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We describe two fitting schemes that aim to represent the high-density part of realistic equations of state
for numerical simulations such as neutron star oscillations. The low-density part of the equation of state is
represented by an arbitrary polytropic crust, and we propose a generic procedure to stitch any desired crust
to the high-density fit, which is performed to ensure continuity of the internal energy, pressure, and sound
speed for barotropic equations of state that describe cold neutron stars in β equilibrium. An extension of the
fitting schemes to equations of state with an additional compositional argument is proposed. In particular
we develop a formalism that ensures the existence of a β equilibrium at low densities. An additional feature
of this low-density model is that it can be, in principle, applied to any parametrization. The performance of
the fits is checked on mass, radius and tidal deformability as well as on the dynamical radial oscillation
frequencies. To that end, we use a pseudospectral single neutron star evolution code based on a
nonconservative form of the hydrodynamical equations. A comparison to existing parametrizations is
proposed, as far as possible, and to published radial frequency values in the literature. The static and
dynamic quantities are well reproduced by the fitting schemes. Our results suggest that, even though the
radius is very sensitive to the choice of the crust, this choice has little influence on the oscillation
frequencies of a neutron star.
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I. INTRODUCTION

When describing relativistic stellar structure and super-
nova or neutron star (NS) hydrodynamics, one needs to link
the thermodynamic quantities using an equation of state
(EOS). The choice of the EOS is crucial, mainly because
the detailed physics at very high densities (i.e., where the
strong nuclear interaction is the dominant one) are poorly
understood [1]. Polytropes are characterized by a high
numerical precision on the computation of thermodynamic
variables due to their analytical nature, allowing them to be
widely used in simulations [2–8] but are however only very
crude approximations for nuclear matter in the core or for
the electron Fermi gas of the crust. Therefore, more realistic
approaches of complex events such as a binary neutron star
merger need a detailed description of the strong nuclear
interaction in the core. These nuclear EOSs, the so-called
realistic EOSs, often come as tables like those given in the
COMPOSE database1 [9]. Realistic EOSs are already used in
binary neutron star merger [10–13], core-collapse [14–17],
protoneutron star cooling [18,19], and general relativistic
magnetohydrodynamic dynamo codes [20].

However, these tables may induce numerical artifacts,
degrading the overall accuracy of the simulation. First, due
to the nonanalytical nature of nuclear models at high
densities, the precision on the thermodynamic quantities
is often far from the typical machine accuracy used in
computers. This may have an impact on the computation of
derivatives of the EOS, like the sound speed, or those that
are necessary for interpolation. Computing the sound speed
with finite-differences schemes can present nonphysical
spikes that may lead to code failure. Second, increasing the
complexity of physical hypotheses leads to equations of
state with two or three arguments, namely by considering
composition and temperature effects, meaning that even
with a reasonable amount of discretization points for every
argument (of the order of a hundred), the tables may
contain millions of entries, and the associated files would
be very large. Some EOSs even depend upon more than
three arguments if more particles, such as muons, are
included. Moreover, computing the thermodynamic quan-
tities at nontabulated values has to be done with interpo-
lation, which is in itself not a trivial problem. For example,
Swesty [21] has proposed a way of interpolating tables
in a thermodynamically consistent manner using Hermite
cubic and quintic splines. However, this technique can1https://compose.obspm.fr.
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suffer from spurious oscillations of higher-order polyno-
mials, especially at low densities where the derivatives can
be the noisiest. Representing a table analytically is a way to
avoid this problem. Several analytical representations of
tabulated EOSs already exist, such as piecewise polytropes
[22] that were later improved [23] and generalized
(hereafter referred to as GPP) [24], spectral representations
[25–27], as well as the more recent parametrizations of the
sound speed [28] and of the enthalpy [29].
These representations are all dedicated to cold,

β-equilibrated EOSs which only depend on one thermo-
dynamic argument, typically chosen as the baryon number
density or the (pseudo)enthalpy. Although not a para-
metrization, [30] gives an analytical extension of cold
EOSs to arbitrary proton fraction outside of β equilibrium
and to finite temperatures. We here propose an analytical
representation dubbed pseudopolytrope, both for one- and
two-argument EOSs, with corresponding analytic models
for low-density parts (crust), ensuring β equilibrium in the
two-argument case. To benchmark our approach for one-
argument EOSs, we will compare the performances of the
pseudopolytrope with a second type based on the ana-
lytical approach of Potekhin et al. [31] and Pearson et al.
[32] that was designed for a very precise representation of
Brussels-Montreal unified EOSs. In both cases, the fits
are performed in a high-density interval corresponding to
homogeneous matter in the core, and the low-density part
is attached in a thermodynamically consistent manner.
The fits are then tested on static quantities such as the
mass, radius, and tidal deformability, and on dynamic
quantities, namely the radial frequencies of spherically
symmetric stars, as computed with the code that has
been presented in [33]. As such, the code only takes
one-argument equations of state, but to take electrons
into account only the evolution equation for the
electron fraction has been added in the code when
using two-argument EOSs, making the generalization
straightforward.
We can note here an alternative approach to include out

of β-equilibrium effects in hydrodynamics simulations, as
done in recent works on the so-called bulk viscosity to
provide effective ways to describe such fluids out of the
weak β equilibrium in general relativity [34–36].
Nevertheless, in this work we follow the transport approach
in which the potential absence of weak equilibrium is
considered through a separate conservation equation for the
electron fraction that contains source terms to take neutrino
production into account. The source terms are computed
thanks to the description of neutrino emission rates found
in [37].
To test our fits we choose three different EOS models,

covering different techniques and a relatively large range of
neutron star global properties. One model is based on
relativistic density functional theory (DFT), one is based on
a Skyrme (nonrelativistic) density functional and one on an

empirical extension of a variational microscopic model. All
of them are reasonably compatible with existing constraints
from nuclear experiments, theory, and astrophysics. To be
specific, for the two-argument fits we consider the lowest
temperature entry of the general purpose EOS models:
(i) RG(SLy4) [38,39], a nucleonic nonrelativistic DFT one;
(ii) the nucleonic relativistic DFT one HS(DD2) [40,41]; as
well as (iii) the SRO(APR) model [42,43]. The latter is
based on the APR EOS [44], which itself is partly adjusted
to the variational calculation of [45], and contains a phase
transition to a pion condensate at high densities. For the
corresponding one-argument fits, we use the zero temper-
ature version of the nucleonic EOS RG(SLy4) [38,46,47]
and the APR(APR) EOS (chapter 5.12 of [48], based on
[44]). The latter uses a mixed phase to describe the
transition to the pion condensate which therefore smooths
the EOS. The fitting coefficients for the nucleonic GPPVA
(DD2) EOS [41,49,50] are also provided. The data, as well
as references and details for all EOSs are publicly available
in tabulated form from the COMPOSE database [9]; the
naming convention is the same as in this database, too.
Throughout the whole paper we use geometrized units

where c ¼ 1 and G ¼ 1, except in Sec. II B.
The paper is organized as follows: Secs. II and III are

dedicated to the description of procedures to represent
one- and two-argument EOSs, respectively. Results are
presented in Sec. IV with a comparison to static quan-
tities (maximum mass, tidal deformability) and dynamic
quantities (radial oscillation frequencies) both against
published values and between the two fitting schemes.
In particular a study of the influence of the choice of
the crust is shown, as well as a comparison between
frequencies of one- and two-argument EOSs. Conclusions
are drawn in Sec. V.

II. REPRESENTATION OF ONE-ARGUMENT EOSs

This section is devoted to the presentation of the fitting
schemes to parametrize barotropic EOSs that describe cold
neutron stars in β equilibrium. Two schemes are presented
and for each one, the global strategy is the following: the
fitting scheme is applied to the core of the NS, i.e., for
densities above some threshold nlim;2; for densities below
nlim;1 a polytrope is considered for the crust. In between, a
GPP is used to get a continuous matching of thermody-
namic quantities: energy density e, pressure p, and sound
speed cs, both at nlim;1 and nlim;2.

A. Pseudopolytropes

We start with a fitting functional that we call pseudo-
polytropes. If ε ¼ e=mBnB − 1 is the rescaled internal
energy per particle (excluding rest-mass energy), with nB
the baryon number density, mB the baryon mass, and e the
total energy density, then the basic functional is
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εðnBÞ ¼ gðnBÞnαB; ð1Þ

where g is an arbitrary function. The name pseudopolytrope
is justified by the following: the choice of g ¼ κ=mBα,
where κ is a constant and denoting γ ¼ αþ 1 yields a
polytrope

p ¼ n2B

�
∂ε

∂nB

�
T;Ye

¼ n2B
dε
dnB

¼ κnγB; ð2Þ

where p is the pressure. In order to account for an arbitrary
crust, following the approach by [24], we add two param-
eters L and d such that the final functional is

εðnBÞ ¼ gðnBÞnαB þ d −
L
nB

: ð3Þ

The fitting coefficients will be α and the coefficients
fāigi∈ ⟦0;n⟧ of g, which we choose to be a polynomial:

gðx ¼ lnðnB ½fm−3�ÞÞ ¼
Xn
i¼0

āixi: ð4Þ

Their values will be adjusted by fitting the functional and
its derivatives, whereas most parametrizations use only a
single thermodynamic quantity to perform the fits.
From now on, x denotes the natural logarithm of the

density nB expressed in fm−3. In order to perform a C2

stitching of the fit and an arbitrary crust, i.e., with
continuous sound speed, we add a single intermediate
density interval that is described by GPP formalism:

eGPPðnBÞ ¼
KGPP

ΓGPP − 1
nΓGPP
B þ ð1þ dGPPÞnB − LGPP; ð5Þ

pGPPðnBÞ ¼ KGPPn
ΓGPP
B þ LGPP: ð6Þ

Then, for a given crust defined by pressure and energy
density profiles pcðnBÞ; ecðnBÞ, there are three junction
conditions at two densities nlim;i, i ¼ 1, 2, with nlim;1 <
nlim;2 that allow us to determine the six parameters
KGPP;ΓGPP; dGPP; LGPP; d; L:

KGPPΓGPPn
ΓGPP−1
lim;1 ¼ dpc

dnB
ðnlim;1Þ; ð7Þ

KGPPΓGPPn
ΓGPP
lim;2 ¼ nlim;2

�
dðgðxÞeαxÞ

dx
ðnlim;2Þ

þ d2ðgðxÞeαxÞ
dx2

ðnlim;2Þ
�
; ð8Þ

KGPPn
ΓGPP
lim;1 þ LGPP ¼ pcðnlim;1Þ; ð9Þ

KGPPn
ΓGPP
lim;2 þ LGPP ¼ nlim;2

dðgðxÞeαxÞ
dx

ðnlim;2Þ þ L; ð10Þ

KGPP

ΓGPP−1
nΓGPP
lim;1þð1þdGPPÞnlim;1−LGPP ¼ ecðnlim;1Þ; ð11Þ

KGPP

ΓGPP − 1
nΓGPP−1
lim;2 þ dGPP −

LGPP

nlim;2
¼ gðxlim;2Þeαxlim;2

þ d −
L

nlim;2
: ð12Þ

They correspond, by groups of two, to the continuity
conditions of the internal energy and its first two deriva-
tives. The first two equations are independent of
dGPP; LGPP; d; L and are solved with the non-linear vector
function root-finder ROOT of the SCIPY.OPTIMIZE PYTHON

library [51] to determine KGPP and LGPP. Only those first
two equations are coupled, while the subsequent four
equations can be solved successively to directly determine
LGPP; L; dGPP; d in this order. The fit is performed with a
minimization of the following cost function:

Eðfājg;α;d;LÞ

¼ 1

xmax−xmin

X
X

X
i

�
Xtab;i−Xfitðxi;fājg;α;d;LÞ

Xtab;i

�
2

Δxi;

ð13Þ

where xmax;min are the limiting densities of the chosen
fitting interval, Δxi is the log-density step of the table, i.e.,
if the densities of the table are discretized as fxi; i∈ ½0; N�g
where x0 ¼ xmin ≤ x1 ≤ … ≤ xN−1 ≤ xN ¼ xmax, then
Δxi ¼ xiþ1 − xi when i ¼ 0;…; N − 1, and ΔxN ¼
ΔxN−1 and the variable X spans the chosen quantities to
fit on, making the procedure a joint fit. For the one-
argument fits the fit is performed on ε=nB, lnðp=nBÞ, and
Γ1 [defined by Eq. (A12)], which are chosen to represent
the internal energy ε and its first two derivatives, rescaled
so that they are all of close order of magnitude.
We start by producing a set of fit coefficients with

d ¼ L ¼ 0, thanks to a linear least-square fit of ε with
respect to x performed with the CURVE_FIT routine of
SCIPY.OPTIMIZE [51]. This educated guess is then used as
the starting point of the minimization of Eq. (13). At every
step of the procedure, KGPP;ΓGPP; dGPP; LGPP; d; L can be
computed from the current value of the coefficients. In
practice, the crust is taken to be a polytrope for which the
parameters ðκ; γÞ are chosen freely:

pcðnBÞ ¼ κnγB: ð14Þ

Once γ is chosen, a fine-tuning of κ is done by hand to
ensure that the maximal mass of the EOS is recovered. The
results of the fit are reported in Table I for one-argument fits
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of RG(SLy4) [38,46,47], APR(APR) [44,48] and GPPVA
(DD2) [41,49,50].

B. The Potekhin-Pearson fitting scheme

References [31,32] present an analytical representation
between the log of the pressure, log10 p≡ ζ, and the log
of the total energy density, log10 ðê½g · cm−3�Þ≡ ξ accord-
ing to

ζ ¼ K þ a1 þ a2ξþ a3ξ3

1þ a4ξ
f0ða5ðξ − a6ÞÞ þ ða7 þ a8ξÞ

× f0ða9ða6 − ξÞÞ þ ða10 þ a11ξÞf0ða12ða13 − ξÞÞ
þ ða14 þ a15ξÞf0ða16ða17 − ξÞÞ þ a18

1þ ½a20ðξ − a19Þ�2

þ a21
1þ ½a23ðξ − a22Þ�2

; ð15Þ

where f0ðxÞ ¼ fexpðxÞ þ 1g−1, ai are the fitting coeffi-
cients, and ê ¼ e=c2 is in g cm−3. Setting K ¼ 0 gives the
pressure in units of dyn cm−2, while K ¼ −33.2047 gives
the pressure in MeV fm−3.
Reference [32] showed that Eq. (15) could calculate the

pressure with typical errors of about one per cent for the
Brussels-Montreal Skyrme functionals, for densities in
the range 6≲ ξ≲ 16. Indeed, each of the terms in
Eq. (15) address a specific region of the NS (see Fig. 1);
the first term is associated with the outer crust while the

second, third and fourth terms describe the inner crust and the
core regions. The fifth and sixth terms describe the neutron
drip and the core-crust boundary, respectively.
Despite the fact that Eq. (15) can compute the pressure

over the whole NS domain, we neglect the terms associated
with the crust since our aim is to model the high-density
part of the EOSs only. We therefore apply the analytical fit

ζ ¼ K þ ða2 þ a3ξÞf0ða4ða1 − ξÞÞ
þ ða5 þ a6ξÞf0ða7ða8 − ξÞÞ
þ ða9 þ a10ξÞf0ða11ða12 − ξÞÞ
þ a13
1þ ½a15ðξ − a14Þ�2

ð16Þ

to the CompOSE tabulated values of pressure and total
energy densities where nB ≥ 0.05 fm−3. This lower limit in
nB for the fitting window was chosen by hand to ensure
good quality fits. In accordance with the GPP approach the
pressure is then computed with

pðeÞ ¼ 10ζðξÞ þ L: ð17Þ

The crust model is then added as described in Sec. II A.
The equations describing the continuity of the pressure
gradient, the pressure and the energy density at the
boundary nlim;2 for the Potekhin-Pearson scheme are,
respectively,

FIG. 1. Contribution of each of the terms in Eq. (15) to the total fit (solid, black curve) for the Brussels-Montreal Skyrme 24 equation
of state, using the fit coefficients presented in [32]. The right panel is an enlargement of the lower part of the left panel. Term 1: blue, dot-
dashed; term 2: red, dot-dashed; term 3: red, dotted; term 4: red, dashed; term 5: green, dashed, term 6: green, dotted.

TABLE I. One-argument EOS fit coefficients for the pseudopolytrope scheme.

ā1 ā2 ā3 ā4 ā5 ā6 ā7 α

RG(SLy4) [38,46,47] 0.28803 0.094928 0.0078768 −0.013071 0.0010821 −0.0010058 −6.6725 × 10−8 1.5444
APR(APR) [44,48] 0.31909 0.12187 0.026877 −0.042652 0.016685 0.014534 0.0044882 1.9044
GPPVA(DD2) [41,49,50] 0.49196 −0.029608 −0.16060 0.090142 0.15724 0.053312 0.0062917 1.6799
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KGPPΓGPPn
ΓGPP−1
lim;2 ¼ dpðnlim;2Þ

dnB

¼ pðelim;2Þ þ elim;2

nlim;2

pðelim;2Þ
elim;2

dζ
dξ

; ð18Þ

KGPPn
ΓGPP
lim;2 þ LGPP ¼ pðelim;2Þ þ L; ð19Þ

KGPP

ΓGPP − 1
nΓGPP
lim;2 þ ð1þ dGPPÞnlim;2 − LGPP ¼ elim;2

þ ð1þ dÞnlim;2 − L: ð20Þ

Here, dζ=dξ is calculated from Eq. (16) using the SYMPY

library for symbolic computation, elim;2 is the total energy
density at nlim;2 and pðelim;2Þ is the pressure at this location,
again calculated with Eq. (16). The value of e for a given nB
is calculated by inverting

ln
�
nB
n0

�
¼

Z
e

e0

de0

pðe0Þ þ e0
; ð21Þ

[see Eq. (3) of [52] ] where e0 is the first data point in the
fitting interval for the total energy density, and n0 is the
initial baryon density which, in turn, is calculated from
the definition of the enthalpy

n0 ¼
e0 þ pðe0Þ

h0
; ð22Þ

where h0 is the first data point in the fitting interval for the
enthalpy per baryon, and is calculated from the tables
provided for a given EOS using the COMPOSE software,
and pðe0Þ is calculated from the fit. We use the values of κ,
γ and nlim;1 for the crust model presented in Sec. II A
(cf. Table II). However, we fine-tuned the values of
nlim;2 to ensure good quality fits. We use 0.04, 0.03, and
0.04 fm−3 for the barotropic RG(SLy4) [38,46,47], APR
(APR) [44,48], and GPPVA(DD2) [41,49,50], respectively.
For the two-argument equations of state RG(SLy4) [38,39],
SRO(APR) [42,43], and HS(DD2) [40,41] we use 0.07,
0.05, and 0.04 fm−3, respectively. The results of the fit for
the barotropic RG(SLy4) [38,46,47], APR(APR) [44,48]
and GPPVA(DD2) [41,49,50] are given in Table III.

III. REPRESENTATION
OF TWO-ARGUMENT EOSs

For the purposes of cold EOSs that describe matter out of
the weak β equilibrium, we shall consider general purpose
tables from COMPOSE that are described with the three
arguments ðnB; Ye; TÞ and, as an approximation, use the
first temperature entry of the table, which in general
corresponds to a temperature T ≲ 100 keV. The thermal
effects at this temperature are relevant only in the outer part
of the outer crust. This part of the EOS is not captured by
the fits, therefore we consider that the first temperature
entry of the table is an excellent approximation to the zero-
temperature case.
We will adapt the procedure described in the previous

section for the two-argument form of the tables. In addition
to imposing pressure and sound speed continuity, we also
ensure the existence of β equilibrium for all densities. The
neutrinoless β-equilibrium condition is

μle ¼ 0; ð23Þ
where μle is the chemical potential of leptons. Using the
definition μle ¼ ð ∂ε

∂ne
Þ
nB

(see Sec. 3.7 of [33]), it can be

rewritten as
�

∂ε

∂Ye

�
nB

¼ 0; ð24Þ

implying that ∀nB, ε must have a minimum in the Ye
direction. Because the original EOS should also possess a β
equilibrium, this condition should automatically be fulfilled
in the high-density part, provided that the fit is accurate
enough. However, as the low-density part consists of a
generic polytropic crust, special care should be brought
when constructing it for EOSs with two arguments.

TABLE II. Fit parameters for one-argument EOSs. κ is ex-
pressed in the set of geometrized units supplemented with
M⊙ ¼ 1.

nlim;1

½fm−3�
nlim;2

½fm−3�
κ

[geom] γ

RG(SLy4) [38,46,47] 10−4 10−2 0.140 1.34
APR(APR) [44,48] 10−4 10−2 0.178 1.34
GPPVA(DD2) [41,49,50] 10−5 8 × 10−2 0.0140 1.34

TABLE III. One-argument EOS fit coefficients for the Potekhin-
Pearson scheme.

ai
RG(SLy4)
[38,46,47]

APR(APR)
[44,48]

GPPVA(DD2)
[41,49,50]

a1 12.28260 12.01420 11.18370
a2 13.86452 13.84209 15.72280
a3 1.37955 1.31315 1.02836
a4 3.50552 3.58798 3.62161
a5 −30.75774 −30.71754 −28.57321
a6 2.10272 2.20118 2.08129
a7 3.70203 3.45345 5.16074
a8 13.87372 14.58988 14.44345
a9 30.13271 30.15473 31.78975
a10 −2.03900 −2.03509 −1.99041
a11 1.57077 1.91274 1.62725
a12 15.28327 14.77801 13.7790
a13 0.013287 0.023175 0.16426
a14 14.30128 14.46573 14.27033
a15 9.076260 9.09854 3.45961
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The procedure is the following: according to the frozen
composition principle, the two-argument EOS is consid-
ered as a collection of NY one-argument EOSs, NY being
the number of tabulated values of Ye, each of which is fitted
according to the procedure described in Sec. II, meaning
that we once again have three parts: a high-density part
where the fit is performed, a low-density part where a
simplified polytropic model is applied, and an intermediate
part described with a single-piece GPP to connect the two
other parts. This time, for the pseudopolytrope we choose
to perform the fit on X ¼ fε=nBg only, to help reduce
parameter dispersion from one slice to the next. For the
Potekhin-Pearson scheme, we perform a fit of the pressure
only. Each new fit is initialized with the optimal coefficients
of the previous one.

For each fit, the outermost polytrope has γ fixed and κ
taken to be a polynomial in Ye:

κðYeÞ ¼
Xnκ
i¼0

κiYi
e: ð25Þ

We determine the coefficients κi as a polynomial fit to
εðYe; nlim;2Þ, i.e., we write ∀i∈ ⟦0; nκ⟧; κi ¼ Aκ0i and
determine the fκ0igi∈ ⟦0;nκ⟧ with the fit. Then the constant
A is chosen freely. This procedure guarantees that there is
always a β-equilibrium solution in the low-density part.
Only the intermediate part is left, where GPP expressions
are used to connect the crust to the fit. They are built
to provide pressure and sound speed continuity at the
junctions, but there is no simple theoretical argument that

(a) (b)

FIG. 2. Mass-deformability diagrams of the two cold EOSs. The bottom panel is the relative difference of the fits with respect to the
original COMPOSE EOS. The relative differences have been computed at constant fraction of the maximum mass: ΛEOSðM1Þ was
compared to ΛfitðM2Þ, where M2 is defined by M2=Mfit;max ¼ M1=MEOS;max.

(a) (b) (c)

FIG. 3. Mass-deformability diagrams of the β-equilibrated versions of the three general purpose EOSs. The bottom panel is the relative
difference of the fits with respect to the original COMPOSE EOS. The relative differences have been computed at constant fraction of the
maximum mass: ΛEOSðM1Þ was compared to ΛfitðM2Þ where M2 is defined by M2=Mfit;max ¼ M1=MEOS;max.
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ensures the existence of a β equilibrium in the intermediate
part. However, we find that, at the cost of fine-tuning the
parameter A by hand, this is always the case. The result of
the fitting procedure is a collection of NY coefficient lists.
For example with the pseudopolytrope, using seven coef-
ficients in Eq. (4) gives 16 fitting coefficients per slice:
8þ 2 for the high-density region and six that are deduced
in the mid-density region to ensure that the matching
conditions are fulfilled. In the end, the formalism is
semianalytic because to compute the thermodynamics at
a nontabulated value ofYe, onemust interpolate between two
neighbor fit expressions. Moreover, producing initial data
requires the computation of the β-equilibrated EOS, which is
entirely numerical. For example, the β-equilibrated EOS

yielded by a two-argument pseudopolytrope is not a one-
argument pseudopolytrope, but is rather a curve in the
ðnB; YeÞ plane. It is important to note that the procedure
makes no assumption regarding the fitting scheme, which
means that in principle it can be applied to any fit of the high
density part of a given EOS.

IV. RESULTS

In this section all tests are run with isolated, spherically
symmetric, nonrotating NSs using the code described in
[33]. The fits are tested on the EOSs described in the
introduction.

A. Static quantities

In order to check our fits’ performances we first check
the static quantities: mass M, radius R, tidal deformability
Λ. The definition of the tidal deformability is the following
[53,54]:

Λ ¼ 2

3
Ξ−5k2; ð26Þ

where Ξ ¼ M=R is the compactness parameter and k2 the
so-called l ¼ 2 tidal Love number [53]. These quantities
can be obtained from an l ¼ 2 linear perturbation of a
spherically symmetric star equilibrium obtained from the
Tolmann-Oppenheimer-Volkoff equations [53,55]. To com-
pare the static quantities, we compute the mass-deform-
ability diagrams of the fitted EOS and we compare them
with the curves obtained with the original table. The results
are shown on Figs. 2(a) and 2(b) for the one-argument fits,
and Figs. 3(a)–3(c) for the two-argument fits. The fits
capture well the deformability: regarding the one-argument
EOSs the error on the computation of Λ is 3% for RG(SLy4)
[38,46,47] and 4% for APR(APR) [44,48] with the pseu-
dopolytrope, and the Potekhin-Pearson fit reproduces the
values of Λ with an error that never exceeds 1%. The fits
perform well for two-argument EOSs as the error is also
of the order of a few percent, except for the SRO(APR)

TABLE IV. Comparison with existing parametrizations of barotropic EOSs. Data from other parametrizations have been collected
from tables available within the articles. Mmax is the maximum mass of the EOS in units of M⊙, and Λ1.4 is the value of the tidal
deformability of a 1.4M⊙ NS. The value provided in [24] for the maximum mass of APR is 2.057M⊙, but we recomputed it using their
coefficients and found the value tabulated here.

RG(SLy4) APR(APR) GPPVA(DD2)

Parametrization Mmax Λ1.4 Mmax Λ1.4 Mmax Λ1.4

Original EOS 2.050 297.0 2.188 249.1 2.418 676.8
Pseudopolytrope (this work) 2.050 289.5 2.188 240.2 2.418 696.4
Potekhin-Pearson fit (this work) 2.041 289.1 2.178 240.3 2.417 683.9
Piecewise polytropes [22] 2.049 ✗ 2.213 ✗ ✗ ✗
GPP [24] 2.053 310.6 2.168* 255.0 ✗ ✗
Suleiman et al. [23] 2.049 304.98 ✗ ✗ 2.417 697.9

FIG. 4. Influence of the crust on the radius. The solid line is the
COMPOSE EOS. The dashed line is a pseudopolytropic fit, and the
dash-dotted line is the same fit but where the crust has been
replaced with the one of the original barotropic RG(SLy4)
[38,46,47] table.
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EOS [42,43] for which the phase transition to a pion
condensate around nB ¼ 0.2 fm−3 is treated with a
Maxwell type construction, which is not well reproduced
by our fits, and where the error of the pseudopolytrope
exceeds 10%. The Potekhin-Pearson approach does slightly
better but the error remains close to 10% as again the phase
transition region is not well reproduced. For SRO(APR) we
point out that the minimization procedure to add the crust, as
described in Sec. II A, fails to converge for the Potekhin-
Pearson scheme if we use nlim;2 ¼ 0.2 fm−3 as applied by
the pseudopolytrope formalism. To remove the phase
transition associated with the pions, we instead replace
the tabulated values of the adiabatic index, Γ ¼
d logp=d log e in the vicinity of the phase transition with
smoothed values using linear interpolation. The pressure is
then recomputed from these updated values of the adiabtic
index. Note that the one-argument APR(APR) EOS con-
siders a mixed phase at the transition to the pion-condensed

phase which smooths the EOS and that it can thus be much
better reproduced by our fits.
These figures also show that the maximum masses for

each of the EOSs considered are well reproduced (see
Table IV). On the other hand, we know that the predicted
radius strongly depends on how the crust-core transition is
made, as well as the actual crust model [56,57]; the error
can reach one kilometer for a 1M⊙ neutron star. We
emphasize that changing the matching between the crust
and the core may induce this error even without changing
the physics. The drastic effect of the crust on the radius is
shown in Fig. 4, where the mass radius diagrams of the
barotropic RG(SLy4) EOS [38,46,47] is compared with the
pseudopolytropic fit, as well as the fit where the EOS crust
was replaced with the one of the original EOS. For a
canonical 1.40M⊙ neutron star, we compare the radii and
deformabilities with stars constructed with the RG(SLy4)
EOS and its fits: (i) the original table, (ii) the pseudopoly-
tropic fit, and (iii) the pseudopolytropic fit where the crust

FIG. 5. Thermodynamical profiles of two barotropic EOSs: RG(SLy4) [38,46,47] (top), APR(APR) [44,48] (bottom).
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(a) (b)

FIG. 6. Two-argument fits: comparison between the β-equilibrated versions of the original tables and the β-equilibrated versions of
the fits.
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has been replaced with the one of the original table. We
give the values for RG(SLy4):

(i) R ¼ 11.7 km and Λ ¼ 297
(ii) R ¼ 11.5 km and Λ ¼ 290
(iii) R ¼ 11.9 km and Λ ¼ 290

and APR(APR):
(i) R ¼ 11.3 km and Λ ¼ 249
(ii) R ¼ 11.2 km and Λ ¼ 240
(iii) R ¼ 11.2 km and Λ ¼ 231.

Replacing the crust has changed the value of the radius and
the deformability by a few percents while Fig. 9 shows that
the frequencies remain unchanged when varying the crust
model. The pressure and sound speed profiles are repre-
sented in Fig. 5 for the one-argument EOSs and Fig. 6 for
the β-equilibrated version of the two-argument EOSs. All
in all the fits show a good agreement compared to the
original EOS, especially when no phase transition is
present, as the relative difference in the thermodynamic
quantities between the fit and the original EOS remains
below 10%, except close to nlim;2 where the low-density
matching procedure tends to mildly degrade the quality of
the fit. The phase transition of SRO(APR) [42,43] can be
seen in Fig. 6: the sudden drop of the sound speed is due to
a discontinuity in the pressure derivative.

B. Dynamic quantities

We also compare the frequencies yielded by using the
fits in our code that was presented and benchmarked in [33]
with those tabulated in the literature. The frequency
extraction procedure is a maximum search in the spectrum
coupled with a quadratic interpolation of the closest
neighbors. As shown on Fig. 7, our frequencies are in
good agreement with the ones tabulated in [4,58], where a
perturbative approach is used. Although Barta [58] has
developed a dissipative formalism in the perturbative
framework, his approach was benchmarked on the EOSs

of [4] and the EOSs that are used in those two papers are the
same versions of APR and SLy4 chosen here. The error of
the fits on the sound speed profile is comparable with the
error between the approaches of [4,58], we therefore
consider the values of frequencies to be compatible with
one another. Figure 8 shows the mass-frequency diagram
for the RG(SLy4) EOS [38,46,47]. Even though in
Ref. [58] frequency values for the fundamental mode of
oscillating spherically symmetric NS are presented for this
particular EOS, those frequencies do not vanish as the mass
approaches the maximum mass of the EOS. This suggests
that there was an issue in the computation of
the frequencies and we therefore do not include them in
the figure. For both fðMÞ diagrams the frequency of the
fundamental mode approaches zero towards the maximum
mass as expected. It is also notable that the Potekhin-
Pearson approach and the pseudopolytrope give very close
frequencies one to another. Considering that the Potekhin-
Pearson approach uses 15 fit coefficients per slice while the
pseudopolytropic approach uses only 3 to 7 fit coefficients
per slice, the latter shows its efficiency in reproducing
dynamical NS oscillation modes compared to the former.
The influence of the crust on the frequencies is shown in

Fig. 9: a pseudopolytropic fit is performed for three
different values of the polytropic index in the crust and
the fðMÞ diagram computed for the three fits. The x axis of
the plot is the mass rescaled to the maximum mass yielded
by the fit to aid comparison. The frequencies are almost
unchanged between the three fits, which is in contrast with
the influence the choice of the crust has on the radius. It
shows the limited influence of the crust dynamics on the
oscillation modes of a NS. A possible explanation for this is
that we do not actually take the detailed physics of the crust
into account in the hydrodynamic simulations as the whole
star is modeled by a perfect fluid, and an accurate description
of the crustwould correspond to usemodels of the crystalline
structure. Also at this stage the hydrodynamical code does

FIG. 7. fðMÞ diagram for barotropic APR(APR) [44,48] EOS
compared with values taken from Table A.17 of [4] and
Table 2 of [58].

FIG. 8. fðMÞ diagram for barotropic RG(SLy4) [38,46,47]
EOS. The data for the GPPs and piecewise polytropes have been
digitized from [24] with ENGAUGE-DIGITIZER [59].
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not support the nonmonotonic behavior of the sound speed in
the crust of [60].
The fðMÞ curves for the two-argument fits of the three

chosen general purpose EOSs are plotted on Fig. 10. The
frequencies agree quite well between the two fitting
procedures, and it is also notable that going from the
β-equilibrated version of the EOS to the two-argument
version gives very similar frequencies. We note that, at low
neutron star masses, the Potekhin-Pearson scheme predicts
higher fundamental frequencies than the pseudopolytrope
formalism. This could be a consequence of the impact that
the different values of nlim;2 used by the two fitting schemes
has on the properties of the intermediate region that
connects the polytropic crust with the fitted core.
Therefore, for SRO(APR), the intermediate region may
have a non-negligible impact on the fundamental frequen-
cies. Unlike the EOSs considered in Fig. 11, the fðMÞ
curves for the β-equilibrated and two-argument versions of
SRO(APR) do not match. This could be a consequence of
the crude smoothing used to remove the pion condensate.
The fundamental difference between the two simulations is

the production of neutrinos, which is here taken into
account through the evolution equation for Ye. This is a
simple advection equation with a source term, see
Appendix B. The source terms σ are computed from the
expressions in [37], and depend strongly on the temper-
ature, namely being proportional to ðT=109 KÞ5 for direct
Urca processes and ðT=109 KÞ7 for modified Urca proc-
esses. Because we choose the first entries of the tables that
typically correspond to a temperature of 100 keV, the actual
computation of source terms gives values so small that they
are below the machine accuracy and therefore are virtually
zero. Therefore the simulations happen exactly as if no
neutrinos were emitted. The initial data used to perform the
evolution are computed with the β-equilibrated version of
the fits and then the star numerically exits the β-equilibrium
state thanks to the fact that μle ≠ 0 numerically.
Comparing the results of the one- and two-argument fits

for RG(SLy4) [38,46,47] shows that the frequencies con-
verge for higher masses, cf. Figs. 11 and 12. The small
discrepancy for higher mass is due to the slightly different
value of maximummass between the β-equilibrated version
of the two-argument fit of HS(DD2) [40,41] and the one-
argument fit of GPPVA(DD2) [41,49,50]. This is consistent
with the previous paragraph. We recall that the tables are
slightly different: the one-argument versions on COMPOSE

exactly correspond to zero temperature, whereas the gen-
eral purpose tables we used for two-argument fits start at a
low but nonzero temperature. The latter also rely on more
general calculations that do not consider a crystalline
structure in the low-density inhomogeneous phase.
However, as the study of the influence of the crust on
the frequencies of the fundamental mode suggests, these
differences that mainly concern the crust should have very
little effect on the values of the frequencies. Also, the direct
comparison cannot be made for APR, because even though
[42] uses the same nuclear interaction as [44], the final
EOS is different: the one-argument version was computed
with a mixed phase whereas the general purpose one was
computed with two distinct phases, yielding a first order

(a) (b) (c)

FIG. 10. fðMÞ diagram for the three general purpose EOSs.

FIG. 9. fðMÞ diagram for three pseudopolytropic fits with three
different choices of polytropic index in the crust.
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transition. Overall, the differences are most certainly due
to the increased number of fit coefficients for the two-
argument functional.

V. CONCLUSIONS

We presented two systematic ways to represent any
given EOS by an analytic fit function. The low-density
(crust) part of the EOSs is not represented by the fits and we
consider simplified expressions for this part. In principle,
we could match a widely used crust, for instance the one
from [60], or attach a consistent crust obtained e.g., from
the CUTER tool [61]. This tool, based on the work of [62],
allows us to attach a physically accurate crust to any EOS.
The hydrodynamical code that we use, however, does not
support the nonmonotonic behavior of the sound speed that

happens around the transition from the inner to the outer
crust at nB ≈ 2 × 10−4 fm−3. This is also the reason why we
drop the crust terms in the Potekhin-Pearson model. These
issues might be related to the nonconvex hydrodynamics
triggered by such behaviors, in connection with the so-
called fundamental derivative [63,64]. Our simplfied
approach can be justified by the fact that the detailed crust
physics is not the most important when looking at NS
oscillations.
A first asset of the approach lies in its economical nature:

instead of storing a large table, any EOS can be represented
in the form of a few coefficients and a formula, as an be
expected from a parametrization. For example, the general
purpose tables used in the paper have a total of 826 708
[RG(SLy4) [38,39] ], 1 239 300 [HS(DD2) [40,41] ] and
3 151 302 [SRO(APR) [42,43] ] thermodynamic entries
(the files’ sizes are respectively 70, 167, and 496 MB. The
number of data entries reduce to 6 667, 15 300, and 23 694,
respectively, when considering only the lowest temperature
entry). On the other hand fitting with the Potekhin-Pearson
model gives 15 coefficients per slice which corresponds to
around 900 coefficients, and the pseudopolytrope gives 3 to
7 coefficients per slice, depending on the choice of the
degree of the polynomial g, which amounts to 200 to 500
coefficients. A second asset is the low-density stitching
procedure: considering an analytic low-density model, it
gives continuous sound speed profiles even down to zero
densities, which is important for dynamical simulations of
neutron stars, and the procedure is in principle applicable to
any EOS parametrization. Finally, we have demonstrated
that the approach made the fitting of two-argument EOSs
possible thanks to the simplified crust model, from which
we were then able to compute macroscopic static quantities
as well as to perform dynamical simulations from which
frequencies could be extracted. The Potekhin-Pearson
model allowed us to compare our novel approach with
an already existing fitting scheme that is known for its
precision in the thermodynamical profiles. The pseudopo-
lytrope does almost as well as the Potekhin-Pearson
approach in reproducing the macroscopic static quantities
of the original EOS, except in the presence of a phase
transition where the thermodynamics is harder to capture,
but where both approaches fail to reproduce it faithfully.
However the fundamental radial frequencies of one-argu-
ment EOSs are well reproduced by both approaches, and
compatible when independently applied to two-argument
EOSs. In that regard, the pseudopolytrope might be
preferable as the number of fitting coefficients is reduced
compared to the Potekhin-Pearson approach. We provided,
whenever possible, a comparison between the published
values of macroscopic static quantities and radial oscil-
lation frequencies obtained with previous EOS parametri-
zations. We also have shown that changing the crust has a
very limited effect on the values of the oscillation frequen-
cies of neutron stars, especially for stars with a high mass
where the crust is thinner. We recall here that we do not use

FIG. 12. Comparison of fundamental mode frequency between
the one-argument pseudopolytropic fit of barotropic GPPVA
(DD2) [41,49,50] and the β-equilibrated version of the two-
argument pseudopolytropic fit of HS(DD2) [40,41].

FIG. 11. Comparison of fundamental mode frequency between
the one-argument pseudopolytropic fit of barotropic RG(SLy4)
[38,46,47] and the β-equilibrated version of the two-argument
pseudopolytropic fit of RG(SLy4) [38,39].
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a detailed description of the crust in the hydrodynamical
simulations and further work in that direction would be
needed to assess the extent of this result. Extensions of the
work would be improving the two-argument fitting scheme
by making it fully analytical, and extending it to three-
argument EOS tables with temperature as an additional
argument. We give a few words on EOSs that include
hyperons: we tried to apply the fits on one of those EOSs.
Both fitting procedures were unable to successfully capture
the phase transition at high densities which induces a
discontinuity in the sound speed. Since the discontinuity is
physical, one way to address this would be to consider
several zones with different fitting functionals. This would
be worth exploring for future versions of the fits. We plan to
make the pseudopolytrope fitting code publicly available as
a tool of COMPOSE in the future.
The codes used in this study are still in development and

have not been published yet. The data that support the
findings of this study are available upon reasonable request
from the authors.

ACKNOWLEDGMENTS

G. S. would like to thank Michael O’Boyle for his useful
insight on the generalized piecewise polytropes and Dániel
Barta for details on his paper on radial oscillations of
neutron stars. G. S., P. J. D., J. N., and M. O. acknowledge
financial support from the Agence Nationale de la
Recherche (ANR) under Contract No. ANR-22-CE31-
0001-01 and from the CNRS International Research
Project (IRP) “Origine des éléments lourds dans l’univers:
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APPENDIX A: ANALYTICAL FORMULAS OF
PSEUDOPOLYTROPIC THERMODYNAMICS

The internal energy ε serves as a potential from which all
other thermodynamic quantities can be derived, and we
here compile the expressions of the most common ones,
expressed as a function of ε and its derivatives or as the
fitting coefficients of the expression (1) and x ¼
lnðnB ½fm−3�Þ:

εðxÞ ¼ eαx
Xn
k¼0

ākxk þ d − e−xL; ðA1Þ

dε
dx

ðxÞ ¼ eαx
�
α
Xn
k¼0

ākxk þ
Xn
k¼1

kākxk−1
�
þ e−xL; ðA2Þ

d2ε
dx2

ðxÞ ¼ eαx
�
α2

Xn
k¼0

ākxk þ 2α
Xn
k¼1

kākxk−1

þ
Xn
k¼2

kðk − 1Þākxk−2
�
− e−xL; ðA3Þ

p
mB

¼ ex
dε
dx

; ðA4Þ

¼ eðαþ1Þx
�
α
Xn
k¼0

ākxk þ
Xn
k¼1

kākxk−1
�
þ L; ðA5Þ

e
mB

¼ exðεþ 1Þ; ðA6Þ

¼ eðαþ1Þx Xn
k¼0

ākxk þ exð1þ dÞ − L; ðA7Þ

H ¼ ln

�
eþ p
mBnB

�
¼ ln

�
1þ εþ dε

dx

�
; ðA8Þ

¼ ln

�
1þ dþ eαx

�
ðαþ 1Þ

Xn
k¼0

ākxk þ
Xn
k¼1

kākxk−1
��

;

ðA9Þ

c2s ¼
dp
de

¼
dε
dx þ d2ε

dx2

1þ εþ dε
dx

; ðA10Þ

¼ eαx½αðαþ 1ÞPn
k¼0 ākx
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k¼1 kākxk−1 þ

P
n
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k þP
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dx
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dx2
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¼ eαx½αðαþ 1ÞPn
k¼0 ākx

k þ ð2αþ 1ÞPn
k¼1 kākxk−1 þ

P
n
k¼2 kðk − 1Þākxk−2�

eαx½αPn
k¼0 ākx

k þP
n
k¼1 kākx

k−1� þ e−xL
: ðA13Þ

APPENDIX B: EVOLUTION EQUATION FOR THE ELECTRON FRACTION

Under the 3þ 1 decomposition of general relativity, if γij denotes the induced three-metric on spacelike hypersurfaces to
which we associate Di its corresponding covariant derivative, N the lapse function, βi the shift vector, Ui the Eulerian
velocity, Γ ¼ ð1 −UiUiÞ−1=2 the Lorentz factor, and we denote by vi ¼ NUi − βi the coordinate velocity, then the
evolution equation of Ye the electron fraction is

∂tYe þ viDiYe ¼
N
Γ

σ

nB
: ðB1Þ

The details on the derivation of this equation can be found in [33].
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F. m. c. Hébert, and L. E. Kidder, Phys. Rev. D 107, 123017
(2023).

[30] C. A. Raithel, F. Özel, and D. Psaltis, Astrophys. J. 875, 12
(2019).

[31] A. Y. Potekhin, A. F. Fantina, N. Chamel, J. M. Pearson, and
S. Goriely, Astron. Astrophys. 560, A48 (2013).

[32] J. M. Pearson, N. Chamel, A. Y. Potekhin, A. F. Fantina, C.
Ducoin, A. K. Dutta, and S. Goriely, Mon. Not. R. Astron.
Soc. 481, 2994 (2018).

[33] G. Servignat, J. Novak, and I. Cordero-Carrión, Classical
Quantum Gravity 40, 105002 (2023).

[34] T. Celora, I. Hawke, P. C. Hammond, N. Andersson, and
G. L. Comer, Phys. Rev. D 105, 103016 (2022).

[35] G. Camelio, L. Gavassino, M. Antonelli, S. Bernuzzi, and B.
Haskell, Phys. Rev. D 107, 103031 (2023).

[36] G. Camelio, L. Gavassino, M. Antonelli, S. Bernuzzi, and B.
Haskell, Phys. Rev. D 107, 103032 (2023).

SERVIGNAT, DAVIS, NOVAK, OERTEL, and PONS PHYS. REV. D 109, 103022 (2024)

103022-14

https://doi.org/10.1103/RevModPhys.89.015007
https://doi.org/10.1103/RevModPhys.89.015007
https://doi.org/10.1086/303604
https://doi.org/10.1103/PhysRevD.61.064001
https://doi.org/10.1103/PhysRevD.61.064001
https://doi.org/10.1051/0004-6361:20000216
https://doi.org/10.1051/0004-6361:20000216
https://doi.org/10.1103/PhysRevD.65.084024
https://doi.org/10.1103/PhysRevD.65.084024
https://doi.org/10.1103/PhysRevD.79.024017
https://doi.org/10.1103/PhysRevD.79.024017
https://doi.org/10.1103/PhysRevD.98.044041
https://doi.org/10.1103/PhysRevD.98.044041
https://doi.org/10.1088/1361-6382/abee65
https://doi.org/10.1088/1361-6382/abee65
https://doi.org/10.1134/S1063779615040061
https://doi.org/10.1134/S1063779615040061
https://doi.org/10.1103/PhysRevD.71.084021
https://doi.org/10.1103/PhysRevD.71.084021
https://doi.org/10.1103/PhysRevD.83.124008
https://doi.org/10.3847/1538-4357/aaf054
https://doi.org/10.1093/mnras/stad107
https://doi.org/10.1093/mnras/stad107
https://doi.org/10.1088/0067-0049/189/1/104
https://doi.org/10.1088/0067-0049/189/1/104
https://doi.org/10.1088/0004-637X/748/1/70
https://doi.org/10.1093/mnras/sty2578
https://doi.org/10.1093/mnras/sty2578
https://doi.org/10.3847/1538-4357/ac31a8
https://doi.org/10.3847/1538-4357/ac31a8
https://doi.org/10.1093/mnras/stac016
https://doi.org/10.1093/mnras/stac016
https://doi.org/10.3847/1538-4357/ac9eb7
https://doi.org/10.1038/s41550-024-02194-y
https://doi.org/10.1006/jcph.1996.0162
https://doi.org/10.1103/PhysRevD.79.124032
https://doi.org/10.1103/PhysRevC.106.035805
https://doi.org/10.1103/PhysRevD.102.083027
https://doi.org/10.1103/PhysRevD.82.103011
https://doi.org/10.1103/PhysRevD.97.123019
https://doi.org/10.1103/PhysRevD.105.063031
https://doi.org/10.1093/mnras/stz654
https://doi.org/10.1093/mnras/stz654
https://doi.org/10.1103/PhysRevD.107.123017
https://doi.org/10.1103/PhysRevD.107.123017
https://doi.org/10.3847/1538-4357/ab08ea
https://doi.org/10.3847/1538-4357/ab08ea
https://doi.org/10.1051/0004-6361/201321697
https://doi.org/10.1093/mnras/sty2413
https://doi.org/10.1093/mnras/sty2413
https://doi.org/10.1088/1361-6382/acc828
https://doi.org/10.1088/1361-6382/acc828
https://doi.org/10.1103/PhysRevD.105.103016
https://doi.org/10.1103/PhysRevD.107.103031
https://doi.org/10.1103/PhysRevD.107.103032


[37] P. Haensel, Astron. Astrophys. 262, 131 (1992).
[38] F. Gulminelli and A. R. Raduta, Phys. Rev. C 92, 055803

(2015).
[39] A. R. Raduta and F. Gulminelli, Nucl. Phys. A983, 252

(2019).
[40] M. Hempel and J. Schaffner-Bielich, Nucl. Phys. A837, 210

(2010).
[41] S. Typel, G. Röpke, T. Klähn, D. Blaschke, and H. H.

Wolter, Phys. Rev. C 81, 015803 (2010).
[42] A. S. Schneider, L. F. Roberts, and C. D. Ott, Phys. Rev. C

96, 065802 (2017).
[43] A. S. Schneider, C. Constantinou, B. Muccioli, and M.

Prakash, Phys. Rev. C 100, 025803 (2019).
[44] A. Akmal, V. R. Pandharipande, and D. G. Ravenhall, Phys.

Rev. C 58, 1804 (1998).
[45] A. Akmal and V. Pandharipande, Phys. Rev. C 56, 2261

(1997).
[46] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R.

Schaeffer, Nucl. Phys. A635, 231 (1998).
[47] P. Danielewicz and J. Lee, Nucl. Phys. A818, 36 (2009).
[48] Neutron Stars 1, Vol. 326 of Astrophysics and Space

Science Library, edited by P. Haensel, A. Y. Potekhin,
D. G. Yakovlev, F. Bertola, J. Cassinelli, C. Cesarsky, P.
Ehrenfreund, O. Engvold, A. Heck, E. van den Heuvel et al.
(Springer, New York, New York, NY, 2007), ISBN 978-0-
387-33543-8 978-0-387-47301-7.

[49] F. Grill, H. Pais, C. Providência, I. Vidaña, and S. S.
Avancini, Phys. Rev. C 90, 045803 (2014).

[50] J. M. Pearson, N. Chamel, A. Y. Potekhin, A. F. Fantina, C.
Ducoin, A. K. Dutta, and S. Goriely, Mon. Not. R. Astron.
Soc. 481, 2994 (2018).

[51] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T.
Reddy, D. Cournapeau, E. Burovski, P. Peterson,
W. Weckesser, J. Bright et al., Nat. Methods 17, 261 (2020).

[52] P. Haensel and A. Y. Potekhin, Astron. Astrophys. 428, 191
(2004).

[53] T. Hinderer, Astrophys. J. 677, 1216 (2008).
[54] T. Malik, N. Alam, M. Fortin, C. Providência, B. K.

Agrawal, T. K. Jha, B. Kumar, and S. K. Patra, Phys.
Rev. C 98, 035804 (2018).

[55] T. Hinderer, B. D. Lackey, R. N. Lang, and J. S. Read, Phys.
Rev. D 81, 123016 (2010).

[56] M. Fortin, C. Providência, A. R. Raduta, F. Gulminelli, J. L.
Zdunik, P. Haensel, and M. Bejger, Phys. Rev. C 94, 035804
(2016).

[57] L. Suleiman, M. Fortin, J. L. Zdunik, and P. Haensel, Phys.
Rev. C 104, 015801 (2021).

[58] D. Barta, Classical Quantum Gravity 38, 185002 (2021).
[59] B. M. Mark Mitchell and E. D. S. Tobias Winchen et al.,

Engauge digitizer software (2020), 10.5281/zenodo.
3941227.

[60] F. Douchin and P. Haensel, Astron. Astrophys. 380, 151
(2001).

[61] P. J. Davis, H. Dinh Thi, A. F. Fantina, F. Gulminelli, M.
Oertel, and L. Suleiman (to be published).

[62] T. Carreau, F. Gulminelli, and J. Margueron, Eur. Phys. J. A
55, 188 (2019).

[63] J. M. Ibáñez, I. Cordero-Carrión, J. M. Martí, and J. A.
Miralles, Classical Quantum Gravity 30, 057002
(2013).

[64] J. M. Ibáñez, A. Marquina, S. Serna, and M. A. Aloy, Mon.
Not. R. Astron. Soc. 476, 1100 (2018).

ONE- AND TWO-ARGUMENT EQUATION OF STATE… PHYS. REV. D 109, 103022 (2024)

103022-15

https://doi.org/10.1103/PhysRevC.92.055803
https://doi.org/10.1103/PhysRevC.92.055803
https://doi.org/10.1016/j.nuclphysa.2018.11.003
https://doi.org/10.1016/j.nuclphysa.2018.11.003
https://doi.org/10.1016/j.nuclphysa.2010.02.010
https://doi.org/10.1016/j.nuclphysa.2010.02.010
https://doi.org/10.1103/PhysRevC.81.015803
https://doi.org/10.1103/PhysRevC.96.065802
https://doi.org/10.1103/PhysRevC.96.065802
https://doi.org/10.1103/PhysRevC.100.025803
https://doi.org/10.1103/PhysRevC.58.1804
https://doi.org/10.1103/PhysRevC.58.1804
https://doi.org/10.1103/PhysRevC.56.2261
https://doi.org/10.1103/PhysRevC.56.2261
https://doi.org/10.1016/S0375-9474(98)00180-8
https://doi.org/10.1016/j.nuclphysa.2008.11.007
https://doi.org/10.1103/PhysRevC.90.045803
https://doi.org/10.1093/mnras/sty2413
https://doi.org/10.1093/mnras/sty2413
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1051/0004-6361:20041722
https://doi.org/10.1051/0004-6361:20041722
https://doi.org/10.1086/533487
https://doi.org/10.1103/PhysRevC.98.035804
https://doi.org/10.1103/PhysRevC.98.035804
https://doi.org/10.1103/PhysRevD.81.123016
https://doi.org/10.1103/PhysRevD.81.123016
https://doi.org/10.1103/PhysRevC.94.035804
https://doi.org/10.1103/PhysRevC.94.035804
https://doi.org/10.1103/PhysRevC.104.015801
https://doi.org/10.1103/PhysRevC.104.015801
https://doi.org/10.1088/1361-6382/ac12e2
https://doi.org/10.5281/zenodo.3941227
https://doi.org/10.5281/zenodo.3941227
https://doi.org/10.1051/0004-6361:20011402
https://doi.org/10.1051/0004-6361:20011402
https://doi.org/10.1140/epja/i2019-12884-1
https://doi.org/10.1140/epja/i2019-12884-1
https://doi.org/10.1088/0264-9381/30/5/057002
https://doi.org/10.1088/0264-9381/30/5/057002
https://doi.org/10.1093/mnras/sty137
https://doi.org/10.1093/mnras/sty137

