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In core-collapse supernovae, the neutrino density is so large that neutrino flavor instabilities, leading
to flavor conversion, can be triggered by the forward scattering of neutrinos among each other, if a
crossing between the angular distributions of electron neutrinos and antineutrinos exists (fast instability
in the limit of vanishing vacuum frequency) or in the presence of perturbations induced by the neutrino
vacuum frequency (slow instability). Recently, the conjecture has been advanced that neutrino collisions
with the medium could be another mean to kick start flavor change (collisional instability). Inspired by a
spherically symmetric core-collapse supernova model with mass 18.6M⊙, we compute the neutrino
angular distributions solving the kinetic equations for an average energy mode and investigate the
occurrence of flavor instabilities at different postbounce times, ranging from the accretion phase to the
early cooling phase. We find that fast and slow flavor instabilities largely dominate over the collisional
ones in the decoupling region for all postbounce times. While more work is needed to assess
the relevance of collisional instabilities in neutrino-dense environments, our findings suggest that
neutrino collisions with matter affect the flavor evolution in the decoupling region but are not responsible
for triggering flavor conversion, if crossings in the neutrino lepton number angular distribution
exist.
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I. INTRODUCTION

In dense neutrino astrophysical environments, such as
the interior of core-collapse supernovae (SNe) and neu-
tron star mergers, neutrino flavor evolution has a rich
phenomenology owing to the nonlinear nature of its
evolution [1–5]. The nonlinearity is a consequence of
the coherent forward scattering of neutrinos among each
other. Flavor conversion is classified as fast, if purely
driven by the neutrino-neutrino interaction term for
vanishing neutrino vacuum frequency [4,6–10]; in this
case, a necessary but not sufficient condition for the
development of fast flavor instabilities is the existence of
electron lepton number (ELN) crossings in the angular
distribution of electron neutrinos and antineutrinos (note
that, under the assumption of periodic boundary condi-
tions, the existence of an ELN crossing becomes a
sufficient condition for the development of a flavor
instability), albeit a large growth rate for such flavor
instabilities does not necessarily imply large flavor con-
version [11,12]. In addition, neutrino self-interactions
could be triggered at high densities by the vacuum
frequency in the Hamiltonian [13,14]; in this case, we
consider the flavor instability to be slow, since it develops
thanks to the vacuum frequency, which is smaller than the
neutrino-neutrino interaction strength; note that, in this

case, a system with ELN crossings which is stable for
vanishing vacuum frequency may become unstable.
Owing to the nonlinearity of the system, the momentum-

changing collisional processes, which are lower-order
processes, can have a significant impact on the flavor
evolution, despite the widely different characteristic time-
scales characterizing flavor evolution and collisions [15–24].
The collisional processes of interest include momentum-
changing scattering as well as reactions responsible for the
creation and absorption of neutrinos [25–28]. As the
neutrino emission properties are affected by the collisional
processes, before and during flavor evolution, it is imper-
ative to understand their interplay. First attempts coupling
collisions and neutrino flavor evolution self-consistently
have been reported in the literature, but there is still a long
journey ahead [13,14,29,30].
Existing work employing a given initial ELN angular

distribution with a crossing finds that the effect of collisions
on flavor evolution is to isotropize the angular distribution,
with a resulting enhancement or suppression of flavor
conversion according to the initial ELN distributions
[15,17,18,31]. On the other hand, a system with no flavor
instability in the absence of the collision term can also
become unstable in the flavor space because of the so-
called collisional instabilities [16,20–22,30–32].
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In this paper, we aim to investigate slow,1 fast, and
collisional flavor instabilities, not relying on arbitrary
neutrino angular distributions but rather solving the neu-
trino kinetic equations with the collision terms for an
average energy mode to obtain the neutrino angular
distributions for each flavor. To this purpose, we rely on
static hydrodynamic backgrounds and thermodynamic
properties extrapolated at different postbounce snapshots
of a spherically symmetric core-collapse SN model with
mass 18.6M⊙ [33]. To compute the neutrino angular
distributions, in the collisional kernel, we include emission
and absorption of neutrinos through bremsstrahlung, pair
production, and beta reactions. In addition, we consider the
direction-changing effects due to neutral current scattering
of neutrinos on nucleons. We then investigate through the
linear stability analysis whether collisional, slow, or fast
flavor instabilities exist.
The manuscript is organized as follows. Section II

introduces the neutrino quantum kinetic equations; then
we discuss the procedure adopted to obtain the neutrino
angular distributions solving the kinetic equations in the
absence of flavor conversion in Sec. III. In Sec. IV, we
perform the linear stability analysis for the homogeneous
mode, with as well as without the collision term in order to
understand the effect of collisional instabilities, while we
discuss the impact of spatial inhomogeneities in Sec. V. We
summarize our findings and offer an outlook in Sec. VI. In
addition, Appendix A provides an outline of the collision
terms responsible for the production, absorption, and
momentum-changing interactions; while a comparison of
the neutrino number densities computed in this work with
the ones obtained from the hydrodynamical SN simulation
is shown in Appendix B.

II. NEUTRINO QUANTUM KINETIC EQUATIONS

For the sake of simplicity, we consider two monoener-
getic neutrino flavors, νe and νx with x ¼ μ; τ (or a linear
combination of the two). The equations of motion of
neutrinos and antineutrinos are, respectively,

i

�
∂

∂t
þ v⃗ · ∇⃗

�
ρ ¼ ½H; ρ� þ iC½ρ; ρ̄�; ð1Þ

i

�
∂

∂t
þ v⃗ · ∇⃗

�
ρ̄ ¼ ½H̄; ρ̄� þ iC̄½ρ; ρ̄�; ð2Þ

with ρ and ρ̄ being 2 × 2 density matrices representing the
flavor content of neutrinos and antineutrinos, respectively.
The diagonal components of the density matrices (ρii, with

i ¼ e; x) represent the neutrino occupation numbers [in
units of 1=cm3]; the number density of a given species, ni,
at a given location is obtained by

R
1
−1 ρiid cos θ. In Eqs. (1)

and (2), the dependence of the density matrices on the polar
angle θ (measured with respect to the radial direction; see
Fig. 1) and radius r is suppressed for the sake of brevity.
The velocity vector is represented by v⃗, while ∇⃗ is the

gradient operator. The inner product of the two is given by

v⃗ · ∇⃗ ¼ cos θ
∂

∂r
þ
�
sin2 θ
r

�
∂

∂ cos θ
; ð3Þ

where the dependence on the azimuthal angle ϕ is ignored
due to the assumption of spherical symmetry.
The Hamiltonians for neutrinos and antineutrinos

(H ¼ Hvac þHmat þHνν and H̄ ¼ −Hvac þHmat þHνν,
respectively) are made of the vacuum, matter, and the
self-interaction terms:

Hvac ¼
ωvac

2

�− cos 2θV sin 2θV
sin 2θV cos 2θV

�
; ð4Þ

Hmat ¼
�
λ 0

0 0

�
; ð5Þ

Hνν ¼
ffiffiffi
2

p
GF

Z
d cos θ0½ρðcos θ0Þ − ρ̄ðcos θ0Þ�

× ð1 − cos θ cos θ0Þ: ð6Þ

FIG. 1. Schematic diagram of the shell within which we solve
the neutrino kinetic equations taking into account emission,
absorption, and direction-changing processes. The polar angle
θ is defined with respect to the radial direction. It should be noted
that θ changes with the radius for a given trajectory.

1In this work, slow flavor instability indicates a flavor
instability that vanishes for zero vacuum frequency, independ-
ently on the existence of crossings in the lepton number angular
distribution. For fast instabilities, instead, we mean instabilities
that arise in the limit of vanishing vacuum frequency.

SHASHANK SHALGAR and IRENE TAMBORRA PHYS. REV. D 109, 103011 (2024)

103011-2



In the vacuum Hamiltonian, the vacuum frequency is
ωvac ¼ Δm2=2ϵν, with Δm2 ¼ 2.5 × 10−3 and ϵν being
the average neutrino energy calculated over all species,
while the mixing angle is θV ¼ 10−3. In the matter term, the
strength of neutrino-matter interactions is given by
λ ¼ ffiffiffi

2
p

GFne, with the electron number density being
ne ¼ YeρB=mN , where Ye is the electron fraction, ρB is
the baryon mass density, andmN is the nucleon mass (in the
following, we restrict our analysis to the linear regime in
which the matter term can be ignored because it does not
affect the instability of the system). Note that, when we
carry out the linear stability analysis in the following
sections, we neglect the matter term and effectively account
for it though a smaller value for the mixing angle (i.e.,
θV ¼ 10−3). The strength of the self-interaction potential,
generally denoted by μ ¼ ffiffiffi

2
p

GFnνe, characterizes the ν-ν
term of the Hamiltonian.
The collision term, schematically represented by the

functionals C and C̄, includes the absorption, emission, and
direction-changing processes defined as outlined in
Appendix A:

C½ρ; ρ̄� ¼ Cemit − Cabsorb ⊙ ρðcos θÞ

þ Cdir-ch
2

Z
d cos θ0½−ρðcos θÞ þ ρðcos θ0Þ�

þ cos θCani

Z
d cos θ0 cos θ0ρðcos θ0Þ; ð7Þ

C̄½ρ; ρ̄� ¼ C̄emit − C̄absorb ⊙ ρ̄ðcos θÞ

þ C̄dir-ch
2

Z
d cos θ0½−ρ̄ðcos θÞ þ ρ̄ðcos θ0Þ�

þ cos θC̄ani

Z
d cos θ0 cos θ0ρ̄ðcos θ0Þ: ð8Þ

Here, Cemit ¼ diagðCeeemit;C
xx
emitÞ and C̄emit ¼ diagðC̄eeemit; C̄

xx
emitÞ

govern the emission rate for each neutrino flavor. Cabsorb
and C̄absorb are matrices, and ⊙ represents elementwise
multiplication:

Cabsorb ⊙ ρðcos θÞ ¼ Ceeabsorbρee þ Cexabsorbρex

þ Cxeabsorbρxe þ Cxxabsorbρxx;

C̄absorb ⊙ ρ̄ðcos θÞ ¼ C̄eeabsorbρ̄ee þ C̄exabsorbρ̄ex

þ C̄xeabsorbρ̄xe þ C̄xxabsorbρ̄xx; ð9Þ

which is linearly proportional to the number of neutrinos at
a given location representing the rate at which neutrinos are
absorbed by the surrounding matter [34]. The off-diagonal
components of Cabsorb and C̄absorb are the average of the
diagonal elements of the diagonal terms. The terms Cdir-ch
and C̄dir-ch describe the direction-changing neutral current
scatterings, which do not change the number of neutrinos

and are flavor independent. The Cani and C̄ani terms depend
on the proton and neutron fractions. Moreover, we take into
account the anisotropy in the direction-changing scat-
ter term.
In Eqs. (7) and (8), the emission and absorption terms

seem to be independent of each other; however, that is not
the case and they are related by Kirchoff’s law as explained
in Appendix A. Hence, given either the absorption or the
emission rate, the other can be calculated (for this reason, in
Appendix A, we provide only the absorption rates for all
the processes).

III. STEADY STATE NEUTRINO ANGULAR
DISTRIBUTIONS

We adopt the outputs of a one-dimensional hydrodynam-
ical simulation of a SN with mass 18.6M⊙, SFHo nuclear
equation of state without muons, and gravitational mass
1.4M⊙ [33]. We consider static hydrodynamical back-
grounds and thermodynamical quantities, as well as the
local neutrino number density and first energy moment, for
selected time snapshots extracted at postbounce times
tpb ¼ 0.05, 0.12, 0.25, 0.5, 0.75, and 1 s, which are
representative of the accretion as well as the early Kelvin-
Helmholtz cooling phases. Then, we use these quantities as
inputs to calculate the collision terms [Eqs. (7) and (8)]. The
relevant properties of our benchmark hydrodynamical SN
simulations adopted to compute the collision terms are
illustrated in Fig. 2 (see also Appendix A).
The neutrino angular distributions are not provided by

the hydrodynamic simulation; hence, we compute them
solving Eqs. (1) and (2) and imposing H ¼ H̄ ¼ 0. Since
we are interested only in the angular distributions in the
proximity of the decoupling region, we solve Eqs. (1) and
(2) in a radial shell (see Fig. 1) whose width ½rmin; rmax�
differs for each postbounce time as summarized in Table I
and has been chosen such that the minimum radius rmin has
a number density of neutrinos that coincides with the
energy-integrated Fermi-Dirac distribution extracted from
the hydrodynamical simulation (i.e., at large optical depth,
such that neutrinos are fully coupled with matter), while
neutrinos are completely decoupled at the maximum radius
rmax [i.e., the backward component of the neutrino and
antineutrino number densities is negligible: ρiiðcos θÞ ≈ 0
for cos θ < 0]. We solve the neutrino kinetic equations
starting with no neutrinos and antineutrinos in the shell. As
the system evolves in time, the simulation shell is populated
with neutrinos and antineutrinos with the boundary con-
ditions being guided by the hydrodynamical simulation as
explained above.
For each time snapshot, we use a grid with 75 radial bins

and 75 angular bins uniformly spread over cos θ and solve
the neutrino kinetic equations for the time interval required
to achieve a classical steady state configuration.
Figure 3 shows the radial profiles of the angle-integrated

neutrino number densities computed for all three flavors
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through the procedure described above. While involving
some approximations, our method allows us to reproduce a
local neutrino density in agreement with the output of our
benchmark hydrodynamical simulation, as shown in
Appendix B. We note that, due to the single-energy
approximation used in this paper for simplicity, we slightly
overestimate the number density of ν̄e with respect to the
one of νe at large radii when comparing with our bench-
mark hydrodynamical simulation (see also Fig. 11). As
shown later, the fast flavor instability is triggered by the
presence of ELN crossings that would be still present,
despite the single-energy approximation; hence, the relative
importance of fast flavor instabilities with respect to the
collisional ones is not affected by the single-energy

FIG. 2. Radial profiles of the characteristic quantities extracted from our benchmark hydrodynamical SN simulation (see the main text
for details) at the postbounce times tpb ¼ 0.05, 0.12, 0.25, 0.5, 0.75, and 1 s and then adopted to compute the neutrino angular
distributions. The different panels represent the baryon number density, the electron temperature, the neutrino and electron chemical
potentials, and the neutron and electron fractions, from top left to bottom right, respectively.

TABLE I. Values of rmin and rmax used for each postbounce
time snapshot to take into account the varying location and width
of the decoupling region (see also Fig. 1).

tpb (s) rmin (km) rmax (km)

0.05 25 150
0.12 25 100
0.25 22 57
0.5 20 35
0.75 17 32
1 16 31
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treatment. We stress that the goal of the procedure
illustrated in this section is not to reproduce the neutrino
properties obtained through the hydrodynamical simulation
but rather to obtain neutrino angular distributions that are
not arbitrary but inspired by conditions found in the SN
interiors.
We define the decoupling radius as the one at which the

neutrino number density differs from the Fermi-Dirac one
up to 1% (see Appendix B) and mark such radius in Fig. 3
to guide the eye. One can see from Fig. 3 that the
decoupling radius becomes smaller as the postbounce time
increases. Because of the different nature of their

interactions, while the electron flavors decouple over a
broader radial range, the nonelectron flavor decouples
almost instantaneously [35].
Figure 4 displays an example of the radial evolution of

the neutrino angular distributions computed through the
procedure illustrated above for tpb ¼ 0.05 s. As also found
in Ref. [35], the angular distributions become progressively
forward peaked as a function of the radial distance and have
an angular spread that is the largest for νe, followed by ν̄e
and νx.
Figure 5 focuses on the radial evolution of the ELN

angular distribution for a representative postbounce time

FIG. 3. Radial evolution of the number densities of νe (in red), ν̄e (in green), and νx (in blue) for selected postbounce time snapshots
and computed solving the neutrino kinetic equations. We mark the radius of neutrino decoupling through a vertical line; this is the radius
at which the number density deviates from a Fermi-Dirac distribution (see Appendix B). One can see that the decoupling surface shrinks
as a function of time. Note that the radial range is not the same for all time snapshots.

DO NEUTRINOS BECOME FLAVOR UNSTABLE DUE TO … PHYS. REV. D 109, 103011 (2024)

103011-5



snapshot (tpb ¼ 0.05 s); interestingly, we find ELN cross-
ings for most radii. This finding holds for all postbounce
times considered in this work for our benchmark SN model
and is in contrast with the results presented in Ref. [35]; the
latter concluded, through a systematic analysis of different
one-dimensional SN models, that ELN crossings are not
present in one-dimensional hydrodynamical simulations,
albeit ELN crossings were found in multidimensional SN
simulations [36–41]. The results presented in Fig. 5 seem to
fulfill the criterion of Ref. [28] that linked the occurrence of
ELN crossings to comparable number densities of neutri-
nos and antineutrino (see also Refs. [22,24]). Yet, the
reason why ELN crossings are found in this work but not in
Ref. [35] requires further investigation and will be the focus
of an upcoming dedicated paper [42]—we stress that the
purpose of this work is to rely on the angular distributions
derived from first principles to investigate the interplay
among fast, slow, and collisional instabilities. The different
findings could be connected to the fact that the protoneu-
tron star cooling model of our benchmark SN simulation
includes effects from protoneutron star convection (treated
by a mixing-length approximation [1,43]) in contrast to the
SN models investigated in Ref. [35]. Other reasons might
be the different nuclear equation of state (SFHo for our
benchmark SN model vs Lattimer and Swesty with
compressibility modulus K ¼ 220 MeV in Ref. [35]) or
secondary subtle differences in our neutrino transport
results compared to those obtained with the VERTEX
transport used in Ref. [35].

IV. LINEAR STABILITY ANALYSIS FOR THE
HOMOGENEOUS MODE

The radial range where significant flavor evolution might
develop can be determined through the linear stability
analysis [10,44–46]. In this section, we linearize Eqs. (1)

FIG. 4. Polar diagram of the radial variation of the spectral
intensity of νe, ν̄e, and νx, from top to bottom, respectively,
computed solving the neutrino kinetic equations. The selected
radii and the time snapshot tpb ¼ 0.05 s have been chosen for
illustrative purposes. One can see that the neutrino distribu-
tions become progressively forward peaked as r increases,
with an angular spread that is largest for νe, followed by ν̄e,
and then νx.

FIG. 5. Angular distribution of the ELN for tpb ¼ 0.05 s
extracted at different radii as indicated. We find ELN crossings
for all considered postbounce time snapshots.
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and (2) assuming homogeneity (i.e., ignoring the advective
term in the neutrino kinetic equations) and perform the
linear stability analysis with and without the collision term
to investigate the impact of collisional instabilities. Since
we consider monoenergetic neutrinos for simplicity, we
here assume that the neutrino energy ϵν entering ωvac

changes as a function of the radius and it coincides with the
average of the first energy moments extracted from the
hydrodynamical SN simulation over all four flavors (see
the bottom right panel in Fig. 9).
The linearized version of Eqs. (1) and (2) for the off-

diagonal terms of the densitymatrices at a given r and cos θ is

FIG. 6. Radial profile of the growth rate of the flavor instability, obtained under the assumption of homogeneity, at various time
snapshots (from tpb ¼ 0.05 s in the top left panel to tpb ¼ 1 s in the bottom right panel). Each panel displays results obtained for four
different scenarios. The blue line uses the vacuum and the self-interaction Hamiltonian (slow instability), while the green line considers
only the self-interaction Hamiltonian (fast instability); for both blue and green lines, collisional damping is ignored. The same
calculation is repeated to obtain the dashed red and dot-dashed orange lines, but with collisional damping. It should be noted that, except
for tpb ¼ 0.12 s, the four lines are almost on top of each other and difficult to distinguish. The location of the onset of ELN crossings is
marked through the black vertical line to guide the eye.
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i
∂ρex
∂t

¼ ½ðHee −HxxÞρex − ðρee − ρxxÞHex�

−
i
2
ðCeabsorb þ CxabsorbÞρex −

i
4
ðCedir−ch þ Cxdir−chÞ

×
Z

½ρexðcos θÞ − ρexðcos θ0Þ�d cos θ0; ð10Þ

i
∂ρ̄ex
∂t

¼ ½ðH̄ee − H̄xxÞρ̄ex − ðρ̄ee − ρ̄xxÞH̄ex�

−
i
2
ðC̄eabsorb þ C̄xabsorbÞρ̄ex −

i
4
ðC̄edir-ch þ C̄xdir-chÞ

×
Z

½ρ̄exðcos θÞ − ρ̄exðcos θ0Þ�d cos θ0: ð11Þ

It should be noted that, due to the direction-changing
contribution in the collision term, the linearized equations
for ρexðr; cos θÞ and ρ̄exðr; cos θÞ depend on the density
matrix at all other angles, due to the integral in the last term
of Eqs. (10) and (11).
Equations (10) and (11) form an eigensystem for which

we calculate the eigenvalues following the procedure
described in Ref. [44]. In the absence of the collision
term, the eigenvalues of the system are complex conjugate
pairs; however, due to the presence of the collision term,
this is no longer true for Eqs. (10) and (11). The eigenmode
that has the eigenvalue with the largest positive imaginary
term, which we denote by κ, dominates and is responsible
for an instability for which we can compute its growth rate.
The growth rate of fast, slow, and collisional flavor

instabilities is linked to three timescales of our system, μ−1,
ω−1
vac, and the time between two successive collisions of

neutrinos—see also Refs. [13,14]. The timescale associated
with the growth rate is determined by the fastest timescale
that contributes to the flavor instability.
Figure 6 shows the growth rates for the fast instability

[obtained by calculating the eigenvalues of Eqs. (10) and
(11) when ωvac ¼ 0, green curve], along with the growth
rates obtained when the vacuum and the collision terms are
included. We find regions of flavor instability for all time
snapshots considered in this work. Interestingly, in all cases
except for tpb ¼ 0.12 s, the largest growth rate is triggered
by the ELN crossing (green curve), with regions (especially
at larger radii) where instabilities due to ωvac ≠ 0 dominate
(blue and dashed red curves), but with a growth rate which
is about 3 orders of magnitude smaller than the first peak.
The behavior of the growth rate for tpb ¼ 0.12 s represents
a special case (top right panel in Fig. 6); in fact, the fast
instability is absent (green line) in spite of the presence of
an ELN crossing. It is the interplay between the vacuum
frequency with the ELN crossing that makes the system
unstable and leads to the growth rate of the blue curve. This
is confirmed by the smaller (slow) growth rate that we
observe in this case with respect to all other snapshots. The
fact that the blue and red curves are exactly on top of each

other implies a subleading role of the collisional instability
at r≳ 56 km. The effect of the collisional instability is
visible for ωvac ¼ 0 (dot-dashed orange curve).
We conclude that the growth rate does not seem to be

dominated by collisional effects (dot-dashed orange curve)
across the investigated radial range and for all times, except
for a few minor exceptions. In very small regions just prior
to the growth of κ of the fast flavor instability, the
collisional instability is found, albeit with a very small

FIG. 7. Enlarged version of Fig. 6 for tpb ¼ 0.05, 0.12, and 1 s
to highlight the radial region where the collisional instability
starts to be present. In the top and the bottom panels, the blue line
is not visible, as it is behind the green line.
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growth rate compared to the fast flavor instability, the
collisional instability having the effect of pushing the
occurrence of the flavor instability to a smaller radius by
a few kilometers. Hence, collisions seem to modify the
effective vacuum frequency, in agreement with the findings
of Ref. [32]. In order to better inspect the growth of the
collisional instability, Fig. 7 shows an enlarged version of
Fig. 6 for tpb ¼ 0.05, 0.12, and 1 s. We can clearly see a
small collisional growth rate that appears just prior to the
fast or slow instability; however, the impact of this small
instability is likely to be negligible. The reason for this is
that the flavor instability develops before neutrinos are
completely decoupled from matter and, hence, forward
peaked. The flavor evolution at larger radii can, thus, be
transported to smaller radii because of neutrino advection;
hence, the fast or slow flavor instability might still have a
larger impact than collisional instability on the flavor
evolution at smaller radii. These findings suggest that, if
the growth rate of slow and fast instabilities should always
be larger than the collisional one, then the only scenario
where the collisional instability might be important should
be when both fast and slow flavor instability are absent.
It should be emphasized that the presence of a flavor

instability in a limited radial range does not imply that
significant flavor conversion develops in or is restricted to
that region; in fact, the advective term can cause the flavor
content at other radii to be modified because of flavor
conversion, even if the flavor instability is not initially
present in a certain spatial range [13,14,47–49].

V. IMPACT OF INHOMOGENEITY ON THE
DEVELOPMENT OF THE FLAVOR INSTABILITY

In this section, we address the effect of inhomogeneities
on the results presented in Sec. IV. To this purpose, we
generalize Eqs. (10) and (11) to include the spatial
dependence as follows:

i
∂ρex
∂t

¼ −iv⃗ · ∇⃗ρex þ ½ðHee −HxxÞρex − ðρee − ρxxÞHex�

−
i
2
ðCeabsorb þ CxabsorbÞρex −

i
4
ðCedir-ch þ Cxdir-chÞ

×
Z

ðρexðcos θÞ − ρexðcos θ0ÞÞd cos θ0; ð12Þ

i
∂ρ̄ex
∂t

¼ −iv⃗ · ∇⃗ρ̄ex þ ½ðH̄ee − H̄xxÞρ̄ex − ðρ̄ee − ρ̄xxÞH̄ex�

−
i
2
ðC̄eabsorb þ C̄xabsorbÞρ̄ex −

i
4
ðC̄edir-ch þ C̄xdir-chÞ

×
Z

ðρ̄exðcos θÞ − ρ̄exðcos θ0ÞÞd cos θ0: ð13Þ

It can be seen that the growth rate of ρex and ρ̄ex as a
function of time at a given spatial location can be modified

by the spatial derivative only if ∇⃗ρex and ∇⃗ρ̄ex are

significant in comparison to the other terms entering the
kinetic equations.
If periodic boundaries are assumed, in order to perform

the linear stability analysis for the inhomogeneous modes,
the ansatz that ρex and ρ̄ex can be represented as a

combination of Fourier modes, i.e., ρexðx⃗Þ ¼
P

k⃗ e
ik⃗·x⃗ρ̃k⃗ex

and ρ̄exðx⃗Þ ¼
P

k⃗ e
ik⃗·x⃗ ¯̃ρk⃗ex, has been usually considered in

the literature [50,51]. Here, ρ̃k⃗ex and ¯̃ρk⃗ex are the Fourier
components of the off-diagonal components of the density
matrices. Plugging the expressions for ρexðx⃗Þ and ρ̄exðx⃗Þ in
Eqs. (12) and (13), one can see that the linearized equations
decouple for each Fourier mode, if and only if the
Hamiltonian is independent of the spatial location, i.e.,
ρee and ρ̄ee are not functions of x⃗. If the Hamiltonian has
nontrivial spatial dependence, as in our case or the one
investigated in Ref. [30], this standard approach cannot be
applied to investigate the growth of the inhomogeneous
modes.2

To perform the linear stability analysis in the presence of
inhomogeneous modes, we should seek the eigenvalues of
Eqs. (12) and (13) for all spatial points simultaneously.
Since this task is challenging, we look for the eigenvalues
through an iterative procedure. We begin with the ansatz of
collective evolution:

ρexðx⃗Þ ∼QθðrÞe−iΩðrÞt; ð14Þ

ρ̄exðx⃗Þ ∼ Q̄θðrÞe−iΩðrÞt: ð15Þ

Our goal is to find the functions ΩðrÞ, QθðrÞ, and Q̄θðrÞ
that satisfy Eqs. (12) and (13). We find the zeroth-order
approximation for these functions, ignoring the advective
term; note that Ω0ðrÞ, Q0

θðrÞ, and Q̄0
θðrÞ are independent of

the spatial derivative in the zeroth-order approximation. For
each given location, the zeroth-order estimate of ΩðrÞ
denoted by Ω0ðrÞ is obtained, requiring that

���� I½1� − 1 −I½cos θ�
I½cos θ� −I½cos2 θ� − 1

���� ¼ 0; ð16Þ

where

I½f� ¼
Z

d cos θ
ρee − ρ̄ee
Ω0 −Hee

: ð17Þ

Once the eigenvalue is known, the zeroth-order estimate of
the eigenvectors Q0

θðrÞ and Q̄0
θðrÞ can be computed. With

the knowledge of the approximate dependence of QθðrÞ

2Note that the method adopted in the original papers proposing
the linear stability analysis for the inhomogeneous modes was
justified, since their goal was to explore the spontaneous breaking
of spherical symmetry, without inhomogeneity in the radial
direction [50,51].
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and Q̄θðrÞ on cos θ and r, it is possible to estimate the
magnitude of the advective term in Eqs. (12) and (13). This
helps us to obtain an iterative estimate of the growth rate
solving Eq. (16) but with the denominator that is modified
to include the advective term from the previous iteration.
The advective term applied to Eqs. (14) and (15) gives

v⃗ ·∇ρex ¼
�

1

QθðrÞ
v⃗ · ∇QθðrÞ − i

dΩðrÞ
dr

�
ρex; ð18Þ

and an analogous expression holds for antineutrinos. The
first term in the parentheses is generally small compared to
the second term but depends on cos θ. The effect of the
advective term is to replace Ω0 in Eq. (17) with
ðΩ0 − idΩ=drÞ. The real part of dΩ=dr is equivalent to
adding a matter term that does not affect the growth rate of
the instability. The imaginary part of dΩ=dr shifts the
imaginary part of the eigenvalue. This correction is not
significant if the derivative is small compared to ImðΩ0Þ.
For all the cases, we find that the results of this iterative
approach lead to results that are comparable to the ones
shown in Fig. 6 and, hence, are not shown.
The impact of inhomogeneities on the growth rate can

also be explored solving the neutrino quantum kinetic
equations numerically in the linear regime and comparing
the latter with the growth rate resulting from the linear
stability analysis carried out considering the homogeneous
mode. Figure 8 shows such a comparison at r ¼ 21.3 km
for tpb ¼ 1 s. We can see good agreement. We have carried
out this comparison for all snapshots and a range of radii for
each time snapshot. To this purpose, however, we have used
a self-interaction strength 3 orders of magnitude smaller

than the one computed relying on the neutrino properties.
The attenuation of the self-interaction strength has been
employed because of the technical challenges due to the
fact that the numerical simulation has to be performed for a
very long time to see the exponential growth for the very
small growth rates typical of certain radii. In all cases, we
find good agreement between the numerical solution of the
quantum kinetic equations and the linear stability analysis
carried out for the homogeneous mode (results not shown
here as comparable to the ones reported in Fig. 8). We note
that we also find good agreement between the results of the
linear stability analysis carried out considering the homo-
geneous mode (cf. the red dashed line in Fig. 6) and the
solution of the neutrino quantum kinetic equations for
tpb ¼ 0.12 s. As shown in Fig. 6, for this snapshot fast
instabilities are irrelevant for the homogeneous mode
despite the existence of ELN crossings (cf. green line);
because of the interplay between ωvac ≠ 0 and the ELN
crossing, the system becomes unstable, with a growth rate
represented by the blue curve. We note that the employment
of the attenuated self-interaction strength may overestimate
the relevance of the vacuum term; nevertheless, our main
conclusions would not be qualitatively affected.
Our findings seem to suggest that, in the absence of

periodic boundary conditions, there may be a unique
growth rate that is of relevance, and it is given by the
solution of Eqs. (12) and (13). This is different from what is
considered in Ref. [30], when the growth rate is calculated
for several Fourier modes; in this case, each Fourier mode
has its own growth rate, the largest of which is interpreted
as the physically relevant one. However, such an analysis
assumes self-sustaining perturbations at all possible length
scales, which is possible only if periodic boundary con-
ditions are imposed. While our findings should be taken
with caution due to the approximations involved, they call
for dedicated work to assess the interplay of inhomogene-
ities with fast and collisional instabilities. To this purpose, a
method to carry out the linear stability analysis in the
presence of inhomogeneities and in the absence of periodic
boundaries should be also worked out.

VI. DISCUSSION AND OUTLOOK

The coherent forward scattering of neutrinos onto each
other is responsible for triggering flavor instabilities that
could be fast (if driven by an ELN crossing for ωvac ¼ 0) or
slow (if the neutrino vacuum frequency also plays a role).
In addition, more recently, it has been advanced the
possibility that also the collision of neutrinos with the
background medium could be responsible for triggering
flavor conversion [16,20–22,24,30–32].
References [13,14] pointed out the possible coexistence

of slow and fast instabilities in the neutrino decoupling
region. Because of the non-negligible collision rate, in this
paper, we aim to investigate the interplay among slow, fast,
and collisional instabilities in the SN core. To this purpose,

FIG. 8. Growth of jR ρexd cos θj as a function of time at r ¼
21.3 km for tpb ¼ 1 s. The growth rate is given by the slope of
jR ρexd cos θj. The green line has been obtained by solving the
quantum kinetic equations, focusing on the linear regime. The
orange line shows the growth predicted by the linear stability
analysis for the homogeneous mode. The excellent agreement
between these two independent approaches in the linear regime
suggests that the inhomogeneous modes might negligibly affect
the growth rate.
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we rely on static hydrodynamic backgrounds and thermo-
dynamic properties extracted at postbounce times between
0.05 and 1 s from a spherically symmetric hydrodynamical
simulation of a SN with mass 18.6M⊙ [33]. We compute
the neutrino angular distributions in the absence of flavor
conversion solving the neutrino kinetic equations in the
decoupling region for an average energy mode.
We then carry out the linear stability analysis for the

homogeneous mode and investigate the occurrence of slow,
fast, or collisional flavor instabilities. We find that, due to
the ubiquitous existence of ELN crossings, the fast flavor
instability dominates virtually in all cases, except for one
time snapshot (tpb ¼ 0.12 s) where the slow flavor insta-
bility dominates. Under no circumstances did we find the
collisional instability to be the primary contributor to the
flavor instability.
Our findings are in contrast with the analysis presented

in Ref. [30]. This could be due to several reasons, such as
the application in Ref. [30] of the attenuation method [52]
to the self-interaction potential as well as an arbitrary
rescaling of the collision term for energies above 90 MeV
and an implementation of the collision term that is different
from ours. This approach may have led to a fictitious
growth of the collisional instabilities, which should not
have occurred otherwise. Note that the growth rates in
Ref. [30] (cf. their Fig. 3) are strongly time dependent due
to rapidly changing number densities, whereas we assume a
classical steady state in which the number densities of
neutrinos do not change in the linear regime.
We have ignored the effects of energy-dependent colli-

sion terms that can be important in several ways as pointed
out in Ref. [24]. However, the conclusions reached in
Ref. [24] cannot be directly extended to our model, since
the analysis in Ref. [24] does not assume an initial classical
steady state as we do. A systematic study of collisional
instabilities with energy-dependent collision terms is left to
future work. The role of inhomogeneities in the develop-
ment of flavor instabilities, for which we present only
preliminary findings in this paper, should also be subject of
future dedicated work.
In conclusion, collisional instabilities remain an in-

triguing possibility to trigger flavor conversion; however,
it is not clear whether in neutrino-dense astrophysical
environments flavor instabilities due to collisions could
drive and sustain flavor conversion. Further work will be
needed to analyze the development of flavor instabilities in
a large set of SN models, as well as neutron star merger
simulations, exhibiting a wide range of thermodynamic and
neutrino properties.
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APPENDIX A: COLLISIONAL TERMS

In the interior of a core-collapse SN, several processes
contribute to the production, absorption, and interaction of
neutrinos with matter. The most relevant ones are brems-
strahlung, pair production, beta reactions, and direction-
changing processes. In this appendix, we present the
implementation of these terms in the neutrino kinetic
equations [see Eqs. (7) and (8)]. Our modeling of the
collisional kernel was heavily inspired by the open-source
neutrino transport code NuLib [53].
It should be noted that there are other thermal processes

occurring in the SN interior which we ignore, namely,
plasmon decay, recombination, and photoproduction, as
they are subdominant [54]. In addition, we neglect the
energy-changing nonelastic neutrino-electron scattering
because it is subdominant, especially for the electron-type
neutrinos which determine the development of the insta-
bilities of interest to this work. We do not consider charge
current interactions on muons, since our benchmark SN
simulation does not include them for simplicity, despite the
fact that muons could be important [55].
For calculating beta processes and direction-changing

rates, we use the flavor-dependent average energy of neu-
trinos extracted from our benchmark hydrodynamical SN
simulation and displayed in Fig. 9, whereas for thermal
processes (i.e. bremsstrahlung and pair processes) we
calculate the production by integrating over the energy-
dependent emission rates and calculate the total absorption
rate by applying Kirchoff’s law to the energy-integrated
production rate.

1. Link between the absorption and emission rates

The absorption and emission rates are not independent in
the steady state configuration but are related by Kirchoff’s
law of radiation. As a consequence of Kirchoff’s law, the
emission rate is such that the number density reaches a
thermal distribution asymptotically in the absence of
advection. Kirchoff’s law is valid not just in thermal
equilibrium, but also in a steady state. Even in the low-
density region where the distribution of particles is far from
thermal, Kirchoff’s law can be used to relate the absorption
term to the emission one [56]:

Lint½ρii� ¼ ηνð1 − ρiiÞ − χνρii; ðA1Þ
where χν is the absorption rate and ην is the emission rate
without Pauli blocking. The right-hand side of Eq. (A1) is
zero in equilibrium or, equivalently,
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ην ¼ χν
ρeqii

1 − ρeqii
; ðA2Þ

with ρeqii being the Fermi-Dirac distribution of neutrinos.
Substituting Eq. (A2) in Eq. (A1), we obtain

Lint½ρii� ¼ Ciiabsorb½ρeqii − ρii�; ðA3Þ

where Ciiabsorb ¼ χν=ð1 − ρeqii Þ is the absorption rate with the
denominator included to account for Pauli blocking.
In the following, we discuss the emission and absorption

terms. As for νe and ν̄e, charged current interactions (beta
reactions) dominate over the neutral current processes, but
neutral current processes are important for heavy lepton
neutrinos.

2. Emission and absorption processes: Beta reactions

Beta reactions are the dominant channels determining
the number density of electron-type neutrinos. The absorp-
tion and emission of νe and ν̄e occurs through the following
interactions with free nucleons:

νe þ n ↔ pþ e−; ðA4Þ

ν̄e þ p ↔ nþ eþ: ðA5Þ

The correction to the beta reaction rates due to the presence
of heavier nuclei is subdominant and can be neglected for
our purposes.
The absorption cross section of electron neutrinos on

neutrons is given by [57]

σaνen ¼ σ0

�
1þ 3g2A

4

��hϵνei þ Δnp

mec2

�
2

×

�
1 −

�
mec2

hϵνei þ Δnp

�
2
�1

2ð1 − fe−ÞWM: ðA6Þ

Here, σ0 is the characteristic neutrino cross section,

σ0 ¼
4GFðmec2Þ2

πðℏcÞ4 ¼ 1.7612 × 10−44 cm2; ðA7Þ

with gA ¼ −1.254, Δnp being the difference in the mass of
the neutron and proton (mn −mp ¼ 1.2933 MeV), me the
mass of the electron, hϵνei the νe average energy displayed in
Fig. 9, fe− the Fermi-Dirac distribution of electrons, and

FIG. 9. Radial profile of the first energy moment for νe (top left), ν̄e (top right), and νx (bottom left) for all selected postbounce times
tpb ¼ 0.05, 0.12, 0.25, 0.5, 0.75, and 1 s extracted for our benchmark hydrodynamical SN simulation. The bottom right panel represents
the flavor-averaged first energy moment that we use as characteristic neutrino energy in the linear stability analysis.
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WM ¼ 1 − 1.01hϵνei=mn the weak magnetic correction
[56,58].
The related inverse transport mean free path of neutrinos is

Cabsorb ¼ σaνenXnρBNAð1 − ρeqeeÞ−1; ðA8Þ

where σaνen is given byEq. (A6) andXn andρB are the neutron
fraction and the baryon density shown in Fig. 2. In the
expression above, we ignore the Pauli blocking of nucleons,
as it is subdominant in the decoupling and free streaming
region [57,59].
A similar expression holds for ν̄e absorption with the

exception that we ignore the Pauli blocking for the out-
going positron and with other appropriate changes follow-
ing Ref. [57]:

σaν̄ep ¼ σ0

�
1þ 3g2A

4

��hϵν̄ei − Δnp

mec2

�
2

×

�
1 −

�
mec2

hϵν̄ei − Δnp

�
2
�1

2

WM̄; ðA9Þ

withWM̄ ¼ ð1 − 7.1hϵν̄ei=mpÞ. The inverse of the transport
mean free path is defined as

C̄absorb ¼ σaν̄epXpρBNAð1 − ρ̄eqeeÞ−1: ðA10Þ

The absorption mean free path can be used to calculate
the emission rate relying on Kirchoff’s law:

Cemit ¼ Cabsorbρ
eq
ii ; ðA11Þ

C̄emit ¼ C̄absorbρ̄
eq
ii : ðA12Þ

It should be noted that the equality above holds for a steady
state configuration and it is not necessary to have thermal
equilibrium. Hence, we can use Kirchoff’s law in the
trapped regime, decoupling regime, and the free streaming
regime. The top panels in Fig. 10 display the radial
evolution of the absorption rates due to beta processes
for electron neutrinos and antineutrinos for our selected
postbounce snapshots.

3. Emission and absorption processes: Pair production

Electrons and positrons annihilate to produce pairs of
neutrinos and antineutrinos:

e− þ eþ ↔ νi þ ν̄i; i ¼ e; x: ðA13Þ

The s-channel Feynman diagrams can create pairs of
neutrinos of all flavors, along with the t-channel diagrams
that can produce only pairs of electron-type neutrinos. Note
that the electron-positron pairs responsible for neutrino
production are relativistic in the SN interior, and, hence, the

production cross section depends on the momenta of the
initial pair.
To compute the production rate of the neutrinos, the

production kernel can be decomposed in Legendre poly-
nomials as described in Ref. [57]. Assuming that the initial
electron-positron pairs are isotropically distributed, we use
Eq. (C63) in Ref. [57] to calculate the production rate for all
neutrino species. Note that the produced neutrinos do not
have an isotropic distribution.
The emission rate can be calculated from the absorption

rate. However, there are some caveats that need to be
addressed. Unlike the beta processes, absorption occurs in
pairs. This implies that the νe absorption rate due to pair
processes is overestimated in the region where there are far
more νe’s than ν̄e’s. This effect is not very important for
electron-type neutrinos, as the beta reaction rates dominate
over the pair processes. Hence, we ignore the implications
of such an approximation, but it is possible to add a
correction to this overestimation of the absorption rate due
to pair process [60]. The second row in Fig. 10 shows the
absorption rates integrated over the neutrino energy dis-
tribution for all three neutrino flavors for different
snapshots.

4. Emission and absorption processes: Bremsstrahlung

The reaction nþ n ↔ nþ nþ νþ ν̄ is a subdominant
thermal production process responsible for the creation of
all flavors of neutrinos, and, as a consequence, it has
virtually no impact on the neutrino distributions of all
flavors; nevertheless, we include it in our calculations.
Even in the case of heavy lepton neutrinos, the brems-
strahlung channel can be ignored in most cases, as visible
from Fig. 10.
For estimating the production and absorption rates of

neutrinos through bremsstrahlung, we use the following
approximate formula [25]:

dQ0
ν

dϵν
¼ 0.234Qnb

T

�
ϵν
T

�
2.4
e−1.1ϵν=T; ðA14Þ

Qnb ¼ 2.0778 × 1030ζX2
nρ

2
B;14

�
T

MeV

�
5.5
; ðA15Þ

with T being the temperature, ρB;14 the baryon density in
units of 1014 g=cm3, Xn the neutron fraction (see Fig. 2),
and ζ ¼ 0.5 the correction factor.3 Equation (A15) is
accurate up to 3% [56]. The emission term associated with
this process is obtained by integrating the emissivity over
the energy range:

3It should be noted we follow Ref. [53] and Eq. (A15) differs
from Eq. (142) in Ref. [25] because of an error in that paper [61].
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Cemit ¼
Z

dϵν
dQ0

ν

dϵν
: ðA16Þ

The absorption term is related to the emission term through
Kirchoff’s law:

Cabsorb ¼
Cemit

neqi
; ðA17Þ

which is shown in the third row in Fig. 10.

5. Direction-changing processes:
Neutral current interactions

The momentum-changing interaction of neutrinos with
matter can be due to neutral current interactions as well as
charged current interactions. As for the latter, only the
electron flavors (νe and ν̄e) can participate in charged
current interactions with electrons; yet, this momentum-
changing process is subdominant with respect to the neutral
current scattering of neutrinos with nucleons. Therefore, in
the following, we focus on neutral current processes.

FIG. 10. Radial evolution of the absorption rates due to beta reactions for νe and ν̄e (top row; the emission rate is linked to the
absorption one through Kirchoff’s law), pair production (second row), bremsstrahlung (third row), and direction-changing neutral
current scattering processes (bottom row) that we compute at various postbounce time snapshots and for νe (left panels), ν̄e (middle
panels), and νx (right panels). The difference in the interaction rate for the different flavors is due to the different average energy of each
flavor. The emission rates are related to the absorption rates by Kirchoff’s law. At small r, beta processes are dominant. At larger radii,
direction-changing reactions start to become competitive with beta processes and are more efficient than pair and bremsstrahlung
reactions, with the latter rapidly decreasing as a function of time.
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We calculate the momentum-changing cross section in
the single-energy approximation (relying on the flavor-
dependent neutrino average energy shown in Fig. 9), so the
momentum-changing cross section can be viewed as a
direction-changing one. The direction-changing cross sec-
tion also depends on the matter composition. However, for
our purposes, the contribution of nuclei (and related nuclear
matrix elements) can be ignored. Hence, we focus on the
interaction of neutrinos with protons and neutrons. We also
ignore the neutral current interactions of neutrinos with
electrons, since they are subdominant with respect to the
interaction with nucleons.
As the interaction of neutrinos with nucleons is inde-

pendent on the neutrino flavor, the transport cross section
with neutrons and protons is given by [56]

σtrn ¼ σ0
4

� hϵνi
mec2

�
2
�
1þ 5g2A

6

�
; ðA18Þ

σtrp ¼ σ0
6

� hϵνi
mec2

�
2

½ðC0
V − 1Þ2 þ 5gAðC0

A − 1Þ2�; ðA19Þ

where σ0 is defined as in Eq. (A7), gA ¼ 1.254, C0
V ¼

1=2þ 2 sin2 θW (with θW being the Weinberg angle), and
C0
A ¼ 1=2. The direction-changing collision term Cdir-ch as

follows:

Cdir-ch ¼ ρBNAðXnσ
tr
n þ Xpσ

tr
pÞ: ðA20Þ

It should be noted that the direction-changing neutral current
interactions are not isotropic but backward peaked. The
neutrino interactions with protons have an anisotropy of
about 10% (Cani ¼ 0.1Cdir-ch), whereas the interactions with
neutrons have an anisotropy of about 33% (Cani ¼
0.33Cdir-ch). This is taken into account through Cani, which
is the weighted average of the two anisotropies in Eqs. (7)
and (8). The bottom panels in Fig. 10 illustrate the depend-
ence of the direction-chancing processes on the radius; note
that the flavor dependence of the neutral current interaction
rate in Fig. 10 is due to the fact that the average energy of
neutrinos depends on the neutrino flavor.

APPENDIX B: COMPARISON OF THE
NEUTRINO NUMBER DENSITIES WITH THE
OUTPUT OF OUR BENCHMARK SUPERNOVA

MODEL

Relying on the hydrodynamical and thermodynamic
quantities, local neutrino number density, and first energy
moment extracted at selected postbounce times from our
benchmark SN simulation, we compute the neutrino
angular distributions, following the modeling of the colli-
sion term outlined in Appendix A. In this appendix, we
compare the flavor-dependent and angle-integrated neu-
trino number densities that we obtain from postprocessing
the output of our 18.6M⊙ SN model [33] with the neutrino
number density extracted from the hydrodynamical

simulation to assess the degree of accuracy of our collision
term. The comparison is shown in Fig. 11. Despite the good
agreement between the neutrino number densities that we
compute in postprocessing and the outcome of hydrody-
namical simulations, we stress that the purpose of this work
is not to reproduce the neutrino properties from hydrody-
namical simulations but rather relies on angular distribu-
tions derived from first principles to investigate the relative
importance of collisional, fast, and slow flavor instabilities.
In the SN core, neutrinos are continuously produced and

absorbed at the same time (see Appendix A). These two
processes eventually lead to thermal equilibration.
However, the baryon density falls rapidly as a function
of radius (see Fig. 2), leading neutrinos to go out of thermal
equilibrium and stream freely. The radius of decoupling at
which this happens depends on the magnitude of the
production and absorption rates compared to the direc-
tion-changing term. As shown in Fig. 11, this implies that
the neutrino number density coincides with the number
density obtained by integrating Fermi-Dirac distribution
over energy in the dense region, and it deviates from the
energy-integrated Fermi-Dirac number density at larger
radii where the matter density is lower, and the angular
distribution becomes forward peaked. In order to assess the
location of the neutrino decoupling surfaces in Fig. 3, we
compare the local neutrino number density with the one
obtained from the energy-integrated Fermi-Dirac neutrino
density and define the neutrino decoupling radius as the one
where the neutrino number density deviates from the Fermi-
Dirac one more than 1% (see vertical lines in Fig. 11).
It should be noted that in Fig. 11 the ν̄e number density is

slightly larger than the one from the “SNmodel” because of
the single-energy approximation employed in this work.
We demonstrate this by performing an energy-dependent
computation and report the results in Fig. 12 for the
snapshot tpb ¼ 1 s. The top panel in Fig. 12 shows that
the discrepancy between the number densities obtained in
this work and the ones from the Garching simulation is
alleviated almost completely. The remaining negligible
residual difference is due to the fact that our implementa-
tion of the collisional term is not identical to the one
employed in the Garching simulation.
The bottom panel in Fig. 12 shows that the growth rate

obtained performing a multienergy computation remains
qualitatively unchanged (cf. bottom right panel in Fig. 6). It
should be noted, however, that there are some quantitative
differences between the single-energy and multienergy
calculations: In the multienergy simulation, the maximum
growth rate is slightly smaller and the region of instability is
shifted to slightly larger radii. However, this does not affect
our main conclusions. Figure 12, hence, demonstrates that
the single-energy approximation is justified in our case.
We note that the green dotted line (i.e., ν̄e) is below the

red one (i.e. νe) in Fig. 11; on the other hand, the solid and
red lines cross at ∼22.6 km, and the ν̄e number density is
larger than the νe’s one at larger radii. Such crossing
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between the νe and ν̄e number densities is also present in
our multienergy simulations in Fig. 12, although much
less prominent, and it might give rise to differences in
the development of ELN crossings. We conclude that the
single-energy approximation slightly overestimates the
number density ν̄e facilitating the presence of a sharper
ELN crossing. However, although shallower, an ELN
crossing is also expected in the multienergy calculation
(cf. Fig. 12). This implies that our single-energy treatment

does not affects the relative importance of fast vs collisional
instabilities—the latter being dominant only in the absence
of ELN crossings. In fact, a comparison between the
bottom panel in Fig. 12 and the bottom right panel in
Fig. 6 shows that the growth rate for fast instabilities
already develops at smaller radii (the ELN crossing devel-
oping at 20.5 km for the single-energy simulation vs
21.1 km for the multienergy simulations) and is qualita-
tively unchanged by this feature.

FIG. 11. Radial evolution of the neutrino number densities computed in this work (solid lines) of νe (in red), ν̄e (in green), and νx (in
blue) along with the ones extracted from our benchmark SN simulation (denoted by “SN model” in the legend) for selected postbounce
time snapshots. The radius at which the number density of each neutrino flavor deviates from the Fermi-Dirac one corresponds to the
radius of neutrino decoupling marked by a vertical line. While involving some approximations, our method allows us to reproduce the
local neutrino density, which is in general agreement with the output of the hydrodynamical simulation. Note that the radial range is not
the same for all time snapshots.
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