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Burst-with-memory events are potential transient gravitational wave (GW) sources for the maturing
pulsar timing array (PTA) efforts. We provide a computationally efficient prescription to model pulsar
timing residuals induced by supermassive black hole pairs in general relativistic hyperbolic trajectories
employing a Keplerian-type parametric solution. Injection studies have been pursued on the resulting bursts
with linear GW memory (LGWM) events with simulated datasets to test the performance of our pipeline,
followed by its application to the publicly available NANOGrav 12.5-year (NG12.5) dataset. Given the
absence of any evidence of LGWM events within the real NG12.5 dataset, we impose 95% upper limits on
the PTA signal amplitude as a function of the sky location of the source and certain characteristic frequency
(n) of the signal. The upper limits are computed using a signal model that takes into account the presence of
intrinsic timing noise specific to each pulsar, as well as a common, spatially uncorrelated red noise,
alongside the LGWM signal. Our investigations reveal that the 95% upper limits on LGWM amplitude,
marginalized over all other parameters, is 3.48� 0.51 μs for n > 3.16 nHz. This effort should be relevant
for constraining both burst and memory events in the upcoming International Pulsar Timing Array data
releases.

DOI: 10.1103/PhysRevD.109.103018

I. INTRODUCTION

Pulsar timing arrays (PTAs) are experiments that are
capable of detecting gravitational waves (GWs) in the
nanohertz frequency range by monitoring ensembles of
millisecond pulsars (MSPs) [1,2]. A PTA operates by
synthesizing a galaxy-sizedGWdetector out of its ensemble
of MSPs acting as accurate celestial clocks. There are six
PTA collaborations active worldwide: the European PTA
(EPTA) [3], the Indian PTA (InPTA) [4], theAustralia-based
Parkes PTA (PPTA) [5], the North American Nanohertz
Observatory for Gravitational Waves (NANOGrav) [6], the
Chinese PTA (CPTA) [7], and the South Africa-based
MeerKAT PTA [8]. The International Pulsar Timing
Array (IPTA) [9] consortium aims to advance the prospects

of PTA science by combining data and resources from a
subset of these regional PTA collaborations.
Recently, evidence for the presence of a stochastic GW

background (GWB) was reported independently by
NANOGrav [10], EPTAþ InPTA [11], PPTA [12], and
CPTA [7] in their respective datasets. This signal manifests
as a common-spectrum red noise process with Hellings-
Downs cross-pulsar spatial correlations [13], with proper-
ties that are consistent across different datasets [14]. These
exciting results have essentially inaugurated the nanohertz
window in GW astronomy, complementing the ground-
based GW detectors operating in the 10 Hz–kHz frequency
range [15–17]. The source of the observed GWB signal
remains inconclusive, with many astrophysical and cos-
mological processes such as a population of GW-emitting
supermassive black hole binaries (SMBHBs), cosmic
inflation, first-order phase transitions, cosmic strings, dark
matter, etc., as possible candidates [18–20]. Nevertheless, a*subhajit.phy97@gmail.com
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population of inspiraling SMBHBs is considered to be
the most prominent source of the GWB seen in these
datasets [21]. They were previously predicted to be
detected first as a GWB, followed by the detection of
individual sources resounding above the GWB (see,
e.g., [22–25]). Interestingly, both EPTAþ InPTA and
NANOGrav report the tentative presence of an indivi-
dual SMBHB candidate signal with a GW frequency of
∼4 nHz [26,27]. It is expected that the upcoming IPTA data
release 3 will produce a higher-significance detection of the
GWB and help characterize the astrophysical and/or
cosmological processes producing the observed GWB [14].
PTAs, in general, are sensitive to three types of GW

signals: (a) stochastic background (e.g., from an ensemble
of SMBHBs), (b) persistent GWs (e.g., from individual
SMBHBs), and (c) burst events [21]. Burst events to which
PTAs are sensitive include cosmic string cusps [28],
SMBHB mergers [29], hyperbolic encounters of SMBH
pairs [30], near-field events such as binary mergers and
supernovae in our Galaxy [31], etc. Some of these events
are accompanied by GW memory [32], which leaves
permanent deformations of the spacetime after the passage
of the GW burst signal. The prefit timing residual (PTA
signal) induced by a GW memory event contains a ramp-
like component, resulting in high PTA sensitivity [29,33].
For the sources and waveforms considered in this work,
both the burst and monotonic memory are present, and the
latter develops over longer timescales.
In this paper, we provide a prescription, influenced by

Ref. [34], to efficiently search for burst-with-memory
events associated with SMBH encounters in general rela-
tivistic hyperbolic orbits [we refer to such events as linear
GW memory (LGWM) events in this paper]. It is worth
emphasizing that linear memory essentially arises from
certain nonoscillatory motion of a GW source, in contrast
with the nonlinear memory that is associated with heredi-
tary contributions to GW emission [35,36]. The linear GW
memory events can arise from binaries in hyperbolic orbits,
the asymmetric ejection of masses or neutrinos, as inferred
from detailed numerical studies [32,37]. The PTA signals
induced by such LGWM events were computed in Ref. [30]
employing a 3PN-accurate Keplerian-type parametric sol-
ution detailed in Ref. [38] and the GW phasing approach of
Ref. [39]. These efforts allowed us to describe general
relativistic trajectories of compact objects in unbound orbits
and compute the resulting temporally evolving GW polari-
zation states. We recall that the post-Newtonian (PN)
approximation provides general relativistic corrections to
the Newtonian prescription for hyperbolic orbital dynamics
in terms of an expansion parameter x ¼ ðv=cÞ2 ∼ GM=
ðrc2Þ ≪ 1, where v, M, and r are, respectively, the orbital
velocity, total mass, and relative separation of the binary and
the 3PN order includes all contributions that are accurate up
to ðv=cÞ6. The detailed investigation of Ref. [30] showed that
the 3PN approximation is appropriate for describing such

events if their peak frequencies lie in the nanohertz range.
Furthermore, such events involving 109M⊙ SMBHs should
be detectable by a Square Kilometre Array–era PTA to
cosmological distances. This work explores the PTA impli-
cations of an improved prescription to model such LGWM
events.
In what follows, we describe in detail a computationally

efficient version of the approach presented in Ref. [30] for
modeling LGWM events due to hyperbolic encounters of
black holes, influenced by Ref. [34]. Thereafter, we delve
into the data analysis implications of this improved pre-
scription in Sec. III while employing simulated PTA data-
sets. Furthermore, we searched for such LGWM events in
using the NANOGrav 12.5-year dataset using 44 pulsars.
This section also provides a comprehensive overview of the
underlying Bayesian pipeline and explores the implications
of utilizing different samplers in our searches. Because
of the absence of any LGWM events in the NANOGrav
12.5-year dataset, we provide an upper limit for the signal
amplitude and probe its dependencies with the characteristic
frequency, sky location, and various other parameters. A
summary and possible future directions are listed in Sec. IV.

II. PN-ACCURATE MODELING
OF HYPERBOLIC ENCOUNTERS

INVOLVING BLACK HOLES

We begin by providing a brief description of our
approach to obtain temporally evolving quadrupolar-order
hþ;× for nonspinning BH binaries in 3PN-accurate hyper-
bolic orbits, influenced by Ref. [30]. A computationally
efficient way of obtaining the resulting pulsar timing
residuals RðtÞ is described in Sec. II B. Various facets of
the resulting pipeline GWhyp are provided in Sec. II C.

A. Temporally evolving h×; + ðtÞ for hyperbolic BHs

We begin by writing down the quadrupolar-order GW
polarization states hQþ;× for nonspinning compact binaries
in noncircular orbits [40]:

hQþ ¼ −
GMη

c4DL

�
ð1þ cos2ιÞ

��
GM
r

þ r2ϕ̇2 − ṙ2
�
cos2ϕ

þ 2rṙ ϕ̇ sin2ϕ

�
þ sin2ι

�
GM
r

− r2ϕ̇2 − ṙ2
��

; ð1aÞ

hQ× ¼ −
GMη

c4DL
2 cos ι

��
GM
r

þ r2ϕ̇2 − ṙ2
�
sin 2ϕ

− 2rṙ ϕ̇ cos 2ϕ

�
; ð1bÞ

whereM, η, and DL stand for the total mass, the symmetric
mass ratio, and the luminosity distance to the GW source,
respectively. The angle ι represents the constant orbital
inclination, while the dynamical variables r and ϕ stand for
the relative orbital separation and the angular coordinate in
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the orbital plane (ṙ and ϕ̇ represent the time derivatives of
these variables), respectively. We now customize the above
expressions for BH binaries in hyperbolic trajectories with
the help of a Keplerian-type parametric solution for hyper-
bolic trajectories. Influenced by Ref. [41], we write

r ¼ arðer cosh u − 1Þ; ð2aÞ
nðt − t0Þ ¼ et sinh u − u; ð2bÞ
ðϕ − ϕ0Þ ¼ ð1þ kÞν; ð2cÞ

where t0 is a certain fiducial time such that ϕ0 ¼ ϕðt0Þ. The
orbital elements ar, er, et, k, and n are the semimajor axis,
the radial eccentricity, the time eccentricity, the rate of
periastron advance, and the mean motion, respectively,
which are functions of the orbital energy and angular
momentum, and u and ν are the eccentric anomaly and the
true anomaly, respectively [38]. The explicit expression for
the true anomaly in terms of u reads

ν ¼ 2 arctan

" ffiffiffiffiffiffiffiffiffiffiffiffiffi
eϕ þ 1

eϕ − 1

s
tanh

u
2

#
; ð3Þ

where eϕ is known as the angular eccentricity.

To obtain hQ×;þ for compact binaries in hyperbolic
trajectories, we replace r, ṙ, and ϕ̇ appearing in Eq. (1)
with the help of Eq. (2), and this leads to

hQþ ¼ −H
�
ðc2ι þ 1Þ

�
2e2t − χ2 þ χ − 2

ðχ − 1Þ2 cos 2ϕ

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2t − 1

p
ðχ − 1Þ2 sin 2ϕ

�
− s2ι

χ

χ − 1

�
; ð4aÞ

hQ× ¼H2cι

�
2

ffiffiffiffiffiffiffiffiffiffiffiffi
e2t − 1

p
ξ

ðχ − 1Þ2 cos2ϕ−
2e2t − χ2 þ χ − 2

ðχ − 1Þ2 sin2ϕ

�
;

ð4bÞ

whereH¼GMη
DLc2

x is the GWamplitude and x¼ðGMn=c3Þ2=3
is a dimensionless PN parameter. The additional notations
used here include cι ¼ cos ι, sι ¼ sin ι, χ ¼ et cosh u,
and ξ ¼ et sinh u. It should be noted that the Keplerian
parametric solution [Eq. (2)] allows us to express
ϕ̇ ¼ ðdϕ=dvÞ × ðdv=duÞ × ðdu=dlÞ × ðdl=dtÞ and ṙ ¼
ðdr=duÞ × ðdu=dlÞ × ðdl=dtÞ in Eq. (1). Furthermore,
we write the energy and angular momentum, required
to specify the orbital elements, in terms of n and et,
respectively, while identifying orbital eccentricity with the
time eccentricity et that enters the PN-accurate Keplerian-
type parametric solution for hyperbolic orbits [38]. The
structure of Eq. (4) allows us to pursue a certain restricted
PN-accurate prescription for modeling the temporal evo-
lution of quadrupolar-order GW polarization states, asso-
ciated with nonspinning compact objects in PN-accurate
hyperbolic orbits. In other words, we will employ a PN-
accurate prescription for the time evolution of u and ϕ
variables that appear in Eq. (4). This PN-accurate evolu-
tion is implemented by employing the 3PN-accurate
Keplerian-type parametric solution that extends Eq. (2)
and (3) and detailed in Refs. [30,38]. The temporal
evolution of eccentric anomaly u is provided by the
3PN-accurate Kepler equation, which we write explicitly
as [30]

l ¼ nðt − t0Þ ¼ ðet sinh u − uÞ − x2
	
12νð−5þ 2ηÞ þ etð−15þ ηÞη sin ν


8
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2t − 1

p þ x3

6720ðe2t − 1Þ3=2
�
et
	
67200

− 3ð−47956þ 105e2t þ 1435π2Þη − 105ð592þ 135e2t Þη2 þ 35ð−8þ 65e2t Þη3


sin ν

þ 35
	ð8640 − 13184ηþ 123π2ηþ 960η2 þ 96e2t ð30 − 29ηþ 11η2ÞÞνþ 12e2t ηð116 − 49ηþ 3η2Þ

× sin 2νþ e3t ηð23 − 73ηþ 13η2Þ sin 3ν
�: ð5Þ

The explicit 3PN-accurate expression for l is listed as to
explain our efficient approach to tackle the PN-accurate
Kepler equation. Furthermore, we employ the 3PN-
accurate expression for ϕ, expressed in terms of u and ν
and adapted from Ref. [30], and we write symbolically as

ϕ ¼ ϕ0 þ ð1þ kÞνþFϕðuÞ; ð6Þ

where k is the advance of periapsis per orbit and FϕðuÞ
stands for the 2PN and 3PN periodic contributions to ϕ as
detailed in Ref. [30].

It should be now obvious that we need to solve the above
3PN-accurate Kepler equation to obtain the PN-accurate
temporal evolution for hQþ;×, given by Eq. (4). It is customary
to employ Mikkola’s method to solve the classical Kepler
equation, namely, l ¼ et sinh u − u, as this method is the
most accurate and efficient approach to tackle such a
transcendental equation [42]. We need additional steps to
tackle our PN-accurateKepler equation,which can bewritten
symbolically as

l ¼ et sinhu − uþF tðuÞ; ð7Þ
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where the explicit 2PN and 3PN contributions to the orbital
functionF tðuÞ can easily be extracted from Eq. (5). In order
to obtain the benefits ofMikkola’s approach, rewrite the PN-
accurate Kepler equation in the form of the classical Kepler
equation. For this purpose, we introduce an “auxiliary
eccentric anomaly” û, inspired by Ref. [43], which allows
us to express the PN-accurate Kepler equation as

l ¼ û − et sinh û: ð8Þ

The explicit PN-accurate expression for u in terms of û,
relevant for the present effort, is given by Eq. (27) in
Ref. [30].We can now employMikkola’s method and obtain
û as a function of l. Thereafter, we obtain u in terms of l by
invoking a PN-accurate expression that expresses u in terms
of û, as noted earlier. Thereafter, we can easily obtain ϕðlÞ
with the help of Eq. (6). It should be noted that this procedure
naturally allows us to obtain hQ×;þðtÞ due to 3PN-accurate
conservative orbital dynamics of two BHs in hyperbolic
orbits in the restricted PN-accurate approach in a computa-
tionally efficient way.
In what follows, we briefly list how we incorporate the

effects of GW emission that occurs at the 2.5PN order,
influenced by Refs. [38,39]. Under the influence of GW
emission, the unbound binary loses both the energy and the
angular momentum, which ensures that both n and et
become time dependent. Furthermore, the definition of the
mean anomaly l becomes

lðtÞ ¼
Z

t

t0

nðt0Þdt0: ð9Þ

With these considerations, it is fairly straightforward to
obtain the following equations for x, et, and l [30]:

dx
dt

¼ 16

15

c3x5η
GMβ6

f35ð1 − e2t Þ þ ð49 − 9e2t Þβ þ 32β2

þ 6β3g; ð10aÞ

det
dt

¼ 8

15

ðe2t − 1Þx4c3η
GMetβ6

f35ð1 − e2t Þ þ ð49 − 9e2t Þβ

þ 17β2 þ 3β3g; ð10bÞ

dl
dt

¼ n; ð10cÞ

where β ¼ et coshu − 1.
Following Ref. [30], we obtain temporally evolving hQ×;þ

due to two nonspinning BHs in fully 3PN-accurate hyper-
bolic orbits with the help of the following steps. First, we
specify the total massM and the mass ratio q along with an
impact parameter b and eccentricity parameter et at an
initial epoch t0 where the orbital phase value is ϕ0.
Thereafter, we obtain the associated mean motion n by

numerically inverting the 3PN-accurate expression that
expresses b as a function of n, et, and η as given in
Eq. (9) in Ref. [30]. We now tackle the 3PN-accurate
Kepler equation with these inputs and obtain the u0
associated with the initial l which leads to hQ×;þ at the
initial epoch t0 for specific and constant ι. The temporal
evolution now follows by evolving the differential equa-
tions for x, et, and l, given by Eq. (10), and repeating the
above-listed steps at the new epoch t0 þ δt.
In what follows, we provide an improved way to

compute pulsar timing residuals associated with such
temporally evolving hQ×;þðtÞ.

B. Computationally efficient approach to model RðtÞ
due to burst-with-linear-memory events

A GW signal passing across the line of sight between
the observer and a pulsar induces time-varying modulations
in the observed times of arrival (TOAs) of the pulsar’s
pulses [44]. For a transient event, we may write

RðtEÞ ¼
Z

tE

t0

hðt0EÞdt0E; ð11Þ

where t0 is a fiducial epoch and both tE and t0 are measured
in the Solar System barycenter (SSB) frame. It should be
noted that we have ignored the pulsar contributions that
typically appear in the RðtÞ expression for individual
continuous PTA sources [33]. This is because the maxi-
mum duration of these burst events is expected to be around
a decade or so, and, therefore, such events are not expected
to induce observable pulsar term contributions, since the
pulsars are typically located at ∼kiloparsec distances from
Earth. In other words, there are essentially no pulsar
contributions to timing residuals, in general, while dealing
with our bursts with memory events. In highly unusual
scenarios, when the sky position of the GW source closely
aligns with that of a pulsar in the array, the contributions of
the pulsar terms to the GW-induced timing residual for that
pulsar can be non-negligible. However, in these cases, the
pulsar term contribution will exhibit high covariance with
the timing model of the pulsar. Consequently, the decision
to ignore the pulsar terms should not significantly impact
our results.
We proceed by defining the dimensionless gravitational

wave strain hðtÞ that appear in Eq. (11) as

h ¼ ½Fþ F× �
�
cos 2ψ − sin 2ψ

sin 2ψ cos 2ψ

��
hþ
h×

�
; ð12Þ

where the antenna pattern functions Fþ;× depend on the sky
positions of both the pulsar and the GW source and their
explicit expressions are available in Ref. [44]. Additionally,
ψ represents the GW polarization angle, and hþ;× repre-
sents the quadrupolar-order GW polarization states given
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by Eq. (4). The resulting RðtÞmay be expressed in terms of
two temporally evolving functions sþ;×ðtÞ such that

RðtEÞ¼ ½Fþ F× �
�
cos2ψ −sin2ψ

sin2ψ cos2ψ

��
sþðtEÞ
s×ðtEÞ

�
: ð13Þ

Here, we have defined

s×;þðtEÞ ¼
Z

t

t0

hQ×;þðt0Þdt0; ð14Þ

and, in what follows, we provide a computationally
efficient approach for evaluating these integrals.
It may be noted that we had obtained s×þðtEÞ by employ-

ing explicit numerical integration of these definite integrals in
Ref. [30]. This step turned out to be themost computationally
expensive part of the resulting GW_hyp [45] package. This
prompted us to explore the possibility of tackling these
integrals analytically, influenced by Ref. [34], by pursuing
the following steps. First, we change the integration variable
from t to u by employing the Kepler equation, which leads to
dt ¼ dl=n ¼ duðet cosh u − 1Þ=n. Thereafter, we write
ϕ ¼ νþ ω0, where ν is given by Eq. (3) while ω0 stands
for all the PN corrections that appear in the 3PN-accurate
expression for ϕ given by Eq. (6). We assume ω0 to be
a constant while performing the above integration, which
is strictly true only for Newtonian hyperbolic orbits. This
leads to

sAþðtÞ ¼ −S
	ðc2ι þ 1Þð−P sin 2ω0 þQ cos 2ω0Þ − s2ιR



;

ð15aÞ

sA×ðtÞ ¼ −S2cιðP cos 2ω0 þQ sin 2ω0Þ; ð15bÞ

with

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2t − 1

p
ðcosh 2u − et cosh uÞ
et cosh u − 1

; ð16aÞ

Q ¼ ððe2t − 2Þ cosh uþ etÞ sinh u
et cosh u − 1

; ð16bÞ

R ¼ et sinhu; ð16cÞ

where S is the PTA signal amplitude given by S ¼ H=n. A
few comments are in order here. Strictly speaking, the above
expressions are valid only at the Newtonian order where ω0
by definition is a constant. However, we employ a 3PN-
accurate expression for ω0, easily extractable from Eq. (6),
while evaluating the expressions for the restricted PN-
accurate description for s×þðtÞ. Furthermore, we have
verified the following identity:

hþ;× ¼ n
∂sAþ;×

∂l


eϕ→et;n;et;ω

; ð17Þ

where the lhs is given byEq. (4) and it provides an interesting
consistency check for our approach to obtain a semianalytic
prescription for RðtEÞ associated with PN-accurate hyper-
bolic encounters of BHs. It is important to note that this
approach is influenced byRef. [34] that provided an accurate
and efficient way to compute sþ;× associated with BH
binaries in precessing eccentric orbits.
We now compare the values of sþ;× arising from our

earlier approach, detailed in Ref. [30], and the present
approach. We refer to them as sTþ;× and sEþ;× where “T” and
“E” stand for the traditional and computationally efficient
approaches, respectively. A detailed comparison of the PTA
signals evaluated for different values of n and et using the
two methods is shown in Fig. 1. The plots highlight that the
distinction between the two approaches becomes apparent
when the orbital separation is at the closest approach, for
rmin ∼ 10GM=c2. These deviations are expected, because
as rmin decreases, the system becomes more relativistic, and
our E approach is essentially an approximation of the T
approach, which provides, in principle, a higher level of PN
accuracy. However, we refrain from entering this rmin ∼
10GM=c2 regime, as explained in Sec. II.B in Ref. [30] and
also discussed in Ref. [46], due to restrictions related to PN
validity. Therefore, opting for the computationally efficient
approach is justifiable, given that this approximation
comfortably fits within the PTA parametric space and
offers a substantial computational improvement (∼50
times) over the traditional method.
In the next subsection, we provide details of the updated

version of our ENTERPRISE-compatible [47,48] GWhyp
package and list its features.

C. Details of the GWhyp package
and its features

We now present a detailed description of our
GWhyp [49] package, which is the improved and updated
version of our GW_hyp [30] PYTHON package. The updated
package implements the computationally efficient way of
tackling the indefinite integrals present in the s×;þðtEÞ
expression, given by Eq. (14). Furthermore, we employ the
mean motion n rather than the impact parameter b to
characterize the hyperbolic orbit, and this choice is based
on two practical considerations. The first reason is that n
provides an excellent proxy to the peak frequency (fpeak) of
the GW spectrum associated with hyperbolic encounters.
This conclusion arises from a detailed analysis of the
Fourier domain expression for GW luminosity, FQðfÞ,
given by Eq. (3.27) in Ref. [50]. It turns out that the fpeak
values, obtained by maximizing FQðfÞ, are close to n
values for a substantial part of the fn; etg parameter space,
relevant for our LGWM sources. It may be noted that we
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extracted n values from a 3PN-accurate expression for b in
terms of n and et, given by Eq. (9) in Ref. [30]. In Fig. 2, we
display the way fpeak relates to n with the help of contour
plots. Interestingly, both fpeak and n exhibit a dependency
on total mass M via the scaling c3=GM, resulting in an
absence ofM dependence between them, for the relevant et
ranges. However, a rather weak dependence on η is
observed through the relationship that connects b, n, and
et, given by Eq. (9) in Ref. [30]. Additionally, n is a more
useful parameter in our opinion, as it depends only on the

conserved energy while b, similar to et, depends on both
energy and angular momentum as evident from PN-
accurate expressions for these orbital elements available
in Ref. [38].
Second, the usefulness of n became more evident during

our detailed parameter estimation studies, as described in
Sec. III. It turned out to be very challenging to recover both
b and et simultaneously in our injection studies; such
parameter estimation runs resulted only in a constraint on
one of these parameters rather than a full recovery. In
contrast, we regularly achieve simultaneous recovery of
both n and et parameters while simultaneously searching
over them in our injection studies. The above two consid-
erations prompted us to employ n and et to characterize our
PN-accurate hyperbolic orbits while providing ready-to-use
routines to model RðtÞ from such LGWM events.
Our improved and updated GWhyp software package

adheres to the following steps for calculating RðtEÞ
associated with hyperbolic BH binaries with the total mass
M and mass ratio q when provided with a collection
of TOAs.

(i) The function called cal_sp_sx_A receives inputs
such as PTA signal amplitude (S), GW source
coordinates, eccentricity (et), the above-described
characteristic frequency (n), the inclination angle (ι),
and the fiducial time (t0), along with the TOAvalues
and pulsar coordinates.

(ii) Thereafter, we solve the Kepler equation by invok-
ing Mikkola’s method [Eq. (8)] to obtain the
eccentric anomaly u for each value of l, n, and et.

FIG. 1. Comparison between PTA signals that arise from our computationally efficient approach: sEþ;×ðtEÞ and the traditional approach:
sTþ;×ðtEÞ for a system with M ¼ 1010M⊙, η ¼ 1=4, R0 ¼ 1.6 Gpc, and ι ¼ π=3 while varying values of fe; log10 ng pairs. Each panel
displays three plots associated with the traditional, computationally efficient sþ or s× and their differences, labeled asΔswith appropriate
subscripts. The closest approach (rmin) between the BHs for each of these combinations is also displayed in terms of ζ ¼ GM=c2.

FIG. 2. A contour plot that relates the PTA-relevant peak GW
frequencies (fpeak) of hyperbolic encounters with characteristic
frequencies (n) and eccentricities (et). It turns out that n is a good
proxy for fpeak and it very weakly depends on η, and this plot is
for equal mass BH encounters.
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(iii) Subsequently, we calculate the 3PN-accurate ω0
using the available u, n, et, and q values.

(iv) We pass the values of ω0, u, and et into Eq. (15) to
obtain both sEþðtÞ and sE×ðtÞ values. This leads to the
desired timing residual RðtEÞ via Eq. (13).

(v) Finally, we obtain a PTA signal at TOAs via
interpolation of dense RðtÞ samples, utilizing the
scipy.interpolate.CubicSpline class.

Furthermore, we have introduced a high-level function,
labeled as GWhyp.hyp_pta_res_A, which generates PTA
signals using an ENTERPRISE pulsar object and a set of
source parameters. This function can be easily utilized to
generate an ENTERPRISE signal object to search for GWs
arising from hyperbolic encounters of SMBHs in the
various PTA datasets.

III. PROBING PTA IMPLICATIONS
OF OUR GWhyp PACKAGE

We now explain how we can employ our RðtÞ prescrip-
tion to search for GWs from hyperbolic encounters in PTA
datasets and discuss its implications. This effort is influ-
enced by a very recent effort that pursued a Bayesian search
for a possible eccentric SMBHB in an active galaxy 3C 66B
using 44 pulsars in the NANOGrav 12.5-year dataset,
detailed in Ref. [51]. In what follows, we summarize
how we adapt the above effort for our ready-to-use RðtÞ
prescription for individual hyperbolic events. Note that
comprehensive discussions on Bayesian inference using
PTA datasets can be found in, e.g., Refs. [52,53]. We
employ both simulated and actual PTA datasets in our
investigations, and we begin by briefly discussing these
datasets.

A. Our datasets

The present study employs the NANOGrav 12.5-year
(NG12.5) narrow-band dataset [54] to search for GWs
originating from LGWM events. This dataset encompasses
the TOAs and timing models for 47 pulsars (PSRs),
gathered between 2004 and 2017 using the Green Bank
Telescope and the Arecibo Telescope. We excluded PSRs
J1946þ 3417 and J2322þ 2057 from our analysis due to
their limited observation duration (less than 3 yr), while
PSR J1713þ 0747 was omitted because it exhibited two
chromatic timing events within the data span [55]. The
earliest and latest TOAs in the dataset were recorded on
Modified Julian Dates (MJDs) 53216 (July 30, 2004) and
57933 (June 29, 2017), respectively, resulting in an
approximate data span of ∼12.92 yr. To account for
dispersion measure variations within the TOAs, DMX
parameters were applied to provide a piecewise constant
model, and each TOA was transformed to the SSB frame
using the DE438 Solar System ephemeris.
The simulated datasets used in our simulation studies are

based on the NG12.5 dataset, containing fake TOAs

corresponding to the same observing epochs and observing
system configurations for the same pulsars, but with
different noise properties and an injected LGWM signal.
The data analysis procedures applied to these datasets are

explained in the forthcoming subsections.

B. Modeling noise and PTA likelihood

For PTA GWobservatories, the main observables are the
TOAs of pulsar pulses, from which the timing residual (δt)
can be derived with the help of a timing model [56]. The
timing residuals quantify the differences between the
observed TOAs and those predicted by an appropriate
deterministic pulsar timing model at each observing epoch.
The timing residuals typically consist of three main
components: white noise, red noise, and small timing
model deviations. A linearized model for the timing
residuals can be written as

δ⃗t ¼ n⃗þ Fa⃗þMϵ⃗þR: ð18Þ

where n⃗ denotes the time-uncorrelated (white) noise, F
represents the Fourier basis matrix of time-correlated (red)
noise with coefficients a⃗, and M represents the pulsar
timing design matrix containing partial derivatives of the
timing residuals with respect to the timing model param-
eters. ϵ⃗ is a vector indicating minor deviations from the
optimal timing model parameters, and R stands for a GW-
induced signal [in the case of an LGWM event, this is given
by Eq. (13)]. We now briefly delve into each component of
the aforementioned expression.

1. White noise

For each TOA, the white noise is assumed to be a
normally distributed random variable with zero mean,
given by the expression

hni;μnj;νi ¼ E2
μσ

2
i δijδμν þQ2

μδijδμν: ð19Þ

Here, σi represents the TOA uncertainty in the ith obser-
vations, Eμ is the error factor (EFAC) for the receiver-back-
end system μ, and Qμ is the error added in quadrature
(EQUAD). Additionally, ECORR parameters are used to
represent the correlations among narrow-band TOAs origi-
nating from the same observation [57].

2. Red noise

The (achromatic) red noise refers to the slow stochastic
wandering of TOAs usually attributed to the rotational
irregularities of the pulsar, the GWB, etc. It is typically
modeled as a Fourier series with frequencies j=Tspan, where
the index j represents the harmonic number and Tspan is the
observation time span. Red noise is a low-frequency
phenomenon, so the summation over j can be truncated
to a reasonable cutoff Nf. The Fourier basis matrix F
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contains a set of 2Nf sine-cosine pairs evaluated at different
observation epochs corresponding to N TOAs.
The Fourier coefficients a⃗ are assumed to follow a

normal distribution, having a mean of zero and a covariance
matrix ha⃗a⃗Ti ¼ Φ. The covariance matrix Φ incorporates
all potential sources of low-frequency achromatic noise.
For the present analysis, we consider two possible sources:
pulsar intrinsic red noise (IRN) and the GWB. This allows
us to write Φ as

½Φ�ðakÞðbjÞ ¼ Γabρ
2
kδkj þ κ2akδkjδab: ð20Þ

Here, the first term represents theGWB, and the second term
represents the IRN. The indices a and b represent the two
pulsars, k and j denote the frequency harmonics, and Γab
stands for theGWBoverlap reduction function for the pulsar
pair ða; bÞ. The weights ρ2k are related to the GWB power
spectral density SðfÞ by the relation ρ2k ¼ Sðk=TspanÞT−1

span.
A similar relation also applies to κ2ak and the power spectral
density of the IRN. It is customary to model these quantities
using the following expressions:

ρ2ðfÞ ¼ A2
GWB

12π2Tspan

�
f

1 yr−1

�
−γGWB

yr2; ð21aÞ

κ2aðfÞ ¼
A2
a

12π2Tspan

�
f

1 yr−1

�
−γa

yr2: ð21bÞ

In our analysis, we model the IRN of a pulsar using a
Fourier sum comprising 30 equally spaced frequency bins
spanning from 1=Tspan to 30=Tspan. Furthermore, we will
employ a common uncorrelated red noise (CURN) model
as opposed to a GWB model due to its computational
efficiency (this corresponds to setting Γab → δab instead of
the Hellings-Downs overlap reduction function). This
choice is supported by the findings of Ref. [58] where
they identified a CURN process in the NG12.5 dataset
without any definite detection of spatial correlations. To
align with the NG12.5 GWB analysis, we represent the
CURN using a Fourier sum comprising five evenly spaced
frequency bins, spanning from 1=Tspan to 5=Tspan.

3. Small timing model deviations

The termMϵ⃗ takes into consideration the potential minor
deviations from the initial best-fit values of the m timing-
ephemeris parameters due to the introduction of the addi-
tional signal and noise components. The design matrixM is
an N ×m matrix that holds the partial derivatives of the N
TOAs with respect to each timing model parameter,
evaluated at the initial best-fit value. ϵ⃗ is a vector compris-
ing of linear offsets from these initial best-fit parameters
associated with the deterministic pulsar timing model.
In PTA analyses, the focus lies primarily on the stati-

stical properties of the noise rather than its individual

realizations, and we can marginalize over the values of a⃗
and ϵ⃗. This leads to a marginalized likelihood, which solely
depends on the hyperparameters ðAGWB; γGWB;…Þ, repre-
senting the statistical characteristics of the noise [35,59]:

pðδt!jηÞ ¼ expð− 1
2
δt
!T

C−1δt
!Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det ð2πCÞp ; ð22Þ

where C ¼ Nþ TBTT . Here, N refers to the covariance
matrix associated with the white noise, B ¼ diagð∞;ΦÞ,
and T ¼ ½M;F�.

C. Details of the Bayesian pipeline
and the employed priors

We employ the GWhyp package to compute the PTA
signal induced by linear GW memory events and utilize the
ENTERPRISE [47,48] package to evaluate the relevant
likelihood function and the prior distribution (we will
describe our priors in this section).

1. Model comparison

We utilized the Savage-Dickey formula to calculate
Bayes factors indicating the existence of a gravitational
wave signal [60]:

B10 ¼
evidence½H1�
evidence½H0�

¼ pðS ¼ 0jH1Þ
pðS ¼ 0jD;H1Þ

; ð23Þ

where H1¼ timingmodelþWNþ IRNþCURNþLGWM
and H0 ¼ timing modelþWNþ IRNþ CURN, pðS ¼
0jH1Þ is the prior volume at S ¼ 0, and pðS ¼
0jD;H1Þ is the posterior volume at S ¼ 0. We applied
the Savage-Dickey formula due to the nested nature of
models H1 and H0, with H0 being a special case of H1

when S ¼ 0. Our approximation for pðS ¼ 0jD;H1Þ
involved estimating it as the ratio of quasi-independent
samples within the lowest-amplitude bin of the S histo-
gram. The uncertainty in this estimation is determined by
B10=

ffiffiffiffiffiffi
N0

p
, with N0 as the number of samples in the lowest

amplitude bin.
We now direct our attention to specifying priors and

conducting analyses on both simulated and actual datasets.

2. Specifying the prior distribution

For present efforts, we provide specific prior distribu-
tions for the LGWM, IRN, and CURN parameters as listed
in Table I. It should be noted that we employ two different
types of priors for the LGWM signal amplitude (S),
namely, a uniform prior on log10 S for detection analysis
and a uniform prior on S itself for upper limit analysis
(“LinearExp” in Table I). Although q∈ ð0; 1� and
et ∈ ð1;∞Þ by definition, we set small positive lower
bounds for q and et − 1 to prevent numerical errors such
as division by zero. Furthermore, we fix the upper limit for
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ψ at π as it enters the PTA signal through sin 2ψ and cos 2ψ .
It is worth mentioning that, during our real search, we fixed
the white noise parameters from the previous NANOGrav
12.5-year noise analysis results [58].
Influenced by Ref. [51], we assign zero prior probability

to parameter combinations that do not meet the following
criterion: The orbital separation at the closest approach
between the BHs should be rmin ≳ 10GM=c2 throughout
the evolution of the binary within the data span. This is to
ensure the validity of PN approximation as detailed in
[30,46]. We employ a validation function VðM; n; et; qÞ
which is set to 1 if the values of ðM; n; et; qÞmeet the above
criterion and 0 otherwise. This function modifies the
uniform prior distributions for M, n, et, and q as given
in Table I, ensuring a zero prior when our PTA signal
description is inadequate from the PN perspective. This
ultimately alters the joint prior distribution of M, n, et, and
q, as shown in Fig. 3.

3. Exploring the implications of various samplers

When conducting injection studies on simulated data-
sets, we employ the NAUTILUS [61] sampler, while for
real searches on the NANOGrav 12.5-year dataset, we
utilize the PTMCMCSampler [48,62]. A few comments are
appropriate for introducing the NAUTILUS package. It
may be noted that we employ this open-source PYTHON-
compatible package for Bayesian posterior and evidence
estimation. Interestingly, the NAUTILUS sampler employs
a novel approach to enhance the efficiency of the impor-
tance nested sampling (INS) [63] technique for Bayesian

posterior and evidence estimation through deep learning. In
lower dimensions (≲50), NAUTILUS consistently demon-
strates significantly higher sampling efficiency compared
to most of other samplers, including the traditional
PTMCMCSampler commonly used in PTA studies, often
exceeding it by more than an order of magnitude.
Additionally, NAUTILUS produces highly accurate
results with fewer likelihood evaluations compared to
PTMCMCSampler. In Fig. 5 (to be discussed in detail in
Sec. III D), we illustrate the parameter estimation consis-
tency between the PTMCMCSampler and NAUTILUS
sampler, revealing similar posterior recovery results using
the Raveri-Doux tension metric [64], which turned out to be
< 0.01σ. Notably, the computational time for obtaining
these results was only about 50 min for NAUTILUS,
whereas it took around 2.5 days for the PTMCMCSampler.
However, when we are searching for linear GW memory

signals on the real NANOGrav 12.5-year dataset, it is
essential to consider the IRN parameters for each pulsar,
leading to an increased dimensionality of 2 per pulsar.
For instance, in the real NANOGrav 12.5-year dataset
comprising 44 pulsars, the total search dimensionality
becomes 44×2ðIRNÞþ10ðLGWMÞþ2ðCURNÞ¼ 100.
In such scenarios, one of the reliable samplers remains
PTMCMCSampler, as the nested sampling algorithm
breaks down in this high dimension. Nevertheless, when
conducting injection studies in lower dimensions (≲50) to
validate our search pipeline, NAUTILUS remains one of
the most effective samplers.
During the actual NG12.5-year search using the

PTMCMCSampler, we assign weights of 25, 20, and 15

TABLE I. Details of the prior distributions for various parameters that are relevant for various searches.

Parameter Description Prior Comments

IRN

log10 Ared Red noise power-law amplitude Uniform ½−20;−11� One parameter per pulsar
γred Red noise power-law spectral index Uniform [0, 7] One parameter per pulsar

CURN

log10 ACURN Common process strain amplitude Uniform ½−20;−11� One parameter for PTA
γCURN Common process power-law spectral index Uniform [0, 7] One parameter for PTA

GWhyp: Shape parameters

log10 n [Hz] GWhyp characteristic frequency Uniform½−10;−6.5� × VðM; n; ϵ; qÞ One parameter for PTA
tref [MJD] Fiducial time of the LGWM event Uniform½53216; 57933� One parameter for PTA
et Orbital eccentricity Uniform½1.08; 2� × VðM;n; ϵ; qÞ One parameter for PTA
log10 M ½M⊙� Total mass of the system Uniform½7; 10� × VðM;n; ϵ; qÞ One parameter for PTA
q Mass ratio of the binary system Uniform½0.1; 1� × VðM;n; ϵ; qÞ One parameter for PTA

GWhyp: Projection parameters

log10 S [s] GWhyp signal amplitude Uniform½−10;−5�=LinearExp½−10;−5� One parameter for PTA
cos ι Cosine of the orbital inclination Uniform [0, 1] One parameter for PTA
αGW (rad) Right ascension of the GW source Uniform ½0; 2π� One parameter for PTA
δGW (rad) Declination of the GW source Uniform ½0; 2π� One parameter for PTA
ψGW (rad) GW polarization angle Uniform ½0; π� One parameter for PTA
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to the adaptive Metropolis (AM), single-component
adaptive Metropolis (SCAM), and differential evolution
(DE) proposal distributions, respectively. We employ
various proposals provided within the enterprise_exten-
sions [48,65] package. These include sampling from
single-parameter priors (JumpProposal.draw_from_prior,
with a weight of 10, and JumpProposal.draw_from_
par_prior, with a weight of 2 for the CURN parameter),
as well as sampling from empirical distributions
(JumpProposal.draw_from_empirical_distr), with a weight
of 30 assigned to IRNparameters. In addition,we use parallel
tempering with four geometrically spaced temperatures.

D. Injection studies using simulated datasets

We now apply the above two approaches to simulated
datasets containing our LGWM events to evaluate the
consistency and effectiveness of our methods. We note
that it is not possible to estimate the projection parameters
(log10S, cos ι, and ψGW) and the source coordinates (αGW
and δGW) simultaneously and independently using only one
pulsar [34]. Furthermore, due to the low number of GW

cycles, extracting all LGWM parameters as listed in Table I
simultaneously should be difficult while only employing
one pulsar (to be thoroughly discussed in the Appendix).
This naturally forces us to employ multiple pulsars, and we
employ simulated datasets based on 44 pulsars from the
NG12.5 GWB search [58]. We generate the relevant TOAs
using the libstempo package [66], which is a PYTHON

wrapper for the widely used TEMPO2 package [56].
We begin by creating ideal noise-free realizations of

pulsar TOAs by subtracting timing residuals from the
measured TOAs obtained from the NG12.5 narrow-band
dataset. We then inject white noise (WN) with the same
measurement uncertainties as the NG12.5 narrow-band
dataset, with EFAC, EQUAD, and ECORR fixed at their
maximum-likelihood values derived from single-pulsar
noise analysis, following standard PTA practices.
Additionally, we inject a realization of the CURN with
ACURN ¼ 2.4 × 10−15 (the GWB amplitude estimated from
the NANOGrav 15-year dataset [67]) and γCURN ¼ 13=3, in
line with the expected characteristics of a GWB originating
from SMBHBs inspiraling along circular orbits due to the
emission of nanohertz GWs [68].

FIG. 3. The influence of imposing the validation criterion rmin > 10GM=c2 on the joint prior distribution of M, et, n, and q as rmin
depends on these parameters in our PN-accurate approach. This corner plot displays how the uniform prior distribution on these
parameters gets modified when we impose certain validation function Vðlog10 M;n; et; qÞ to implement the rmin > 10GM=c2 restriction.
The samples from the prior are drawn through rejection sampling.
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We are now in a position to pursue injection studies of our
LGWM signals, characterized by specific values of the
“shape” and “projection”: parameters listed in Table I, using
the above-described simulated TOAs. Our studies deal with
two distinct scenarios. In the first set of runs, we do not
inject IRN realizations into our simulated data mainly due
to simplicity and computational efficiency considerations.
In the second set of runs, we include IRN realizations
injected at their maximum-likelihood values obtained from
the NG12.5 GWB search. In what follows, we refer to
these two categories as LGWMþ CURN and LGWMþ
CURNþ IRN searches. It should be noted that we employ
maximum-likelihood estimation to fit the initial timing
model to the signal-injected simulated TOAs in both of
these cases, saving the resulting postfit timing model and
TOAs as par and tim files. We gather from these studies that
the strength of these LGWM signals is essentially provided
by their amplitude conveniently characterized by log10 S, as
listed inTable I. In Fig. 4,we plot our signals are on the top of
injected timing residuals for specific pulsars. We inject a
LGWM signal with an amplitude of 1 μs (log10 S ¼ −6)
for the LGWMþ CURN and LGWMþ CURNþ IRN
scenarios, considering both noisy (J1024 − 0719) and
less noisy (J1909 − 3744) pulsars. These visualizations

demonstrate that our signal becomes more evident for less
noisy pulsars, indicating that the above amplitude serves as a
proxy for the underlying signal-to-noise ratio.
In these simulated datasets, we conduct LGWMþ

CURN and LGWMþ CURNþ IRN searches, respec-
tively, utilizing our pipeline outlined in Sec. II B and
employing the priors specified in Table I, specifically the
uniform prior on log10 S. For both searches, we utilized
PTMCMCSampler using various proposals specific to the
parameters, such that JumpProposal.draw_from_prior with
a weight of 5 and JumpProposal.draw_from_par_prior with
a weight of 10 for both CURN and IRN parameters and 30
for the LGWM parameter. Additionally, we organized three
distinct groups, each containing IRN parameters (one
copy), CURN parameters (ten copies), and LGWM
parameters (two copies), which were then passed to
PTMCMCSampler to enhance convergence. Furthermore,
we employed parallel tempering with four geometrically
spaced temperatures. The posterior samples from these two
searches are shown as corner plots in Fig. 6, for both
LGWMþ CURN and LGWMþ CURNþ IRN analyses.
A close inspection of our several corner plots reveals that

most of the extrinsic linear GW memory parameters are
accurately recovered within a 3σ range of the injected

FIG. 4. Plots for injected timing residuals containing LGWM signal with strength of 1 μs. We consider noisy (J1024-0719) and less
noisy (J1909-3744) pulsars for two scenarios: LGWMþ CURN and LGWMþ CURNþ IRN. In these plots, the left side shows
injected residuals with the LGWM signal, while the right side shows the actual LGWM signal. Our bare signal, characterized by log10 S,
is more evident in the less noisy pulsar. The vertical line in the right plots refers to the burst epoch (tref ).
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parameters. However, certain intrinsic parameters like the
total mass (M) and the mass ratio (q) of the black hole pairs
are rather unconstrained. These occurrences are clarified by
the given argument. The parameter M influences the PTA
signal sþ;×ðtÞ given in Eq. (15) through the amplitude S,
regarded as a free parameter, while q affects the signal
shape weakly via PN corrections to the orbital dynamics.

From our detailed studies, we gather that it is reasonable
to provide an upper bound on et’s prior at 2. This is mainly
because, as et increases, it would be difficult for the event’s
PTA signal to remain confined within the entire data span
and, therefore, will not be detectable.
Interestingly, varying et values lead to other implica-

tions; for example, we infer that the recovery of the

FIG. 5. The figure illustrates the posterior distributions resulting from our injection studies involving the LGWMþ CURN event on a
simulated NG12.5 dataset comprising 44 pulsars. The covariance among various parameters is evident from the plot. During the
simulation, we employed two samplers, PTMCMCSampler and NAUTILUS, and observed consistency between the traditional
PTMCMCSampler typically utilized for PTA searches and one of the most computationally efficient NAUTILUS sampler.
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inclination angle exhibits a bimodal behavior when we vary
et values. This is evident from a close inspection of Figs. 5
and 6. It should be evident that et ¼ 1.15 run (Fig. 5) leads
to a unimodal recovery of the orbital inclination (ι) while
et ¼ 1.2 (Fig. 6) run leads to posteriors where ι exhibits a
possibly bimodal distribution.
Furthermore, Figs. 5 and 6 clearly demonstrate the

correlated nature of various parameter pairs, such as
ðS; nÞ, ðet; nÞ, ðS; etÞ, ðψGW; trefÞ, and ðϕGW;ψGWÞ.

These correlations may be attributed to degeneracies that
exist in their underlying sþ;×. We now explore the
implications of our ready-to-use PTA signal for a realistic
PTA dataset.

E. Search on the real NANOGrav 12.5-year dataset

We searched for linear GW memory events in the actual
NANOGrav 12.5-year (NG12.5) dataset [67] that contains

FIG. 6. Comparing posteriors that arise from our LGWMþ CURN and LGWMþ IRNþ CURN searches as detailed in Sec. III D on
a simulated NG12.5 dataset containing 44 pulsars. It should be clear that the inclusion of IRN parameters does not substantially vary our
search results. These two distinct searches employ the PTMCMCSampler.
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44 pulsars while employing the PTMCMCSampler. The
corner plot in Fig. 7 illustrates the marginalized posterior
distribution of the linear GW memory event parameters,
after accounting for the noise parameters, as obtained from
a detection analysis that utilizes a uniform prior on log10 S.
Clearly, Fig. 7 does not provide any indications for the
presence of our linear GW memory signal. The Bayes
factor, which measures the strength of evidence between
models that include or exclude the LGWM signal, has been

estimated using the Savage-Dickey formula, and it yields a
value of approximately 0.68� 0.13. This value does not
support the detection of a LGWM signal in the NG12.5
dataset (we point to Ref. [69] for a detailed discussion of
the Savage-Dickey Bayes factor computation).
Additionally, we transformed the posterior samples

generated from the detection analysis into posterior sam-
ples for the upper limit analysis by applying a uniform prior
on S; this is accomplished by using a sample reweighting

FIG. 7. Posterior distributions associated with our LGWMþ CURN searches on the real NG12.5 dataset containing the same set of
pulsars as in Fig. 6, namely, 44, while employing the PTMCMCSampler. Clearly, these plots do not show any evidence for the detection
of LGWM signal. The units of each parameter are listed in Table I.
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technique, detailed in Ref. [70]. The violin plots in Fig. 8
contain three panels that display the posterior distribution
for S, grouped into frequency (n), eccentricity (et), and
burst epoch (tref ) bins while considering the marginaliza-
tion over other parameters. The 95% credible upper limits
on S within each specific log10 n, tref , and et bins are shown
in Fig. 8 with blue horizontal ticks. The analysis demon-
strates an increase in sensitivity as we shift toward the
higher frequency bins, but it remains relatively constant
regardless of et and tref .
Thereafter, we compute the 95% upper limit on LGWM

signal amplitude (S) while marginalizing over other
parameters. Samples with n > 3.16 nHz are excluded
because they are significantly influenced by the prior
distribution, rendering them noninformative as discussed
in Ref. [51]. The 95% upper limits on S are determined to
be 3.48� :51 μs for n > 3.16 nHz, with uncertainties

calculated through the bootstrap method. Additionally,
we overlay the posterior distributions for CURN parame-
ters from the NG12.5 GWB search [58] in Fig. 7. It is
observed that introducing the LGWM signal does not
modify the posterior distribution of CURN parameters in
our analyses. This highlights the robustness of our search
against potential power leakage between CURN and the
linear GWmemory signal. Furthermore, we compute upper
limits on linear GW memory strain amplitude in the
NANOGrav 12.5-year dataset, showcasing their depend-
ence on the sky location (αGW and δGW) of the GW source
as displayed in Fig. 9. This analysis encompasses the
marginalization over all other parameters and incorporates
a variable common red-noise spectral index. Utilizing the
HEALPix method, described in Refs. [71,72], the sky is

FIG. 8. Violin plot representations for the LGWM amplitude S, binned in log10 n (left plot), et (middle plot), and tref (right plot) while
marginalized over other parameters that are displayed in Fig. 7. The blue horizontal ticks represent the 95% credible upper limits on S
within each category, and the black ticks denote the corresponding medians.

FIG. 9. The upper limits on our linear GW memory amplitude
as a function of the pixelated sky position while employing the
NG12.5 dataset in our LGWMþ CURN searches. The con-
straints are tighter in the hemisphere characterized by a higher
pulsar density.

FIG. 10. A histogram to display the Raveri-Doux tension
between the marginalized posterior distributions of IRN param-
eters that arise from the NANOGrav 12.5-year GWB search and
the present effort. The tension stays below 0.014σ for all pulsars,
indicating that the presence of IRN has a negligible impact on our
search results.
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divided into 48 pixels (nside ¼ 2). NG12.5 pulsar locations
are marked in the plot, revealing that the upper limit is more
precisely constrained in regions with a higher pulsar
density.
We now evaluate the resilience of our search pipeline to

power leakage between the IRN and the hyperbolic LGWM
signal. To do this, we compare the posterior distributions of
the IRN parameters obtained from LGWM detection
analyses with those derived from the NG12.5 GWB search,
detailed in Ref. [58]. For this comparison, we employ the
Raveri-Doux tension statistic, which is available in the
tensiometer package [64]. In Fig. 10, a histogram of
tensiometer statistics is presented for various pulsars,
and we observe that the IRN parameter posteriors from
our analyses closely match those from the NG12.5 GWB
search [58] within a 0.015σ range for all pulsars. This
finding instills certain confidence that our search for the
LGWM signal remains largely unaffected by the presence
of IRN.

IV. SUMMARY AND DISCUSSION

We have provided an efficient way to describe LGWM
events in PTA datasets. These events are due to GWs from
hyperbolic passages of SMBHs, and we employed the PN
approach to describe the resulting temporally evolving GW
polarization states. The resulting timing residuals involve
burst and ramp functions. Furthermore, we pursued two
types of simulation studies. In the first set, we introduced
CURN and our GW memory signal (LGWMþ CURN). In
the second set, we introduced an additional component,
namely, IRN(LGWMþ CURNþ IRN). In both scenarios,
we observed that the marginalized posterior distributions of
our free model parameters closely matched the injected
values for the simulated data. Subsequently, we conducted
an all-sky search for LGWM events in the NANOGrav
12.5-year dataset. Our model includes a CURN process,
identified as a precursor to the possible GWB in the
NG12.5 dataset [58], along with IRN and WN processes
for each pulsar, in addition to our LGWM signal.
Furthermore, we kept the WN parameters fixed for each
pulsar based on values obtained from its single-pulsar noise
analysis. This marked the first instance of a search for GWs
arising from hyperbolic encounters of black holes con-
ducted on a full-scale PTA dataset.
Despite the comprehensive search, we did not discover

any evidence of LGWM signals in the NG12.5 dataset.
Consequently, we computed the upper limits on the GW
signal amplitude (S) of the SMBHB candidate, taking into
account the eccentricity (et), characteristic frequency (n),
and burst epoch (tref ). The 95% upper limits on LGWM
amplitude (S), marginalized over all other parameters, are
3.48� :51 μs for n > 3.16 nHz. Naturally, the present
effort should allow us to pursue a detailed search for such
events in the IPTA DR3 dataset in the coming years.

There are several possible directions that we plan to
pursue soon. It will be interesting to explore if globular
cluster pulsars should be ideal for detecting such LGWM
events. It is reasonable to expect that pulsar terms could be
relevant for such a scenario where our LGWM events can
appear in the timing data of globular cluster MSPs with
certain time offsets. It should be noted that such pulsars
are not included in the current PTA efforts due to various
difficulties in pursuing deterministic pulsar timing of
globular cluster pulsars, attributed to the stochastic nature
of globular cluster gravitational potential [73]. It may be
recalled that we neglected the effects of pulsar terms in the
present effort. This is justified as PTA pulsars are gen-
erally situated hundreds to thousands of light years away
from the SSB, resulting in transient durations much
shorter than the time it takes for the pulses to reach
the SSB.
It will be interesting to include spin effects into the

current PN accurate description of nonspinning BHs in
hyperbolic orbits and explore its PTA implications [74].
Another potential direction should be to employ the
effective-one-body approach for describing the dynamics
of unbound BHs [75]. This approach should be appro-
priate for describing h×;þðtÞ associated with the part
of the parameter space that we neglected in the present
effort [76]. Recall that we imposed such restrictions
to ensure that the PN approximation is indeed valid.
Another direction involves exploring possible degeneracy
between our prescription and the burst signal due to
cosmic strings [77]. It may be noted that such burst events
arise through cusps and kinks associated with string
reconnection events [78]. From a computational perspec-
tive, it will be valuable to extend the QuickCW [79]
method to include our linear GW memory searches, as
this method leverages the mathematical structure of PTA
signal expressions to expedite likelihood computations
during projection parameter updates (as outlined in
Table I in our case). This extension should be essential
to maintain computational feasibility in upcoming IPTA
searches given the anticipated growth in data volumes.
Another novel direction involves including the Hellings-
Downs correlations instead of the current CURN SGWB
signal. It should be possible to reweight our CURN to
achieve the Hellings-Downs correlations by adapting the
method described in [70]. Furthermore, it should be
worthwhile to explore possible astrophysical rates for
our linear memory events.

V. SOFTWARE

ENTERPRISE [47,48], enterprise_entensions [48,65],
PTMCMCSampler [62], NAUTILUS [61], GW_hyp [30],
GWecc.jl [34,80], LIBSTEMPO [66], NumPy [81],
WQUANTILES [82], TENSIOMETER [64], Matplotlib [83],
corner [84], and HealPy [71,72] were used in this work.
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APPENDIX: COMPARING WITH GWecc.jl
PACKAGE AND LIMITATIONS IN
ACHIEVING FULL RECOVERY

FOR GW_hyp WITH SINGLE PULSAR

In this section, we will compare the effectiveness of
recovering parameters using the GW_hyp package to the
GWecc.jl [85] package, as described in Refs. [34,80]. It is

important to consider that eccentric signals consist of
multiple cycles, while hyperbolic encounters have only a
single cycle, often with a bump at the time of encounters.
Additionally, the memory term indicates a difference in
slope between the beginning and end of the residuals with
respect to time. Since LGWM events contain only one
cycle, we should not expect to achieve full recovery for
hyperbolic searches compared to eccentric searches. On the
other hand, when an eccentric signal contains only a
portion of the cycle, it behaves similarly to LGWM
residuals. We conducted two parameter estimation studies:
(1) We focused on a part of the cycle of eccentric signals

and searched for eccentric signals in simulated data.
(2) We consider multiple cycles of eccentric signals

within the same data span and identify these eccen-
tric signals in simulated data.

Our findings showed that, for case 1, the recovery of true
parameters was significantly beyond 3σ, while, in case 2, we
achieved excellent recovery within 1σ, as illustrated in
Fig. 11. This result was expected because, in case 1, we
considered only one cycle, which explains why proper
recovery for LGWM search with a single pulsar was not
expected. However, incorporatingmultiple pulsars improved
the recovery, as we observed in our previous analyses.

FIG. 11. Parameter estimation (PE) using GWecc.jl. The left plot shows single-cycle PE, while the right plot displays multicycle PE on
a simulated dataset. The residual plot is provided in the top right corner of each of these plots.
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Brazier, P. R. Brook, S. Burke-Spolaor, S. Chatterjee, S.
Chen, J. M.Cordes et al., Astrophys. J. Lett.905, L34 (2020).

[59] R. van Haasteren and Y. Levin, Mon. Not. R. Astron. Soc.
428, 1147 (2013).

[60] J. M. Dickey, Ann. Math. Stat. 42, 204 (1971).
[61] J. U. Lange, Mon. Not. R. Astron. Soc. 525, 3181 (2023).
[62] J. Ellis and R. van Haasteren, Zenodo, 2017.
[63] F. Feroz, M. P. Hobson, E. Cameron, and A. N. Pettitt, Open

J. Astrophys. 2, 10 (2019).
[64] M. Raveri and C. Doux, Phys. Rev. D 104, 043504 (2021).
[65] S. R. Taylor, P. T. Baker, J. S. Hazboun, J. Simon, and

S. J. Vigeland, enterprise_extensions, https://github.com/
nanograv/enterprise_extensions (2021), v2.3.3.

[66] M. Vallisneri, Astrophysics Source Code Library, ascl, 2020.
[67] G. Agazie, M. F. Alam, A. Anumarlapudi, A. M. Archibald,

Z. Arzoumanian, P. T. Baker, L. Blecha, V. Bonidie, A.
Brazier, P. R. Brook et al., Astrophys. J. Lett. 951, L9
(2023).

[68] E. Phinney, arXiv:astro-ph/0108028.
[69] K. Aggarwal, Z. Arzoumanian, P. Baker, A. Brazier, M.

Brinson, P. Brook, S. Burke-Spolaor, S. Chatterjee, J.
Cordes, N. Cornish et al., Astrophys. J. 880, 116 (2019).

[70] S. Hourihane, P. Meyers, A. Johnson, K. Chatziioannou, and
M. Vallisneri, Phys. Rev. D 107, 084045 (2023).

[71] A. Zonca, L. Singer, D. Lenz, M. Reinecke, C. Rosset, E.
Hivon, and K. Gorski, J. Open Source Softwaare 4, 1298
(2019).

[72] K. M. Gorski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K.
Hansen, M. Reinecke, and M. Bartelmann, Astrophys. J.
622, 759 (2005).

[73] R. D. Blandford, R. W. Romani, and J. H. Applegate, Mon.
Not. R. Astron. Soc. 225, 51P (1987).

[74] L. De Vittori, A. Gopakumar, A. Gupta, and P. Jetzer, Phys.
Rev. D 90, 124066 (2014).

[75] T. Damour and A. Nagar, in Astrophysical Black Holes
(Springer, New York, 2016), pp. 273–312.

[76] A. Nagar, P. Rettegno, R. Gamba, and S. Bernuzzi, Phys.
Rev. D 103, 064013 (2021).

[77] N. Yonemaru, S. Kuroyanagi, G. Hobbs, K. Takahashi, X.
Zhu, W. Coles, S. Dai, E. Howard, R. Manchester, D.
Reardon et al., Mon. Not. R. Astron. Soc. 501, 701 (2021).

[78] T. Damour and A. Vilenkin, Phys. Rev. D 64, 064008
(2001).
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