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In this work we present general predictions for the static observables of neutron stars (NSs) under the
hypothesis of a purely nucleonic composition of the ultradense baryonic matter, using Bayesian inference
on a very large parameter space conditioned by both astrophysical and nuclear physics constraints. The
equations of state are obtained using a unified approach of the NS core and inner crust within a fully
covariant treatment based on a relativistic mean-field Lagrangian density with density-dependent
couplings. The posterior distributions are well compatible with the ones obtained by semiagnostic
metamodeling techniques based on nonrelativistic functionals that span a similar portion of the parameter
space in terms of nuclear matter parameters, and we confirm that the hypothesis of a purely nucleonic
composition is compatible with all the present observations. We additionally show that present observations
do not exclude the existence of very massive neutron stars with mass compatible with the lighter partner of
the gravitational event GW190814 measured by the LIGO-Virgo Collaboration. Some selected represen-
tative models, that respect well all the constraints taken into account in this study and approximately cover
the residual uncertainty in our posterior distributions, will be uploaded in the CompOSE database for use by
the community.
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I. INTRODUCTION

The analysis of multimessenger data on compact stars
require models for the equation of state (EOS) of dense
matter that are sufficiently flexible to account for the
present uncertainties of the theoretical modeling, thus
avoiding artificial bias in the parameter estimation, see
Refs. [1,2] for recent reviews on the EOS modeling.
A paramount—though not unique—example of this

statement is given by the estimation of neutron star radii
from gravitational wave (GW) signals observed by ground
based interferometers from the merging of compact bina-
ries [3]. Indeed, given the mass of a neutron star, its
tidal deformability under the gravitational field of the
companion in the late inspiral dynamics is one-to-one
correlated to the star radius, for a given equation of state
model. Even if the leading order adiabatic tidal effects enter
the phase of the waveform only at the fifth post-Newtonian
order [4,5] and can therefore be extracted only from loud
signals with a high signal-to-noise ratio, important con-
straints on the tidal parameter were already obtained
by the LVK Collaboration, particularly from the famous
GW170817 event [6]. New observations from the ongoing

O4 and upcoming O5 run and next generation detectors
such as Einstein Telescope Cosmic Explorer are expected
to further tighten the tidal deformability constraint through
more precise and more numerous observations [7]. A
precise estimation of the correlation between the tidal
polarizability parameter Λ and the star mass M can there-
fore lead to radius evaluations that can be more precise than
estimations from x-ray bursts or pulse timing measure-
ments [8–11], at the same time providing precious infor-
mation on the behavior of ultradense matter in a regime that
is completely inaccessible to laboratory experiments.
The most model-independent approach in this respect is

given by agnostic (parametric or nonparametric) EOS
modeling, such as piecewise polytropes [12], spectral
parametrization [13–15], Gaussian process-based sampling
[16–19], or neural networks [20] that do not impose a
specific form of the EOSs and are only restricted by the
requirement of causality and thermodynamic stability.
Although very powerful for EOS inference from astro-
physical data, the common drawback of these agnostic
models is that they do not provide information on the
internal composition of neutron star (NSs), and more
generally on the properties of the strong interaction in
the nonperturbative domain of QCD. For this reason,
semiagnostic models have been proposed [21–27], that
do not directly model the functional relation between
pressure and energy density, but infer this quantity by
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imposing the equilibrium of weak interactions to a flexible
parametrization of the energy density of an electrically
neutral system composed of leptons and baryons. In this
metamodeling approach, the parameters of the energy
functional are chosen such as to explore the full uncertainty
domain of microscopic models of dense matter, with
minimal hypotheses on the relevant degrees of freedom.
The simplest realization of this approach consists in
considering only nucleonic (neutron and proton) degrees
of freedom for the baryonic part, and expressing the
interaction part of the energy density as a polynomial
expansion around the equilibrium density of symmetric
nuclear matter, where the behavior is best constrained by
laboratory experiments [28–32]. Alternatively, expansions
around pure neutron matter have been proposed, where
ab initio low-energy nuclear theory can provide powerful
constraints [33–39]. Combined with Bayesian statistical
analysis, this metamodeling technique can be used to assess
the compatibility of specific dense matter theories to the
existing nuclear and astrophysical data, and also as a null
hypothesis to infer from the astrophysical data the presence
of exotic non-nucleonic degrees of freedom [40–43].
Finally, a complete consistency is insured between the
behavior of the homogeneous star core, that contains the
highest uncertainties, and the one of the solid crust, that is
well constrained by nuclear theory.
The main drawback of this approach is that polynomial

expansions by construction lead to unphysical acausal
behaviors at high density. Even if causality can be restored
by explicitly selecting models that become superluminal at
densities overcoming the central density of the highest
mass Mmax star allowed by the hydrostatic equilibrium
Tolmann-Oppenheimer-Volkof (TOV) equation, the aver-
age value of the speed of sound in the center of the star
typically exceeds 80% of the speed of light [41], calling for
a relativistic treatment of the energy functional [26,44–47].
In a recent work, Char and collaborators [48] have
proposed a relativistic version of the metamodeling tech-
nique, where not only leptons but also baryons are treated
within a covariant Lagrangian formulation based on the
relativistic mean-field (RMF) theory. To realistically cap-
ture the theoretical uncertainty of the interaction at high
density, density-dependent couplings were used, with the
functional form proposed in Ref. [49], that will be noted
GDFM in the following after the authors’ names. The
expression of the couplings comprises a large number of
parameters both in the isoscalar and in the isovector sector,
such as to cover all the possible behaviors of the poorly
known density dependence of the symmetry energy, and
therefore a priori allow for a very large range of possible
compositions in dense matter.
In this study we continue the endeavor of Ref. [48] and

study in greater detail the effect of astrophysical and
nuclear physics constraints and the different likelihood
models on the posterior distribution of astrophysical

observables and crustal properties of NSs. At variance
with Ref. [48] and other previous studies along the same
lines [44,45], that use a different expression for the density-
dependent couplings involving a smaller set of parameters,
in this work we build both the core and the inner crust of the
star, employing the density-dependent GFDM functional
form, as in Ref. [48], and using a compressible liquid drop
(CLD) approximation [50–55] for the ions in the inner crust
with a surface tension optimized on experimentally mea-
sured nuclear masses [54].
We divide our analysis in three main parts. In the first part

we study the effect of astrophysical constraints, in particular
the constraint on the radius of NS coming from the x-ray
observations of the NICER observatory [56–59]. In the
second part we study the effect of the constraints coming
from chiral effective field theory (χ-EFT) [34–36,38,39],
observing how different prescriptions for the application of
this constraint affect the posterior distribution. Finally in the
third part we focus on the effect of experimental constraints
on the properties of nuclear matter. In particular we discuss
the compatibility of the constraints extracted from the parity
violating electron scattering PREX and CREX experiments
[60–62] with the parameter space allowed by the behavior of
the GDFM Lagrangian for the different nuclear matter
parameters (NMPs).
The structure of the paper is as follows. In the following

section we present the theoretical framework used for the
construction of the EOS used in our study. In Sec. III we
present the procedure used for the construction of our prior
distribution and for the estimate of the weight assigned to
each model for the evaluation of our posterior distributions.
In Sec. IV we present our results for the three parts of our
study and finally in Sec. V we draw some conclusions.

II. CONSTRUCTION OF NEUTRON STAR EOS

A. Homogeneous matter

The EOSs used in this study are built within a RMF
approximation, where the interaction between the nucleons
is mediated by three types of mesons: the isoscalar-scalar
meson σ of mass mσ, the isoscalar-vector meson ω of mass
mω, and the isovector-vector meson ρ of mass mρ.
Following Ref. [48], we do not include the δ meson, i.e.
a scalar isovector channel. The inclusion of this channel in
future works might be useful to access more complex,
nonmonotonic behaviors of the density dependence of the
symmetry energy [63]. However, we will show that a large
variety of symmetry energy behaviors can be modeled by
the simple vector coupling, thanks to the complex behavior
of the density dependence employed.
The Lagrangian density of our models is given by the

standard form:

L ¼
X
i¼p;n

Li þ LL þ Lσ þ Lω þ Lρ: ð1Þ
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Here, LL is the Lagrangian of the lepton component,
including electrons and muons and treated as a free fermion
gas, while the baryon contribution is given by

Li ¼ ψ̄ i

�
γμi∂μ − gωVμ −

gρ
2
τ · bμ −M�

�
ψ i; ð2Þ

where M�
i ¼ M� ¼ M − gσϕ is the effective nucleon mass

that is taken as isospin independent, with M being the bare
nucleon mass, M ¼ Mn ¼ Mp ¼ 938.9 MeV, while the
mesonic components are given by

Lσ ¼
1

2
ð∂μϕ∂μϕ −m2

σϕ
2Þ; ð3Þ

Lω ¼ −
1

4
ΩμνΩμν þ 1

2
m2

ωVμVμ; ð4Þ

Lρ ¼ −
1

4
Bμν ·Bμν þ 1

2
m2

ρbμ · bμ; ð5Þ

with the tensors written as

Ωμν ¼ ∂μVν − ∂νVμ; ð6Þ

Bμν ¼ ∂μbν − ∂νbμ − gρðbμ × bνÞ: ð7Þ

The leptonic component of the Lagrangian is given by

LL ¼
X
i¼e;μ

ψ̄ i½γμi∂μ −mi�ψ i; ð8Þ

where the sum takes into account the contribution of both
electrons and muons.
In the mean-field approximation, the meson fields are

static and constant, and the energy density at a baryon density
ρ and asymmetry ρ3 ¼ ρp − ρn takes the simple form

Eðρ; ρ3Þ ¼
X

i¼n;p;e;μ

hψ̄ iγ0k0ψ ii − hLi ð9Þ

¼
X

i¼n;p;e;μ

Ekin;i − Efield; ð10Þ

with

Ekin;i ¼
2Ji þ 1

2π2

Z
kF;i

0

dk k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM�2

i

q
ð11Þ

Efield ¼
1

2
m2

ωω
2
0 þ

1

2
m2

ρb23;0 −
1

2
m2

σϕ
2
0

−
X
i¼n;p

ðgωω0ρi � gρb3;0ρiÞ: ð12Þ

Here, leptons are given their free mass (M�
e ¼ me;

M�
μ ¼ mμ), Ji and kF;i are ground state spins and Fermi

momenta, respectively, with ρi ¼ k3F;i=ð3π2Þ, and the sub-
scripts 0 note the expectation values of the static fields
(hϕi ¼ ϕ0, hVμi ¼ ω0, hbμi ¼ b3;0), and the sign þð−Þ
corresponds to protons (neutrons). The chemical potentials
of the nucleons are given by

μi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F;i þM�2

q
þ gωω0 �

1

2
gρb3;0 þ ΣR ð13Þ

where i ¼ p, n, and ΣR is the rearrangement term arising
from the density dependence of the couplings:

ΣRðρÞ ¼
∂gω
∂ρ

ω0ρþ
1

2

∂gρ
∂ρ

b0;3ρ3 −
∂gσ
∂ρ

ϕ0ρs; ð14Þ

ρs being the scalar density:

ρs ¼
X
i¼p;n

hψ̄ iψ ii ¼
1

π2
X
i¼p;n

Z
kF;i

0

dk
M�k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM�2p : ð15Þ

In the same mean-field approximation, leptons are a homo-
geneous free gas with chemical potentials simply given by

μi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F;i þm2

i

q
; ð16Þ

with i ¼ e, μ. Finally, the pressure is given by

P ¼
X

i¼n;p;e;μ

μiρi − E

¼
X

i¼n;p;e;μ

Pkin;i −
1

2
m2

ωω
2
0 þ

1

2
m2

ρb23;0 −
1

2
m2

σϕ
2
0 þ ρΣR:

ð17Þ

Where the “kinetic” contribution reads

Pkin;i ¼
2Ji þ 1

6π2

Z
kF;i

0

dk
k4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þM�2
i

p : ð18Þ

Charge neutrality ρp ¼ ρe þ ρμ and the weak equilib-
rium conditions complete the equations set for homo-
geneous core matter:

μn − μp ¼ μe; μe ¼ μμ: ð19Þ

For the couplings, we choose as in Ref. [48] the GDFM
[49] ansatz, with each coupling in the form

gi ¼ ai þ ðbi þ dix3Þe−cix ð20Þ

with i ¼ σ, ω, ρ, and x ¼ ρ=ρsat, where ρsat is the saturation
density of the model. Each model is thus uniquely defined
by 12 parameters, 4 for each meson coupling. This set of 12
parameters identifying each realization of the GDFM
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Lagrangian will be noted X ¼ fX1;…;X12g in the
following.

B. Neutron star crust

All the EOSs used in the study include an outer and an
inner crust. For the outer crust we use the BSk22 model
[64], while a unified inner crust is built for each model. In
order to do so, we use the same GDFM model described in
the previous section and a CLD calculation [53,65] for the
description of the heavy clusters in the crust.
In our realization of the CLD model, each Wigner-Seitz

cell is composed of a constant electron background of
energy density EL, a high-density (“cluster”) part, labeled I,
and a low-density (“gas”) part, labeled II, both considered
as homogeneous portions of nuclear matter at respective
densities ρI and ρII. The equilibrium proportion of cluster
and gas and their composition are obtained by minimizing
the total energy density of the cell, including the interface
surface and Coulomb terms, that is given by

E ¼ fEðρI; ρIIÞ þ ð1 − fÞEðρII; ρIII Þ þ ECoul þ Esurf þ EL;

ð21Þ

with respect to four variables: the linear size of the cluster,
Rd, the baryonic density ρI and proton density ρIp of the
high density phase, and its volume fraction f. In this study,
we only consider spherical clusters in order to slightly
reduce the computational time, as it was shown by different
authors [55,66–68] that the inclusion of exotic geometries
(“pasta” phases) has a negligible effect both on the EOS
and on the crust-core transition point. In fact, in some
calculations at T ¼ 0 MeV and β-equilibrium matter, only
the droplet configuration is present for the inner crust [66],
and it was even argued in [69] that shell effects could
strongly suppress the nonspherical phases.
The Coulomb and surface terms are given by [70]

ECoul ¼ 2fe2πΦR2
dðρIp − ρIIp Þ2; ð22Þ

Esurf ¼
3fσ
Rd

ð23Þ

where Φ is given by

Φ ¼ 1

5
ð2 − 3f1−2=3 þ fÞ ð24Þ

and where the surface tension σ reads

σ ¼ σ0
bþ 24

bþ y−3p;I þ ð1 − yp;IÞ−3
ð25Þ

where yp;I is the proton fraction of the dense phase and
where the parameters σ0 and b are optimized for each

model, through a fit over the measurements of the nuclear
masses [71], as previously done in [54,55,72]. This
procedure ensures an estimation of the surface tension that
is consistent with each specific model, without increasing
the size of the parameter space.
The density and pressure at the crust-core transition are

consistently obtained for each realization of the GDFM
model by comparing, for each baryonic density ρ, the
energy density of inhomogeneous matter, Eq. (21), to the
energy density of homogeneous matter with a composition
determined by the condition of β equilibrium. Since the
very same Lagrangian density is used to evaluate the energy
densities appearing in Eqs. (18) and (21), if stringent
constraints are applied at low baryonic density, such as
the ab initio neutron matter calculations from many-body
perturbation theory using chiral interactions, they will
effectively affect also the high density behavior of the
EOS and therefore might potentially have a sizeable impact
on global neutron star properties.

III. BAYESIAN ANALYSIS

In this section we present the details of our Bayesian
analysis.

A. Construction of the prior

The prior used in this Bayesian analysis consists in a set
of GDFMmodels, each built using the procedure showed in
the previous section. The choice of the parameter space to
be explored is a delicate question, because a too restrictive
prior will result in biased results for our predictions [21,48].
To correctly select the couplings parameter space that
corresponds to acceptable models from the microphysics
point of view, we take advantage of the fact that analytical
relations exist [73,74] between the unknown meson cou-
plings gi of Eq. (20) and the so-called empirical NMPs, that
express the physical properties of nuclear matter close to
the saturation point that can be explored by laboratory
experiments. Specifically, we will use the definition of
the saturation point of symmetric nuclear matter Eðρ; 0Þ
(energy Esat and density ρsat), the incompressibility Ksat,
and two parameters characterizing the density behavior of
the symmetry energy, namely its value at saturation Jsym
and its curvature Ksym. In principle, another parameter that
is (at least partially) constrained by nuclear physics is the
slope at saturation of the symmetry energy Lsym. However,
we have not directly sampled this parameter since, as we
will explicitly show later, the model imposes a strong
correlation between the NMPs and it turns out that it is not
possible to sample independently Jsym, Lsym, and Ksym.
A physical strong correlation between Jsym and Lsym is
found by many authors to arise from the comparison to
nuclear data (see for instance [75] and references therein),
therefore we consider that it is more important to keep the
largely unknown Ksym as an independent parameter.
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The relation between the NMPs and the couplings can be
calculated as [73,74]

Esat ¼
�
Ekin;n þ Ekin;p þ

1

2
m2

σϕ
2
0

þ 1

2
m2

ωω
2
0 þ

1

2
m2

ρb23;0

�����
ρ¼ρsat;ρ3¼0

ð26Þ

Psat ¼ 0 ¼
�
Pkin;n þ Pkin;p −

1

2
m2

σϕ
2
0 þ

1

2
m2

ωω
2
0

þ 1

2
m2

ρb23;0 þ ρΣR

�����
ρ¼ρsat;ρ3¼0

ð27Þ

Ksat ¼ 9

�
ρ
∂ΣR

∂ρ
0þ 2gωρ2

m2
ω

∂gω
∂ρ

þ g2ωρ
m2

ω

×
k2F
3EF

þ ρM�

EF

∂M�

∂ρ

�����
ρ¼ρsat;ρ3¼0

ð28Þ

Jsym ¼ k2F
6EF

þ g2ρ
8m2

ρ
ρ

����
ρ¼ρsat;ρ3¼0

ð29Þ

Ksym ¼ 9ρ2
�
−

π2

12E�
F
3kF

�
π2

kF
þ 2M� ∂M

�

∂ρ

�
−

π4

12E�
Fk

4
F

þ gρ
2m2

ρ

∂gρ
∂ρ

−
�

π4

24E�
F
3k2F

−
kFπ2

8E�
F
5

�
π2

kF
þ 2M� ∂M

�

∂ρ

��
·

×

�
1þ 2M�kF

π2
∂M�

∂ρ

�
þ ρ

4m2
ρ

�
∂gρ
∂ρ

�
2

−
kFπ2

12E�
F
3
·

×

�
M�

k2F

∂M�

∂ρ
þ 2kF

π2

�
∂M�

∂ρ

�
2

þ 2kFM�

π2
∂
2M�

∂ρ2

�

þ gρρ

4m2
ρ

∂
2gρ
∂ρ2

	����
ρ¼ρsat;ρ3¼0

ð30Þ

where EF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F þM�2p

is the isospin independent
nucleon Fermi energy. We underline that Eq. (27) actually
connects the saturation density of symmetric matter to the
couplings by imposing the vanishing of pressure at that
specific density.
Those parameters are sampled using uniform distribu-

tions within the large, but physically motivated, intervals
given in Table I. The average values and interval extension
are chosen such as to fully cover the present uncertainties,
while the uniform uncorrelated distributions guarantee that
no artificial bias is induced by the largely arbitrary func-
tional form of the couplings [21]. In particular, it was
discussed in Ref. [48] that a partial or biased exploration of
the possible variations of the badly constrained Ksym
parameter might result in an incomplete description of
the lepton fraction distribution at high density, with
potential important consequences on the cooling dynamics
of neutron stars.

Concerning the seven remaining parameters needed to
fully specify each realization of the GDFM model, we
again use agnostic uniform distributions with ranges
reported in Table I. These intervals are centered on the
original values of the GDFM model [49], and chosen large
enough to cover the very largely spread values of the high
order NMPs obtained from different relativistic and non-
relativistic models in the literature [21], following the study
of Ref. [48].
The set of models is then filtered so that only the ones

that fulfill the following requests are kept: the fit to the
nuclear mass table [71] must give a minimum χ2, which is
necessary for the estimation of the surface tension param-
eter σ, the variational equations associated to the crust must
have a solution within the physical possible values for the
crustal composition, and both the uniform neutron matter
and the final β-equilibrated EOS must be thermodynami-
cally stable. Causality is by construction guaranteed by the
relativistic structure of the functional (and a posteriori
verified for each model). The χ2 cited above is defined
following [54,55,72]

χ2AMEðXÞ ¼ 1

N

XN
n¼1

ðMðnÞ
CLDðXÞ −MðnÞ

AMEÞ2
σ2BE

; ð31Þ

with N ¼ 2408 the total number of masses considered,

MðnÞ
CLD the mass of nucleus n obtained from the best fit of the

experimental table within the X parameter set, MðnÞ
AME the

experimental value, and σBE chosen as 2% of the corre-
sponding mass, to approximately account for the systematic
error of the simplified CLD description. Applying these
conditions we are left with a set of roughly Ntot ≈ 4 × 105,
which form what from now on will be referred to as our
prior distribution.

TABLE I. Values used for the generation of the prior distribu-
tion of the model parameters fXg.

Min Max

ρsatðfm−3Þ 0.140 0.170
EsatðMeVÞ −17 −14
KsatðMeVÞ 150 350
JsymðMeVÞ 20 60
KsymðMeVÞ −300 300
bσ 1.8 2.4
cσ 2.0 4.0
dσ 2.8 4.2
bω 2.0 2.4
cω 2.0 3.0
bρ 4.0 6.0
dρ −1.0 0.0
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1. Prior reweighting

Even if in the first generation of the model parameters we
assume uncorrelated flat distributions, the applied condi-
tions on the behavior of the functional in the crustal region
mentioned above obviously result in a slight deformation of
the prior NMPs marginalized distributions. In particular,
the distribution of Ksym results peaked around small and
positive values, as it can be seen from panel 6 in Fig. 1.
Though physical correlations among the NMPs are
expected from the Lagrangian structure of the functional,
we cannot a priori exclude that some bias might arise from
the chosen behavior of the ρ-meson coupling and/or the
absence of the δ degree of freedom [63]. A fully unbiased
prior distribution of Ksym might be important to obtain
general predictions, since in [62] it was pointed out that the
value of the Ksym parameter can be crucial in order to
reconcile the results of the PREX and CREX experiments
[60,61]. For this reason, we apply a reweighting procedure
to our prior [76], to specifically ensure the flatness of the

distribution of Ksym. In order to do so, the whole range of
Ksym from Ksym ¼ Kmin

sym to Ksym ¼ Kmax
sym is divided in n

bins of equal size δK ¼ ðKmax
sym − Kmin

symÞ=n, and to each
model X is assigned a weight given by

wX ¼ Puniform

PpriorðiÞ
ð32Þ

where Puniform ¼ 1=n and PpriorðiÞ ¼ NðiÞ=Ntot is the
number of models in the ith bin of Ksym, which is the
one that contains the model, normalized to the total number
of models in the prior. This procedure does not produce
important bias on the marginalized distributions of the
other parameters, provided that the weight assigned to the
models does not vary over orders of magnitude.
In the present case, the effect of the prior modification on

different NMPs marginalized distributions is shown in
Fig. 1, as well as in Tables III and IV, where we show
the mean and the extremes of the 90% confidence interval
(CI) for the distributions of the NMPs and of some NS
observables respectively. We can see that the potential bias
on the Ksym distribution is eliminated by the reweighting
procedure, while the other distributions are only very
slightly affected. This shows once again that our version
of the GDFM functional is sufficiently flexible to describe
different possible behaviors of the symmetry energy, with-
out a priori correlations among the different parameters. In
light of this result, from now on we will always use as a
starting point the flat Ksym prior, simply calling it “prior.”

TABLE II. Values of the mean and standard deviation for the
NMPs used in the evaluation of PðExpjXÞ taken from [21].

μ σ

ρsatðfm−3Þ 0.153 0.005
EsatðMeVÞ −15.8 0.3
KsatðMeVÞ 230 20
JsymðMeVÞ 32.0 2.0
KτðMeVÞ −400 100

FIG. 1. Marginalized posterior of ρsat (top left), Esat (top center), Ksat (top right), Esym (bottom left), Lsym (bottom center), and Ksym
(bottom right) before (dashed blue) and after (solid black) the reweighting of the prior.
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B. Posterior calculation

The posterior probability distributions of the set X of
EOS parameters is conditioned by likelihood models of the
different observations and constraints c with normalizing
constant N as

PðXjcÞ ¼ N
Y
k

PðckjXÞ: ð33Þ

The corresponding probability distributions for the
observablesYðXÞ are obtained by an overall marginalization

through the range of values of parameters X between Xmin
and Xmax according to

PðYjcÞ ¼
YN
k¼1

Z
Xmax
k

Xmin
k

dXkPðXjcÞδðY − YðXÞÞ: ð34Þ

As already mentioned, in our study we consider the
effect of three main categories of constraints.
The first category consists in the theoretical constraints

on the properties of neutron matter coming from ab initio
calculations based on χ-EFT, the second category consists
in the experimental constraints on the properties of nuclear
matter close to saturation, and the last one includes different
astrophysical constraints on the observables of NS. In the
following subsections we detail the likelihood models
PðckjXÞ for the three categories.

1. Theoretical nuclear constraints

In our study we consider the ab initio calculation of the
energy per baryon of neutron matter, taken from the
compilation presented in the left part of Fig. 1 in
Ref. [77]. This compilation comprises different many-body
calculations using interactions from χ-EFT, namely many-
body perturbation theory [34,35,38,39], and auxiliary field
diffusion Monte Carlo [36]. The ensemble of these calcu-
lations leads to a band in the energy-density plane, that
comprises EFT truncation errors and different regulators,
uncertainties in the low-energy couplings that enter three-
nucleon forces, as well as systematics due to the different
many-body methods. As such, the band represents the
region of compatibility of a given nuclear model with our
theoretical knowledge of the low-energy nucleon-nucleon
interaction. However, the expression of a likelihood model

TABLE III. Mean and extremes of the 90% quantile for the nuclear matter parameters, as well as for the
combinations K�

τ ¼ Ksym − 6Lsym and for Kτ ¼ Ksym − 6Lsym −QsatLsym=Ksat. We show the values for the prior
and the reweighted prior with flat Ksym.

Prior Flat Prior

90% CI 90% CI

Mean Min Max Mean Min Max

ρsatðfm−3Þ 0.154 0.141 0.168 0.154 0.141 0.168
EsatðMeVÞ −15.4 −16.7 −14.2 −15.5 −16.8 −14.3
KsatðMeVÞ 260.3 164.9 341.8 260.3 165.0 341.9
QsatðMeVÞ 386.6 −964.6 1866.7 374.7 −978.1 1856.6
ZsatðMeVÞ 7476.7 −6197.4 21741.6 7409.9 −6300.1 21754.3
EsymðMeVÞ 34.3 24.9 46.2 36.1 26.3 47.7
LsymðMeVÞ 71.7 41.4 127.5 78.5 40.3 136.0
KsymðMeVÞ 6.9 −242.7 245.7 −0.1 −270.0 270.0
QsymðMeVÞ 517.9 −25.6 1195.1 609.2 −21.5 1297.3
ZsymðMeVÞ −8674.5 −14767.5 334.1 −7168.7 −13989.7 2641.6
K�

τ ðMeVÞ −423.5 −631.6 −250.1 −471.1 −662.1 −284.3
KτðMeVÞ −523.1 −1064.7 −78.5 −576.2 −1147.8 −90.4

TABLE IV. Mean and extremes of the 90% quantile for the
radius, tidal deformability and central density of a 1.4M⊙ and
2.0M⊙ NS, as well as the maximum mass and the central density
of the most massive star. We show the values for the prior and the
reweighted prior with flat Ksym. We underline that the properties
of the 1.4M⊙ and 2.0M⊙ NS are calculated only on those models
that reach the respective mass.

Prior Flat Prior

90% CI 90% CI

Mean Min Max Mean Min Max

R1.4M⊙
ðkmÞ 13.7 12.6 14.9 13.8 12.6 15.1

Λ1.4M⊙
1294 744 2007 1336 724 2156

ρc1.4M⊙
ðfm−3Þ 0.32 0.26 0.40 0.32 0.25 0.40

R2.0M⊙
ðkmÞ 13.8 12.6 14.9 13.9 12.6 15.1

Λ2.0M⊙
148 72 241 152 72 256

ρc2.0M⊙
ðfm−3Þ 0.39 0.31 0.52 0.39 0.30 0.52

MMaxðM⊙Þ 2.57 2.32 2.85 2.58 2.33 2.87
ρcMMax

ðfm−3Þ 0.73 0.62 0.89 0.72 0.61 0.89
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to quantify the meaning of the band in a probabilistic way is
not unique [78], therefore this constraint will be imple-
mented in two different ways, detailed below, which will
then be compared.

(i) Heaviside: In the first case, we assume a simple
pass-band filter, where we consider the band given
by [77] as a 90% confidence interval, as previously
done in similar studies [40,54]. In this case we will
divide the constraint into N baryon density slices
and the weight will be given by

PðχEFT;HSjXÞ

∝
YN
i¼1

�
1 if ximin − δi < xiðXÞ < ximax þ δi

0 otherwise
;

ð35Þ

where xiðXÞ ¼ Eðρi; ρiÞ=ρi is the energy per baryon
in pure neutron matter of the modelX at the ith point
in density, ximin and ximax are the lower and upper
bound of the theoretical band at the same density
point and δi ¼ 0.05ðximax − ximinÞ.

(ii) Gaussian: In the second case we consider a weaker
way to impose the constraint. Once again we slice
the density domain where the constraint is applied
into N equal intervals, and we assume that all the
models that fall within the range of the band in all
density intervals will have equal weight. However,
unlike the previous case, the models that do not fall
inside the band in one or more density intervals are
not discarded. The energy per baryon at the different
density points are rather treated as independent
Gaussian variables. The likelihood becomes

PðχEFT;GaussjXÞ

∝
YN
i¼1

�
Pi
UðxiÞ if ximin<xiðXÞ<ximax

Pi
GðxiÞ otherwise

; ð36Þ

where xi, ximin and x
i
max are defined as in the previous

case and where

Pi
UðxÞ ¼

0.682
2σi

; ð37Þ

while

Pi
GðxÞ ¼

1

σi
ffiffiffiffiffiffi
2π

p e−
1
2
ðx0−μiσi

Þ2 ; ð38Þ

with μi ¼ðximaxþximinÞ=2 and σi ¼ ðximax − ximinÞ=2.

2. Experimental nuclear constraints

In this category we consider indirect constraints on
the NMPs coming from the interpretation of nuclear
experimental data through different versions of the
density functional theory, see [79] for a recent review.
We consider a Gaussian likelihood model on the five NMPs
that are better constrained by nuclear experiments, namely
ρsat, Esat, Ksat and Jsym [21], as well as on the combination
Kτ ¼ Ksym − 6Lsym −QsatLsym=Ksat, that was shown in
Refs. [31,80] to be well correlated to experimental data
on the isoscalar giant monopole resonance. These vari-
ables are considered as independent, and the likelihood is
given by

PðExpjXÞ ¼
Y5
i¼1

1

σi
ffiffiffiffiffiffi
2π

p e−
1
2
ðx0−μiσi

Þ2 : ð39Þ

Here, the five values of i refer to the four NMPs listed
above, namely x1 ¼ ρsatðXÞ, x2 ¼ EsatðXÞ, x3 ¼ KsatðXÞ,
x4 ¼ JsymðXÞ, x5 ¼ KτðXÞ and the values of μi and σi for
each NMP are taken from the compilation of experimental
data in Ref. [21] and showed in Table II.

3. Astrophysical constraints

The likelihood associated to the astrophysical constraints
is given by the product of three terms: a constraint on the
maximum mass of neutron stars coming from the precise
measurement of very massive pulsars [81–83], the con-
straint on the tidal deformability given by the GW170817
event measured by the Ligo and Virgo Collaboration
[6,84,85], and two constraints on the NS radius coming
from the NICER observations [56–59]. The posterior is
thus conditioned by a total likelihood expressed as

PðAstrojXÞ ¼ PðMmaxjXÞ · PðLVCjXÞ · PðNICERjXÞ:
ð40Þ

For the maximum mass constraint, we use the precise
Shapiro delay radio timing measurement of the pulsar
J0348þ 0432 [81], with an estimated mass ð2.01�
0.04ÞM⊙. The likelihood is calculated as the cumulative
distribution function of a Gaussian distribution centered at
2.01 andwith a standard deviation of 0.04. Theweight is thus
defined as

PðMmaxjXÞ ¼ 1

0.04
ffiffiffiffiffiffi
2π

p
Z

MmaxðXÞ=M⊙

0

e−
1
2
ðx−2.01

0.04 Þ2dx; ð41Þ

where MmaxðXÞ is the maximum NS mass at equilibrium,
determined from the solution of the TOV equations.
Concerning the constraint coming from the observation of
GW170817 [6,84,85],we fix thevalue of the chirpmass to be
M ¼ 1.186M⊙, neglecting the (very small) uncertainty on
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this quantity. We then vary the quantity q ¼ m2=m1, con-
sideringN steps in the range [0.57, 1.00] and assign aweight
to each model using the two-dimensional posterior distribu-
tionPðΛ̃ðqÞ; qÞ reported in Ref. [6] using the PhenomPNRT
waveform:

PðLVCjXÞ ¼ 1

np

Xnp
i¼1

PðΛ̃ðqiÞ; qiÞ ð42Þ

where np ≤ N is the number of steps in qwhich are allowed
by the maximum mass of the specific model.
Finally, the weight coming from the constraint on the

radius given by the NICER observations is given by the
product of the weight coming from the observation of PSR
J0030þ 0451 [56,57] and the one of PSR J0740þ 6620
[58,59], so that the total likelihood is given by

PðNICERjXÞ ¼ PJ0030ðR;MÞ · PJ0740ðR;MÞ: ð43Þ

Here we use the data from [56,58]. For the calculation of
the two terms, we use the two-dimensional posterior
distribution for masses and radii. We consider N steps in
the mass Mi between the lower and upper bound of the
region given by the constraint and sum all the contribution,
obtaining a global likelihood modeled as

PjðXÞ ¼ 1

np

Xnp
i¼1

Pi
jðMi; RðMiÞÞ; ð44Þ

where j refers to the considered pulsar, and np ≤ N is the
number of steps in mass which are allowed by the
maximum mass of the specific model.

IV. RESULTS AND DISCUSSION

In this section we show the results obtained in our study.

A. Astrophysical constraints

We start our study by analyzing the effect of the
constraints coming from the astrophysical observations
which were listed in the previous section. We want to
study in particular the effect of the constraint coming from
the NICER observations of the radius, that were not
analyzed in previous works using similar metamodeling
techniques [40,48,86]. For this reason we compare the two
posterior distributions: one in which we only apply the
constraint on the maximum mass and the one coming from
GW170817 and one in which we apply all the astrophysical
constraints. In Fig. 2 we show the effect of the astrophysical
constraints on some NS observables. It is immediately clear
that the constraints have a very strong effect on the
observables. In particular, the maximum mass distribution
is shifted to lower values, while the central density of the
most massive star is shifted to higher values. This result is
in qualitative agreement with previous Bayesian analyses
with RMF priors [44,48] and can be understood from the
fact that the GW170817 measurement favors relatively soft
EOSs, corresponding to lower values for the maximum
mass and higher values for the central density. It is also
apparent from the prior distribution of the maximum mass
that the maximum mass constraint, that is extremely
important in the nonrelativistic version of the nucleonic
metamodel [40,87], plays virtually no role in our results.
This can be understood from the fact that any nonrelativ-
istic models become noncausal at relatively low NS mass,
and the implementation of the causality constraint by

FIG. 2. Marginalized posterior of the maximummass (top left), the central density of the most massive star (top right) and of the radius
(bottom left) and tidal deformability (bottom right) of a 1.4M⊙ NS for the prior distribution (solid black), the posterior with only the
maximum mass and GW170817 constraints (dotted blue) and the full astrophysical constraint (dashed red).
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simple rejection of the noncausal models creates a bias in
the maximum mass distribution. In view of this result,
we can anticipate that within this relativistic treatment
the possible appearance of hyperons in the NS core will
not be hindered as it is the case in the nonrelativistic models
[1], thus potentially eliminating the so called “hyperon
puzzle” [88]. The inclusion of hyperons in the treatment is
relatively straightforward, and it is left for further develop-
ments of the GDFM metamodel.
Coming back to Fig. 2, we also notice the appearance of

a second peak at higher densities in the posterior central
density distribution. Though it is not clear why the
astrophysical constraints should lead to a bimodal distri-
bution of the central density, it turns out that these models
present values of the NMPs far outside the ranges showed
in Table II, with very high saturation densities, low
saturation energies and low Ksat. For this reason, it will
be shown later that these models will be discarded by the
nuclear experimental constraints.
Concerning the properties of the canonical 1.4M⊙ NS

displayed in the lower part of the figure, with no surprise
the distribution of the tidal deformability, that is very spread
and structureless in the prior, becomes peaked following
the constraint imposed by the LVC ðΛ̃; qÞ measurement of
GW170817. The well-known correlation between Λ and R
leads to a relatively precise prediction for the radius
R1.4 ¼ ð12.8� 0.5Þ km. For all variables, the addition of
the NICER constraints does not significantly modify the
posterior distributions. This is another consequence of the
good correlation between Λ and R. Due to this correlation,
the relatively precise measurement of the tidal polarizabil-
ity from GW170817 turns out to constrain the NS radii in a

stronger way than the radius measurement from NICER,
that is more direct but affected by important systematics.
Still, the perfect agreement between the “GWþMmax” and
“GWþMmax þ NICER” posterior shows that these very
different measurements coming from completely different
probes and concerning different objects are perfectly
compatible with each other, as well as with a nucleonic
composition of the NS core, in agreement with previous
analyses [40,44,87]. In particular, our calculations do not
support the need of an EOS stiffening at high density due to
the PSR J0740þ 6620 radius measurement, that was seen
in some previous studies employing a more limited set of
nucleonic models [89].
In Fig. 3 we show the effect of the constraints from

astrophysical observations on the properties of the NS
crust. As expected, the effect on the crustal mass, radius and
moment of inertia is much smaller with respect to the one
observed on the astrophysical observables. However, a
sizeable effect is seen on the properties of the crust-core
transition point shown in the upper part of the figure, as
previously observed in the nonrelativistic version of the
metamodel [55,72]. We see that the distribution of the
crust-core transition density gets shifted to higher values,
while the ones of transition pressure and proton fraction
become broader. However, the astrophysical observations
concern global properties of the star and do not allow us to
specifically pin down the behavior of the energy density
and pressure at the low densities corresponding to the crust.
Because of that, these results are mostly related to the
correlation with the internal parameters of the RMF model,
and in particular are not fully compatible with the ones of
Refs. [55,72]. However, we will see that the compatibility

FIG. 3. Marginalized posterior of the crust-core transition density (top left), pressure (top center) and proton fraction (top right), as
well as of the crustal radius (bottom left), moment of inertia (bottom center) and mass (bottom right) of a 1.4M⊙ NS for the prior
distribution (solid black), the posterior with only the maximum mass and GW170817 constraints (dotted blue) and the full astrophysical
constraint (dashed red).
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will be recovered when we will consider the full posterior
including constraints specifically acting on the low-density
part of the EOS. Similar to what was observed in Fig. 2
above, the most important constraint comes from the GW
measurement, while the NICER observations do not bring
important additional information.
We finish the analysis of the astrophysical constraints by

studying their effect on the nuclear matter parameters,
reported in Table V. We notice that the constraints affect
mostly the higher order parameters as expected. Also the
distributions of Lsym and Ksym are affected, shifting the
distribution to lower values in the first case and to negative
values in the second. The effect on the NMPs and the one
on the NS observables can be linked by looking at the
Pearson correlation coefficient of the NMPs with the
astrophysical observables, displayed in Fig. 4, as well as

with the crustal properties, shown in Fig. 5. We can see that
non-negligible correlations appear already at the level of
the prior, even if it is clear that no NMP can be univocally
associated to a NS properties, and both the isoscalar and the
symmetry sector contribute to the different observables.
The relatively strong prior correlation between the satu-
ration density ρsat and the global properties of NS is related
to the internal correlations of the RMF models and will be
better explained in Sec. IV D.
In any case, when the astrophysical constraints are

applied, the correlation between the observables and some
NMPs drastically increase. In particular all the observables
displayed in Fig. 4 appear to be strongly correlated to Qsat
and Zsat, which explains why the distributions of these two
parameters are strongly affected by the constraints. On the
other hand, the correlations between the NMPs and the

FIG. 4. Linear correlation between the NMPs and the astrophysical observables of NS for the prior distribution (left) and the full
astrophysical posterior (right).

TABLE V. Mean and extremes of the 90% quantile for the nuclear matter parameters, as well as for K�
τ ¼ Ksym − 6Lsym and for

Kτ ¼ Ksym − 6Lsym −QsatLsym=Ksat. We show the values for the prior, the posterior obtained taking into account the constraint on the
mass coming from the observation of J0348þ 0432 and the constraint coming from GW170817 and the posterior obtained including
also the constraint coming from NICER.

Prior GWþMMax GWþMMax þ NICER

90% CI 90% CI 90% CI

Mean Min Max Mean Min Max Mean Min Max

ρsatðfm−3Þ 0.154 0.141 0.168 0.160 0.145 0.169 0.160 0.145 0.169
EsatðMeVÞ −15.5 −16.8 −14.3 −15.5 −16.8 −14.3 −15.5 −16.8 −14.3
KsatðMeVÞ 260.3 165.0 341.9 233.8 158.1 328.1 233.8 157.9 328.2
QsatðMeVÞ 374.7 −978.1 1856.6 −387.5 −1349.8 916.8 −349.4 −1302.1 892.4
ZsatðMeVÞ 7409.9 −6300.1 21754.3 3650.3 −8646.0 18167.3 4200.7 −8408.2 18443.1
EsymðMeVÞ 36.1 26.3 47.7 36.4 26.5 47.3 36.3 26.6 47.1
LsymðMeVÞ 78.5 40.3 136.0 56.0 41.8 69.4 55.6 41.8 68.5
KsymðMeVÞ −0.1 −270.0 270.0 −148.1 −288.4 51.9 −151.7 −289.0 48.8
QsymðMeVÞ 609.2 −21.5 1297.3 728.8 50.4 1380.3 723.7 44.5 1373.0
ZsymðMeVÞ −7168.7 −13989.7 2641.6 −4464.6 −12062.2 4175.2 −4279.9 −12023.5 4574.8
K�

τ ðMeVÞ −471.1 −662.1 −284.3 −484.3 −693.4 −274.4 −485.0 −690.0 −277.4
KτðMeVÞ −576.2 −1147.8 −90.4 −379.2 −787.1 −13.3 −389.3 −776.5 −32.1
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crustal properties appear to be less modified when the
constraints are applied. As expected, these quantities
appear to be more correlated to the lower order parameters,
which are less influenced by the constraints. This explains
the fact that also the crustal properties are less affected.

B. Effect of the chiral constraint

After examining the effect of the astrophysical con-
straints, we continue our analysis by studying the effect of
the constraints coming from ab initio calculations of pure
neutron matter, using a large compilation of results from

different groups and approaches [77] that covers the present
theoretical uncertainty. This analysis will be divided in two
parts: the study of the difference between the two ways
(Heaviside and Gaussian) of implementing the constraint
introduced in Sec. III B 1, and the study of the influence of
the density range in which the constraint is applied.
We start by comparing the two ways of implementing the

conditional probability. In Figs. 6 and 7 we show 99%, 95%
and 68% quantiles for respectively the proton fraction and
the speed of sound squared of beta-equilibrated matter as a
function of density. The astrophysical posterior obtained in

FIG. 5. Linear correlation between the NMPs and the crustal properties of NS for the prior distribution (left) and the full astrophysical
posterior (right).

FIG. 6. 99%, 95% and 68% quantiles for the distribution of the proton fraction as a function of the baryonic density for the
astrophysical posterior (left), the posterior with chiral constraint implemented using the likelihood model of Eq. (35) (center) and the one
using the likelihood model of Eq. (36) (right).
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Sec. IVA (left panels), that here acts as a prior distribution for
the nuclear theory constraint, is compared with a posterior
distribution additionally conditioned by PðχEFT;HSjXÞ
defined in Eq. (35) (central panels), as well as with a
posterior conditioned by PðχEFT;GaussjXÞ defined in
Eq. (36) (right panels). In all cases, the constraint is applied

in the density range ð0.02–0.2Þ fm−3, meaning that we
consider in Eqs. (35) and (36) ρ1¼0.02fm−3, ρN¼0.2 fm−3.
For both observables, it is clear that the two methods lead

to very close results at all densities, thus indicating the
independence on the likelihood model. This is further
confirmed in a more quantitative way in Fig. 8, where

FIG. 7. 99%, 95% and 68% quantiles for the distribution of the speed of sound as a function of the baryonic density for the
astrophysical posterior (left), the posterior with chiral constraint implemented using the likelihood model of Eq. (35) (center) and the one
using the likelihood model of Eq. (36) (right).

FIG. 8. Probability density function (PDF) of the maximum mass (top left), the central density of the most massive star (top right) and
of the radius (bottom left) and tidal deformability (bottom right) of a 1.4M⊙ NS for the prior distribution (solid black), the posterior with
chiral constraint implemented using the likelihood model of Eq. (35) (dotted blue) and the one using the likelihood model of Eq. (36)
(dashed red).

GENERAL PREDICTIONS OF NEUTRON STAR PROPERTIES … PHYS. REV. D 109, 103015 (2024)

103015-13



we show the marginalized distributions of some selected
astrophysical quantities, namely the maximum mass, the
central density of the most massive star and the radius and
tidal deformability of a 1.4M⊙ NS. Also in this case we can
see that the difference between the two methods is
negligible. In light of this results, from now on, the chiral
constraint will always be implemented using the gaussian
formulation.
Concerning the constraining effect of ab initio nuclear

theory, we can see that it is extremely important at low
density as expected, by narrowing in a very important way
the matter composition in the density region where the
theory can be applied. Moreover, it is clear that the
constraint is also effective at higher densities than the ones
in which it is applied. This is at variance with fully agnostic
EOS models such as piecewise polytropes, sound speed
models, or Gaussian processes [12–19], and originates
from the unique Lagrangian structure with nucleonic
degrees of freedom that is the main hypothesis underlying
our predictions. Because of that, once confronted to future
observations, our predictions can be used as a null
hypothesis to pin down the possible emergence of exotic
degrees of freedom in dense matter [42].
The effect of the filter on the sound speed squared on

Fig. 7 is less pronounced than the one on the proton
fraction, Fig. 6. This is due to the fact that the sound speed
is linked to a second order derivative of the energy density,

that is very poorly constrained when the energy density is
represented by band. Bands representing the uncertainty of
present ab initio calculations of the pressure of neutron
matter have also been published [34–36,38,39]. However,
the propagation of the systematics on the energy density
(that is the quantity directly calculated in many-body
approaches) to the pressure is a subtle issue [78,90], and
when comparing different many-body methods it is not
clear if the band comprising the curves derivatives can be
interpreted as the uncertainty on the derivative of the energy
density band. Progress on the issue of uncertainty propa-
gation in χ-EFT approaches is ongoing in the ab initio
community, and will be of foremost importance for a better
understanding of the NS observables.
Finally, the effect of the nuclear theory constraint on the

global astrophysical quantities in Fig. 8 is seen to be very
small, in agreement with previous results in the literature
[40,48]. This is due to the fact that the quantities repre-
sented in Fig. 8 depend on the EOS through the solution of
the hydrostatic structure equations in general relativity. As
such, they need strong constraints on the pressure over a
very wide range of baryonic densities. The peak seen in the
central density distribution in Fig. 8, as already seen in
Fig. 2, correspond to outliers that will be discarded by the
experimental constraints, as it will be discussed in the next
section.

FIG. 9. 99%, 95% and 68% quantiles for the distribution of the proton fraction of beta-equilibrated matter as a function of the baryonic
density for the astrophysical posterior (left), the posterior with chiral constraint applied from 0.02 fm−3 to 0.2 fm−3 (center) and the
posterior with chiral constraint applied from 0.1 fm−3 to 0.2 fm−3 (right).
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We now proceed in our analysis by studying how
changing the range in which we apply the chiral constrain
changes the posterior distribution. It was reported in
previous studies that the constraints from ab initio nuclear

theory have a much smaller impact on the determination of
astrophysical quantities if they can only be trusted up to
densities of the order of the saturation density or less
[91,92]. The argument there is that the deconfinement

FIG. 10. 99%, 95% and 68% quantiles for the distribution of the speed of sound squared as a function of the baryonic density for the
astrophysical posterior (left), the posterior with chiral constraint applied from 0.02 fm−3 to 0.2 fm−3 (center) and the posterior with
chiral constraint applied from 0.1 fm−3 to 0.2 fm−3 (right).

FIG. 11. Probability density function (PDF) of the crust-core transition density (top left), pressure (top center) and proton fraction (top
right), as well as of the crustal radius (bottom left), moment of inertia (bottom center) and mass (bottom right) of a 1.4M⊙ NS for the
astrophysical posterior distribution (solid black), the posterior with chiral constraint applied from 0.02 fm−3 to 0.2 fm−3 (dotted blues)
and the posterior with chiral constraint applied from 0.1 fm−3 to 0.2 fm−3 (dashed red).
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transition density is not theoretically known, and in the case
of a very early phase transition the nucleonic χ-EFT theory
would break down. Here, we make the explicit hypothesis
of nucleonic degrees of freedom at any density, therefore
we do not question the validity of the chiral band up to the
breakdown density of the chiral expansion.
However, it was remarked in Refs. [55,72] that the very

low-density behavior of neutron matter, that is best con-
strained by the ab initio theory, can have an important
influence on astrophysical variables, notably the ones
concerning the NS crust. For this reason, in Figs. 9
and 10 we show the same distributions as in Figs. 6
and 7, but comparing the astrophysical posterior (left
panels) with a distribution additionally conditioned by
the chiral constraint applied from ρ ¼ 0.02 fm−3 to ρ ¼
0.2 fm−3 (middle panels), comprising the region of the
inner crust and of the outer core, and a second posterior in
which we apply the constraint only from ρ ¼ 0.1 fm−3 to
ρ ¼ 0.2 fm−3 (right panels), that is approximately only in
the outer core of the star.
In the case of the proton fraction, we can see from Fig. 9

that, when applying the constraint on the whole density
range, the composition of beta-equilibrated matter is well
constrained also at very high densities, while its effect is
limited to densities up to ≈3ρsat, if the crust region is
excluded (right panel). A similar effect, though less
pronounced, is also seen on the speed of sound squared
displayed in Fig. 10: the low-density part of the chiral
constraint has the role of considerably narrowing the sound
speed squared marginalized posterior at intermediate den-
sities (≈2–4ρsat). This surprising result can be understood if
we consider the energy functional in terms of the Taylor
expansion around saturation governed by the different
NMPs. In these terms, the density range [0.1–0.2] covers

a relatively small interval around the saturation density
ρsat ≈ 0.15 fm−3. In this region, a constraint on the energy
density essentially pins down the values of the first and
second order NMPs, namely Esat, Ksat, Jsym, Lsym, Ksym,
leaving the high order parameters Qsat;sym and Zsat;sym

essentially unconstrained. Those parameters play the lead-
ing role in the functional behavior above ≈3–4ρsat, and this
is why the distributions are not considerably narrowed at
very high densities. However, the same high order param-
etersQsat;sym and Zsat;sym can have also a sizeable impact on
the very low-density regime ρ < 0.1 fm−3, if the uncer-
tainty on the energy density is very small, as it is the case of
the ab initio calculations. Since we use the same energy
density functional in the crust and core region [compare
Eqs. (18) and (21)], the uncertainty reduction issued from
the low-density constraint thus propagates to the highest
densities. This was not seen in previous analyses [40,48,86]
because in those works the authors treated the third and
fourth order NMPs below and above the saturation inde-
pendently, with the explicit purpose of avoiding any
fictitious correlations imparted by high-density and low-
density data on the NMPs.
It is clear that the propagation of information from low to

high density, observed when applying the chiral constraint
from very low density (central panels of Figs. 9 and 10), is
physically reliable if and only if our effective Lagrangian
corresponds to a complete description of nuclear matter in
the whole density regime. From the physical viewpoint,
beyond mean-field correlations at low density and an
additional complexity of the couplings or the contribution
of hyperons might well destroy this correlation and
effectively decouple the two regimes. Therefore, we can
consider the results obtained applying the chiral constraint
in the whole density range (central panels of Figs. 9 and 10)

TABLE VI. Mean and extremes of the 90% quantile for the nuclear matter parameters, as well as for K�
τ ¼ Ksym − 6Lsym and for

Kτ ¼ Ksym − 6Lsym −QsatLsym=Ksat. We show the values for the astrophysical posterior, for the posterior in which we only apply the
chiral constraint and for the posterior in which we also apply the constraint coming from nuclear experiments.

Astro Astroþ χ Astroþ χ þ Exp

90% CI 90% CI 90% CI

Mean Min Max Mean Min Max Mean Min Max

ρsatðfm−3Þ 0.160 0.145 0.169 0.161 0.146 0.169 0.157 0.149 0.166
EsatðMeVÞ −15.5 −16.8 −14.3 −15.4 −16.8 −14.3 −15.8 −16.3 −15.3
KsatðMeVÞ 233.8 157.9 328.2 234.6 158.0 327.3 230.1 200.6 3265.6
QsatðMeVÞ −349.4 −1302.1 892.4 −350.3 −1349.9 978.1 −119.2 −887.1 685.4
ZsatðMeVÞ 4200.7 −8408.2 18443.1 4670.4 −8534.8 18816.0 8241.3 −2846.8 17801.4
EsymðMeVÞ 36.3 26.6 47.1 30.8 27.4 34.3 31.6 29.5 33.7
LsymðMeVÞ 55.6 41.8 68.5 49.2 38.1 60.4 49.1 40.1 58.5
KsymðMeVÞ −151.7 −289.0 48.8 −70.4 −227.7 51.8 −95.1 −231.0 44.7
QsymðMeVÞ 723.7 44.5 1373.0 703.4 244.3 1215.6 707.5 293.2 1162.4
ZsymðMeVÞ −4279.9 −12023.5 4574.8 −6112.0 −11791.8 3500.3 −5742.4 −12204.6 3154.6
K�

τ ðMeVÞ −485.0 −690.0 −277.4 −365.9 −501.0 −252.5 −389.9 −519.4 −288.4
KτðMeVÞ −389.3 −776.5 −32.1 −280.9 −608.3 27.7 −367.1 −516.8 −220.0

SCURTO, PAIS, and GULMINELLI PHYS. REV. D 109, 103015 (2024)

103015-16



as more precise, but dependent on the specific Lagrangian
formulation of the metamodel. Conversely, the use of the
chiral constraint only around saturation (right panels of
Figs. 9 and 10) certainly overestimates the uncertainties in
the crustal region, but it leads to more general results for the
global structural properties of the neutron stars, only
conditioned by the nucleonic hypothesis.
In Fig. 11 we show the effect of the chiral constraint

on the properties of the crust. In this case, the application of
the constraint also in the low-density region is indubitably
the most realistic choice [55], and it systematically leads to
a narrowing of the distributions as expected. The residual
uncertainty is linked to the fact that we also consider the
uncertainty on the nuclear surface properties, together with
the ones on the bulk behavior, see Sec. II B. Interestingly,

the crustal properties obtained using the chiral constraint
over the whole density range are in very good agreement
with the nonrelativistic metamodel results of Ref. [55],
which is based on a completely different ansatz for the
energy functional. Similar conclusions can be drawn if we
compare our results with the recent work [77], that also
propose a general EOS functional based on an improved
metamodeling technique. Our posteriors conditioned by
astrophysical and chiral constraints are well compatible
with the results of Ref. [77] up to ρ ≈ 0.5 fm−3, corre-
sponding to the central density of massive NS, while a
softening is observed at higher densities in Ref. [77] with
respect to our results, due to the opening of the diquark
channel effectively included in that study, and that we do
not consider in our nucleonic model.

FIG. 13. Probability density function (PDF) of the maximummass (top left), the central density of the most massive star (top right) and
of the radius (bottom left) and tidal deformability (bottom right) of a 1.4M⊙ NS for the prior distribution (solid black), the posterior in
which we only apply the chiral constraint (dotted blue) and the posterior in which we also apply the constraint coming from nuclear
experiments (dashed red).

FIG. 12. Linear correlation between the NMPs and the 12 coupling parameters in the case of the prior (left) and in the case of the full
posterior, conditioned by all the likelihoods presented in this paper (right).
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This shows that our results, properly conditioned with
the available information from ab initio theory, can be
considered as general predictions only dependent on the
hypothesis of purely nucleonic degrees of freedom.
We also see that, while the crust-core transition density

and the moment of inertia of the crust are not strongly

affected by the constraint, all the other distributions become
much more peaked when we apply the constraint. In
particular the distributions are shifted to lower values for
all quantities, preferring thinner crusts and a crust-core
transition at lower pressures and proton fractions.

FIG. 15. Left: correlated distribution of proton fraction andbaryonic density atwhich the threshold for directURCAprocess is reached for
models allowing dURCA at densities lower than the central density of the most massive star. Right: direct URCA cumulative distribution
function for a given mass. In both panels we show the astrophysical posterior distribution (solid black), the posterior with astrophysical
constraintþ chiral constraint (dotted blues) and the full posterior, where all constraint are applied (dashed red).

FIG. 14. Probability density function (PDF) of the crust-core transition density (top left), pressure (top center) and proton fraction (top
right), as well as of the crustal radius (bottom left), moment of inertia (bottom center) and mass (bottom right) of a 1.4M⊙ NS for the
astrophysical posterior distribution (solid black), the posterior with astrophysical constraintþ chiral constraint (dotted blues) and the
full posterior, where all constraint are applied (dashed red).
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C. Experimental nuclear constraint

After studying the effect of the chiral constraint, we
focus on the effect of the constraints on the properties of
dense matter coming from nuclear experiments. In Table VI
we show the comparison between mean and the extreme of
the 90% CI for the NMPs in the astrophysical posterior, a
posterior distribution additionally conditioned by the chiral
constraint and a second posterior obtained applying all
the low-density constraints (chiralþ experimental). From
the table we can see that the constraint does not affect
only the distributions of the parameters that are directly
constrained. In particular we notice that the distributions of
the higher order saturation parameters Qsat and Zsat are
strongly affected. This can be understood looking at
Fig. 12, where we show the linear correlation coefficients
between the NMPs and the meson coupling parameters,
both in the case of the prior distribution and of the full
posterior. We can see that different NMPs appear to be
correlated to the same coupling parameters. The most
prominent example is given by ρsat, Qsat and Zsat, which
are all mainly correlated to aσ and aω. This explains why,
constraining some NMPs, we can see a strong effect also on
the others. Moreover, this explains the correlation observed
previously between ρsat and the astrophysical observables

of NS, since the observables are strongly correlated to the
higher order saturation NMPs.
Finally, from the table it can also be seen that all the

applied constraints give a distribution of Ksym centered on
small negative values. This agrees with the results of
[86,93], and appears to be in contrast with the solution
given in [62] to conciliate the results of PREX and CREX.
In Fig. 13 we show the effect of both the chiral constraint

and the nuclear experimental constraint on the same selected
observables of NS already showed in Fig. 2. Here it can be
seen how the nuclear experimental constraints have an
important effect on the distribution of both the maximum
mass and the central density of the most massive star.
In particular we see that the distribution of the maximum

mass is shifted to higher values, making our results
compatible with the hypothesis of the second object in
GW190814 [94] being a NS. For what concerns the central
density, on the other hand, we see that, after applying the
experimental filter, the distribution is shifted to lower
values, with a peak around 0.8 fm−3.
In Fig. 14 we show the effect of the constraints on the

distributions of the same quantities showed in Fig. 2. We
can see that the main effect on the distributions comes from
the chiral constraint, while the experimental information on

FIG. 16. Pressure (top), proton fraction (bottom left) and speed of sound (bottom right) as a function of density for the five selected
models.
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the low order NMPs does not shift significantly the
distributions but only makes them slightly narrower. The
only exception is the crust-core transition density, which is
shifted to lower values. This is in agreement with previous
studies, and can be understood from the fact that crustal
properties are known to be well correlated with the density
dependence of the symmetry energy, that is strongly
constrained by the behavior of pure neutron matter.
Finally, in Fig. 15 we show the correlation between the

proton fraction and baryonic density at which the threshold
for the direct URCA process is reached. The distribution is
calculated taking into account only the models in which the
threshold is reached before the central density of the most
massive star, which amounts roughly to 83% of the models
in the prior. As expected, the two quantities are very well
correlated in all cases, and we can see that the nuclear
constraints (both theoretical and experimental) rule out the
models with very low threshold density. We also show the
probability of observing direct URCA process as a function
of the NS mass. We notice that, when all constraints are
applied, the probability of direct URCA process (dURCA)
globally decreases. It can be seen that the probability of
having direct URCA process below 2M⊙ is very low
(≈10%), and it becomes negligible for canonical 1.4M⊙

neutron stars. This means that a potential observation of fast
cooling could play the role of a smoking gun for the
presence of non-nucleonic degrees of freedom.
To conclude, the results presented in this section outline

the important contribution of laboratory experiments to
pin down the behavior of ultradense matter and interpret
the astrophysical observations [79]. However, a word of
caution is in order. Indeed, nuclear physics experiments
do not directly probe the NMPs, and estimations of the
latter can only be obtained through model comparison.
Because of that, the likelihood model of the experimental
constraint employed in this work, as well as the values
of the mean and standard deviation for the NMPs of
Table II, though coming from a compilation of different
independent studies, might still be affected by some
model dependence.

D. Publicly available models

We end our study by selecting a subset of five models
from our set, that are representative of the final uncertainty
brought by our full posterior. These models will be made
publicly available on the CompOSE online EOS repository
under the name SPG(Mx), with x going from 1 to 5. The
models are selected as follows. The model SPG(M1)

FIG. 17. Energy per baryon (top) and pressure (bottom) of symmetric (left) and neutron (right) matter as a function of density for the
five selected models.
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corresponds to the highest absolute likelihood in the full
posterior. SPG(M2) and SPG(M3) are the models corre-
sponding to the highest weight around the extremes of the
68% CI for the maximum mass; SPG(M4) and SPG(M5)
are instead selected around the extremes of the 90% CI for
the radius of the 1.4M⊙ NS.
These models are selected in order to cover in a

representative way the posterior distribution of masses
and radii. The choice of these models also grants variety
in terms of proton fraction, speed of sound and higher order
NMPs.
This can be appreciated from Fig. 16, where we show the

pressure (top), the proton fraction (bottom left) and the
speed of sound squared (bottom right) of β-equilibrium
matter as a function of density for the five selected models.
One of the models, SPG(M5), shows a very high increase in
the proton fraction around ρ ∼ 0.4 fm−3, a behavior quite
different from the other four models considered. This is
also seen in the speed of sound squared that reaches a peak
at that density, and in the neutron matter pressure, that
presents a very stiff behavior, as shown in Fig. 17, along
with the energy per particle, and the pressure and energy
per particle of symmetric matter. This peculiar behavior can

be traced back to the density dependence of the model
couplings, shown in Fig. 18 in the vector-isovector (ρ),
vector-isoscalar (ω), and scalar-isoscalar (σ) channel. From
this figure we can see that the gρ coupling starts decreasing
at the same density where the proton fraction starts
increasing, saturating at ρ ∼ 1 fm−3, where the proton
fraction reaches a maximum. The other models only have
a maximum of 0.1 < yp < 0.2 because they do not have
this steep decrease in the vector-isovector channel.
In turn, the possible complex density dependence of the

isovector coupling shown in Fig. 18 induces a nontrivial
behavior of the density dependence of the symmetry
energy, defined as

SðρÞ ¼ 1

8

∂
2ðE=ρÞ
∂y2p

����
yp¼1=2

; ð45Þ

which is plotted in the left panel of Fig. 19, along with its
first derivative (right panel of the same figure). In this
figure, we can see that the high value of the proton fraction
of SPG(M3) and its steep variation with the density is
perfectly correlated with the behavior of the symmetry

FIG. 18. Sigma meson (top), omega meson (bottom left) and rho meson (bottom right) couplings as a function of ρ=ρ0 for the five
selected models.
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energy. It is also interesting to see in Fig. 16 that such
nontrivial behavior in the poorly known isospin channel
can result in a well-defined peak in the sound speed.
A similar peak in the sound speed as observed in SPG(M3)
was notably obtained in Ref. [77] as an effect of quarks
self-interactions in the chiral restored regime [95]. Though
the possible physical meaning of a strong decrease of the
effective ρ coupling is not clear, the behavior of SPG(M3)
shows that peaks in the sound speed can very well be
obtained in purely nucleonic models, and they do not
necessarily signal the presence of phase transitions.
In Fig. 20, we show the mass versus radius (left) and

versus central density (right) for the five models consid-
ered. The models with the highest maximum mass are the
ones that present the stiffest β-equilibrium matter EOS (see
Fig. 16). The model with the largest central density and the
smallest radius is the one that has the softest EOS, the
model SPG(M4). These properties are also written in
Table VII, together with the tidal deformability Λ, and
the proton fraction and correspondent density for the onset
of the direct Urca processes. The model SPG(M4) is also

FIG. 19. Symmetry energy (left) and its first derivative (right) as a function of density as defined in [74] for the five selected models.

FIG. 20. Mass-radius relation (left) and mass as a function of central density (right) for the five selected models.

TABLE VII. Values of the radius, tidal deformability and
central density of a 1.4M⊙ and 2.0M⊙ NS, as well as the value
of the maximum mass and the central density of the most massive
star and of the density and proton fraction at which the direct
URCA threshold is met, for the five selected models.

M1 M2 M3 M4 M5

R1.4M⊙
ðkmÞ 12.8 12.6 12.7 12.3 13.4

Λ1.4M⊙
811 789 792 657 1169

ρc1.4M⊙
ðkmÞ 0.38 0.39 0.37 0.42 0.32

R2.0M⊙
ðkmÞ 12.9 12.6 13.0 12.2 13.7

Λ2.0M⊙
89 76 99 61 143

ρc2.0M⊙
ðkmÞ 0.47 0.52 0.43 0.56 0.39

MMaxðM⊙Þ 2.54 2.42 2.69 2.35 2.71
ρcMMax

ðfm−3Þ 0.82 0.89 0.75 0.93 0.72

ρdURCAðfm−3Þ 0.59 0.73 0.46 � � � 0.66
ydURCAp 0.138 0.139 0.136 � � � 0.139
MdURCAðM⊙Þ 2.40 2.38 2.25 � � � 2.70
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the one that does not allow such processes because the
symmetry energy is very low (see Fig. 19), that favors very
asymmetric matter (see Fig. 16).
In Table VIII, we show the nuclear matter properties at

saturation for the five selected models. The reader can see
that the models were selected in order to cover in a
representative way the uncertainty of our posterior also
in this case, with in particular great variations in the high
order NMPs.

V. CONCLUSIONS

In this work we provide general predictions on static
properties of NSs within a Bayesian framework condi-
tioned by a large set of laboratory, astrophysical and
theoretical constraints. Our equation of state setting
explores a large parameter space compatible with the
requirement that both in the crust and in the core of the
star the EOS is derived from a same Lagrangian density in
the mean-field approximation with baryonic constituents
limited to neutrons and protons. The general functional form
is obtained including scalar-isoscalar, vector-isovector, and
vector-isoscalar effective mesons. Awide exploration of the
different possible behaviors of the energy at the high
baryonic densities expected in the core of the most massive
NS is obtained employing the phenomenological flexible
expression for the density-dependent couplings proposed in
Ref. [48] and inspired by the GDFM relativistic mean-field
model [49].
The study is particularly focused on the complementary

effect of different constraints on the posterior distributions
of astrophysical observables. We consider two main cat-
egories of constraints. The first family comprises the ones
acting around the equilibrium density of terrestrial nuclei or
below, which include the information coming from ab-
initio nuclear theory employing χ-EFT interactions sum-
marized in the compilation [77], and the estimation of five
empirical NMPs obtained from the analysis of different
experimental nuclear data in the compilation [21]. The
second class corresponds to constraints from astrophysical

observations, which include the constraint on the maximum
mass coming from the observation of J0348þ 0432 [81],
the tidal polarizability constraint coming from the obser-
vation of GW170817 [6,84,85] and the constraint coming
from the two combined measurements of mass and radius
of NS done by NICER [56–59].
The main results can be summarized as follows. First, we

showed that the strong correlation between the tidal polar-
izability and the NS radius implies that the gravitation wave
measurement ofGW170817 ismore effective in constraining
the NS radius than the direct radius estimation by NICER,
due to the still large systematics of the latter observations.
Since this correlation depends on the EOS model, our radius
estimation holds for the explicit hypothesis of nucleonic
degrees of freedom, and this statement would not be correct
in fully agnostic treatments of the EOS.
Concerning EOS information coming from ab initio

nuclear theory, the translation of the model dependence of
the existing many-body treatments into a quantitative esti-
mation in terms of probability is still an ongoing challenge of
nuclear theory. Still, we showed that two different likelihood
models, differing in the way the theoretical uncertainty band
on the energy of pure neutron matter is interpreted, lead to
fully compatible posterior distributions. To further tighten
the predictions particularly at high density, it will be very
important to assess the possible model dependence of the
likelihood models concerning derived quantities such as the
pressure or the sound speed.
We also showed how changing the density range in

which the distributions are conditioned by the theoretical
information strongly affects the results. In agreement with
the nonrelativistic metamodeling approach of Ref. [55],
applying the constraints starting from densities of the order
of the drip density appears crucial to get model independent
estimations of crustal quantities. More surprisingly, the
constraint applied in the density region corresponding to
the NS crust is seen to strongly condition the behavior of
quantities such as the proton fraction and the speed of
sound in the core of the star. This strong coupling between
different density regimes is due to the treatment of the crust
and the core using a unique model for all density domains.
This is a general feature of all unified models that does not
allow for extra degrees of freedom such as hyperons at high
density, and are ruled by a limited number of parameters
that can be precisely pinned down from low-density
information.
Because of that, a model dependence can appear at high

density if different classes of nucleonic models, for instance
those issued from RMF effective Lagrangians and those
coming from Skyrme-like forces, are conditioned by the
same low-density ab initio results. However, when a looser
constraint is applied limiting the conditional probability to
the nuclear saturation region, fully compatible results are
obtained between our relativistic metamodel and the pre-
vious similar works using different settings for the energy
functional [40,48,86]. This underlines again the fact that our

TABLE VIII. Values of the NMP for the five selected models.

M1 M2 M3 M4 M5

ρsatðfm−3Þ 0.157 0.155 0.161 0.162 0.148
EsatðMeVÞ −15.8 −15.9 −15.8 −15.8 −15.8
KsatðMeVÞ 230.9 223.9 225.7 246.0 227.7
QsatðMeVÞ −177.1 −230.1 −283.4 −292.9 45.2
ZsatðMeVÞ 7966.3 2141.8 11174.8 −1397.4 14552.1
JsymðMeVÞ 33.9 30.2 33.7 30.9 31.4
LsymðMeVÞ 56.3 40.2 50.9 40.1 52.3
KsymðMeVÞ −181.4 −59.8 −231.0 −111.8 −113.5
QsymðMeVÞ 350.1 1007.2 322.9 958.5 539.8
ZsymðMeVÞ −1700.3 −8829.1 1343.3 −5795.1 −5362.5
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results can be taken as general predictions under the
hypothesis of a purely nucleonic composition of ultradense
matter, and as such they can be used to test the possible
presence of exotic components in the core of neutron stars.
The only notable difference between the results presented in
this paper and the ones of the nonrelativistic version of the
metamodel concerns the behavior of the sound speed at the
highest densities and the posterior distribution of the maxi-
mum mass. The in-built causality implicit in our relativistic
Lagrangian formulation leads to a controlled behavior of the
sound speed without any artificial cut to exclude super-
luminal behaviors. This is at variance with nonrelativistic
functionals, where causality is often violated for masses
below themaximummass allowed by theTOVequation [22].
As a consequence, a purely nucleonic content and the
possible existence of very massive NS overcoming 2.5M⊙
are shown to be perfectly compatible with all the present
observations.
Finally, we studied the effect of the information coming

from nuclear experiments, implementing Gaussian like-
lihood models on the NMPs with means and variances as
suggested by different low-energy nuclear physics experi-
ments. We showed how these constraints affect the observ-
ables of NS, notably by shifting the distribution of the
central density of the most massive star to lower values. We
suggested that this effect might be related to the correlation
between the observables and the NMPs. It is important to
stress that these constraints are always indirectly obtained
by comparing experimental nuclear data to chosen models,
employing different energy functionals as well as different
many-body methods. For this reason, to fully assess the
model dependence of the assumed likelihoods, it appears
very important for the future to develop full combined

Bayesian studies of the different nuclear structure observ-
ables with beyond-mean-field realizations of the density
functional models.

Five chosen representative models that respect well all
the constraints taken into account in this study, and
approximately cover the residual uncertainty in our pos-
terior distributions, are selected. These models are made
publicly available and uploaded on the EOS repository
CompOSE, to be used in future analyses as a qualitative tool
to assess the model dependence associated to the nucleonic
hypothesis [96,97]. The dataset containing all the EoSs
used in this study has also been uploaded on zenodo at [98].
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