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The recent start of the fourth observing run of the LIGO-Virgo-KAGRA (LVK) Collaboration has
reopened the hunt for gravitational-wave (GW) signals, with one compact-binary-coalescence (CBC)
signal expected to be observed every few days. Among the signals that could be detected for the first time
there is the stochastic gravitational-wave background (SGWB) from the superposition of unresolvable GW
signals that cannot be detected individually. In fact, multiple SGWBs are likely to arise given the variety of
sources, making it crucial to identify the dominant components and assess their origin. However, most
search methods with ground-based detectors assume the presence of one SGWB component at a time,
which could lead to biased results in estimating its spectral shape if multiple SGWBs exist. Therefore, a
joint estimate of the components is necessary. In this work, we adapt such an approach and analyze the data
from the first three LVK observing runs, searching for a multicomponent isotropic SGWB. We do not find
evidence for any SGWB and establish upper limits on the dimensionless energy parameterΩgwðfÞ at 25 Hz
for five different power-law spectral indices, α ¼ 0; 2=3, 2, 3, 4, jointly. For the spectral indices α ¼ 2=3, 2,
4, corresponding to astrophysical SGWBs from CBCs, r-mode instabilities in young rotating neutron stars,
and magnetars, we draw further astrophysical implications by constraining the ensemble parameters
KCBC; Kr−modes; Kmagnetars, defined in the main text.

DOI: 10.1103/PhysRevD.109.103013

I. INTRODUCTION

Gravitational-wave (GW) astronomy with ground-based
interferometric detectors is rapidly entering its golden age.
Following the first three observing runs (O1, O2, and O3
[1,2]) of the LIGO-Virgo-KAGRA Collaboration (LVK)
[3–5] (to which in the incoming years the approved LIGO-
India [6] will join), around 90 GW signals from compact
binary coalescences (CBCs) have been detected by the
network and collected in the third Gravitational-Wave
Transients Catalogue (GWTC-3 [7]), together with the
implications for the compact-binary populations [8]. In
addition to that, the fourth LVK observing run (O4)
recently started on 24 May 2023. This run is expected
to last twenty months (including two months of commis-
sioning the middle) and to have a CBC detection every
two to three days [9]. However, due to their intrinsic
faintness and the limited detector sensitivity, most of the
GW signals cannot be detected individually or resolved.
The incoherent superposition of these unresolvable sig-
nals is expected to create a persistent stochastic gravita-
tional-wave background (SGWB) signal, which many
ongoing experiments aim to probe in a broad range of

frequencies. A SGWB can be generated by a large variety
of phenomena of astrophysical [such as CBCs [10–14],
isolated neutron stars (NSs) [15–18], NS modes [19–21],
core collapses to supernovae [22–26], stellar core collap-
ses to black holes [27–29] ] or cosmological (such as
cosmic strings [30–33], first order phase transitions
[34,35], primordial black holes [36–40], domain walls
[41,42], inflation [43–45], pre–big bang models [46–48])
origin and hence exist as a superposition of different
components. As a consequence, after the first SGWB
detection, it will be mandatory to identify the dominant
components and their origins.
Recently, several collaborations working with pulsar

timing arrays have claimed the evidence of a SGWB signal
within their data [49–52]. Yet, the data need to be more
comprehensive to affirm the source of the SGWB excess
under the assumption of a single component being present.
A ground-based GW detector experiment will face similar
issues as data pile up and a SGWB signal emerges. In such
a scenario, current searches assuming the presence of a
single SGWB component at a time may lead to biased
measurements of its intensity if multiple components are
present [53–55]. In light of this, the spectra would need to
be estimated jointly, and component separation methods,
based on Fisher matrix formalism, have already been
developed for this scope in the past [56–58]. In this work,
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we consider the formalism as mentioned above and apply
it to the data from the first three LVK observing runs to
estimate jointly and set upper limits on the amplitudes
of different SGWB, assuming them being isotropic, and
their spectral shape following a power-law in frequency.
Then, we use the results of the multicomponent analysis
to derive constraints on ensemble properties of some
astrophysical sources associated with a subset of the
considered SGWBs, namely the CBCs, NS r-mode
instabilities, and magnetars.
The rest of the paper is organized as follows. In Sec. II,

we present the astrophysical sources and expressions of the
SGWBs of interest. After that, in Sec. III, we discuss the
analysis methods for a multicomponent SGWB. Then, in
Sec. IV, we present the results for the SGWB amplitudes
and the ensemble properties, comparing them with the
single-component results. In the conclusions, we summa-
rize what we have done and present some prospects for
improving this work and refining the techniques employed
here. In the Appendix, we include an injection study we
performed to validate the methods, understand the best
procedure to follow in a detection regime, and interpret the
results in that case.

II. ASTROPHYSICAL STOCHASTIC
GRAVITATIONAL-WAVE BACKGROUNDS

The astrophysical SGWBs (AGWBs) are those back-
grounds whose origin is connected to GW sources formed
during the stellar history of the cosmos. Their detection
and measurements may give access to properties of
astrophysical populations that cannot be observed via
electromagnetic astronomy. Like other SGWBs, they can
be characterized by means of the dimensionless ratio of
the GW energy density ρgw spectrum per logarithmic
frequency unit to the critical energy needed to have a
closed Universe ρc [59]:

ΩgwðfÞ≡ 1

ρc

dρgwðfÞ
d ln f

; ð1Þ

where ρc ¼ 3H2
0c

2=ð8πGÞ, with H0 the Hubble parameter
today, c the speed of light, and G Newton’s gravitational
constant.
For astrophysical SGWB, ΩgwðfÞ can be expressed in

the observer frame using Phinney’s formula [60], which we
write here as [61,62]

ΩgwðfÞ ¼
f

ρcH0

Z
Θ
pðθÞdθ

Z
zmaxðθÞ

zminðθÞ

Rðθ; zÞ
ð1þ zÞEðzÞ

dEgwðfs; θÞ
dfs

����
fs¼ð1þzÞf

dz; ð2Þ

where pðθÞ is the probability density function of the
population parameters, dEgwðfs; θÞ=dfs is the GW source
energy spectrum evaluated in the source frame, Rðθ; zÞ is
the source-frame rate per comoving volume, and the
dependence on (a flat ΛCDM ignoring radiation and
curvature terms) cosmology is encoded in

EðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þ ΩΛ

q
: ð3Þ

The bounds in the redshift integral depend on the source
parameters through the minimum and maximum emission
frequencies of the source fs;minðθÞ and fs;maxðθÞ as

zminðθÞ ¼ max

�
0;
fs;minðθÞ

f
− 1

�
; ð4Þ

zmaxðθÞ ¼ min

�
zmax;

fs;maxðθÞ
f

− 1

�
: ð5Þ

For the scope of this work, given that many of the
distribution functions of the parameters are fledged by
uncertainties, we further assume that, in the frequency
range of interest, the spectrum ΩgwðfÞ depends only on the
frequency and on the ensemble averages of the population

parameters θi of interest
1 through a power-law functional

dependence:

ΩgwðfÞ ≈ ξ

�
f
fref

�
αY

i

hθcii i; ð6Þ

where h…i denotes the ensemble average, fref is a pivot
frequency, and

ξ≡ΩgwðfrefÞQ
ihθcii i

ð7Þ

is an overall normalization constant.The spectra of the
AGWBs considered in the following are illustrated in the
landscape plot in Fig. 1.

A. SGWB from compact binary coalescences

The observation of binary black hole (BBH), binary
neutron star (BNS), and binary neutron star black hole
(NSBH) merger signals during the LVK first three

1The other population parameters, which we are not interested
in or whose dependence cannot be written in general in the
product of Eq. (6), are assumed to be fixed and reabsorbed in the
normalization factor ξ.
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observing runs has allowed one to draw more precise
information about the population properties of these
objects [7,8]. The results suggest that the SGWB from
CBCs is the dominant one in the ground-based GW
detector network’s most sensitive frequency band, predict-
ing the energy densities at the reference frequency
fref ¼ 25 Hz being ΩBNSð25 HzÞ ¼ 0.6þ1.7

−0.5 × 10−10,
ΩNSBHð25 HzÞ ¼ 0.9þ2.2

−0.7 × 10−10, and ΩBBHð25 HzÞ ¼
5.0þ1.4

−1.8 × 10−10 [8]. The SGWB from these objects can
be modeled using Eq. (2) by explicitly expressing the
energy spectrum of the sources and the merger rate.
It is a standard result that, in the quasicircular orbit,

Newtonian approximation, the energy spectrum of an
inspiraling binary is given by

dEgw

df
¼ π2=3

3G
ðGMcÞ5=3f−1=3: ð8Þ

However, to make predictions about the SGWB from
BBHs, it is necessary to consider the full inspiral-
merger-ringdown contribution to the energy spectrum,
which would otherwise be underestimated. In this case,
the above equation is no longer valid, and recent studies
[64] for SGWB from BBHs usually make use of the
phenomenological waveform at second post-Newtonian
order from [65,66] in the limit of nonspinning black holes.
The merger rates for CBCs are intrinsically related to the

cosmic stellar formation rate (SFR) [67] through the
convolution integral over time delays

RðzÞ ¼
Z

dtdRfðzfðz; tdÞÞPtdðtdÞ; ð9Þ

where the dependence on the SFR (usually in
M⊙ yr−1 Mpc−3 units) is implicitly in the formation rate

RfðzfÞ ¼ r0
SFRðzfÞ
SFRð0Þ ð10Þ

normalized to the local rate r0 (usually in yr−1 Gpc−3 units),
which can be inferred from observations. The most recent
results from GWTC-3 [8] suggest that the BNS local
merger rate is in the range 10–1700 yr−1Gpc−3, the
NSBH one between 7.8 and 140 yr−1Gpc−3, and the
BBH one, evaluated at the fiducial redshift z ¼ 0.2, to
be in the 17.9 and 44 yr−1 Gpc−3 interval.
The integral over the time delays’ distribution is neces-

sary to account for the time elapsing between the formation
of a stellar binary system and its evolution toward a
compact binary system. The time-delay distribution is
usually assumed to follow a power law ptd ∝ t−1d [68],
with the maximum time delay equal to the Hubble time, and
the minimum time delay for BNS and NSBH being 20 Myr,
and 50 Myr for BBH. In the case of BBH, the merger rate
integral may also be further weighted by including a
metallicity cut for stars forming at Z < 0.1Z⊙ [69,70].
These aspects and parameters still need to be completely
understood and are usually inferred from population syn-
theses [71] in combination with electromagnetic observa-
tions. A recent work [64] considers most of the uncertainties
in these parameters and carefully evaluates their impact
when predicting the spectrum of a SGWB from BBH and
BNS in the ground-based detectors’ frequency range.
The parameter space in Eq. (2) for a compact binary

usually ranges between 15 (BBH) and 17 (BNS, NSBH)
parameters. Current studies for SGWB from CBCs usually
limit to take the average of the rates and the energy
spectrum over the two component masses m1 and m2 of
the binary (in the BBH case, it is possible to include spin as
well through the above mentioned phenomenological
waveform, but it is usually considered to be zero, spin
corrections being small [11,12]). Population studies from
GWTC-3 [8] suggest a preference for a power-law-plus-
peak model but do not exclude a broken power-law model
for BBH components’ mass function. The mass function
for BNS components is expected instead to exhibit broader
features, which for SGWB studies can be taken to be
uniformly distributed between 1 and 2.5M⊙. For NSBH,
GWTC-3 studies have used the same mass function for the
NS component and a logarithmically uniform distribution
of black hole masses between 5 and 50M⊙.
For this work, when constraining the population proper-

ties of a CBC background, we will use a frequency range
where this background is well described by the inspiral
phase, assuming hence the functional dependence

FIG. 1. Landscape plot with the intensity of different astro-
physical SGWBs. The black line denotes the median value of the
total CBC SGWB as inferred from the GWTC-3 in [8]. The
blue line represents the median value of the BNS SGWB, again
from [8]. The orange line is the SGWB from r modes from [20]
with our conventions, setting K ¼ −5=4 and further scaling
Eq. (17) to the case where just 1% of the young NSs enters
the instability [61]. The purple line is the SGWB from magnetars,
using ε ¼ 5 × 10−4 and B ¼ 1011 T, with the other parameters
from [63].

ESTIMATING ASTROPHYSICAL POPULATION PROPERTIES … PHYS. REV. D 109, 103013 (2024)

103013-3



Ωgw;jðfÞ¼ ξj

�
f
fref

�
2=3

r0;jhM5=3
c ij

≡ξj

�
f
fref

�
2=3

Kj; j¼BBH;BNS;NSBH; ð11Þ

where the productKj ≡ r0;jhM5=3
c ij is assumed to be a free

parameter to be constrained. More specifically, we will
focus on the whole population of CBCs and constrain an
effective KCBC ≡P

j Kj.

B. Magnetars

Magnetars are neutron stars that are formed with a very
intense magnetic field (of the order of 1010–1011 T). They
were first proposed in [72] as a candidate to explain soft
gamma repeaters and anomalous x-ray pulsars. The list of
known magnetars is collected in the McGill magnetars
catalog [73].
The intense magnetic field is expected to induce a

quadrupolar deformation in the rapidly spinning neutron
star, which in turn decelerates through magnetic dipole
torque and GW production, with energy spectrum [17,18,63]

dEgw

df
¼ Iπ2f3

�
5c2R6

192π2GI2
4πB2

μ0ε
2
sin2αþ f2

�−1
;

f∈
�
0 −

2

P0

	
; ð12Þ

where I is the magnetar moment of inertia around the
rotation axis, R is the magnetar radius, B the (poloidal)
magnetic field of the star, ε the dimensionless ellipticity,
quantifying the deviation from spherical symmetry, α the
“wobble angle” between the magnetar spin and magnetic
axes, P0 the initial rotation period of the magnetar, and μ0
the vacuum magnetic permeability. Recurrent reference
values in the literature for some of the magnetar param-
eters are I ¼ 1 × 1038 kgm2, R ¼ 10 km, α ¼ π=2, and
P0 ¼ 1 ms [17,18,63].
The first term in the brackets comes from the rotational

energy loss due to electromagnetic dipole radiation, while
the second term is due to GWemission. The ellipticity may
further depend on the magnetic field in different ways,
based on whether the magnetic field configuration is
expected to be poloidal dominated [74], a twisted-torus
one [75], or toroidal dominated [76].
When deriving the expression for the SGWB from

magnetars from Eq. (2), given that the GW source starts
emitting after its birth, it is possible to write the cosmic rate
Rðθ; zÞ as Rmagnetarðθ; zÞ ¼ λmagnetarSFRðzÞ, where λmagnetar

is the fraction per solar mass of the progenitor mass that is
converted in magnetars. This quantity can also be written
as a function of the mass of the NS progenitors λNS and
the fraction of NSs born as magnetars fmagnetars, namely
λmagnetar ¼ fmagnetars λNS.

The resulting expression of ΩgwðfÞ in the case where the
dominant rotational energy loss mechanism is the dipole
magnetic torque is then [18,63]

ΩgwðfÞ ¼
K

ρcH0

f4
Z

zmax

zmin

λmagnetarsSFRðzÞð1þ zÞ2
EðzÞ ; ð13Þ

where

K ¼ 192π4G
5c2

μ0
4π



1

R6

�
hI3ihε2i



1

B2

�

1

sin2α

�
: ð14Þ

In the following, we assume the following functional
dependence:

Ωgw;magnetarsðfÞ ¼ ξmagnetars

�
f
fref

�
4

hε2i



1

B2

�

≡ ξmagnetars

�
f
fref

�
4

Kmagnetars; ð15Þ

where Kmagnetars ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hε2ih1=B2i

p
is assumed to be a free

parameter to be constrained.

C. r-mode instabilities

In the pioneering works [77,78], it was discovered that
the emission of gravitational radiation induces instability
in the r modes of young rapidly rotating NSs. The first
studies about the GWemission (and SGWB) related to the
r-mode instability were performed in [19,79], showing
that the GW emission can be modelled by two parameters
only, namely the angular velocity of the NS Ω and the
parameter α, related to the r-modes amplitude hðtÞ from
the l ¼ m ¼ 2 current multipole S22 dominating the GW
emission. After an initial (500-s [79]) phase where Ω is
roughly constant, and α exponentially grows, the system
enters a non-linear hydrodynamic regime, with α reaching
a saturation value, that lasts around one year and even-
tually radiates approximately two thirds of the NS rota-
tional energy in GWs, ceasing the r-mode instability [79].
The superposition of the GW signals from young NSs
during the year-long nonlinear phase can give rise to a
continuous SGWB [19,20,61].
The expression for ΩgwðfÞ is analogous to the one for

SGWB from magnetars, with the main difference within
the fraction of initial mass progenitors converted into
neutron stars λNS ¼ 9 × 10−3M−1

⊙ [61], and the energy
spectrum [79]

dEgw

df

����
r−modes

≈
4

3

f
f2max

EK; ð16Þ

whereEK is the rotational kinetic energy of the NS assuming
a Keplerian angular velocity ΩK ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πGρ̄NS

p
=3 (namely

the angular velocity at which the star starts shedding mass
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at the equator), and fmax the corresponding maximal GW
frequency.2

By using the results from more recent studies and
simulations about gravitational radiation from r-mode
instability [80], which allow for saturation values of α
being less than unity, and adapting the resulting expression
for ΩgwðfÞ derived in [20] to our notation and convention,
it is possible to express the spectrum as (assuming all NSs
having a mass equal to 1.4M⊙, a radius R ¼ 12.53 km, and
a polytropic equation of state p ¼ kρ2 [19,20,79,80])

ΩgwðfÞjr−modes¼
16π3c
3H3

0

×96.7

×



1

Kþ2

�
f2

Z
zmax

zmin

dz
SFRðzÞλNS

EðzÞ ð17Þ

where ðK þ 2Þ−1 ∝ α2 when it saturates (see [80] for more
details about K definition), with −5=4 ≤ K ≪ 1013. The
minimum value K ¼ −5=4 corresponds to the smallest
amount of differential rotation at the time when the r-mode
instability is created, while the upper bound K ≪ 10−13

encodes the condition that the r-mode angular momentum
is much smaller than the angular momentum of the
unperturbed star [80]. In the following, when performing
the analysis, we consider the following expression for
the spectrum:

Ωgw;r−modesðfÞ ¼ ξr−modes

�
f
fref

�
2



1

K þ 2

�

≡ ξr−modes

�
f
fref

�
2

Kr−modes; ð18Þ

where the parameter Kr−modes ≡ hðK þ 2Þ−1i is the free
parameter to be constrained.

III. ANALYSIS METHODS

We perform a search for a Gaussian,3 stationary, unpo-
larized and isotropic SGWB, assuming the presence of
multiple components fΩαðfÞg following a power law in
frequency, such that

ΩgwðfÞ ¼
X
α

ΩαwαðfÞ; wαðfÞ≡ ΩαðfÞ
ΩαðfrefÞ

¼
�

f
fref

�
α

;

ð19Þ

where every component is characterized by an amplitude
Ωα ≡Ωαðf ¼ frefÞ, with fref an arbitrary reference

frequency, chosen to be fref ¼ 25 Hz in the following.
We make use of the publicly available [82,83] time-series
data from the first three observing runs (O1, O2, and O3) of
the Advanced LIGO-Hanford (H) and LIGO-Livingston
(L) detectors and the Advanced Virgo (V) detector. In the
same fashion as in [84,85], we apply both time- and
frequency-domain cuts and then perform the cross-
correlation search employing the publicly available algo-
rithm in MATLAB [86].
For every detector pair IJ (I; J ¼ H, L, V), called

“baseline,” we divide the time-series output in segments
sIðtÞ, labeled by t, of duration T, and we take their
short-time Fourier transform s̃Iðt; fÞ, obtaining a segment-
dependent cross-correlation statistic spectrum CIJðt; fÞ≡
s̃�I ðt; fÞs̃Jðt; fÞ. In the absence of correlated noise, the
expectation value of CIJðt; fÞ over the segment can be
written as a linear convolution equation

hCIJiðt; fÞ ¼
X
α

Kαðt; fÞΩα; or C ¼ K ·Ω; ð20Þ

where

K≡ Kαðt; fÞ ≔
T
2
S0ðfÞγIJðfÞwαðfÞ; ð21Þ

with S0ðfÞ ¼ ð3H2
0Þ=ð10π2f3Þ, and γIJðfÞ the normalized

overlap reduction function [59,87,88] quantifying the
reduction in sensitivity due to the geometry of the baseline
IJ and its response to the GW signal.
The estimator for Ω can be obtained as Maximum-

Likelihood solution for the convolution Eq. (20),
namely [56]

Ω̂ ¼ Γ−1 ·X; ð22Þ

where

Xα ¼ 4Δf
X
I>J

X
f;t

γIJðfÞS0ðfÞs̃�I ðt; fÞs̃Jðt; fÞ
PIðt; fÞPJðt; fÞ

wαðfÞ;

Γαα0 ¼ 2TΔf
X
I>J

X
f;t

γ2IJðfÞS20ðfÞ
PIðt; fÞPJðt; fÞ

wαðfÞwα0 ðfÞ; ð23Þ

where PIðt; fÞ and PJðt; fÞ are the one-sided power
spectral densities of the noise in the detectors. The
inversion of Γαα0 may lead to numerical errors. This can
be avoided by preconditioning the matrix as

Γ≡ Γ0
αα0 ¼

Γαα0ffiffiffiffiffiffiffiffiffiffiffi
ΓαΓα0

p ; ð24Þ

where Γα ≡ diagðΓαα0 Þ. This new coupling matrix can
quantify the correlation between different models, as
illustrated in Fig. 2. Then the estimator for Ωα becomes

2Note that EK ∝ Ω2
K ∝ f2max, and hence Eq. (16) does

not depend on fmax.
3The CBC SGWB is not expected to be Gaussian in the

frequency range of interest; however, this does not introduce
additional biases in the analysis [81].
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Ω̂α ¼
X
α0
Γ0−1

αα0
X0
α0ffiffiffiffiffi
Γα

p ; ð25Þ

where X0
α ¼ Xα=

ffiffiffiffiffi
Γα

p
. The covariance matrix and the

standard deviation of Ω̂α are then

Σαα0 ¼
ðΓ0

αα0 Þ−1ffiffiffiffiffiffiffiffiffiffiffi
ΓαΓα0

p ; ð26Þ

σα ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

diagðΣββ0 Þ
q 	

α

: ð27Þ

The likelihood function associated with these estimators
can be assumed to be a multivariate Gaussian [56]:

LðΩ̂αjΩαÞ¼
1

ð2πÞN=2ðdetΣÞ1=2

×exp

�
−
1

2
ðΩ̂α−ΩαÞΣ−1

αα0 ðΩ̂α0 −Ωα0 Þ
	
: ð28Þ

We use the above likelihood function to perform parameter
estimation or set bounds on the parameters from the
different considered models.
The same likelihood function can also be used to

estimate the ensemble properties by using Eq. (6) and to
rewrite the Ωα model as

Ωα ¼ ξα
Y
i

hθcii i: ð29Þ

We have tested the method presented in this section by
performing multiple sets of injections in O3 data in the
frequency domain, quantifying possible sources of bias;

see the Appendix for more details about the most signifi-
cant ones.

IV. RESULTS AND DISCUSSIONS

We present the results of the multicomponent analysis
for the set of spectral indices α⃗ ¼ f0; 2=3; 2; 3; 4g and their
implications for the ensemble properties of CBCs (in the
inspiral phase), pulsar r-mode instabilities, and magnetars.

A. Power-law energy density spectrum

We have performed a search for a Gaussian, stationary,
unpolarized, isotropic, multicomponent SGWB following
the methods presented in the previous section, Sec. III, and
applied them to five spectral indices, namely α ¼ 0; 2=3, 2,
3, 4. The indices α ¼ 2=3, 2, 4 are associated with the
astrophysical SGWBs produced by CBCs [10–14], r-mode
instabilities in NSs [19,20,79], and magnetars [16–18],
respectively, as described in Sec. II. The remaining α ¼ 0, 3
can be associated with other SGWBs with different origins
(α ¼ 0 to inflationary [43–45] or cosmic strings [30–33]
SGWBs, α ¼ 3 to core-collapse to supernova [22–26] or
pre–big bang models [46–48]), for which we do not draw
any additional implication. Moreover, the SGWBs associ-
ated with these two spectral indices are usually constrained
by searches using the ground-based detectors [84], and it
may be interesting to compare the standard results with those
of the multicomponent analysis method. For the reasons
presented in the Appendix in light of the implications for
astrophysical SGWBs, we have restricted the frequency
range of the search to 20–100 Hz, where the astrophysical
signal ΩgwðfÞ can be approximated by a power law.4

The estimators from analyzing every possible combina-
tion of spectral indices can be read in Table I. The first
five lines can be interpreted as results from the single-
component analysis. The small difference in the α ¼ 0; 2=3,
and 3 cases from [84] is only to be attributed to the frequency
range adopted for our analysis being 20–100 Hz (when we
make use of the 20–1726 Hz range used in [84], we recover
the same estimators). Compared to the single-component
case, the uncertainty in the estimate of the components of the
SGWB is, in general, larger in the multicomponent analysis,
leading to more conservative estimates but still compatible
with the single-component ones. Another factor influencing
the magnitude of the estimator uncertainties when different
combinations of components (with the number of compo-
nents fixed) are considered is the distance of the spectral
indices in the power-law space. As an example of this effect,
consider the Ω̂0 uncertainty in the four combinations
fα ¼ 0; 2=3g, fα ¼ 0; 2g, fα ¼ 0; 3g and fα ¼ 0; 4g, with
the second spectral index getting more “distant” from α ¼ 0

and the uncertainty getting lower and lower.

FIG. 2. Preconditioned Fisher matrix for data from the first
three LVK observing runs, showing the couplings among differ-
ent spectral indices. The diagonal is unity by construction, with
the off diagonal element being smaller than 1 and positive.

4Note that, based on the discussion in [84], the choice of this
frequency band may limit the search sensitivity for α > 2=3,
resulting in the upper limits being more conservative.
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Consistently with previous analyses involving data from
the first three LVK observing runs, there is no evidence for
a signal in any of the examined combinations of the spectral
indices. We have verified this for every combination by
performing a Bayesian model comparison between noise-
only and signal hypotheses, with the Bayes factor always
favoring noise over signal. As a consequence, we have set
95%-confidence Bayesian upper limits Ω95%

α for every
component for every combination, using a uniform prior
between 0 and 10−6.5 for each of them. The upper limits are
summarized in Table II. Noticeably, the upper limits
become more stringent when including more components
in the analysis, following the opposite trend compared to
that of the estimator uncertainties. This seems to contradict
the naive picture that considering more components should
decrease the constraining power of the search. On the other
hand, this could be argued by claiming that the power splits

among the different components, leading to lower upper
limits when more components are included in the analysis,
as previously observed in [89]. Alternatively, this trend
could also arise from this particular data realization being
noise dominated [57]. Still, in the presence of a signal (or
excesses) in the data, the multicomponent analysis provides
unbiased estimators and correct parameter estimation
results (and hence upper limits), in contrast to the biased
single-component ones; see the Appendix.

B. Astrophysical parameters

The previous results for the Ωα can be reinterpreted and
translated into constraints on the ensemble properties of the
SGWBs of interest, namely from CBCs (α ¼ 2=3), r-mode
instabilities (α ¼ 2), and magnetars (α ¼ 4). This can be
done in different ways. Suppose the SGWB consists of just
one component, and just one ensemble property hθci

TABLE I. Estimators from the multicomponent analysis in the 20–100 Hz band for the different combinations of the five spectral
indices. Horizontal lines divide the table in regions where a fixed number of components is considered for the analysis.

Ω̂0 Ω̂2=3 Ω̂2 Ω̂3 Ω̂4

α ¼ f0g ð1.5� 7.5Þ × 10−9 � � � � � � � � � � � �
α ¼ f2=3g � � � ð2.3� 56.2Þ × 10−10 � � � � � � � � �
α ¼ f2g � � � � � � ð−1.3� 2.5Þ × 10−9 � � � � � �
α ¼ f3g � � � � � � � � � ð−9.8� 10.3Þ × 10−10 � � �
α ¼ f4g � � � � � � � � � � � � ð−4.0� 3.4Þ × 10−10

α ¼ f0; 2=3g ð4.4� 4.6Þ × 10−8 ð−3.2� 3.4Þ × 10−8 � � � � � � � � �
α ¼ f0; 2g ð1.6� 1.4Þ × 10−8 � � � ð−5.8� 4.6Þ × 10−9 � � � � � �
α ¼ f0; 3g ð9.5� 9.5Þ × 10−9 � � � � � � ð−1.8� 1.3Þ × 10−9 � � �
α ¼ f0; 4g ð6.1� 8.2Þ × 10−9 � � � � � � � � � ð−5.1� 3.7Þ × 10−10

α ¼ f2=3; 2g � � � ð1.7� 1.4Þ × 10−8 ð−8.3� 6.1Þ × 10−9 � � � � � �
α ¼ f2=3; 3g � � � ð8.4� 8.1Þ × 10−9 � � � ð−2.1� 1.5Þ × 10−9 � � �
α ¼ f2=3; 4g � � � ð5.0� 6.6Þ × 10−9 � � � � � � ð−5.6� 4.0Þ × 10−10

α ¼ f2; 3g � � � � � � ð7.6� 7.2Þ × 10−9 ð−3.9� 2.9Þ × 10−9 � � �
α ¼ f2; 4g � � � � � � ð3.1� 4.3Þ × 10−9 � � � ð−7.4� 5.8Þ × 10−10

α ¼ f3; 4g � � � � � � � � � ð2.4� 3.7Þ × 10−9 ð−1.2� 1.2Þ × 10−9

α ¼ f0; 2=3; 2g ð−7.9� 11.4Þ × 10−8 ð9.5� 11.3Þ × 10−8 ð−1.8� 1.5Þ × 10−8 � � � � � �
α ¼ f0; 2=3; 3g ð−3.2� 8.3Þ × 10−8 ð3.5� 7.0Þ × 10−8 � � � ð−2.9� 2.7Þ × 10−9 � � �
α ¼ f0; 2=3; 4g ð−9.9� 69.8Þ × 10−9 ð1.3� 5.6Þ × 10−8 � � � � � � ð−6.2� 6.1Þ × 10−10

α ¼ f0; 2; 3g ð−1.0� 30.0Þ × 10−9 � � � ð8.3� 22.6Þ × 10−9 ð−4.1� 6.4Þ × 10−9 � � �
α ¼ f0; 2; 4g ð4.3� 25.0Þ × 10−9 � � � ð1.0� 12.9Þ × 10−9 � � � ð−5.9� 10.5Þ × 10−10

α ¼ f0; 3; 4g ð6.5� 17.8Þ × 10−9 � � � � � � ð−1.8� 81.2Þ × 10−10 ð−4.6� 23.2Þ × 10−10

α ¼ f2=3; 2; 3g � � � ð1.7� 38.8Þ × 10−9 ð6.1� 34.4Þ × 10−9 ð−3.6� 8.4Þ × 10−9 � � �
α ¼ f2=3; 2; 4g � � � ð7.7� 30.1Þ × 10−9 ð−1.7� 19.5Þ × 10−9 � � � ð−4.5� 12.7Þ × 10−10

α ¼ f2=3; 3; 4g � � � ð8.1� 18.3Þ × 10−9 � � � ð−1.9� 10.4Þ × 10−9 ð−5.6� 280.6Þ × 10−11

α ¼ f2; 3; 4g � � � � � � ð1.6� 2.8Þ × 10−8 ð−1.1� 2.5Þ × 10−8 ð1.5� 4.9Þ × 10−9

α ¼ f0; 2=3; 2; 3g ð−3.2� 3.5Þ × 10−7 ð4.1� 4.6Þ × 10−7 ð−1.2� 1.5Þ × 10−7 ð1.9� 2.6Þ × 10−8 � � �
α ¼ f0; 2=3; 2; 4g ð−2.5� 2.7Þ × 10−7 ð3.0� 3.3Þ × 10−7 ð−6.8� 7.6Þ × 10−8 � � � ð2.1� 3.1Þ × 10−9

α ¼ f0; 2=3; 3; 4g ð−1.5� 1.8Þ × 10−7 ð1.6� 1.9Þ × 10−7 � � � ð−2.3� 2.8Þ × 10−8 ð4.5� 6.3Þ × 10−9

α ¼ f0; 2; 3; 4g ð−4.0� 6.3Þ × 10−8 � � � ð7.6� 9.9Þ × 10−8 ð−4.7� 6.2Þ × 10−8 ð7.1� 10.2Þ × 10−9

α ¼ f2=3; 2; 3; 4g � � � ð−5.5� 9.6Þ × 10−8 ð9.9� 14.7Þ × 10−8 ð−5.4� 7.8Þ × 10−8 ð7.8� 12.0Þ × 10−9

α ¼ f0; 2=3; 2; 3; 4g ð−6.9� 8.9Þ × 10−7 ð9.8� 13.6Þ × 10−7 ð−4.3� 7.1Þ × 10−7 ð1.3� 2.6Þ × 10−7 ð−1.4� 3.0Þ × 10−8
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characterizes the background. In that case, it is possible to

build an estimator h bθci for such quantity (see [90,91] as
examples of this approach) and the associated likelihood
to use to draw the Bayesian upper limits. Alternatively,
suppose multiple components are present, each having
more than one ensemble property. In that case, building the
estimator for each property (fixed a component) is gen-
erally impossible. The solution is to change the models for
Ωα in the likelihood (28) with the ones in Eq. (29) when
performing the parameter estimation or constraining the
ensemble properties.
In this work, we have opted for the second approach.

Given the absence of signal, we have been able only to
constrain the ensemble properties for each component,
namely KCBC; Kr−modes; Kmagnetars. The corresponding
95%-confidence Bayesian upper limits are reported
in Table II. To obtain such constraints, we have used

uniform priors, with KCBC ∈ ½0; 107�M5=3
⊙ Gpc−3 yr−1,

Kr−modes ∈ ½10−13; 4=3�, and Kmagnetars ∈ ½0; 10−10� T−1,
motivated by the limits derived in [8,80,18], respectively.
By inspection, we observe that the limits on Kr−modes and
Kmagnetars mildly depend on the number of components
considered. In contrast, KCBC limits oscillate more, with
variations between 5% and 25% with respect to the value
inferred from the single-component analysis. The reference
values that we quote as results of this work are the ones
from the α ¼ f2=3; 2; 4g combination, namely KCBC ≤
4.9 × 104M5=3

⊙ Gpc−3 yr−1, Kr−modes≤1.3, and Kmagnetars ≤

1.3 × 10−12 T−1. The choice of not including α ¼ 0, 3 for
these reference values comes from the injection study
presented in the Appendix, assuming only these three
components are present/dominant. We examine each of
these constraints individually to check whether they are
strong enough to have relevant implications for astrophysi-
cal populations.
The CBC parameter KCBC is actually a bound over the

sum of the products r0;jhM5=3
c ij (j ¼ BBH;BNS;NSBH)

involving the local rates and the average 5=3 power of the
chirp masses of the individual BBH, BNS, and NSBH
populations. Its interpretation and comparisonwith the recent
limits for CBC population from the GWTC-3 catalog [8] are
not straightforward. This is a limit of the multicomponent
analysis under the assumption of power-law energy density
spectra for ΩgwðfÞ, which does not allow one to remove
the degeneracy between SGWBs having the same spectral
indices but different ensemble parameters. Further studies
about how to break such degeneracy will be the subject of
future works, aiming to bring the multicomponent analysis
beyond the simple power-law assumption.
The r-mode-instability parameter Kr−modes¼hðKþ2Þ−1i

can be approximately converted in a limit over hKi by
taking its inverse and subtracting 2. Doing this for the
present upper limit leads to a lower limit for hKi≳ −1.23.
This value is right above −5=4, the minimal value that K
can assume according to [80] and corresponds to the
maximum value of Ωgw;r−modes. This limit reflects that
not all r-mode instabilities happen with this extreme value

FIG. 3. Results of the parameter estimation for the α ¼ 2=3, 2, 4 combination in the 20–100 Hz band for power-lawΩα (left panel) and
the corresponding astrophysical parameters (right panel). Contour plots show the 1σ, 2σ, and 3σ credible areas (black, gray, light gray,
respectively). The dashed black lines in the histogram panels delimit the 1σ region of the estimated parameters.
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for K, usually assumed when doing estimates of the
intensity of this kind of SGWB, but does not exclude
individual events in that configuration from happening.
Still, the weakness of the constraint does not allow one to
draw major implications for these phenomena, where
uncertainties still dominate many parameters.
The magnetar parameter Kmagnetars ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hε2ihB−2i

p
suffers

from the degeneracy between the average square ellipticity
and the average (inverse) square of the (poloidal) magnetic
field of the magnetar population. If the magnetar population
had an average magnetic field around 1010ð1011Þ T, the
corresponding limits on (square root of the) average (squared)
ellipticity would be ε ≤ 1.3 × 10−2ð10−1Þ. Following
Eqs. (13) and (14) from [18], this, in turn, would imply

the limits on the distortion parameter β ≤ 3.5 × 105ð104Þ for
a poloidal-dominated field configuration and the dimension-
less parameter k ≤ 1.3 × 106ð105Þ for a twisted-toroidal
field configuration (assuming λmagnetars ¼ 9 × 10−4M⊙).
However, these constraints are not informative and, together
with the other astrophysical uncertainties in the magnetar
population, do not allow one to draw further implications for
the geometry of individual magnetars or on the equation of
state of the magnetar population.

V. CONCLUSIONS

In this work, we have performed a search for a
Gaussian, stationary, unpolarized, isotropic stochastic

TABLE II. 95% Bayesian upper limits from the multicomponent analysis in the 20–100 Hz band on Ω95%
α (to the left of the vertical

line) and the related astrophysical parameters K95%
i (to the right of the vertical line) for the different combinations of the five spectral

indices. Horizontal lines divide the table in regions where a fixed number of components is considered for the analysis. The constraints
on Ω95%

α have been obtained using uniform prior between 0 and 10−6.5. The constraints on K95%
i have been obtained using log-uniform

prior; see main text. KCBC units are M⊙ Gpc−3 yr−1, Kr−modes is dimensionless, and Kmagnetars is expressed in T−1.

Ω95%
0 Ω95%

2=3 Ω95%
2 Ω95%

3 Ω95%
4 K95%

CBC K95%
magnetars K95%

r−modes

α ¼ f0g 1.6 × 10−8 � � � � � � � � � � � � � � � � � � � � �
α ¼ f2=3g � � � 1.2 × 10−8 � � � � � � � � � 5.1 × 104 � � � � � �
α ¼ f2g � � � � � � 4.1 × 10−9 � � � � � � � � � � � � 1.3 × 100

α ¼ f3g � � � � � � � � � 1.5 × 10−9 � � � � � � � � � � � �
α ¼ f4g � � � � � � � � � � � � 4.5 × 10−10 � � � 1.4 × 10−12 � � �
α ¼ f0; 2=3g 1.3 × 10−8 9.5 × 10−9 � � � � � � � � � 4.2 × 104 � � � � � �
α ¼ f0; 2g 1.4 × 10−8 � � � 3.5 × 10−9 � � � � � � � � � � � � 1.3 × 100

α ¼ f0; 3g 1.5 × 10−8 � � � � � � 1.3 × 10−9 � � � � � � � � � � � �
α ¼ f0; 4g 1.5 × 10−8 � � � � � � � � � 4.1 × 10−10 � � � 1.3 × 10−12 � � �
α ¼ f2=3; 2g � � � 1.0 × 10−8 3.5 × 10−9 � � � � � � 4.9 × 104 � � � 1.3 × 100

α ¼ f2=3; 3g � � � 1.0 × 10−8 � � � 1.3 × 10−9 � � � 4.6 × 104 � � � � � �
α ¼ f2=3; 4g � � � 1.0 × 10−8 � � � � � � 4.1 × 10−10 4.9 × 104 1.3 × 10−12 � � �
α ¼ f2; 3g � � � � � � 3.7 × 10−9 1.3 × 10−9 � � � � � � � � � 1.3 × 100

α ¼ f2; 4g � � � � � � 3.9 × 10−9 � � � 4.0 × 10−10 � � � 1.3 × 10−12 1.3 × 100

α ¼ f3; 4g � � � � � � � � � 1.3 × 10−9 4.0 × 10−10 � � � 1.3 × 10−12 � � �
α ¼ f0; 2=3; 2g 1.2 × 10−8 8.4 × 10−9 3.1 × 10−9 � � � � � � 4.3 × 104 � � � 1.3 × 100

α ¼ f0; 2=3; 3g 1.2 × 10−8 8.8 × 10−9 � � � 1.2 × 10−9 � � � 3.9 × 104 � � � � � �
α ¼ f0; 2=3; 4g 1.3 × 10−8 8.9 × 10−9 � � � � � � 3.9 × 10−10 4.2 × 104 1.2 × 10−12 � � �
α ¼ f0; 2; 3g 1.3 × 10−8 � � � 3.2 × 10−9 1.1 × 10−9 � � � � � � � � � 1.3 × 100

α ¼ f0; 2; 4g 1.4 × 10−8 � � � 3.3 × 10−9 � � � 3.8 × 10−10 � � � 1.3 × 10−12 1.3 × 100

α ¼ f0; 3; 4g 1.4 × 10−8 � � � � � � 1.2 × 10−9 3.8 × 10−10 � � � 1.2 × 10−12 � � �
α ¼ f2=3; 2; 3g � � � 9.0 × 10−9 3.2 × 10−9 1.1 × 10−9 � � � 4.6 × 104 � � � 1.3 × 100

α ¼ f2=3; 2; 4g � � � 9.4 × 10−9 3.3 × 10−9 � � � 3.8 × 10−10 4.9 × 104 1.3 × 10−12 1.3 × 100

α ¼ f2=3; 3; 4g � � � 9.5 × 10−9 � � � 1.2 × 10−9 3.8 × 10−10 4.4 × 104 1.2 × 10−12 � � �
α ¼ f2; 3; 4g � � � � � � 3.4 × 10−9 1.2 × 10−9 3.7 × 10−10 � � � 1.3 × 10−12 1.3 × 100

α ¼ f0; 2=3; 2; 3g 1.2 × 10−8 7.8 × 10−9 2.9 × 10−9 1.1 × 10−9 � � � 3.9 × 104 � � � 1.3 × 100

α ¼ f0; 2=3; 2; 4g 1.2 × 10−8 8.2 × 10−9 2.8 × 10−9 � � � 3.7 × 10−10 4.1 × 104 1.2 × 10−12 1.3 × 100

α ¼ f0; 2=3; 3; 4g 1.2 × 10−8 8.3 × 10−9 � � � 1.1 × 10−9 3.6 × 10−10 3.9 × 104 1.2 × 10−12 � � �
α ¼ f0; 2; 3; 4g 1.3 × 10−8 � � � 2.9 × 10−9 1.1 × 10−9 3.6 × 10−10 � � � 1.2 × 10−12 1.3 × 100

α ¼ f2=3; 2; 3; 4g � � � 8.7 × 10−9 3.0 × 10−9 1.1 × 10−9 3.5 × 10−10 4.4 × 104 1.2 × 10−12 1.3 × 100

α ¼ f0; 2=3; 2; 3; 4g 1.1 × 10−8 7.6 × 10−9 2.8 × 10−9 1.0 × 10−9 3.4 × 10−10 3.8 × 104 1.2 × 10−12 1.3 × 100
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gravitational-wave background with a power-law spectrum
in energy density, relaxing the assumption that only one
component can be present at a time. We have performed
such a search assuming different SGWBs to be present at a
time, with spectral indices α ¼ f0; 2=3; 2; 3; 4g and for all
possible combinations, in a 20–100 Hz frequency band.
Then, we have inferred the implications for astrophysical
SGWBs from compact binary coalescences, young-pulsar
r-mode instabilities, and magnetars, corresponding to the
spectral indices α ¼ f2=3; 2; 4g.
The analysis has not shown evidence of any SGWB,

so we have set upper limits on Ωα at a 25-Hz reference
frequency for every α combination. We recover the limits
from [84] in the single-index case when performing the
analysis in the 20–1726 Hz range. When multiple compo-
nents are present, the limits become more stringent. The
derivation of the implications for the ensemble properties of
the astrophysical SGWB from CBCs, r-mode instabilities,
and magnetars results in constraints over KCBC, Kr−modes,
and Kmagnetars, respectively. The bounds are not informative
in the case of r modes, and are not competitive with the
existing ones in the case of CBCs and magnetars. This fact
is further reflected by their mild oscillations in value when
considering different α combinations.
The results obtained in this paper may not include

additional information compared to the existing ones in
the literature, given the weakness of the SGWB compo-
nents in the data. However, as shown and discussed in the
injection study in the Appendix, the method employed here
will be fundamental to avoid bias and overestimation of
the components when getting closer to a detection. The
same injection study also highlights the necessity of
generalizing this method to the case where the SGWB
cannot be described by a simple power law and, conse-
quently, introduces bias in the search presented in this work
if the signal is strong enough to generate a power excess in
the data or be detected. This will allow us to avoid limits on
the frequency range used in the search where the power-law
regime is no longer applicable. In addition to that, adapting
this method to any frequency dependence will also allow
one to easily employ it for directional and targeted
searches, even in the case where match filtering for the
SGWB of interest is used (see as example [92]). We reserve
such generalizations for future works.
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APPENDIX: INJECTION STUDIES

To further validate the multicomponent search method,
we have performed several injection studies in the fre-
quency domain, going beyond the scenarios present in [56],
where this method was first introduced. The validation
process has allowed us to better understand how to interpret
the results of the multicomponent analysis and compare
them with the single-component ones, testing the limit of
this formalism for determining the ensemble properties
of an SGWB with a frequency-power-law energy density
spectrum. We present here the injection studies that
summarize the main cases of interest.

1. Power-law injections: Five equal-intensity SGWBs

The first set of injections we present and discuss
reproduce a scenario where several components are present,
are sufficiently intense to be detectable with O3 sensitivity,
and have all the same intensity. The injected signals are
characterized by fΩα ¼ 1 × 10−6; α ¼ 0; 2=3; 2; 3; 4g at
25 Hz, and the analysis is performed in the 20–1726 Hz
band for all possible α combinations. The choice of this
broad frequency range allows for a better sensitivity of the
search for higher α (the O3 public datasets [85] are also
available in this range).

a. Signal-only case using O3 sensitivity

In this toy model, whose results are summarized in
Table III, we do not add any random noise to the signal,
though we still account for the O3-noise power spectral
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densities (PSDs). The absence of additional noise allows us
to isolate the bias that the single-index analysis introduces
in the estimates (and in the error bars) of the individual
components.
We observe that all the results of the component

estimation in Table III show an excess associated with a
signal, independent of the combination of the spectral
indices. However, only the joint estimation that considers
all five indices recovers the injections correctly. This is
further confirmed by the parameter estimation (PE) results
that are shown in Fig. 4 (up to negligible numerical errors
in the estimators due to the inversion of the coupling
matrix Γ0

αα0). In all the other cases, the estimation leads to
heavily biased results, with the highest bias in the case of
single-component analysis. This can be understood as the
power of the ignored components spreading and getting
absorbed by the components considered in the analysis.
This bias can be easily quantified. Let us consider

the case where one is performing the joint estimation
assuming only the spectral indices α while missing the
spectral indices αm. Then the SGWB can be written as
(A≡ fα; αmg)

ΩgwðfÞ ¼
X
A

ΩAwAðfÞ ¼
X
α

ΩαwαðfÞ þ
X
αm

ΩαmwαmðfÞ:

ðA1Þ

One should then perform the analysis by including both α
and αm, building the dirty map XA ¼ ðXα; XαmÞ and the
Fisher matrix ΓAA0 (A ¼ fα; αmg), and then deriving the
unbiased estimator Ω̂A¼ðΓ−1ÞAA0XA0, such that hΩ̂Ai¼ΩA.
If one restricts the search to α only, one has (summation
over repeated indices is implicit)

Ω̂ðunbiasedÞ
α ¼ ðΓ−1Þαα0Xα0 − ðΓ−1Þαα0Γα0α0mΩα0m

¼ Ω̂ðbiasedÞ
α − ðΓ−1Þαα0Γα0α0mΩα0m; ðA2Þ

where Ω̂ðbiasedÞ
α is the (biased) estimator from Eq. (25) that

one gets when “missing” the components Ωαm . This means
that the bias is

bα ¼ ðΓ−1Þαα0Γα0α0mΩα0m: ðA3Þ

This bias can be positive or negative, and it is not known
a priori, given one has not considered the Ωαm in this
scenario. A naive scaling of its absolute value is given by
the number of components in the analysis times the
(unknown) number of missed components.5 A situation
where this product is maximum (and, naively, the bias is

maximum) appears to be highly undesirable and should be
avoided. Nonetheless (as it is further discussed in Sec. A 2),
the ultimate discriminant for the importance of this bias is
the relative magnitude of the missed components Ωαm with
respect to the ones of theΩα components that one considers
in the analysis. The above expression for the bias reduces to
the one reported in [56] in the case of the estimator of the
single component analysis.

b. Signal on top of O3 data

Toget closer to amore realistic scenario,we inject the same
signal on top of O3 data, which in turn acts as a source of
unknown noise. The results for all the possible α combina-
tions in terms of estimators Ωα are summarized in Table IV,
while the PE results, together with the injected values and the
resulting estimators, for the five-index multicomponent
analysis of the five indices are illustrated in Fig. 4.
Analogously to the case where only the signal is

present, the injections are recovered only when all five
indices are considered in the analysis. However, in
contrast to the previous toy model case, we observe that
the recovery (within 1-sigma) and the estimators appear
to be biased even when all indices enter into the analysis.
This is related to the fact that we are actually not
considering one component in the analysis, namely the
spectrum from O3 data Ω̂O3ðfÞ. As a consequence, Ω̂O3ðfÞ
is acting as a source of an unknown noise that does not
follow a power law and gets absorbed in the components we
consider from time to time in the analysis. A source of
unknown noise mimicking the signal is a challenge even in
the usual single-component analysis; in that case, the bias
will be larger than (or at best comparable with) the one
observed in the multicomponent analysis that includes all the
components but the noise. In addition to that, the presence
of correlation between two different spectral indices (visible
in the contour plots in Fig. 4) may lead to degeneracy or
additional bias in the recovery when the signals are not
sufficiently intense and/or distant enough in the spectral-
index space.

2. Power-law injections:
Three different-intensity SGWBs

The previous set of injections assumes that all the
components are equally contributing to a given frequency.
However, it may be more realistic to assume that the
amplitude of the components differs even by orders of
magnitude. In this second injection set, we reproduce the
possible scenario at 25 Hz in Fig. 1 for the CBC, r-mode,
and magnetar SGWBs, and we inject the signals corre-
sponding to the spectral indices α ¼ 2=3, 2, 4, such that
Ω2 ¼ 10−3 ×Ω2=3 andΩ4 ¼ 10−5 ×Ω2=3 at 25 Hz. We still
perform the analysis for all the combinations of spectral
indices fα ¼ 0; 2=3; 2; 3; 4g to investigate the impact of the
different choices that are discussed below.

5This is confirmed from the results in Table III. The most
biased results appear in the analyses for two and three compo-
nents that miss three or two components, respectively.
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a. Signal-only case with O3 rescaled sensitivity

In this toy model, we again do not add any random noise
to the data, but we inject only the signals, with Ω2=3 ¼
1 × 10−9, Ω2 ¼ 1 × 10−12, and Ω4 ¼ 1 × 10−14. In addi-
tion to that, we also scale down the O3 PSDs in such a way
that the SGWBs are detectable. The results of the joint
estimation are collected in Table V for every spectral
indices combination, and Fig. 5 shows the PE results for
the combination α ¼ 2=3, 2, 4. Again, the estimator central
values perfectly match the injections only if all the right
indices corresponding to the injections are included in the
analysis. However, there are some noticeable differences
from the injection datasets with the equal-amplitude com-
ponents that are presented in Sec. A 1.
First, we observe that the biases in the estimators for the

dominant component are, at most, in the order of a few
percentages compared to the injected value among all cases.
This may suggest that even single-component analysis may
be effective when there is a component that is dominant over
all the others by multiple orders of magnitude.6 However, we
stress that only the joint analysis allows for the correct
recovery of the injected value, and the bias may grow when

injecting (and ignoring) other components in spite of their
weakness compared to the Ω2=3 intensity. In addition to that,
the other subdominant components are heavily biased by the
dominant one, as long as they are not considered all together.
This is another reason to use multicomponent analysis even
in the presence of a dominant component when that cannot
be completely subtracted from the data.
Second, we can examine how different α combinations

affect the estimators of the Ω0 and Ω3 components, which
are not present in the data. The multicomponent search
is capable of recognizing the zero amplitudes of these
components when they are considered in the analysis
together with the injected Ω2=3, Ω2, and Ω4 ones. This
means that in contrast to when we are missing some
components, performing the analysis with extra compo-
nents does not introduce any bias in the estimators.
Third and last, we can notice the impact of the non-

injected components when we are missing some signal
components. Similarly to the signal-only case in Sec. A 1,
the joint estimation of the components is biased, with the
additional complication of the zero-amplitude components
acquiring nonzero values.

b. On top of O3 data

In this injection study, we inject the signals on top of O3
data, using the extremely high values Ω2=3 ¼ 1 × 10−4,
Ω2 ¼ 1 × 10−7, and Ω4 ¼ 1 × 10−9 to guarantee the

FIG. 4. Parameter estimation results for the set of the power-law injections in the 20–1726 Hz frequency range, with Ωα ¼ 1 × 10−6,
α ¼ 0; 2=3, 2, 3, 4, for the signal-only case (left panel) and on top of O3 data (right panel). Contour plots show the 1σ, 2σ, and 3σ
credible areas (black, gray, light gray, respectively). The red lines denote the injected values, while the yellow error bars represent the 1σ
uncertainty of the Ωα estimators from the joint analysis. The dashed black lines in the histogram panels delimit the 1σ region of the
estimated parameters.

6However, this may no longer be true if Ω2¼10−2–10−1×
Ω2=3, since the bias in the single-component estimator increases
by a factor of 10–100, passing from 0.22% in Table V to
2.2%–22%.
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detectability of the signal. We limit ourselves to illustrating
the PE plots in the joint α ¼ 2=3, 2, 4 case in Fig. 5. The
recovery (within 2 sigma) of the injections is biased due to
the presence of the O3 noise ΩO3 that is not accounted for
in the analysis. However, in spite of being visually evident,
the bias in the dominant component is tiny, being roughly
0.01% of the injected value.

3. Astrophysical injections

The third and last set of injections mimics a scenario
where the injected Ωgw;iðfÞ (i ¼ 1; 2;…;Ncomponents) are
no longer a power law in the full search frequency
band 20–1726 Hz, as in the case of the astrophysical
SGWBs described in Sec. II. In addition to that, the overall
intensity of the Ωgw;iðfÞ is related to the choice of the
ensemble properties of the SGWBs that we aim to constrain
using the results from the multicomponent analysis.
In this injection dataset, we have injected Ωgw;iðfÞ, with
i ¼ BNS, r modes, magnetars, and population properties
KBNS ≃ 7.91 × 105M5=3

⊙ Gpc−3 yr−1, Kr−modes ¼ 1 × 103,
and Kmagnetars¼1×10−11, implying Ωref;BNS≃2.12×10−7,
Ωref;r−modes≃ 1.69× 10−7, and Ωref;magnetars≃ 1.79× 10−8,
respectively. We have again analyzed the dataset using
the same spectral indices as in the main text (α ¼ 0; 2=3, 2,
3, 4) to evaluate the impact of searching for fewer or more
components than the observable ones in this scenario.

Unlike the pure power-law case, we cannot use the
20–1726 Hz band to analyze this dataset. The Ωgw;iðfÞ
spectra are no longer power law only in this range, leading
to the failure in recovering the injected parameters for every
combination of spectral indices. To choose the upper bound
in the frequencies to employ in the analysis of this dataset,
we have made a compromise between the (non-)power-law
behavior of the injected signals in the band and the best
recovery of the injected parameters when we inject
the signals on top of O3 data. This resulted in the choice
of 20–100 Hz, which we have also used for the analysis in
the main text.

a. Signal-only case using O3 sensitivity

Similarly to the previously presented injection studies,
we have considered a dataset with only the signal injected.
In this specific case, the dataset serves two scopes: first,
testing the multicomponent analysis when multiple
SGWBs are present in the data and they differ in intensity,
but there is not a dominant one, and second, assessing
the generalization of this method to the inference of the
ensemble properties of the GW sources generating
the SGWBs.
We see from the joint-estimation results in Table VI

that one retrieves the intensities of the injected Ωα are
recovered again when one considers the combination
α ¼ 2=3, 2, 4. This also means that the power-law

FIG. 5. Parameter estimation results for α ¼ 2=3, 2, 4 from the two sets of the power-law injections in the 20–1726 Hz frequency
range, with Ω2 ¼ 10−3 ×Ω2=3, Ω4 ¼ 10−5 × Ω2=3, for the signal-only (Ω2=3 ¼ 10−9, left) and the on-top-of-O3-data (Ω2=3 ¼ 10−4,
right) injections. Contour plots show the 1σ, 2σ, and 3σ credible areas (black, gray, light gray, respectively). The red lines denote the
injected values, while the yellow error bars represent the 1σ uncertainty of the Ωα estimators from the joint analysis. The dashed black
lines in the histogram panels delimit the 1σ region of the estimated parameters.
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approximation of the signals is valid in the considered
frequency band. However, it is worth observing that, in
contrast to the previous signal-only datasets, the estima-
tor is not perfectly centered on the injected values,
as confirmed by the PE results in Fig. 6. The effects
of the non-power-law injections are also visible for
other spectral indices combinations, making acquiring
nonzero values for the zero components α ¼ 0 and
α ¼ 3 even when they are considered together with
α ¼ 2=3, 2, 4.
Finally, when reinterpreting the analysis results in terms

of the injected ensemble properties for α ¼ 2=3, 2, 4, one
correctly recovers the values up to small deviations due to
residual non-power-law deviations, as visible in Fig. 6. This
shows the robustness of the multicomponent approach and
of the assumptions made here.

b. On top of O3 data

Finally, we inject once more the signals on top of O3
data. In agreement with what was learned from the study of
the previous datasets with the injections on top of O3 data,
the recovery of the signal and of the injected ensemble
parameters happens only when performing the multi-
component analysis for the set of spectral indices
α ¼ 2=3, 2, 4, as illustrated in Fig. 6. Once more, the
effect of the unknown component ΩO3 introduces bias in
the recovery. However, the bias in this dataset is less visible
than in the previous cases in Secs. A 1 and A 2.

4. Take-away message from the injection study

The injection study has shown that in spite of the biases
when missing some components, the multicomponent

TABLE VI. Estimators from the multicomponent analysis in the 20–100 Hz band for the different combinations of the five spectral
indices for the astrophysical BNS, r-mode, and magnetar SGWB signal-only injection dataset, with injected parameters
KCBC ¼ 7.91 × 105M⊙ Gpc−3 yr−1, Kr−modes ¼ 1 × 103, and Kmagnetars ¼ 1 × 10−11 T−1. Horizontal lines divide the table in regions
where a fixed number of components is considered for the analysis.

Ω̂0 Ω̂2=3 ¼ 2.1 × 10−7 Ω̂2 ¼ 1.7 × 10−7 Ω̂3 Ω̂4 ¼ 1.8 × 10−8

α ¼ f0g ð8.66� 0.08Þ × 10−7 � � � � � � � � � � � �
α ¼ f2=3g � � � ð7.11� 0.06Þ × 10−7 � � � � � � � � �
α ¼ f2g � � � � � � ð3.62� 0.03Þ × 10−7 � � � � � �
α ¼ f3g � � � � � � � � � ð1.45� 0.01Þ × 10−7 � � �
α ¼ f4g � � � � � � � � � � � � ð4.32� 0.03Þ × 10−8

α ¼ f0; 2=3g ð−2.72� 0.05Þ × 10−6 ð2.71� 0.03Þ × 10−6 � � � � � � � � �
α ¼ f0; 2g ð−1.4� 0.1Þ × 10−7 � � � ð4.02� 0.05Þ × 10−7 � � � � � �
α ¼ f0; 3g ð3.5� 0.1Þ × 10−7 � � � � � � ð1.16� 0.01Þ × 10−7 � � �
α ¼ f0; 4g ð5.73� 0.08Þ × 10−7 � � � � � � � � � ð3.26� 0.04Þ × 10−8

α ¼ f2=3; 2g � � � ð−1.6� 0.1Þ × 10−7 ð4.29� 0.06Þ × 10−7 � � � � � �
α ¼ f2=3; 3g � � � ð2.94� 0.08Þ × 10−7 � � � ð1.06� 0.01Þ × 10−7 � � �
α ¼ f2=3; 4g � � � ð4.67� 0.07Þ × 10−7 � � � � � � ð2.84� 0.04Þ × 10−8

α ¼ f2; 3g � � � � � � ð2.53� 0.07Þ × 10−7 ð4.8� 0.3Þ × 10−8 � � �
α ¼ f2; 4g � � � � � � ð3.03� 0.04Þ × 10−7 � � � ð9.9� 0.6Þ × 10−9

α ¼ f3; 4g � � � � � � � � � ð2.60� 0.04Þ × 10−7 ð−4.0� 0.1Þ × 10−8

α ¼ f0; 2=3; 2g ð1.5� 0.1Þ × 10−6 ð−1.6� 0.1Þ × 10−6 ð6.1� 0.2Þ × 10−7 � � � � � �
α ¼ f0; 2=3; 3g ð7.6� 8.3Þ × 10−8 ð2.3� 0.7Þ × 10−7 � � � ð1.08� 0.03Þ × 10−7 � � �
α ¼ f0; 2=3; 4g ð−5.9� 0.7Þ × 10−7 ð9.3� 0.6Þ × 10−7 � � � � � � ð2.46� 0.06Þ × 10−8

α ¼ f0; 2; 3g ð2.6� 0.3Þ × 10−7 � � � ð6.7� 2.3Þ × 10−8 ð9.7� 0.6Þ × 10−8 � � �
α ¼ f0; 2; 4g ð1.8� 0.2Þ × 10−7 � � � ð2.2� 0.1Þ × 10−7 � � � ð1.6� 0.1Þ × 10−8

α ¼ f0; 3; 4g ð3.1� 0.2Þ × 10−7 � � � � � � ð1.35� 0.08Þ × 10−7 ð−5.6� 2.3Þ × 10−9

α ¼ f2=3; 2; 3g � � � ð3.4� 0.4Þ × 10−7 ð−4.4� 3.4Þ × 10−8 ð1.17� 0.08Þ × 10−7 � � �
α ¼ f2=3; 2; 4g � � � ð2.1� 0.3Þ × 10−7 ð1.7� 0.2Þ × 10−7 � � � ð1.8� 0.1Þ × 10−8

α ¼ f2=3; 3; 4g � � � ð3.2� 0.2Þ × 10−7 � � � ð9.0� 1.0Þ × 10−8 ð4.5� 2.8Þ × 10−9

α ¼ f2; 3; 4g � � � � � � ð4.9� 0.3Þ × 10−7 ð−1.6� 0.2Þ × 10−7 ð4.2� 0.5Þ × 10−8

α ¼ f0; 2=3; 2; 3g ð−4.8� 3.5Þ × 10−7 ð9.7� 4.6Þ × 10−7 ð−2.4� 1.5Þ × 10−7 ð1.5� 0.3Þ × 10−7 � � �
α ¼ f0; 2=3; 2; 4g ð0.004� 2.735Þ × 10−7 ð2.1� 3.3Þ × 10−7 ð1.7� 0.8Þ × 10−7 � � � ð1.8� 0.3Þ × 10−8

α ¼ f0; 2=3; 3; 4g ð−2.1� 1.8Þ × 10−7 ð5.3� 1.9Þ × 10−7 � � � ð6.1� 2.8Þ × 10−8 ð1.1� 0.6Þ × 10−8

α ¼ f0; 2; 3; 4g ð1.4� 0.6Þ × 10−7 � � � ð2.8� 1.0Þ × 10−7 ð−3.9� 6.2Þ × 10−8 ð2.2� 1.0Þ × 10−8

α ¼ f2=3; 2; 3; 4g � � � ð2.1� 1.0Þ × 10−7 ð1.7� 1.5Þ × 10−7 ð0.01� 7.84Þ × 10−8 ð1.8� 1.2Þ × 10−8

α ¼ f0; 2=3; 2; 3; 4gð−0.008� 8.945Þ × 10−7 ð2.1� 13.6Þ × 10−7 ð1.7� 7.1Þ × 10−7 ð0.004� 2.563Þ × 10−7 ð1.8� 3.0Þ × 10−8
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analysis is most robust compared to the single-component
analysis, minimizing the bias when it is present. The single-
component analysis may be the fastest and easiest to interpret
in the case where one has the certainty that one of the
components is dominant above all the others by multiple
orders of magnitude. In such a case, the multicomponent
analysis can still be used to refine the results of the

single-component analysis for the dominant component,
helping to identify possible noise sources that contribute to
the single-component estimator bias. In addition to that, if the
dominant component cannot be correctly subtracted from the
data, the multicomponent analysis proves to be fundamental
to correctly identifying the subdominant components, whose
estimate would otherwise be noticeably biased.

FIG. 6. Results of the parameter estimation for the α ¼ 2=3, 2, 4 combination in the 20–100 Hz band for the astrophysical injection for
BNS, r modes, and magnetar SGWBs (top row: signal-only injection; bottom row: injection on top of O3 data). The left panel shows the
recovery of the Ωα, while the right panel the injected ensemble parameters. Contour plots show the 1σ, 2σ, and 3σ credible areas (black,
gray, light gray, respectively). The red lines denote the injected values, while the yellow error bars represent the 1σ uncertainty of the Ωα

estimators from the joint analysis. The dashed black lines in the histogram panels delimit the 1σ region of the estimated parameters.
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