ presented in
Ref. [10] (later denoted Yagi and Yunes) are also used as a
comparison.

3. Marginalization of the error

To include the fit error ðΔXfitÞS in the extraction of a
parameter, we specify a marginalization over this systematic
uncertainty, as seen previously in, e.g., Refs. [33,40,59]. This
is done by introducing an extra parameter δX with a random
distribution reflecting the fit uncertainty. Each extracted
parameter is multiplied by a factor ð1þ δXS

fitÞ. For example,
when applying Cfit as in Refs. [33,59], the marginalization
consists of drawing the fit error parameter δX from a
Gaussian function peaked at zero with standard deviation
ðΔCfitÞS=3Cfit, so that results arewithinΔCfit at 3-σ.We refer
to this technique as the Gaussian marginalization.
In the absence of information on the distribution of

macroscopic parameters computed from the EOS set
used to perform the fit, we propose that users choose a
uniform distribution instead of a Gaussian one: δXS

fit ∈
½−ðΔXfitÞS; ðΔXfitÞS� is randomly drawn from a uniform
distribution; we refer to this approach as uniform margin-
alization. It leads to a larger error on the extraction of the
macroscopic parameter but avoids preferring the exact fit. To
illustrate that the distribution of points is not necessarily a
Gaussian for a given set of EOS, we present the distribution

of compactness and dimensionless moment of inertia around
the fit for equation of state sets in Appendix C.
We also show the extremes of the quasiuniversal relation

as a way to represent the systematic uncertainty. We
consider XS

fit�ðZÞ ¼ XS
fitðZÞ � ðΔXfitÞS. We perform the

parameter extraction at each extreme of the range and
obtain two distributions which represent the two extremes
of the fit error. We refer to this approach as the fit limits.

III. RESULTS

A. Comparison of the different equation of state sets

In Fig. 1 we present the relations of Sec. II A 1
established from different sets of EOS: the nuclear set,
the GPþ astro, and the MMþ χ þ PSR set. In black is also
presented the fits of Yagi and Yunes.
The agnostic GPþ astro set presents the largest EOS

variability. It explores a larger space than the nuclear set
and the agnostic MMþ χ þ PSR set, and overlaps them
both, showing that the chiral effective field theory con-
straints used in the metamodeling approach offer stronger
constraints than current astrophysical measurements from
NICER and GW170817. We note also that the GPþ astro
set does not encompass the metamodel (nor the nuclear)
set in a symmetric way, particularly at low compactness:
the metamodel set favors higher tidal deformabilities and
moment of inertia, in other words, stiffer EOSs.
The nuclear set and the metamodel do not perfectly

overlap, as some of the EOSs used in the nuclear set are
not in accordance with chiral effective field theory con-
straints. The nuclear set is in good accordance with the fit of
Yagi and Yunes, which was also based on complete nuclear
physics calculation EOSs. The nuclear set was established
using 61 EOSs with various core compositions (including
deconfined quarks), however, it has stronger EOS invariance
than the Yagi and Yunes fit based on ∼30 EOSs. The error
associated to the Yagi and Yunes fit of CðΛÞ is of 6.5% and
15% excluding and including quark stars, respectively. Our
fit for this relation gives a 6%maximum error (see Table I in
theAppendixD) even though it includes a significant portion
of hybrid models. The smaller error is related to the selection
of modern EOSs which are calibrated to astrophysical and
nuclear physics data: for example, the set used to establish the
Yagi and Yunes fit includes models with low radii at fixed
mass (i.e., high tidal deformability and moment of inertia),
for which microphysics parameters have been disfavored
by nuclear physics laboratory experiments, e.g., WFF1 and
WFF2 [60].
The relation CðΛÞ in Fig. 1(a) and ĪðCÞ in Fig. 1(b)

retain a clear EOS variability. The relation ĪðΛÞ in Fig. 1(c)
is EOS invariant to the point that we cannot distinguish
differences between the sets of EOSs: this relation is
sufficiently universal to overcome the EOS variability
emerging from the use of different EOS sets. This result
is in accordance with Ref. [35] which quantifies the degree
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of universality of various relations: we also find subpercent
errors on the fits (see Table I in the Appendix D).
Finally, from this hierarchy of universality between the

different relations, we can anticipate that there exists a
detector sensitivity for which the radius extraction from the
measurement of the tidal deformability in a gravitational
wave signal could be overcome by the EOS variability,
while the extraction of the moment of inertia from the same
signal would not.

B. Error marginalization

In this section, we compare different error marginaliza-
tion techniques for quasiuniversal relation applications as
described in Sec. II C 3 in the context of current and future
detections. For gravitational wave data (see Sec. II C 1),
simulatedM and Λ distributions are used in the fits of CðΛÞ
and ĪðΛÞ, with different error marginalization, to obtain
distributions of R and I, respectively. For x-ray data (see
Sec. II C 1), simulatedM and R distributions are used in the

(c)

(a) (b)

FIG. 1. Contours (99 percentile) presented for the nuclear set, MMþ χ þ PSR set, and the GPþ astro set. In black we present the Yagi
and Yunes fit [10]. (a) Relation between the compactness C and the dimensionless tidal deformability Λ. (b) Relation between the
compactness C and the dimensionless moment of inertia Ī. (c) Relation between the dimensionless tidal deformability Λ and the
dimensionless moment of inertia Ī.
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fit of ĪðCÞ, with different error marginalization, to obtain
distributions of I.

1. Radius from binary neutron star mergers

In Fig. 2, we present the extraction of the radius from the
simulated gravitational wave signal of a binary neutron star
merger using the fit of the quasiuniversal relation CðΛÞ;
the O4 sensitivity is presented in orange and the Cosmic
Explorer and Einstein Telescope sensitivity is presented in
green. Figure 2(a) used the fit based on themetamodeling set
of EOS, while Fig. 2(b) used the Gaussian process set.
The radius extraction using the Gaussian or the uniform

marginalization of the error, or simply the fit line and
without including any error, are (roughly) equivalent at O4
sensitivity. These fit limits (in shaded colors) are larger at
that sensitivity but comparable to or smaller than to the size
of the contour.
In the case of third generation sensitivity, we first see that

there is a significant difference with the fit line without
inclusion of the error as well as between the Gaussian and
uniform marginalization: the Gaussian marginalization has
overestimated the precision on the radius by around a factor
of 2 compared to uniform marginalization. We can con-
clude that the technique used to include the systematic error
has an impact on the results at this sensitivity. We also see
on that figure that the range of the radius extracted with the
fit line is significantly smaller than after error marginali-
zation: this indicates that the parameter extraction contours
at that sensitivity are related to the fit error and not the tidal
deformability recovery from the gravitational wave signal.

This is confirmed by the fit limits presented in shades of
green: they are at the opposite ends of the uniform
marginalization and do not overlap at all.
Finally, the metamodel (MMþ χ þ PSR) fit offers a

better precision on the parameter extraction than the
Gaussian process (GPþ astro) fit, as the maximum error
presented in Table I indicated. This indicates that in
parameter extraction, current astrophysical constraints are
less constraining than nuclear theory calculations. We also
note that higher radii are extracted for a given mass with the
Gaussian process set, in accordance with our discussion of
Fig. 1(a) in Sec. III A.

2. Moment of inertia from binary neutron star mergers

In Fig. 3, we present the extraction of the moment of
inertia using the fit of ĪðΛÞ based on the Gaussian process
set (which produces the largest fit error, see Table I). In that
case, we can see that the two marginalization techniques,
the limit of the error, and the extraction from the fit line all
overlap, both for O4 sensitivity and CEþ ET sensitivity.
We use the same source and same set of EOS as for Fig. 2,
so this overlap results from the quasiuniversality of the
relation ĪðΛÞ. As can be seen in Fig. 1(c), this relation has
stronger universality, which makes considerations of the
marginalization technique, or even purely of the error,
irrelevant. The statistical uncertainty associated with the
parameter estimation dominates whatever the sensitivity
of the detector. We conclude that the universality of the
relation ĪðΛÞ will hold with the third generation of
gravitational wave detectors.

(a) (b)

FIG. 2. MðRÞ extracted from the fit of CðΛÞ and a simulated GW signal in the sensitivity of O4 (orange) and Cosmic Explorer and
Einstein Telescope (green); contours are shown at 1-σ. Results are presented for the exact fit (plain lines), with the Gaussian
marginalization of the error (dashed line), and with the uniform marginalization of the error (dotted line); the limits of the error are
presented in shades of colors. (a) MMþ χ þ PSR set. (b) GP+astro set.
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3. Moment of inertia from x-ray detections

In Fig. 4, we present the extraction of the moment of
inertia using the relation ĪðCÞ. For the metamodel fits
presented in Fig. 4(a), the marginalization technique does

not impact the results. For the fits based on the Gaussian
process set presented in Fig. 4(b), the results are impacted
at high sensitivity (STROBE-X) as the Gaussian margin-
alization underestimates the error by almost a third com-
pared to the uniform marginalization. The constraints
brought forth by nuclear physics in the metamodel allow
us to consider that STROBE-X sensitivity still dominates
(or is at least equivalent) to the EOS variability of the
metamodel based quasiuniversal relation ĪðCÞ.

C. Quasiuniversal relations vs EOS inference

In this section, we compare the extraction of the radius
and the moment of inertia using two methods: the quasiu-
niversal fits and EOS inference. We consider a simulated
CEþ ET gravitational wave detection recoveringM and Λ
and a simulated STROBE-X detection recoveringM and R,
following the description of Sec. II C 1. For quasiuniversal
relations, we use the distributions of R and I presented in
Figs. 2–4 in the case of uniform marginalization.
For EOS inference, we use the simulated data to infer

constraints on the EOS with a simple likelihood estimation
on the 1-σ data and the MMþ χ þ PSR and GPþ astro
sets. We then use the updated EOS distribution and general
relativity to compute R and I from the mass distributions of
the sources using the methods of Sec. II.

1. Moment of inertia extraction

We show the moment of inertia distribution extracted
from the simulated STROBE-X source in Fig. 5(a). We
perform EOS inference with either the GPþ astro and

FIG. 3. IðMÞ extracted from the fit of ĪðΛÞ and a simulated GW
signal in the sensitivity of O4 (orange) and Cosmic Explorer and
Einstein Telescope (green); contours are shown at 1-σ. Results
are presented for the fit line (plain lines), with the Gaussian
marginalization of the error (dashed line) and with the uniform
marginalization of the error (dotted line); the fit limits are
presented in lighter shades. Fits used are that of GPþ astro.

(a) (b)

FIG. 4. IðMÞ extracted from the ĪðCÞ relation and the simulated x-ray signal in the sensitivity of NICER (orange) and STROBE-X
(green); contours are shown at 1-σ. Results are presented for the fit line (plain lines), with the Gaussian marginalization of the error
(dashed line) and with the uniform marginalization of the error (dotted line); the fit limits are presented in lighter shades.
(a) MMþ χ þ PSR set. (b) GP+astro set.
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MMþ χ þ PSR EoS sets as priors, and compute the
resulting I distribution using the updated EOSs and the
observed masses. We compare this to the moment of inertia
distribution obtained with the quasiuniversal relation fits,
which parameters are presented in Table I. The EOS
inference leads to a better determination of the moment
of inertia than the use of quasiuniversal relation fits. In the
case of the GPþ astro set, the improvement is significant,
while in the case of the metamodel it is almost equivalent:
this is in accordance with results presented in Fig. 4.
The peaks of the EOS inference distributions depend on the
EOS prior and are not the same for the GPþ astro and the
metamodel. The GPþ astro set is informed by GW170817,
which softens the EOS distribution, while the metamodel
set allows stiffer models. The distribution for I determined
by the quasiuniversal relation fits with the GPþ astro
extracts higher values of the moment of inertia than its
EOS inference counterpart. This is because the quasiuni-
versal fits discard some of the prior information encoded
in the full EOS set; it considers only the relation between
compactness and I rather than the preferred values of
compactness within that relation, extracting values linked
only to the current observation.
The moment of inertia distribution extracted with gravi-

tational wave data simulated with Cosmic Explorer and
Einstein Telescope sensitivity is presented in Fig. 5(b). The
extraction of I with the quasiuniversal relation fits of ĪðΛÞ
are very similar: as discussed in Fig. 1(c), this relation is
very universal. The difference of the peak’s values in the
distributions for EOS inference and quasiuniversal relation
fits is also visible even though the distributions overlap
well; both EOS sets generate similar fit results, as those

discard prior information preferring softer or stiffer EOS.
Finally, we also note that the third generation gravitational
wave detection offers a better constraint on the moment of
inertia than STROBE-X does with EOS inference.

2. Radius extraction

We show the radius distribution extracted with the fit of
the quasiuniversal relation fit of CðΛÞ from the GPþ astro
and MMþ χ þ PSR EOSs and from the updated EOS
distributions inferred from the simulated gravitational wave
data source in Fig. 6. Results are similar to Fig. 5(b), except
that the distribution offered by quasiuniversal relation fit is
much larger. The extraction of the radius from the GPþ
astro set leads to a range extending to very large radii. The
systematic bias, due to the use of fit in the extraction of
the radius, was also discussed in Refs. [61,62]. We note that
the metamodel inference peak on the radius in Fig. 6 is
much narrower than the peak in moment of inertia of
Fig. 5(b). This is because the radius is strongly related to
the description of the crust, while the moment of inertia is
mainly sensitive to the core. While the core treatment of the
MMþ χ þ PSR and the GPþ astro seems to lead to
similar distributions for the moment of inertia inference,
this is not the case for the radius inference. The power of
the low density treatment of the metamodel explicitly
shows in this case. This shows the impact of the nuclear
physics information in the MMþ χ þ PSR, which limits
the EOS range as seen in Fig. 7.
We note that the distributions presented in Figs. 5 and 6

are not always very well resolved. In this paper, we have
used precomputed EOS sets as priors for inference

(a) (b)

FIG. 5. Moment of inertia distribution from parameter extraction operated with quasiuniversal relation fits and EOS inference.
(a) From STROBE-X x-ray data. (b) From CE+ET gravitational wave data.
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following methods described in Refs. [28,52,63]. This will
be an issue for future detectors; a generative model for
additional draws from the EOS prior operating with the
inference would be necessary to offer well-resolved
distributions.
We also note that for this work we have considered a

single measurement that offers one constraint on the
extracted parameter. If multiple measured parameters allow
extraction with more than one technique, then it would be
possible to find tension in the extracted values, as discussed
in Ref. [64]. Such tension indicates that the prior assump-
tions of the EOS set have been violated, or in the case of a
quasiuniversal extraction that the true EOS has a relation
outside the fit error and could suggest currently-unmodeled
features in the EOS.

IV. CONCLUSION

In this paper, we discuss three macroscopic quasiuni-
versal relations: CðΛÞ, ĪðCÞ, and ĪðΛÞ. We have studied the
use of these quasiuniversal relations in moment of inertia
and radius extraction from gravitational wave and x-ray
signals with current and future detector sensitivity.
We have used three different sets of EOSs to calibrate the

relations and their associated error distributions. We have
shown that for CðΛÞ and ĪðCÞ relations, the variability of
EOS in these sets leads to differences in their corresponding
quasiuniversal fit, quantified here by a larger fit error, while
the ĪðΛÞ presents a more pronounced universality.
We have discussed the fit error marginalization in param-

eter extraction and have shown that different approaches
do not significantly impact the result for O4 or NICER

sensitivity, but do impact the result for Einstein Telescope
and Cosmic Explorer and STROBE-X sensitivity.
Finally, we have shown that using quasiuniversal relation

fits in parameter extraction with the future detector sensi-
tivity will overestimate uncertainties on the extracted
parameter when compared to direct EOS inference. In
general, when the quasiuniversality fit error gives larger
variation in the extracted parameter than the uncertainty on
that parameter from the measurement error, using quasiu-
niversal relation fits no longer reflects the information
gained about that parameter from the observation and its
EOS implications.
At current observational precision, quasiuniversal rela-

tions give broadly equivalent results for parameter extrac-
tion when compared to direct EOS inference for the same
quantities. We show here that quasiuniversal relations
become less effective when projecting results for future
observations, even when conditioned on EOS knowledge
from current precision measurement. Instead, the direct
EOS constraints inferred from future observations should
be included when determining observational implications
to reveal the full capability of next-generation facilities.
Software: This work makes use of SciPy [65], NumPy [66],

and Matplotlib [67].
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APPENDIX A: EQUATION OF STATE
RELATION FOR AGNOSTIC SETS

Figure 7 presents the equation of state (relation between
the pressure P and the baryonic density nB) for the two
agnostic sets discussed in this paper.

APPENDIX B: MASS, RADIUS, MOMENT OF
INERTIA AND TIDAL DEFORMABILITY

MODELING

We study the astrophysical features of a nonrotating
neutron star within the gravity theory of general relativity,
assuming the line element ds of a spherically symmetric,
static, and isotropic space-time determined by the metric
gμν as

FIG. 6. Radius distribution from parameter extraction for
simulated CEþ ET gravitational wave data, using quasiuniversal
relation fits and EOS inference.
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ds2 ¼ gμνdxμdxν

¼ −e2ϕðrÞdt2 þ e2λðrÞdr2 þ r2dθþ r2 sinðθÞdϕ2; ðB1Þ

with r the Schwarzschild-like radial coordinate.
Considering a vacuum outside the neutron star, this metric
reduces to the Schwarzschild one. Inside the star, the
functions ϕ (gravitational redshift) and λ (radial gravita-
tional distortion) are solved using hydrostatic equilibrium

equations and the EOS P ¼ PðϵÞ, with P the pressure and ϵ
the energy density. In the assumption that the matter inside
the neutron star is a perfect fluid, we obtain the TOV
differential equations,

dm
dr

¼ 4πr2

c2
ϵðrÞ; ðB2Þ

dϕ
dr

¼ GmðrÞ
r2

�
1þ 4πr3PðrÞ

mðrÞc2
��

1 −
2GmðrÞ
rc2

�
−1
; ðB3Þ

dP
dr

¼ −
�
ϵðrÞ þ PðrÞ

c2

�
dϕ
dr

; ðB4Þ

with G the gravitational constant, c the speed of light, and
mðrÞ the gravitational mass radial profile. The central
energy density, or central pressure, used as a boundary
condition to solve the TOV equations, determines the total
gravitational mass M and the total radius R of the
neutron star.
The dimensionless tidal deformability expresses the

quadruple moment response induced on the neutron star
by an external gravitational field. Its value at the surface of
the star, denoted Λ ¼ λ2ðRÞ, is given by the tidal deform-
ability radial profile,

λ2ðrÞ ¼
2

3
k2ðrÞCðrÞ−5; ðB5Þ

with CðrÞ ¼ GmðrÞ=ðrc2Þ the compactness of a star of
radius r. The tidal Love number k2 is given by

k2ðrÞ ¼
8CðrÞ5

5
ð1 − 2CðrÞÞ2½2þ 2CðrÞðyðrÞ − 1Þ − yðrÞ�ð2CðrÞ½6 − 3yðrÞ þ 3CðrÞð5yðrÞ − 8Þ�

þ 4CðrÞ3½13 − 11yðrÞ þ CðrÞð3yðrÞ − 2Þ þ 2CðrÞ2ð1þ yðrÞÞ�
þ 3ð1 − 2CðrÞÞ2½2 − yðrÞ þ 2CðrÞðyðrÞ − 1Þ� lnð1 − 2CðrÞÞÞ−1; ðB6Þ

see, e.g., Ref. [32] and reference therein. The function yðrÞ
is to be solved simultaneously with the TOV equations
using the additional differential equation [32,68]

r
dy
dr

þ yðrÞ2 þ FðrÞyðrÞ þQðrÞ ¼ 0; ðB7Þ

with the boundary condition yð0Þ ¼ 2, see Sec. IVA of
Ref. [69]. The functions FðrÞ and QðrÞ are given by

FðrÞ ¼
�
1 −

4πG
c2

r2
ϵðrÞ − PðrÞ

c2

��
1 −

2GmðrÞ
rc2

�
−1
;

ðB8Þ

QðrÞ ¼ 4πG
c2

r2
�
1 −

2GmðrÞ
rc2

�
−1
�
5ϵðrÞ þ 9PðrÞ

c2

þ ϵðrÞ þ PðrÞ
csðrÞ2

−
6c2

4πGr2

�

− 4

�
GmðrÞ
rc2

þ 4πG
c4

r2PðrÞ
�

2
�
1 −

2GmðrÞ
rc2

�
−2
;

ðB9Þ

with cs the sound speed that should be treated with
caution around a discontinuous density, see, e.g.,
Ref. [70].

FIG. 7. Contours (99 percentile) for the relation between the
pressure and the baryonic density for the GPþ astro and MMþ
χ þ PSR agnostic sets.
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To model the moment of inertia, we use the slow and
rigid rotation approximation detailed in Ref. [31].5 When
considering rigid rotation, the uniform angular frequency is
contributed to by the local spin frequency ωðrÞ and the
angular momentum jðrÞ of a sphere of radius r. We denote
Ω, the uniform angular frequency of the star, defined at the
surface (r ¼ R) as

Ω ¼ ωðRÞ þ 2GjðRÞ
c2R3

: ðB10Þ

The uniform angular frequency, the angular momentum,
and the moment of inertia are solutions of the differential
equations,

dI
dr

¼8π

3

r4

eϕðrÞ
ωðrÞ
Ω

ϵðrÞþPðrÞ
c2

�
1−

2GmðrÞ
c2r

�
−1=2

; ðB11Þ

dωðrÞ
dr

¼ 6G
c2

eΦðrÞ

r4
jðrÞ

�
1 −

2GmðrÞ
c2r

�
−1=2

; ðB12Þ

djðrÞ
dr

¼ 8π

3

r4

eϕðrÞ
ωðrÞ ϵðrÞ þ PðrÞ

c2

�
1 −

2GmðrÞ
c2r

�
−1=2

;

ðB13Þ

to be solved simultaneously with the TOV equations.

APPENDIX C: DISTRIBUTION
OF EOSs IN THE SETS

We present in Fig. 8 the distribution of compactness and
dimensionless moment of inertia points for GPþ atro and
MMþ χ þ PSR set.

FIG. 8. Distribution of points of compactness (top) and dimensionless moment of inertia (bottom) for a few values of the tidal
deformability and compactness, respectively, in MMþ χ þ PSR and GPþ astro sets. Vertical lines correspond to the 99 percentile
limits of the distributions.

5Modeling the moment of inertia outside of this approximation
requires solving the Einstein equation with a metric describing a
stationary and axisymmetric space-time, see, e.g., the LORENE
library.
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APPENDIX D: FIT PARAMETERS AND ERRORS ASSOCIATED TO THE FITS

We present in Table I the parameters of the fit for the relations presented in Sec. II C 2 and the maximum error associated
to the fits with the different EoS sets presented in this paper.
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