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We consider dark matter velocity distributions with an anisotropic component, and analyze how the
velocity structure can be probed in a solid-state ionization detector with no directional detection capability
using a daily modulation effect due to the anisotropic response function of the target. We show that with an
energy resolution of < 10 eV it is possible to identify the presence of an anisotropic component consistent
with observations for sub-GeV dark matter, and that introduction of daily modulation information
substantially improves the sensitivity in a narrow mass range.
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I. INTRODUCTION

The paradigm of cold dark matter (DM) explains, within
the Standard Model of cosmology, the observed features of
cosmic microwave background, large scale structure in the
universe and its hierarchical formation [1–3]. While astro-
physical and cosmological observations unravel the abun-
dance of dark matter, they do not allow insight into more
detailed properties of a hypothetical dark matter particle.
Even the most basic parameter of dark matter particle,

its mass, remains unknown. The low end is set around
m ∼ 10−22 eV by ultralight bosons [4–6] having de Broglie
wavelength of λ ∼ 1 kpc. Together with the high end
around Oð10M⊙Þ, this leads to a dynamical mass range
of hundred orders of magnitude. The truly vast mass range
is reflected in a great variety of different dark matter
candidates and their interaction strengths.
It is an appealing possibility that DM would be con-

stituted by a new elementary particle, embedded with
ordinary matter in some theory beyond the Standard
Model (SM) of elementary particle interactions. This
allows to determine the present DM abundance by proc-
esses in the early Universe, such as an asymmetry [7–9],
thermal decoupling [10,11] or freezing in [12,13]. For cold
particle DM whose origin is in thermal processes, the
DM mass range is constrained from below, m≳O ðkeVÞ,

by structure formation and from above, m≲Oð100 TeVÞ,
by unitarity of the scattering cross section.
One simple possiblity of keV-scale DM is sterile

neutrinos [14]. As another example, many beyond SM
scenarios give rise to weakly interacting massive particles
(WIMPs), which have mass in the range m≳ 10 GeV to
few TeV and couple to the Standard Model via the
electroweak interaction [15]. Recently, in a more general
setting, much theoretical and phenomenological interest
has focused on various hidden sector models where the
particle content is singlet under the Standard Model
interactions and couples only through specific portal
interactions [16–19]. Often the DM candidates in this
context are also referred to as ’WIMPs’, where the weak-
ness means the overall strength of the nongravitational
interaction. Such general models provide simple bench-
marks over the mass rangeOðkeV–TeVÞ to be searched for
in direct detection experiments.
The methods to directly detect interactions between dark

matter and ordinary matter depend on the DM mass range
and its interactions. For cold particle matter with masses
above keV-scale, the direct detection of dark matter
attempts to observe the small recoil energy deposits in
scattering events between DM particles and some target
material. Experiments utilizing liquid xenon target have
made great progress over the past decades in constraining
dark matter interactions as a function of dark matter
mass [20–25]. Scattering on xenon atoms rapidly loses
sensitivity below dark matter masses of 10 GeV. To
constrain dark matter with sub-GeV mass one can try to
utilize sensitivity to directional dependence of the dark
matter scattering evenets [26]. This can be expected to be
applicable in particular in detectors using crystals as a
target, e.g. [27–29].
Generally, the expected rate for scattering events with

given observable characteristics depends on the scattering
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cross section between the DM and the target atoms, on the
flux of the DM particles incident on the target, and on the
response function of the target material [30]. The latter is
a property specific to the material, describing the many
body effects relevant for transforming the initial nuclear or
electron recoil into an observable signal with given meas-
urable properties. The DM flux is determined by the
velocity distribution of the DM particles in the rest frame
of the detector, i.e. the laboratory frame.
For light dark matter with mass in the range of ≲ GeV,

the response function of solid-state target materials plays an
important role in understanding the signal event rate, as
discussed recently e.g. in [30–34]. An example of such
phenomena is the anisotropic threshold for nuclear recoil
induced ionization in a semiconductor target, discussed
in [35,36]. This effect leads to a daily modulation in the
event rate, and also affects the annual modulation of the
event rate [37].
The dark matter velocity distribution is commonly

assumed to be an equilibrium distribution in the Galactic
rest frame, where the velocity dispersion is given by the
virial temperature of the Milky Way (MW) halo, with a
high-velocity cutoff removing particles with velocities
above the local escape velocity. This distribution, called
the standard halo model (SHM), would presumably be
the result of a perfect virialization. However, from obser-
vations of stars in the Milky Way (MW), it is evident that
the MW is not perfectly virialized, and therefore it is
reasonable to assume that neither is the DM halo. Based on
the GAIA measurements [38] of the motions of MW stars,
Evans et al. [39] presented an updated halo model SHMþþ

that features an anisotropic ‘sausage’ component and
discussed how this updated halo model would alter the
predictions for DM event rate in direct detection experi-
ments. Other non-SHM velocity distributions and their
effect in dark matter direct detection have been discussed in
the literature, see e.g. [40–52].
In this paper we analyze the expected daily and annual

modulation signals in a low-threshold germanium ioniza-
tion detector in the presence of an anisotropic component in
the velocity distribution of the MW halo. We model the
response of the detector by approximating the directional
dependence of ionization by the threshold energy for defect
creation [35,36]. This is determined by first principle
molecular dynamics, see e.g. [53,54] for a detailed dis-
cussion and [35–37] for earlier applications in the context
of dark matter detection. We show that at high degrees
of anisotropy, realized in the SHMþþ model, the angular
distribution of dark matter scattering events from the
anisotropic component exhibits a bimodal structure, which
amplifies the high-frequency components of the daily
modulation signal relative to that produced by a fully
isotropic distribution. We also perform a likelihood ratio
test analysis to study the strength of direct detection signal

needed to detect the presence of an anisotropic component
in the velocity distribution.
We find in particular, that with a sufficiently large

number of signal events, and for DM masses for which
most of the recoil spectrum is above the detector threshold,
an experiment with < 10 eV energy resolution is sensitive
to the features of the SHMþþ model. As the DM masses
approach the values at the detection threshold, the gains in
sensitivity to the anisotropic component, although sub-
stantial, are not sufficient to probe the SHMþþ region.
The paper is organized as follows. In Sec. II we review

the basic formulas for the event rate, emphasizing the
structure of integrals over velocity in the case of directional
sensitivity of the target. In Sec. III we describe the
numerical methods we have applied to perform the angular
integrals in the event rate and in Secs. IV and V we discuss
the periodic structure of the event rate and how this affects
the sensitivity of a semiconductor detector to the aniso-
tropic component in the SHMþþ DM velocity distribution.
In Sec. VI we present our conclusions.

II. DARKMATTER EVENT RATE AND VELOCITY
DISTRIBUTIONS

Let us start by reviewing briefly the main formulas
relevant for scattering of a DM particle on a target nucleus.
The differential DM–nucleus scattering rate (per unit
detector mass) is given by [55]

d2RS

dEdΩ
¼ 1

64π2
ρ0

m3
DMm

2
N

Z
hjMj2iδðv⃗ · q̂ − vminÞfðv⃗Þd3v:

ð1Þ

Here ρ0 is the local dark matter density, mDM and mN are
the masses of the dark matter particle and nucleus,
respectively, M is the DM–nucleus scattering amplitude,
and fðv⃗Þ is the dark matter velocity distribution. The speed
vmin is defined as

vmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mNE
2μ2DM;N

s
; ð2Þ

where E is the energy of the scattering nucleus and μDM;N is
the reduced mass of the DM-nucleus system. Commonly
the interaction is assumed to be straightforward spin-
independent scattering, in which case the scattering ampli-
tude may be simply replaced with a cross section. In this
work we describe the scattering amplitude in the more
general framework of a nonrelativistic effective theory [56]
where all interactions are expressible as combinations of
twelve operators. From this theory follows the result that,

hjMj2i ¼ m2
N

m2
n

X12
j;k¼1

X1
a;b¼0

caj c
b
kW

ab
jk ðq2; ðv⃗⊥Þ2Þ; ð3Þ
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where Wab
jk ðq2; ðv⃗⊥Þ2Þ depend on the nuclear form factors,

and are functions of the momentum transfer q2 and the DM
velocity perpendicular to the momentum transfer, ðv⃗⊥Þ2.
The factors caj are coefficients of the interaction operators
in the effective theory with a ¼ 0, 1 an isospin index
(corresponding to isoscalar and isovector). In the limit of
small q, the form factors can be taken as truncated
polynomials. In fact, usually the lowest-order term is
sufficient. Then Wab

jk ðq2; ðv⃗⊥Þ2Þ reduce to polynomials of
q2 and ðv⃗⊥Þ2. It follows that we can transform the sum into
a form,

hjMj2i ¼
X∞
n¼0

X1
s¼0

Mnsq2nðv⃗⊥Þ2s: ð4Þ

The main consequence of these considerations is that the
computation of the integral (1) reduces to the computation
of two Radon transform integrals,

f̂sðq̂; vminÞ ¼
Z

ðv⃗⊥Þ2sδðv⃗ · q̂ − vminÞfðv⃗Þd3v; ð5Þ

with s ¼ 0 or s ¼ 1.
For the dark matter velocity distribution, the standard

halo model (SHM) is usually assumed, which has a simple
isotropic form,

fIðv⃗Þ ¼
1

N
e−v

2=v2
0Θðvesc − vÞ: ð6Þ

Here N is a normalization constant, v0 is the velocity
dispersion, which is taken equal to the local circular speed
of the MilkyWay at the location of the solar system, and the
escape velocity of the Milky Way vesc acts as an upper limit
for dark matter velocities.
This simple isotropic approximation is easy to work

with, but unlikely to be the correct shape of the velocity
distribution. Recent studies suggest at least the presence of
an anisotropic component in addition to the isotropic one,
which gives rise to the SHMþþ model presented in [39].
The form of this velocity distribution is

fSHMþþðv⃗Þ ¼ ð1 − ηÞfIðv⃗Þ þ ηfAðv⃗Þ; ð7Þ

where fI is the isotropic component (6), fA is the
anisotropic component and 0 ≤ η ≤ 1 is the anisotropy
fraction. The velocity distribution for the anisotropic
component is

fAðv⃗Þ ¼
1

N
e−

1
2
v⃗TΣ−1v⃗Θðvesc − vÞ; ð8Þ

where Σ ¼ diagðσ2r ; σ2θ; σ2ϕÞ in the galactic frame, with

σ2r ¼
3v20

2ð3 − 2βÞ ; σ2θ ¼ σ2ϕ ¼ 3v20ð1 − βÞ
2ð3 − 2βÞ : ð9Þ

From [39], the value of the circular rotation speed in
SHMþþ is v0 ¼ 233 km s−1, the escape velocity is vesc ¼
528 km s−1 and the anistropy parameter β is 0.9.
The scattering of dark matter particles is not observed

in the rest frame of the velocity distribution, which is the
galactic frame, but usually in an Earth-based laboratory.
Therefore in Eqs. (1) and (5) the velocity v⃗ is replaced with
v⃗þ v⃗lab, where v⃗lab is the velocity of the laboratory in the
galactic frame. It can be expressed in terms of its various
contributions as v⃗lab ¼ v⃗circ þ v⃗pec þ v⃗earth þ v⃗rot [57].
Here v⃗circ is the circular velocity of the solar system in
the galactic plane, v⃗pec is the peculiar velocity, v⃗earth is
the velocity of the Earth around the sun, and v⃗rot is the
rotational velocity of the point on Earth’s surface. The
variation in the magnitude of v⃗lab due to the changing
direction of v⃗earth results in the well-known annual modu-
lation of the dark matter event rate.
The SHM distribution is simple enough that the integrals

in Eq. (5) are straightforward to evaluate analytically.
However, even for the slightly more general anisotropic
distribution (8), no analytical expression for the Radon
transform exists, and one must resort to numerical evalu-
ation of the integrals. The general numerical integration of
dark matter event rates is challenging, because obtaining
the complete angle and energy integrated scattering rate
requires computation of a six-dimensional integral; first a
three-dimensional integral over the velocities of the dark
matter particles, and then a two-dimensional integral over
the recoil direction of the scattered nucleus and a one-
dimensional integral over its energy.
To address the above issues, we present here a simple

framework that we have used for efficient evaluation of
dark matter event rates. The first observation is the one
made in relation to Eq. (4), where the effective theory of
dark matter enables writing the double differential rate in
Eq. (1) to be expressed in terms of the Radon integrals from
Eq. (5). This gets rid of any dependence on the model of
dark matter interaction within the velocity integral. In the
general case where we are not in the rest frame of the
dark matter velocity distribution, the velocity distribution
fðv⃗þ v⃗labÞ depends on time via v⃗lab, but this can be
resolved: the change of the frame can be performed after
the Radon transformation [36,55]. Consider a simple
change of variables to write the Radon integrals in the form,

f̂sðq̂; vminÞ ¼
Z �ðv⃗− v⃗labÞ⊥

�
2sδðv⃗ · q̂−wÞfðv⃗Þd3v; ð10Þ

where w ¼ vmin þ v⃗lab · q̂. The nontransverse (s ¼ 0)
integral is a function of w and q̂, which form a three-
dimensional parameter space. The transverse (s ¼ 1) inte-
gral depends also on the components of v⃗lab, which is not
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desirable. However, we may expand the problematic
term as

�ðv⃗ − v⃗labÞ⊥
�
2 ¼ v2 − ðq̂ · v⃗Þ2 þ 2ððq̂ · v⃗labÞq̂ − v⃗labÞ · v⃗

þ v2lab − ðq̂ · v⃗labÞ2; ð11Þ

which allows us to write

f̂1ðq̂; wÞ ¼ f̂01ðw; q̂Þ þ 2
�ðq̂ · v⃗labÞq̂ − v⃗lab

�
·
ˆ
f⃗ðw; q̂Þ

þ �
v2lab − ðq̂ · v⃗labÞ2

�
f̂0ðw; q̂Þ: ð12Þ

Here f̂01ðw; q̂Þ is f̂1ðq̂; wÞ at v⃗lab ¼ 0, and ˆf⃗ðw; q̂Þ ¼R
v⃗δðw − q̂ · u⃗Þfðv⃗Þd3v. Importantly, all the integrals are

now independent of v⃗lab, only depending on w and q̂. It
is therefore possible to construct a collection of three-
dimensional interpolants out of these integrals for w and
two angle parameters. Computing the Radon transforms
then consists of evaluating the relevant interpolants at the
point corresponding to ðw; q̂Þ, and evaluating the sum (12)
for the transverse (s ¼ 1) case. The integrals only need to
be recomputed when changing parameters of the velocity
distribution, and the results may be cached for reuse.
Because of the δ-function appearing in the Radon trans-
form, the integrals that need to be evaluated numerically are
only two dimensional.
When it comes to event rates, we observed that it is

generally useful to obtain the differential rate dRS=dE by
first performing the angular integral over the recoil direc-
tion. There are two reasons for this: First, dRS=dE can be
expressed as a linear combination of integrals of the
velocity distributions over scattering angle in the Radon
transforms. Therefore, these two angular integrals can be
evaluated for a range of energies, the results can be saved
and repeatedly used for different models of dark matter
interaction. Second, with detectors that can measure
energy, we are in any case generally interested in the
energy spectrum of the event rate, and if dRS=dE has been
evaluated on an energy grid, it is trivial to integrate it to
obtain the total rate.

III. EVENT RATE ANGLE INTEGRALS

In general, not all recoil events are detectable in a given
experiment, given that the recoil needs to result in a signal
measurable by the detector hardware. For example, in a
semiconductor ionization detector, a nuclear recoil would
have to produce an ionization event in the lattice that would
then be measured. We therefore express the observable
signal event rate in a very general form as

d2R
dEdΩ

¼ d2RS

dEdΩ
PðE; q̂Þ; ð13Þ

where RS is the rate of scattering events as defined in
Eq. (1), and PðE; q̂Þ describes the probability that a
scattering at energy E in the direction q̂ produces a
detectable signal. In materials such as single crystal semi-
conductors, the function PðE; q̂Þ may have significant
directional dependence. In the context of a dark matter
direct detection on Earth, where the scattering rate RS itself
has some anisotropy, this will lead to a signal that changes
depending on the detector orientation, which then results in
modulation effects as the detector moves along with the
Earth as time passes.
For the purpose of this analysis, we use a model where

PðE; q̂Þ is a simple step function ΘðE − Eminðq̂ÞÞ, where
Eminðq̂Þ is the minimum nuclear recoil energy needed to
produce an ionization event. The calculation of the thresh-
old ionization energy Eminðq̂Þ from first principles is not
feasible with the existing numerical methodology. We use
an approximation that the ionization energy in a given
direction should be correlated with the crystal defect
creation threshold, and therefore use the defect creation
threshold energy surface to model Eminðq̂Þ as we have
done in previous studies [35–37]. This approach is based on
the reasoning that the directional dependence of both the
ionization and defect creation follow from the symmetries of
the crystal structure. The defect creation threshold energies
may be computed using well-studied methods of classical
molecular dynamics simulations, described in [58]. From
these simulations we obtain a set of samples Eminðq̂iÞ of the
defect creation threshold energies for a random collection of
directions fq̂ig, sampled uniformly on the unit sphere. In
principle, Eq. (13) may be integrated simply by performing a
Monte Carlo integral over the sampled directions fq̂ig. This,
however, is not ideal due to two issues.
The first issue is that the final result may be affected

by discretization artifacts. These can be expected to arise
because, due to the numerical cost of molecular dynamics
simulations, the data contains relatively few directions
[Oð105Þ at most]. This is generally not an issue if the
angular distribution d2R=dEdΩ covers a substantial por-
tion of the unit sphere. However, in the specific case of light
dark matter with scattering energies at the threshold

E ∼ min
q̂∈ S2

fEminðq̂Þg; ð14Þ

the angular distribution of recoil events becomes focused to
a small section of the sphere, which may be covered by
Oð100Þ of the sample directions. This, then, may lead to
spurious modulation effects in the angle integrated signal as
the modulation is not only sensitive to the true shape of the
energy surface, but also to the random sampling of points.
The second issue is that Monte Carlo integration is
inherently slow for a given accuracy relative to more
sophisticated methods, and is not generally viable for
sampling the event rate for thousands of time points with
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Oð105Þ directions in the angle integral, in the general case
where d2RS=dEdΩ has no simple analytic expression.
In order to have a flexible method for computing

d2R=dEdΩ and its integrals, we use the sampled values
Eminðq̂iÞ to construct a spherical harmonic fit as an
approximation of the threshold energy surface. This has
the benefit of suppressing spurious high-frequency noise.
For purposes of numerical efficiency, an interpolating
function of the resulting approximation is then constructed.
The construction of an approximation of the surface that
can be evaluated at any point enables the application of
generally more efficient adaptive numerical integration
methods on (13). However, because the support of ΘðE −
Eminðq̂ÞÞ essentially defines the integration region as some
complicated subset of the unit sphere, naive integration
over the entire sphere may fail due to discontinuities. This
is especially true in cases where the support is very small.
In such a case all samples of the integrand, selected by
the adaptive algorithm in some subregion, might fall on
points where the integrand is zero, yielding an erroneous
“exact” estimate of zero for the integral in the subregion.
To mitigate issues with the discontinuities, before evalu-
ating the angular integral, we construct a set of rectangular
integration subregions to approximate the support of
ΘðE − Eminðq̂ÞÞ, such that the integration routine is guar-
anteed to properly sample every patch where the integrand
is nonzero. The choice of rectangular subdivision here is
suboptimal because of the sharp dropoff of the integrand at
the boundary, and significant speedups could probably be
achieved by instead implementing an integration routine
based on triangular subdivision.
As can be seen from observing the molecular simulation

data for germanium, the defect creation threshold surface
generally contains some features at fairly small angular
scales, suggesting that a fully accurate fit would require a
relatively high order lmax of spherical harmonic expansion.
However, because the angular distribution of dark matter
scattering events is relatively more spread out, we find
that beyond about lmax ¼ 30 introducing higher-order

spherical harmonics does not significantly change the
results obtained from the angular integrals.

IV. STRUCTURE OF EVENT RATEMODULATION

The anisotropy of the detector material is what gives rise
to a daily modulation effect. We therefore expect the
precise nature of the modulation signal to depend on the
structure of the anisotropy. In particular, in crystalline
detector materials, where the anisotropy results from the
crystal structure, the structure of the modulation signal is
sensitive to the symmetries of the crystal structure as well
as to the orientation of the crystal in the laboratory frame.
It is additionally dependent on the dark matter velocity
distribution itself, as well as the velocity v⃗lab of the
laboratory frame relative to the velocity distribution, which
determine the angular distribution of the dark matter
scattering rate in the laboratory frame.
Figure 1 shows the region of the sky swept by the dark

matter wind direction (−v̂lab) throughout the year in two
different coordinate systems, corresponding to two differ-
ent latitudes: at the equator (0° north), and at 48° north.
Each day the rotation of the Earth causes the direction of
the dark matter wind to sweep a circular path around the
north pole of the celestial sphere, and the radius of the path
changes gradually throughout the year due to the motion of
the Earth around the Sun. In the figure, the directions have
been overlaid on top of the defect creation threshold energy
surface of germanium. The darker areas of the surface
correspond to minima of the threshold energy surface, and
therefore to directions in which more scattering events are
detected. We can see that if the scattering rate of dark matter
was very localized around the direction of the dark matter
wind, e.g., if the velocity distribution was very streamlike,
then we could expect the number of minima in the event
rate signal during a single day to correspond to the number
of energy surface minima crossed by the dark matter wind
direction throughout the day. That is, in the equatorial case
we would expect the main daily modulation component to

FIG. 1. Directions swept by −v⃗lab throughout the year (shaded band) at latitudes 0° and 48° north overlaid on the energy threshold
surface of a germanium crystal. The angles are given in horizontal coordinates, i.e. (0°, 90°) is towards zenith, and (0°, 0°) is south. The
crystal is oriented such that the faces of the rectangular unit cell are perpendicular to the coordinate axes.
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have four periods per day, whereas in the 48° case wewould
expect it to have two periods per day.
To confirm this, we performed a Fourier analysis of the

event rate signal for dark matter of mass 340 MeV for a
detector at different latitudes. This analysis was performed
for the isotropic and anisotropic components of the SHMþþ
velocity distributions separately [i.e. cases η ¼ 0 and η ¼ 1
in Eq. (7)] to showcase the differences in the modulation
effect between different velocity distributions.
In Fig. 2 we show the Fourier spectrum for two example

latitudes from Fig. 1. The figure shows the spectrum for
both the isotropic and anisotropic velocity distribution, and
for the transverse and nontransverse Radon transforms. The
spectrum shows how different Fourier modes contribute
as the orientation of the crystal changes. One can also
observe that the amplitude of the anisotropic component
is larger than the amplitude of the isotropic one. The
dominant Fourier components are shown in Fig. 3 as a
function of the latitude. In general, the dominant compo-
nent almost always appears to be one of the components
with either a 24 hour, 12 hour, or 6 hour period, with the
component with 8 hour period also reaching significant
amplitudes. This is consistent with the observations that
can be made from Fig. 1, where these periods correspond to
touching one, two, four, and three minima, respectively.
Specifically, we observe that at latitude 0° N, the 12 hour
component vanishes almost completely, and reaches its
maximum at around 45° N, exactly as one would expect.
Based on the reflection symmetry of the crystal lattice we
would expect a corresponding symmetry in the figure for
reflections about zero latitude. However, we notice some

deviations from this symmetry, which we suspect originate
from the discrete sampling of the time-series data.
A significant difference between the isotropic and

anisotropic distributions can be seen in the behavior of
the 6 hour component in the nontransverse case, where the
component obtains a minimum at 45° N for the isotropic
distribution, but it obtains a maximum for the anisotropic
distribution. This is a unique consequence of highly
anisotropic velocity dispersion in the SHMþþ model.
Namely, for values of β close to unity in Eqs. (9), the
dispersion components σθ and σϕ approach zero and σr
increases. Consequently, the isosurfaces of the velocity
dispersion become highly elongated ellipses on the
radial axis from the Galactic Center, which means that
velocities of most particles have substantial radial compo-
nents in the Galactic frame. As a result, in the lab frame the
angular distribution of dark matter events ends up with two
peaks with the direction of −v⃗lab between them. This
doubling of the peaks amplifies the higher-frequency
Fourier components, since daily modulation maxima are
obtained when both peaks pass a minimum of the energy
surface.
A similar effect is seen in the transverse case relative to

the nontransverse case, but for different reasons. Namely,
the appearance of ðv⃗⊥Þ2 in the transverse Radon integral
implies that nuclear scatterings in the direction of v⃗ are
suppressed, and the angular distribution of scattering events
becomes ring-like with a dip where the nontransverse
distribution would have a maximum. This more complex
shape of the angular distribution again amplifies some of
the higher-order Fourier components.

FIG. 2. Fourier spectra for the isotropic and anisotropic contributions to the event rate at 0° and 48°, respectively, both for the
transverse and nontransverse spin-independent EFT operators. The normalization is relative to the zero-frequency component, i.e. the
average rate.
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The most substantial difference, however, appears when
we compare the daily modulation amplitudes in Fig. 3
to the yearly modulation amplitudes in Fig. 4. In this
comparison we see that the daily modulation in the
anisotropic component relative to its yearly modulation
is significantly higher than in the isotropic component. This
can be attributed to the angular distribution of the events
being significantly more localized in the anisotropic com-
ponent than in the isotropic component. This effect is
demonstrated in Fig. 5, which shows the angular event rates
of the components at different times of day. We show only
nontransverse distributions since the effect is quantitatively
similar in corresponding transverse distributions.

The analysis here suggests that it is in principle possible
to infer directional characteristics of DM-nucleus scattering
from a crystal detector with no directional detection
capabilities; knowledge of the orientation of the crystal
lattice in the detector and the daily modulation information
of the signal allows us to deduce information about the
shape of the DM velocity distribution and about the details
of DM-nucleus interactions. One might be interested in
understanding to what extent a reconstruction of the
directional signal would be possible if modulation data
from multiple differently oriented crystals was given, but
such an inversion problem is beyond the scope of this work.
Instead, in the next section we focus on the simpler problem

FIG. 3. Amplitudes of Fourier components plotted as a function of latitude for the isotropic and anisotropic contributions to the event
rate, both for the transverse and nontransverse spin-independent EFT operators. The normalization is relative to the zero-frequency
component, i.e. the average rate.
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of understanding quantitatively to which extent this infor-
mation allows one to distinguish the presence of an aniso-
tropic component in the velocity distribution.

V. SENSITIVITY TO SHM+ + WITH EVENT
RATE MODULATION

We wish to find the experimental sensitivity of a
germanium ionization detector for the presence of the
anisotropic component in the Milky Way halo as a function
of the DM mass. For a given DM mass and anisotropic
fraction η we compute the expected event rate using
Eq. (13) with the distribution (7). Because the SHMþþ
distribution is just a linear combination of the isotropic and
anisotropic components, we can express the overall event
rate as

R ¼ ð1 − ηÞRI þ ηRA; ð15Þ
where RI and RA are reference event rates for the isotropic
and anisotropic components, respectively. From this
expected rate we create a binned event distribution using

FIG. 4. Amplitudes of the Fourier components of yearly
modulation of the dark matter event rate with the same normali-
zation as in Fig. 3.

FIG. 5. Angular distribution of dark matter events of a 340 MeV particle in a germanium crystal at 46.4719° N, 81.1868° E, at different
times for June 1st, 2023, normalized to the day’s maximum rate, using a Lambert azimuthal equal-area projection.
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time and energy bins as specified below, by drawing a
number of events for each bin from Poisson distribution
with the expected number of events given by the expected
event rate. We then find the maximum likelihood for this
binned event rate to be drawn from the background only
(η ¼ 0) model, and for it to be drawn from the model
containing the signal (η ≠ 0). The likelihood is given by

LðNI; NAÞ ¼ e−
P

N
i¼1

ðNInIiþNAnAi Þ

×
YN
i¼1

1

nobsi !

�
NInIi þ NAnAi

�
nobsi ; ð16Þ

where NI and NA are the normalizations of the isotropic
and anisotropic component, respectively, N is the number
of bins, nIi is the expected number of events in bin i from the
isotropic component, nAi is the expected number of events
in bin i form the anisotropic component and nobsi is the
observed number of events in bin i in the simulated
experiment, i.e. the number drawn from the model dis-
tribution as explained above.
As the time averaged rates hRIi and hRAi are not equal,

the overall time averaged rate hRi, and by extension the
total number of expected events, depends on the value of η.
Since we want to test sensitivity to the presence of an
anisotropic component under the assumption that the
DM–nucleus cross section is not known, we normalize
the data to some constant number of expected events. That
is, we use the expression,

R ¼ n0
Δt

ð1 − ηÞRI þ ηRA

ð1 − ηÞhRIi þ ηhRAi
; ð17Þ

where n0 is the given number of expected events, and Δt is
the time interval over which the analysis is performed. The
expected binned event counts nIi and nAi are then computed
for the normalized event rates, such that

XN
i¼1

�
nIi þ nAi

� ¼ n0: ð18Þ

This ensures we are only testing sensitivity to variations
resulting from changes in the temporal modulation and
energy spectrum of the events rather than changes in the
overall number of events detected.
The test statistic q0 is given by the logarithm of the

maximum likelihood ratio,

q0 ¼ 2 log

�
maxLðNA; NIÞ
maxLð0; NIÞ

�
; ð19Þ

where the maximum is over varying values of ðNA; NIÞ, or
just NI for the signalþ background and background-only
models respectively. For each DM mass and η in the signal

model we generate 2000 pseudoexperiments by drawing
the binned event rates as described above, and find the
corresponding value of the test statistic. If q0 > 9 in more
than 90% of the generated datasets, we conclude that the
presence of an anisotropic component is detectable within
the confidence limit of three standard deviations. The 3σ
sensitivity of the experiment for a given DM mass is then
defined as the limiting value of η for which the model
remains within discovery reach.
The resulting reach for various time and energy bins

is shown in Fig. 6 for the cases n0 ¼ 10; 000 and n0 ¼
20; 000. It is notable that because the detector anisotropy
here is relevant only for events with energies close to the
threshold, its effects likewise are significant only for DM
masses close to the lowest mass that can produce events
above the threshold energy. In the case of germanium, the
relevant mass range is around 300–500 MeV. Indeed,
we see that for masses approaching 500 MeV, the time-
binning-only reach approaches η ¼ 1 as the contribution of
the detector anisotropy on the temporal modulation van-
ishes. When energy information is included, the discovery
reach instead plateaus around η ¼ 0.2 as the isotropic and
anisotropic components of the velocity distribution produce
distinguishable recoil energy spectra. The impact of the
temporal modulation is most significant for DM masses
below 400 MeV where the inclusion of daily modulation
information improves the reach relative to the energy-
binning-only case. For the region η ¼ 0.2� 0.1 expected
by the SHMþþ model the improvements are smaller and
relevant in a narrow mass range.
The potential to distinguish an SHMþþ-like distribution

from a plain symmetric distribution via the temporal
modulation of the event rate is a result of the anisotropic
component having a different angular distribution of
events. However, the transverse and nontransverse Radon
transforms in Eq. (5) likewise have different angular
distributions. This is because the presence of the ðv⃗⊥Þ2
term in the transverse case decreases the number of events
with recoil directions parallel to the DM velocity, which
results in a ringlike shape for the distribution of scattering
events, instead of a peaked shape as we have in the
nontransverse case. It is therefore reasonable to ask whether
our ability to detect the presence of an anisotropic compo-
nent in the velocity distribution is weakened by ignorance
of the underlying DM model. To that end, we performed a
likelihood analysis similar to the one described above, but
this time the likelihood ratios were marginalized over a
choice between a transverse and nontransverse DM inter-
action. That is, we assumed there to be a 50% chance for
either hjMj2i ∼ 1 or hjMj2i ∼ ðv⃗⊥Þ2. The resulting reach
for 10,000 events is shown in the left panel of Fig. 7.
Comparing to Fig. 6, we see that the reach is weakened for
masses below 420 MeV, especially in the case with no time
binning, as well as for higher masses in the cases where no
energy information is given. This is consistent with the fact
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that the temporal modulation from an anisotropic compo-
nent is somewhat hard to distinguish from a modulation due
to a nonidentity DM interaction, whereas the energy spectra
of these different scenarios are distinct. The right panel of
the figure shows how the sensitivity scales with the number
of events for a selected dark matter particle mass of

360 MeV. We observe that the relative enhancement of
the sensitivity due to the daily modulation remains quite
stable, but on absolute scale the sensitivity weakens so that
the observationally motivated range η≲ 0.3 is not within
reach for lower number of events. However, this behavior
indicates that the daily modulation signal could remain

FIG. 7. Discovery reach of η as a function of DM mass in a hypothetical germanium experiment, marginalized over a choice between
hjMj2i ∼ 1 and hjMj2i ∼ ðv⃗⊥Þ2 DM interaction. Left panel: As a function of mass for 10000 events. Right panel: As a function of event
count for mass of 360 MeV.

FIG. 6. Discovery reach of η as a function of DMmass in a hypothetical Germanium experiment with 10,000 and 20,000 signal events.
The reach is shown with no time binning (yellow), day long bins (green), and hour long bins (purple), as well as without and with energy
binning (solid and dashed lines, respectively) with bin width of 10 eV. The gray region indicates the limits [0.1, 0.3] on the magnitude of
η in the SHMþþ model.
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useful for identifying different structures in the velocity
distribution even at lower event numbers, in cases where
the anisotropic component is expected to be larger.

VI. CONCLUSIONS

A simple benchmark case for the DM velocity distribu-
tion in galaxies is given by the SHM; a Maxwellian
distribution with a cutoff at the local escape velocity. How-
ever, it is unlikely that this would generally hold. For
the Milky Way, the observations by the GAIA satellite [38]
on the motion of stars, suggest an anisotropic ‘sausage’
component [39], leading to the introduction of an SHMþþ
model with a highly anisotropic component to the dark
matter velocity distribution. The effect of this additional
component is to increase the portion of dark matter with
large radial and small tangential velocities in the galac-
tic frame.
In this paper we have shown that, apart from having a

distinct recoil energy spectrum, for high-enough values of
the anisotropy parameter β the anisotropic component leads
to a unique bimodal angular distribution of recoil events.
In an ionization detector with an anisotropic response this
leads to a daily modulation signal that is distinct from
the one coming from an isotropic velocity distribution. We
carried our analysis out concretely for a germanium
detector and determined several periodic patterns arising
from the crystalline structure of the target. This analysis
was performed under the assumption that the directional
dependence of the ionization threshold matches that of
the defect creation threshold, which is calculable using
classical molecular dynamics simulations. While this
assumption might not exactly hold in reality, it is likely

that the behavior is similar as both effects originate from the
same crystal structure of the material. In the absence of an
alternative model for the ionization threshold, it is difficult
to quantitatively evaluate the level of uncertainty in our
results related to this choice. In the future we hope that
improved simulations and experimental data will be able to
confirm the validity of our approach.
We then carried out a likelihood ratio test analysis to

determine the experimental sensitivity to the anisotropy
fraction η. We found that with a sufficiently large
number [Oð104Þ] of signal events, and for DM masses
for which most of the recoil spectrum is above the detector
threshold, an experiment with < 10 eV energy resolution
can detect the presence of an anisotropic component
with an anisotropy fraction allowed in the SHMþþ model.
For DM masses that fall in the narrow range near the
detection threshold substantial gains in sensitivity to the
anisotropic component can be made with daily modulation
information, but this is not sufficient to probe the SHMþþ
region.
It can be expected that qualitatively similar results arise

for other similar target materials like silicon [59], and for
different anisotropic velocity distributions. It would be
interesting to extend this work to other materials for which
directional sensitivity is expected [60].
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