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Using the proposed space gravitational wave detector LISA, we will be able to measure the geometrical
configurations of ∼104 close white dwarf binaries in our Galaxy. The obtained data will be an entirely new
resource to examine the randomness of their orbital orientations. Partly motivated by a recent reported on
the systematic alignments of bulge planetary nebulae, we discuss the outlook of the orientational analysis
with LISA. We find that a quadrupole pattern as small as ∼0.05 can be detected for bulge white dwarf
binaries, owing to their large available number. From such a pattern analysis, we might geometrically
explore fossil records in our Galaxy billions of years ago.
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I. INTRODUCTION

Since 2015, the LIGO-Virgo-Kagra network has
detected gravitational wave (GW) signals from ∼100
merging extra-Galactic binaries in the 10–1000 Hz band
[1–3]. Quite recently, in the nHz band, various theoretical
models have been actively discussed with the advent of
new pulsar timing data [4–7]. In the 2030s, the Laser
Interferometer Space Antenna (LISA) will be launched and
will explore GWs around 0.1–100 mHz [8]. LISA has the
potential to observe massive black holes at cosmological
distances, although the estimated detection rates have large
uncertainties [8].
More securely, LISA will separately detect ∼104 close

white dwarf binaries (CWDBs) in our Galaxy, as nearly
monochromatic GW sources [8–12]. Indeed, for improving
the effective sensitivity of LISA, it is essential to identify
these vast number of binaries and subtract their foreground
GW signals [13]. A significant fraction (∼30%) of the
identified CWDBs will be the bulge component, located
near the Galactic center [14]. The remaining ones will be
distributed more broadly around the Galactic disk. In both
cases, the orbital motions of the CWDBs are directly
encoded in the emitted GW signals [15–17]. Using
LISA, we can receive the GW signals, decode them and
generate a long and high-quality list for the orbital
configurations of the CWDBs, solely based on the first
principles of physics. Note that most of CWDBs are
expected to have negligible eccentricities due to tidal
effects (as for the known CWDBs [8,12]).
In relation to the orientations (i.e., the directions of

angular momentum vectors) of CWDBs, on the basis of
electromagnetic observations, there recently appeared an
interesting report on the bulge planetary nebulae (PNe)
which are (or are inferred to be) specifically associated with

short-period (≲1 day) binaries (in total of 14 systems) [18].
In contrast to the whole bulge PN populations, the
orientations of the symmetric axes of the specific PNe
show concentrations nearly parallel to the Galactic plane, at
5σ significance. PNe are ionized gas ejected at the
formation of white dwarfs [19] and closely related to the
common envelope phases [20]. In the report, the orienta-
tions of the specific subset are considered to be parallel to
the orbital angular momentum vectors of the associated
short-period binaries (see also [21]). Then, the angular
momentum vectors of the binaries are not randomly
oriented but more probable to be nearly parallel to the
Galactic disk (roughly speaking, removing PNe from the
triple geometrical relations between the short-period bina-
ries, PNe and the Galactic plane). In general, binary
formation should involve various physical processes and
could also depend on time and location [22]. The reported
alignments might be embedded already at the formations of
the bulge binaries billions of years ago, e.g., due to ordered
strong magnetic fields as argued in the report [18].
Regarding the potential alignments of compact binaries

in the bulge, we await further studies, in particular,
independent observational analyses (see also [23] for
nearby binaries). Here the long list of CWDBs provided
by LISA could be an invaluable and solid resource. With
the large number of the available sample, we will be able to
detect a weak anisotropic pattern existing in their orienta-
tion distribution function.
In this work, we discuss the outlook of such an inquiry

with LISA, paying special attentions to the geometrical
aspects of the involved systems. Along the way, we point
out a fourfold degeneracy at determining the polarization
angle ψ , which fixes the binary’s orientation around the
line-of-sight direction. This degeneracy is induced by the
underlying symmetry of the measurable gravitational
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waveform and can be effectively regarded as an irrevers-
ibility in the information transfer (from the encoding to the
decoding), partially hampering our observational analysis.
For the data analysis of actual CWDB sample, we examine
a simple dualistic approach to statistically enhance its
anisotropic pattern. The associated detection limit can be
as small as ∼0.05 for a quadupole mode of the spherical
harmonic expansion. Through this pattern analysis, LISA
might enable us to geometrically delve into the ancient
history of our Galaxy.

II. ORIENTATIONS OF CWDBS

A. Axisymmetric model

As shown in Fig. 1, we first define the relevant unit
vectors for describing the configuration of a circular
CWDB. We put its sky direction n⃗ and its orientation j⃗
(parallel to its angular momentum vector). We also set q⃗ as
the direction of the Galactic rotation axis. The Galactic
plane is normal to q⃗.
Given the recent report on the bulge PNe [18], we are

primarily interested in the probability distribution function
Pðj⃗Þ for the orientations j⃗ of the bulge CWDBs, in
particular, its pattern relative to the rotation axis q⃗. We
thus set q⃗ as the polar direction for the spherical harmonic
bases Ylmðj⃗Þ.
We assume that the function Pðj⃗Þ is axisymmetric

around the vector q⃗. Then the function Pðj⃗Þ depends only

on the polar angle θ (i.e., only with m ¼ 0 modes). Given
the normalization condition, the resultant axisymmetric
function is expanded as

PAðcos θÞ ¼ ð4πÞ−1=2½Y00ðθÞ þ a10Y10ðθÞ þ a20Y20ðθÞ
þ a30Y30ðθÞ þ a40Y40ðθÞ þ � � ��; ð1Þ

defined in the range 0 ≤ θ ≤ π. We have Yl0ðθÞ ∝
Llðcos θÞ with the Legendre polynomials LlðxÞ (in an
unconventional notation to prevent confuses with proba-
bility distribution functions), which satisfy the odd-even
identities

Llð−xÞ ¼ ð−1ÞlLlðxÞ: ð2Þ

We present some of the explicit forms Y00 ¼ ð4πÞ−1=2,
Y10 ∝ cos θ, Y20∝ ð3cos2θ−1Þ=2, Y30 ∝ ð5 cos3 θ−
3 cosÞ=2, and Y40 ∝ ð35 cos4 θ − 30 cos2 θ þ 3Þ=8. For a
even l, we have Yl0ð0Þ ¼ Yl0ðπÞ > Yl0ðπ=2Þ, and a negative
value al0 resultantly induces a higher concentration to the
equatorial directions (θ ¼ π=2) rather than the polar direc-
tions. We have Pðj⃗Þ ¼ 1=ð4πÞ for the isotropic (random)
orientation distribution with a10 ¼ a20 ¼ � � � ¼ 0. Later, in
Sec. III, we will discuss which parameters al0 we can
determine for the Galactic CWDBs with LISA.

B. Coordinate transformation

For discussing GW observation, it is convenient to
introduce the two unit vectors ðe⃗j; e⃗kÞ normal to the binary
direction n⃗ (see Fig. 1). Here the unit vector e⃗j shows the

transverse projection of the orientation vector j⃗, with the
remaining one e⃗kð¼ n⃗ × e⃗jÞ.
The unit vector e⃗q is similarly defined by the transverse

projection of q⃗ with e⃗rð¼ n⃗ × e⃗qÞ. For a given binary
direction n⃗, the vectors e⃗q and e⃗r are fixed, and we can

specify the orientation j⃗ in terms of the inclination angle I
and the polarization angle ψ (see Fig. 1). We have the
following relations:

e⃗k ¼ e⃗r cosψ þ e⃗q sinψ ; e⃗j ¼−e⃗r sinψ þ e⃗q cosψ : ð3Þ

Our next task is to generate the distribution function
pðI;ψÞ given in the observer’s frame, using the aforemen-
tioned one PAðcos θÞ given in the Galactic frame. To this
end, we first discuss the mismatch between q⃗ and e⃗q. Our
solar system is almost on the mid-Galactic plane. The
distance to the bulge is ∼8.3 kpc and its scale height is
∼0.5 kpc [24]. Therefore, the vector q⃗ is nearly normal to
n⃗, and we have q⃗ ≃ e⃗q with the typical mismatch angle (in
radians) γ ∼ 0.5=8.3 ≪ 1. We then have

cos θ ¼ j⃗ · q⃗ ≃ j⃗ · e⃗q ¼ sin I cosψ ð4Þ

FIG. 1. Schematic picture for a binary configuration. All the
seven vectors are unit vectors. The vectors n⃗ and j⃗ represent the
direction and orientation of the binary. The Galactic plane is
normal to the vector q⃗. The angles I and θ are respectively
between j⃗-ð−n⃗Þ and j⃗-q⃗. The gray plane is normal to the line-of-
sight direction n⃗, and the vectors e⃗j and e⃗q are the projections of j⃗
and q⃗, with the polarization angle ψ between them. The two
remaining vectors e⃗k and e⃗r are respectively perpendicular to e⃗j
and e⃗q.
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and correspondingly

pðI;ψÞ ≃ PAðsin I cosψÞ: ð5Þ

Below, we apply equalities to the relations (4) and (5) (a
distant observer approximation). It is a straightforward but
cumbersome task to derive the function pðI;ψÞ without the
approximation. Importantly, our approximation does not
introduce artificial anisotropies to pðI;ψÞ from the origi-
nally isotropic function Pðj⃗Þ ¼ 1=ð4πÞ. In terms of the
harmonic expansion pðI;ψÞ ¼ P

lm blmYlmðI;ψÞ, the
coefficients blm at l≲ 1=γ ∼ 15 will be virtually unaffected
by our approximation (i.e. ignorable at the lower degrees
such as l≲ 4). Geometrically, Eq. (5) can be regarded as a
90° rotation of the polar direction (from θ ¼ 0 to I ¼ 0),
thus keeping the degrees l at the correspondence of their
expansion coefficients (see e.g., [25]). Even if we start from
an axisymmetric model PAðcos θÞ as in Eq. (1), the
transformed one pðI;ψÞ can depend on the polarization
(azimuthal) angle ψ .

III. GW OBSERVATION

A. Waveform model

We now focus on a nearly monochromatic GW from a
circular CWDB with an orbital frequency f=2. We keep the
essential aspects for our study, dropping irrelevant details.
In the lowest quadrupole approximation, the gravita-

tional waveform at a given position is expressed as

hðt; n⃗; I;ψÞ ¼ AþðIÞ cosð2πftþ αÞeþðn⃗;ψÞ
þ A×ðIÞ sinð2πftþ αÞe×ðn⃗;ψÞ; ð6Þ

with the phase constant α and the two amplitudes AþðIÞ ∝
ð1þ cos2 IÞ and A×ðIÞ ∝ 2 cos I (see e.g., [15]). The
transverse-traceless tensors eþ;×ðn⃗;ψÞ are given by

eþðn⃗;ψÞ¼ e⃗k⊗ e⃗k− e⃗j⊗ e⃗j; e×ðn⃗;ψÞ¼ e⃗k⊗ e⃗jþ e⃗j⊗ e⃗k

ð7Þ

with the vectors e⃗k and e⃗j defined in Eq. (3).
From Eqs. (3) and (7), we readily obtain the identities

eþ;×ðn⃗;ψ þ πÞ ¼ eþ;×ðn⃗;ψÞ and resultantly,

hðt; n⃗; I;ψ þ πÞ ¼ hðt; n⃗; I;ψÞ: ð8Þ

This degeneracy between ψ and ψ þ π is fundamental,
originating from the spin-2 nature of the gravitational
radiation.
From Eqs. (3) and (7), we can also confirm the identities

eþ;×ðn⃗;ψ þ π=2Þ ¼ −eþ;×ðn⃗;ψÞ and thus,

hðt; n⃗; I;ψ þ π=2Þ ¼ −hðt; n⃗; I;ψÞ; ð9Þ

(see e.g., [26,27]). Correspondingly, the π=2- rotation of
the polarization angle ψ can be effectively absorbed by the
phase shift αþ π in Eq. (6). Therefore, we observationally
have the degeneracy between ψ and ψ þ π=2 at the lowest
Newtonian order. By observing the higher post-Newtonian
waveforms at frequencies f=2 and 3f=2 and measuring
their phases relative to that of the Newtonian one (6), we
can, in principle, distinguish the two states at ψ and ψ þ
π=2 [see e.g., Eq. (11.295b) in [15] ]. Unfortunately,
compared with the Newtonian waveform (6), the higher
ones are suppressed by the post-Newtonian parameter
β ¼ Oðc2=v2Þ. For our CWDBs, we have

β ¼
�
πGMtf

c3

�
2=3

∼ 10−5
�

f
5 mHz

�
2=3

�
Mt

1M⊙

�
2=3

ð10Þ

where Mt is the total mass of the binary. Unlike binary
black hole mergers observed by ground-based detectors
(see e.g., [28]), the small post-Newtonian waveforms of the
CWDBs are easily masked by the measurement noises, and
we cannot practically solve the degeneracy between ψ and
ψ þ π=2. From Eqs. (8) and (9), we have a similar
degeneracy between ψ and ψ þ 3π=2.
In summary, GW observation is a geometrical measure-

ment and intrinsically has a good affinity for studying the
configurations of the Galactic CWDBs. However, because
of the symmetry of the system, we have the fourfold
degeneracy between the angles ψ ;ψ þ π=2;ψ þ π,
and ψ þ 3π=2.

B. Fourfolded distribution function

As discussed in the previous subsection, our observable
is not the full distribution function pðI;ψÞ but the folded
one,

p̄ðI;ψdÞ≡
X3
k¼0

pðI;ψd þ kπ=2Þ; ð11Þ

defined in the parameter ranges 0 ≤ I ≤ π and
0 ≤ ψd ≤ π=2. Interestingly, unless the order m is a
multiple of 4 (e.g., m ¼ 0;�4;�8;…) the folding oper-
ation erases its ψd-dependent pattern,

X3
k¼0

YlmðI;ψd þ kπ=2Þ ∝
X3
k¼0

expðimkπ=2Þ ¼ 0: ð12Þ

Correspondingly, the azimuthal patterns of the function
pðI;ψdÞ come only from l ≥ 4.
As commented in Sec. II, an lth order pattern Yl0ðθÞ in

the original function Eq. (1) generates the term proportional
to Llðsin I cosψÞ in the transformed one pðI;ψÞ in Eq. (5).
From Eq. (2), we have
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Ll½sin I cosψ � þ Ll½sin I cosðψ þ πÞ� ¼ 0;

Ll½sin I cosðψ þ π=2Þ� þ Ll½sin I cosðψ þ 3π=2Þ� ¼ 0;

for odd numbers l. Thus, the fourfolding operation (11)
cancels out all the contributions from the odd-order patterns
in Eq. (1).
Using Eqs. (5) and (11) and keeping the even orders

l ≤ 4 we obtain,

p̄ðI;ψdÞ∝ Y00−
a20
2

Y20ðIÞþ
3a40
8

Y40ðIÞ

þa40
8

�
35

2

�
1=2

½Y44ðI;ψdÞþY4−4ðI;ψdÞ�; ð13Þ

which is symmetric at I ¼ π=2. We should point out that
the full function pðI;ψÞ [generated from Eq. (1) by Eq. (5)]
has the components Y2�2ðI;ψÞ, but they disappear at the
folding operation as in Eq. (12) for m ¼ �2.
In Fig. 2, we plot the folded distribution function (13) in

the coordinate,

ðx; yÞ ¼ 2 sin½I=2�ðcosψd; sinψdÞ; ð14Þ

identical to the Lambert azimuthal equal-area projection
centered on the face-on direction I ¼ 0. Given the sym-
metry at I ¼ π=2, we present only the range 0 ≤ I ≤ π=2.

For a hierarchical case ja20j ≫ ja40j, the azimuthal
dependence is weak, as expected from Eq. (13). For a20 <
0 [corresponding to the equatorial enhancement in Eq. (1)]
we have higher probability around the face-on configura-
tion (I ¼ 0 and π).
From the folded distribution function p̄ðI;ψdÞ, we can

easily evaluate the polarization degree of the associated
GW background. The Stokes parameters ðIs; Qs; Us; VsÞ
are its conventional measures [29,30]. Using the notation
f� � �gψdI ≡

R
π
0 dI

R π=2
0 dψd sin Ip̄ðI;ψdÞ½� � �� for the angular

averagings, we obtain the expressions such as

Qs þ iUs

Is
¼ fe−4iψd ½ð1þ cos2IÞ2 − 4cos2I�gψdI

f½ð1þ cos2IÞ2 þ 4cos2I�gψdI
; ð15Þ

(defined for the axes e⃗r and e⃗q). For the concrete profile

(13), we have Qs=Is ¼ 35a40=ð336 − 48
ffiffiffi
5

p
a20 þ 3a40Þ

and Us=Is ¼ Vs=Is ¼ 0.

IV. PROBING ANISOTROPIES

We now discuss how to probe the anisotropies of the
original function Pðj⃗Þ, by analyzing the observable func-
tion p̄ðI;ψdÞ, which is sampled by a finite number of
CWDBs. For a probability distribution function defined on
a sphere, following e.g., [31], we can deal with the discrete
sampling effects on the spherical harmonic expansion.
Here, paying attention to the roughly concentric profiles
in Fig. 2, we rather examine a simple dualistic approach.
We divide our binary sample (in total N) into the

following two subsets: (i) the low-inclination group with
j cos Ij ≥ 1=2 and (ii) the high-inclination group with
j cos Ij < 1=2. We put their numbers by NL and NH
(NL þ NH ¼ N) and define the asymmetric ratio by

A≡ NL − NH

N
: ð16Þ

For the isotropic (random) profilePðj⃗Þ ¼ const, we have
the vanishing mean hAi ¼ 0 and the shot noise ΔA ¼
N−1=2 for the very basic binomial distribution. Below, we
conservatively take the reference number N ∼ 2000, con-
sidering the expected fraction of bulge CWDBs [14].
For an anisotropic profile Pðj⃗Þ, we can estimate the

mean fractions such as

hNHi
N

¼
Z

2π=3

π=3
dI

Z
π=2

0

dψd sin Ip̄ðI;ψdÞ; ð17Þ

and obtain

hAi ¼ −
192

ffiffiffi
5

p
a20 þ 135a40
1024

ð18Þ

for the function (13). Therefore, if we have the condition
jhAij > ΔA, we can probe the intrinsic anisotropy in Pðj⃗Þ
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FIG. 2. The fourfolded orientation distributions p̄ðI;ψdÞ (nor-
malized by the factor π−1). We apply the area preserving
projection ðx; yÞ ¼ 2 sinðI=2Þðcosψd; sinψdÞ. The original dis-
tribution functions are axisymmetric model PAðcos θÞ in Eq. (1)
characterized by the two anisotropy parameters a20 and a40. Panel
(a) for the isotropic model with ða20; a40Þ ¼ ð0; 0Þ, (b) with
ð−0.3; 0Þ, (c) with ð−0.3;−0.04Þ, and (d) with ð−0.3;−0.1Þ.
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(at 1σ level). Dropping the term ∝ a40 in Eq. (18), the
inequality can be expressed as

ja20j > 0.053

�
N

2000

�
−1=2

: ð19Þ

This result would serve as a rough guidance for the
detection limit of the intrinsic alignment of the
bulge CWDBs.
We have some comments on the above simple argu-

ments, in view of the selection effects at actual observa-
tional analysis. As shown in Eq. (6), the signal-to-noise
ratio ρ depends on the sky position n⃗ of the binary and its
orientation angles ðI;ψÞ. For given parameters ðn⃗;ψÞ, the
signal-to-noise ratio ρ generally becomes smallest for an
edge-on binary with cos I ¼ 0, as indicated by the expres-
sions Aþ;×ðIÞ. How about the dependence on the remaining
parameters ðn⃗;ψÞ for edge-on binaries? In fact, due to the
annual rotation of the detector plane of LISA, the depend-
ence is effectively averaged out, and the associated scatter
is largely suppressed. We can quantitatively examine this,
by (i) using the standard framework for nearly monochro-
matic binaries with LISA-like detectors [16] and (ii) ran-
domly sampling the parameters ðn⃗;ψÞ. For an observational
period of an integer times 1 yr, the minimum signal-to-noise
ratio ρ of the edge-on binaries is only∼10% smaller than the
rms value of the whole edge-on sample (corresponding to
the large number limit of detectors in [32]). In any case, the
selection effect can be avoided by using CWDBs in the
appropriate region in the ðf; ḟÞ-space so that the Galactic
survey is expected to be complete (e.g., f > 3 mHz) [11].
Alternatively, when preparing the binary sample, we can
introducedependenceon the angular variables (n⃗; I;ψ) to the
threshold of the signal-to-noise ratios.
Meanwhile, the estimation errors for the parameter cos I

induce missclassifications of binaries around the boundary
j cos Ij ¼ 1=2, and we might need numerical studies to
examine the potential biases for the asymmetric ratio A.
The Fisher matrix analysis roughly gives Δ cos I ∼ 1=ρ
(except for cos I ∼�1) for a signal-to-noise ratio ρ (typ-
ically at ∼10–100 for a Galactic CWDB) [11]. Therefore,
such confusions are relevant for a small fraction (∼1=ρ) of

the binaries, eventually increasing the shot noise ΔA only
slightly (order of N−1=2ρ−1).

V. DISCUSSION AND SUMMARY

So far, we have mainly discussed the orientations of
bulge CWDBs. Using LISA, from the ampluitude and
frequency modulations, we can also measure the directions
n⃗ of the binaries [16]. In addition, we will be able to
estimate the distances to some of the inspiraling CWDBs
by analyzing their orbital decay rates ḟ > 0 [17]. These
pieces of positional information will help us to roughly
select the bulge components. However, alignment studies
will be intriguing also for disk components, and we do not
need to stick too much with a separation between the two
components. In any case, if the observed anisotropies
p̄ðI;ψdÞ are turned out to be strong, we could additionally
explore the spatial correlation of the orientations, by
combining the two- or three-dimensional positional
information.
Let us briefly summarize our study. Compact binaries

emit GWs, encoding their orbital motions. GWobservation
is intrinsically geometrical and enables us to measure the
configurations of binary sources. Meanwhile, it was
recently reported that, the orientations of the planetary
nebulae associated with short-period bulge binaries are
preferentially aligned to the Galactic plane, possibly
reflecting the frozen initial conditions of the binaries
[18]. In the near future, LISA will separately detect
∼104 Galactic CWDBs and will become an ideal tool to
examine their alignments, based only on the first principles
of physics. In spite of the fourfold degeneracy of the
polarization angles, LISA could enable us to measure the
axisymmetric quadrupole pattern a20 as small as ∼0.05 and
could serve as an interesting tool for geometrically delving
into the fossil records in our Galaxy.
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