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The astrophysical formation channels of binary black hole systems predict correlations between
their mass, spin, and redshift distributions, which can be probed with gravitational-wave observations.
Population-level analysis of the latest LIGO-Virgo-KAGRA catalog of binary black hole mergers has
identified evidence for such correlations assuming linear evolution of the mean and width of the effective
spin distribution as a function of the binary mass ratio and merger redshift. However, the complex
astrophysical processes at play in compact binary formation do not necessarily predict linear relationships
between the distributions of these parameters. In this work, we relax the assumption of linearity and instead
search for correlations using a more flexible cubic spline model. Our results suggest a nonlinear correlation
between the width of the effective spin distribution and redshift. We also show that the LIGO-Virgo-Kagra
collaborations may find convincing Bayesian evidence for nonlinear correlations by the end of the fourth
observing run, O4. This highlights the valuable role of flexible models in population analyses of compact-
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object binaries in the era of growing catalogs.
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I. INTRODUCTION

The growing catalog of gravitational-wave observations
of binary black hole (BBH) mergers has allowed for
increasingly detailed probes of the population properties
of these systems, with the ultimate goal of revealing how
they form and evolve. Analysis of the third gravitational-
wave transient catalog (GWTC-3) [1] of the LIGO-Virgo-
Kagra collaboration (LVK) [2-6] found evidence for
substructure in the BBH primary mass distribution [7-9]
beyond a single power law [10] plus Gaussian peak [11]
and for preferentially equal-mass mergers [12,13]. The
black hole spin distribution favors small [14] but likely
nonzero spins [15-20], and the distribution of the spin tilts
relative to the orbital angular momentum is consistent with
isotropy, while the distribution of effective aligned spins
indicates a slight preference towards positively aligned
spins [7,20-23]. The merger rate evolves with redshift at a
rate consistent with the cosmic star formation rate [24].
Taken altogether, these constraints imply that there are
probably multiple formation channels [25-27] shaping
the BBH population, although no definitive evidence
for subpopulations with different properties has been
identified [28-30].
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While most previous analyses of the BBH population
have relied on phenomenological population models with
simple parametric functional forms, recent work has
explored the use of “nonparametric” models like splines
[23,31], Dirichlet processes [32], generic mixture models
[8,33,34], binned Gaussian processes [7,35,36], and auto-
regressive models [37]. Despite including many more free
parameters than the phenomenological models, these non-
parametric models offer increased flexibility to fit the data
without imposing a specific functional form. This avoids
the issue of model misspecification, e.g., [38], at the cost of
a clear mapping between features observed in the data and
those predicted by astrophysical theory.

As the observed population of BBH mergers grows,
population analyses have moved beyond modeling the
mass, spin, and redshift distributions independently towards
searching for correlations between these parameters. Such
correlations are expected both within individual formation
channels and due to the superposition of subpopulations
forming via distinct channels [39-48]. For example, BBHs
formed via isolated binary evolution may exhibit correla-
tions due to the relationship between metallicity and the
efficiency of angular momentum transport via stellar winds.
These winds remove mass and spin down the progenitor,
meaning that more massive systems would prefer higher
spins. They would also be more common at high redshift,
where stellar winds are less efficient because of lower
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metallicities [49]. A mass-spin correlation is also expected
for systems formed dynamically via hierarchical mergers in
dense environments, since remnants of previous mergers
that go on to merge again will be both more massive and
rapidly spinning, e.g., [50-52].

Evidence for a correlation between BBH mass and spin
was obtained using a phenomenological model where the
mean and width of the distribution of effective aligned spin
(vesr) vary linearly as a function of the mass ratio, such that
systems with more unequal mass ratios have larger effective
aligned spins [7,53]. An approach using copula density
functions that ensure fixed marginal distributions in the
presence of a correlation identifies this correlation at
similar significance [54,55]. Weaker evidence using the
linear correlation model also hints at a potential correlation
between the effective spin distribution and the total mass
and primary mass [56-58], although a broadening of the
spin distribution at the highest masses can be explained due
to the relative dearth of observations in this regime, leading
to a more uncertain measurement [34]. A likely correlation
between the width of the effective spin distribution and
redshift has also been identified [58]. Recently, using a
nonparametric method, Ref. [59] reports a correlation in
primary mass-redshift space, arising from two subpopula-
tions. However, some results of this work are in tension
with previous population analyses, including both para-
metric and nonparametric methods, e.g., [31,34,37,60].

In this work, we build upon previous methods looking for
correlations between individual pairs of parameters describ-
ing the BBH mass, spin, and redshift distributions but adopt
a more flexible model for the shape of the correlation.
Specifically, we assume the BBH effective spin distribution
is described by a Gaussian with an unknown mean and
width, both of which may correlate with either the mass or
redshift such that the shape of the correlation is given by a
cubic spline. Our model recovers evidence for the previously
identified correlations between effective spin and mass ratio
and redshift but prefers a nonlinear shape for the spin-
redshift correlation. This result highlights the important role
that flexible population models will play in identifying
model misspecification as the catalog of BBH merger obser-
vations grows. The rest of this work is structured as follows.

In Sec. II we briefly describe our statistical assumptions,
which are standard in gravitational wave (GW) population
inference, then describe our model for probing correlations
in more detail. In Sec. Il we present the constraints on
the BBH data collected thus far [1], which tend to be
broadly consistent with previous studies apart from some
evidence for nonlinearity in the y.s — z correlation. In
Sec. IV we make projections for the future: How well can
nonlinearity be measured with future observations? In a
pair of simulated universes with nonlinear correlations in
Xett —¢q and y. — z, nonlinearity does not reveal itself in
the y.; — g distribution with 400 detections, but there is
strong evidence for nonlinearity in the y.q — z distribution

with 400 detections. While the detectability of nonlinearity
ultimately is subject to how nonlinear the true correlated
distribution is, we show it is possible to detect nonlinearity
in the near future. Finally, we conclude in Sec. V.

II. PROBING CORRELATIONS: PRIORS
AND PARAMETRIZATION

The goal of population modeling is to infer the distri-
bution from which an ensemble of observations is drawn.
This can be accomplished using hierarchical Bayesian
inference, which takes a multistage approach by first
characterizing individual observations and then combining
them on a population level. In a GW context, these
individual observations are noisy, so the statistical like-
lihood of observing the data given a population model
p(6|A) parametrized by A must be marginalized over the
possible GW parameters [61]:

cldin) = [ dociao)ploln). 1)

Here, d represents the detected data, and € represents the
unknown source parameters, like the binary masses, spins,
and redshift.

Furthermore, BBHs suffer a Malmquist bias; they are not
all equally detectable. To account for this bias, we must
define the detection efficiency,

a(A) = A dd / doL(d|0) p(8|A), 2)

which is the fraction of events in the population p(6|A)
which probabilistically generate detectable data (d € D).
Assuming the events are distributed in time by a Poisson
process and marginalizing over the Poisson rate parameter
with a uniform-in-log prior, we obtain the rate-marginalized
hierarchical likelihood [35,61-65]. In particular, with a
collection of N, events with data {dl}fvz'i passing a
detection threshold

e IA) o T £1A)
Lahin) o L= 0y (3)

We use this likelihood to sample from the hyperparameters
A. In practice, we estimate the marginal integrals in Egs. (1)
and (2) with Monte Carlo estimators; see Refs. [66—-68] for
details.

A common approach tackles the hierarchical inference
problem by phenomenologically parametrizing the un-
known source distribution as, e.g., power laws, Gaussians,
etc., and inferring these hyperparameters given the data
observations. Previous studies have identified simple
and successful parametrization schemes; we choose the
astrophysically motivated parametrizations POWER-LAW
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+PEAK [11] and POWER-LAW REDSHIFT [69] for the mass
p(my, g|A) and redshift p(z|A) distributions, respectively.
The primary mass distribution is parametrized as a
smoothed power law plus a Gaussian component, and a
smoothed power law for the mass ratio (hyperparameters
are the minimum and maximum BH mass, power-law
index, low mass smoothing parameter, mean and width
of the Gaussian, fraction of BBHs in the Gaussian
component, and the power-law index for the mass ratio).
The redshift distribution is modeled as a power law with a
single power-law index hyperparameter.

For the spins, we project the six dimensional spin
distribution to a one dimensional parameter y.¢ describing
the leading order spin effect on the inspiral evolution of the
binary [70-72], which is often the most well measured spin
parameter [73,74]. We then model the y. population as a
truncated Gaussian distribution with a variable mean and
width [21,75]:

1 ¢ (x—e“ 0 (AH;A)>
p(rel0. A) = = . (4)
A 1-(6.A —1-u(0.A
6(9’ )(D( G/Elng) )> - (I)( O’(Z<A) ))

where the truncation restricts the support of the distribution
to be [—1, 1], which reflects the physical constraint that the
magnitude of y.; cannot exceed 1 for BH spins bounded by
the Kerr limit. ¢ is the standard Gaussian, and @ is the
standard error function,

e—x2/2

V2r

This is the approach used by Refs. [7,53,56,58] to explore
models where x(0) and ¢(0) are linear functions of primary
mass (f = m,), mass ratio (0 = g), and redshift (0 = z),

P(x) =

®(x) = / i (9

TABLE L.

respectively. Building on this previous work, we model
u(0) and 6(6) with spline functions.

Spline functions are becoming increasingly popular in
GW population inference, primarily because they are
innately flexible and fast to evaluate, but also because
they are easily parametrized by their nodes. While splines
do not assume much structure, they do fail to probe
structure below the scale of the node separation length.
For this reason, one should include the number of nodes as
a model hyperparameter or repeat the analysis varying the
choice of the number of nodes.

In this work, we use a cubic spline model, where nodes
are interpolated using cubic polynomials which preserve
continuity in the function and first and second derivatives
at the nodes (C> functions). Given node locations, this
provides all but two conditions to set the four coefficients
for each cubic polynomial; the final two conditions are
given at the end points, typically imposed by setting the
second derivative to zero. Defined in this way, the node
positions fully determine the spline curve. Splines also have
the advantage of approximate locality, meaning they can fit
a structure in one region of parameter space independently
of the behavior of the spline far away (separated by many
nodes) [76].

For all the inferences we present below, we use priors
shown in Table I. We use the OVERALL samples for GWTC1
events [77], PRECESSINGSPINIMRHM for the events first
identified in GWTC2 [78] and the C01: IMRPHENOMXPHM
samples for the GWTC2.1 and GWTC3 events [79,80], and
the search sensitivity estimates provided in Ref. [81].
We use the GWPOPULATION package for constructing
the hierarchical likelihood [82], and compute Bayesian
evidences while sampling the hyperposterior using the
DYNESTY implementation in BILBY [83,84]. To efficiently
evaluate spline functions, we use the CACHED_INTERPOLATE
package introduced in Ref. [23]. In addition, because

Priors for each hyperparameter used in our model. The upper panel describes the standard priors, except

where they are reduced to improve the sampling efficiency without cutting off the hyperposterior (1,,,, and 1). The
lower panel describes the prior assumed for our spline parameters.

Hyperparameter Description Prior

a m; power-law index U(-4,12)

B q power-law index U(—4,7)
Mimax Maximum BH mass U(60M, 100M )
Mppin Minimum BH mass U(2M 4, 10M )
O Low-mass smoothing parameter U(0M, 10M )
Hom my Gaussian component mean U(20M, 50M )
O my Gaussian component standard deviation U(1Mg, 10M )
A Fraction of BBHs in Gaussian component U, 0.2)

A, z power-law index U(-2,10)
Mo n nth spline node for the y.; mean U(-1,1)
Ino, ., nth spline node for the y. standard deviation U(-5,0)
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we estimate the population likelihood [Eq. (3)] with
Monte Carlo integrals, there is inherent uncertainty asso-
ciated with each likelihood estimate. To avoid biased
inference, we cut hyperposterior samples with log-like-
lihood uncertainty greater than 1, follo wing the recom-
mendation of Ref. [68].

III. CORRELATIONS IN GWTC-3

Using the catalog of 69 BBHs described in Ref. [7]
passing a detection-pipeline-computed false alarm rate
threshold of 1 yr~!, we search for evidence of nonlinear
correlations between the spin distribution and the mass
ratio, redshift, and the source frame primary mass (the latter
is described in Appendix A). To do this, we model the y.
distribution with Eq. (4), and present the results of the
individual analyses below.

A. Effective spin distribution and mass ratio

The first correlation we explore is between y.¢; and mass
ratio g, setting the mean and standard deviations to spline
functions of mass ratio. We place the nodes uniformly
between ¢ = 0 and ¢ = 1. Though ¢ — 0 is an unphysical
region of parameter space with no observations, the node at
g = 0 should be thought of as simply a parameter necessary
to ensure the model is defined over the entire space, and not
an a priori statement that BBHs exist here; indeed the
model p(g|m;,A) is always zero at ¢ = 0:

u(0)
Ino(6)

( |(Oa/‘)(eff:0)v seer (I’M)(eff:N))

=5(q/(0.In6,_ ), ....(1,Inc, .x)). (6)
where S(x|(X;,Y;),...,(Xy,Yy)) represents the cubic
spline function in the variable x passing through the nodes
with x coordinates X; < X, < --- < Xy and correspond-
ing y coordinates Y, Y,, ..., Y. In all our models, we fix
the x coordinates to reduce the dimension of the inference.

In Fig. 1, we show a comparison between our results
with the linear model of Ref. [53] to the spline model with
four nodes. While our spline model results are broadly
consistent with the linear model, they generically feature
broader credible intervals towards extreme mass ratios
q — 0. We argue that this is an advantage of the spline
model, as the data should have less information about
BBHs with unequal mass ratios as they are less common in
the detected population, e.g., [12,13], and be completely
uninformative about events with mass ratio ¢ — 0. All of
the 69 BBHs in the catalog are inconsistent with vanishing
mass ratios, and even more, our population model with
hyperparameter m;, > 2M  (the minimum BH mass must
exceed 2M o, see Ref. [11]) requires zero support at g — 0.
Being an approximately local model, the spline model can
fit the structure at near-equal mass ratios, while simulta-
neously saying nothing about the behavior of extreme mass
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q
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FIG. 1. A comparison between the linear model and four node
spline model for correlation between y.; and mass ratio, inferred
using GWTC-3. Solid lines represent the median, while the
shaded region represents the central 90% credible interval.
Dashed lines show the upper and lower boundaries of the prior
90% interval. The upper panel shows the mean of the y.
Gaussian as a function of mass ratio ¢, while the lower panel
is the standard deviation of the y.q distribution. For the spline
model, the model inference is increasingly prior driven at small
mass ratios, where there is little information in the data.

ratio events. Hence, the posterior approaches the prior as
g — 0. We also repeat the analysis with 3-6 nodes and
obtain results consistent with the four-node analysis pre-
sented here, see Appendix B.

To compute the significance of any evolution with mass
ratio, we compute the derivative of the inferred evolution
with respect to mass ratio. Spline functions are easily
differentiable, and so we can compute the slope of the
spline function at an arbitrary point g*. We choose the
fiducial value of ¢* = 0.9, as this appears to be a well
constrained region and a good proxy for understanding the
evolution of the spin population in the region of near-equal
mass ratios. This gives us posteriors on the slope at this
point g* for each model, which we show in Fig. 2. We then
compute the significance of an evolution in the mean of
the Gaussian as a function of mass ratio from the fraction
of the posterior support with positive/negative slope.
The linear model has a negative slope with significance
~98%, as initially reported in Ref. [53]. The spline models
have negative slope with more inconclusive significance:
~70%—80%. We show all calculated slope significances at
their fiducial values in Table III in Appendix B.
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FIG.2. Posteriors on the derivative of the mean and width of the
Yer distribution as a function of mass ratio, calculated at
g*=0.9, and inferred using GWTC 3. The linear model
concludes that the mean of the y. distribution decreases as
mass ratio approaches 1, with a significance of ~98%. The spline
models are more agnostic, finding significances of ~60%—75%.

We note that this is not the only statistic one could use
to quantify the significance. For example, we could con-
sider the difference over widely separated regions in
parameter space, e.g., the proportion of samples with mean
u(lg=1) <u(q=04). These statistics tend to find a
similar level of significance.

B. Effective spin distribution and redshift

Next, we turn our attention to the correlation between
Xeir and redshift z. Reference [58] examined a correlation
between redshift and the effective spin distribution, and
discovered evidence for a broadening in the effective spin
distribution, a positive correlation between the width o(z)
of the y. Gaussian and the redshift, and no evidence for
any trend in the mean of the Gaussian. In their analysis,
Ref. [58] parametrized u(z) = pg + éu.(z —0.5) and
log,o0(z) =logoy + 6logo.(z —0.5) as linear models
and quantified the significance of the measured broadening
using the posterior on the slope dlogo,.

In a similar approach, we model the y.; correlation with
redshift using Eq. (4), only we use

4(0) = (0.0 (23,17 on)
Ino(0) = S(z|(0, Ino, .o),....(2.3,In "xeff:N))' (7)
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FIG. 3. A comparison between the linear model and four node
spline model for correlation between y. and redshift, inferred
using GWTC-3. Solid lines represent the median, while the
shaded region represents the central 90% credible interval, and
the dashed lines show the boundary of the prior 90% interval. The
upper panel shows the mean of the y . Gaussian as a function of
redshift z, while the lower panel represents the standard deviation
of the y. distribution. We emphasize that there is very little
information in the data at z = 1, hence the spline inference is prior
driven at these higher redshifts. This is in contrast to the linear
model [58].

In our model, the first and last nodes are placed at redshifts
z = 0 and z = 2.3, the maximum redshift we assume in the
POWER-LAW REDSHIFT model [85]. The hyperparameters
associated to the splines are the y coordinates of the nodes.
We explored models that fix the nodes uniformly between
the first and last nodes; however, these resulted in nodes
too coarsely spread at small redshift to optimally fit the
structure. Additionally, there is limited information in the
data thus far to constrain the population much beyond
redshift z 2 1, so a better node spacing should place nodes
tightly at small redshift and more loosely at high redshift.
Heuristically, we found that a linear spacing in z'/? places
nodes satisfactorily.

Using these models to infer the BBH population hyper-
parameters given the GWTC-3 dataset, we infer the
evolution of the mean and width of the y.; Gaussian as
a function of redshift. We show a comparison between a
linear model and the spline model with four nodes in Fig. 3.
We show the results for a collection of analyses with 3-6
spline nodes in Appendix B in Fig. 10 and the associated
model evidences in Fig. 9.
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First, we quantify the confidence of a broadening slope for
each model. To this end, we compute the slope of the width of
the Gaussian at a fiducial value z*, dlog o(z)z = z* for all
models. We choose the fiducial value z* = 0.2 (see
Appendix C for a discussion on this choice), and show
histograms of the slopes for each model in Appendix C in
Fig. 11. We can then quantify the significance of the increase
by the proportion of the posterior with slope greater than zero.

There are varying degrees of evidence that the y.
distribution is broadening as a function of redshift at
7" = 0.2, depending on the model used. The mean is
decreasing at ~80%—-95% confidence (the posterior support
with slope less than 0), depending on the model assumed.
The width is increasing at 90%-98.6% confidence, con-
sistent with the finding of Ref. [58] that the width of the y
distribution broadens with increasing redshift. We collect
all significances calculated at fiducial values in Table III in
Appendix B.

It also appears that there is some nonlinearity in the
evolution of the width as a function of redshift. To

understand if this degree of inferred nonlinearity is
expected in a universe with a linear correlation, we perform
the spline model inference with four nodes on 12 catalogs
of 69 events drawn from a linearly correlated universe (see
Appendix C for details on the selection procedure and the
generation of the synthetic catalogs). We then compute the
derivative at the first three nodes z;, z;, and z, (ignoring
the last node since the posterior is essentially the prior
there) and calculate the Jensen-Shannon (JS) divergence
[86,87] between the slope posteriors. A linearly correlated
universe would theoretically have slope posteriors all
consistent with the true value, however there will be some
random scatter between the posteriors, measured by the JS
divergence between them. Looking at a scatter plot of the
divergence between the slope at z, and z; on the x axis and
between z; and z, on the y axis in Fig. 4, notice that there
are no divergences from a linearly correlated universe
which is more extreme than the GWTC-3 divergences in
both axes. This points towards a nonlinear trend in the
width of the y.; distribution as a function of redshift,
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FIG. 4. Comparison between the spline inference on a linearly correlated universe and the inference on GWTC-3. The first row shows
the mean and the second row the standard deviation. The left column shows the 90% credible intervals inferred using GWTC-3 (orange)
and the 12 synthetic catalogs of 69 events drawn from a linearly correlated universe (gray). The right column shows the Jensen-Shannon
(JS) divergences (in bits) between slope posteriors taken at the first two nodes on the x axis, and between the second and third nodes on
the y axis. For each linear catalog there is a black point on the scatter plot, and the orange point corresponds to the GWTC-3 divergences.
This represents the posterior difference between the two slopes, quantifying the nonlinearity. The further the point is from the origin, the
more confident we are in the inferred nonlinearity. Notice there is no inference on a linear universe which is more nonlinear than GWTC-

3 in both dimensions.
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though the Bayesian evidence [Z = [z(A)L({d;}|A)dA]
is not yet conclusive (see Fig. 9 in Appendix B).

IV. FUTURE PROSPECTS: CAN WE DETECT
NONLINEARITY IN 04?

Flexible spline models stand in contrast to linear models,
where the correlation around each spline node is inde-
pendently inferred, rather than enforcing a consistent slope
across the whole parameter space. At the conclusion of O3,
these flexible models highlight our lack of knowledge
about poorly constrained regions. While we have some
hints of a nonlinear correlation in y.¢ — z, there is not yet a
definitive preference in the Bayesian evidence for a non-
linear correlation. This may change by the end of the fourth
observing run, O4.

To predict how well we may actually detect nonlinear
correlations in the future, we produced two synthetic
catalogs of 200 events and 400 events for two different
possible universes (so four catalogs total). The events
are detected by a network of LIGO interferometers
(located at Hanford and Livingston), assuming the fiducial
04 noise spectra with an average binary neutron star
merger inspiral range of 160 Mpc [88]. We draw GW
events from a few different populations with true hyper-
parameters given in Table II. These populations are con-
sistent with the data collected by the LVK thus far, analyzed
with the models we presented above. We use the waveform
model IMRPHENOMXP with PRECVERSION=104 [89], and use
the heterodyning/relative binning scheme of Refs. [90-92]
to efficiently sample the GW event parameter posteriors.

We then select detected events on a network matched-
filter SNR p¢ g > 9, and generate a set of Monte Carlo
injections for estimating the selection efficiency consistent
with this detection criterion [93]. This kind of selection
criterion implicitly depends on the true binary system para-
meters, which is not a physical assumption [94]. This
means that the hierarchical likelihood of Eq. (3) should be
slightly modified to match this different selection criterion.
However, we use the same likelihood of Eq. (3) as an
approximation. The bias is likely small for catalogs of
relatively small size, such as the ones in this work, but it
should be noted that this may be present in our inferences
on synthetic catalogs [65].

We recover each simulated catalog assuming both a
linear model and the spline model with four nodes. We
restrict to one spline analysis using four nodes to limit the
computational expense.

We decided to explore two node placement options.
First, we recover using our original node placement
scheme, placed in the same manner as described above
(linear in g and z'/?). This node placement does not match
the true node placement (Table II), and the inference finds
more “bumps” in the correlation than are truly there. To this
end, we also recover using the true node placement scheme.
See Appendix D for a discussion on node placement and
bias in the inference.

We show our results comparing the linear model and the
spline model with our original node placement (linear in ¢
and z'/?) in Fig. 5.

In a catalog of 200 detections, the model evidences
indicate no significant preference for a linear model or the

TABLEII. Hyperparameters for the simulated universes with nonlinear correlation. In the left column are the hyperparameters for the
universe with a correlation between y.¢ and mass ratio, and in the right column is the correlation with redshift. The correlation functions
are themselves splines, with node placements given by, e.g., the (zy,, . ) coordinate pairs.

Hyperparameter Description q — yetr correlation 7 — Yo correlation
a m; power-law index 3 3

p q power-law index 1 1
Mpax Maximum BH mass 85M 85M
Mpin Minimum BH mass SMg SMg

O Low-mass smoothing parameter 3Mg 3Mg
Hon m; Gaussian component mean 35M 35M
Om m; Gaussian component standard deviation SMg SMg

A Fraction of BBHs in Gaussian component 0.03 0.03

A z power-law index 2 2

(X0 iy 0) First mean spline node coordinates 0,0.4) 0,0)
(X713 iy 1) Second mean spline node coordinates (0.4,0.3) (0.3,0)
(X2, fhy 2) Third mean spline node coordinates (0.8,0.05) (0.65,0)
(x3, Hyr3) Fourth mean spline node coordinates (1,0.02) (2.3,0)
(x0,Ino, . .0) First standard deviation spline node coordinates (0,-2.5) (0,-3.5)
(x1.Ing, 1) Second standard deviation spline node coordinates (0.4,-2.5) (0.3,-2)
(x2,In0, ) Third standard deviation spline node coordinates (0.8,-2.5) (0.65,-1.5)
(x3,In0,  .3) Fourth standard deviation spline node coordinates (1,-2.5) (2.3,-1.25)
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FIG. 5. Inferred mean and width of the y.; distribution as a
function of mass ratio ¢ on two mock catalogs. In blue are the
90% credible intervals when assuming a linear model for the
correlation, while in orange are the 90% intervals inferred under
the spline model with four nodes. The lighter shades represent the
inference on a catalog with 200 events, while the darker shade is
with 400 events. Dashed lines represent the prior 90% region, and
in solid black is the true correlation.

spline model. Indeed, the Bayes factor of the spline model
over the linear model with 200 events is log, By /(200) =
0.00 4 0.13. However, when we increase the number of
detections to 400, the data begins to indicate a slight
preference for the spline model, although nothing yet
conclusive; log;y B,;(400) = 0.28 4 0.14. We emphasize
that this holds for a particular choice of a nonlinear corre-
lation. In truth, the correlation may be more or less linear
than the one we simulated, which would make evidence
of nonlinearity correspondingly more or less definitive at
these numbers of events.

To understand how we may constrain the correlation
between the spin population and the redshift in the future,
we also simulated a universe with a nonlinear correlation
between the width of the y.y distribution and redshift
(see Table II), where the model hyperparameters chosen
are consistent with the catalog through the end of the third
observing run.

We once again produced mock catalogs with 200 and
400 detections, and we show the results of the inferences in
Fig. 6. This time, even a false node placement scheme does
a good job at fitting the correlation. Furthermore, model
evidences become conclusively in favor of the nonlinear
model with a catalog of 400 detections. In particular,
for the redshift correlation log;y By;(200) = 1.06 4 0.14

1.00 S \
0.75 %= -
0.50
0.25
=
iﬁ 0.00 =
—0.25 Linear Model Neverts = 200
—0.50 Linear Model Neyents = 400
: Spline Model Neyents = 200
—0.75 4 Spline Model Neyents = 400
! \\)’, _____ —~ = Truth P b
-1.00+—=— - . ‘
0.0 0.5 1.0 15 2.0
z
100 i - e =~
1071
5 i S—
/// Li‘n‘e‘ar Model Neyents = 200
5 ,,—*'\\\ mm Linear Model Neyents = 400 -
10 Ny ] Spline Model Neyents = 200 \),,—"‘—
QNP e Spline Model Neyents =400 =~ ~~<_
— Truth T
0.0 0.5 1.0 15 2.0
z
FIG. 6. Inferred mean and width of the y. distribution as a

function of redshift z on two mock catalogs. In blue are the 90%
credible intervals when assuming a linear model for the corre-
lation, while in orange are the 90% intervals inferred under the
spline model with four nodes. The lighter shades are the inference
using a catalog of 200 events, while the darker shade is with 400
events. Dashed lines represent the prior 90% region, and in solid
black is the true correlation.

and log;( B,;(400) = 4.09 & 0.16. We also checked that a
spline model with nodes placed in the correct locations
produce consistent results, as expected.

We reiterate that the results of this projection study
depend on the assumed true correlation. However, since the
correlation we chose is consistent with the data collected
thus far, this demonstrates that we can detect nonlinearity
in the spin correlation with a catalog of ~400 detections.

V. CONCLUSIONS

In this paper we presented a flexible model for under-
standing the correlation between the spin population
in y.s and primary mass m, mass ratio g or redshift z.
On the LVK data published thus far, we obtain results
broadly consistent with previous analyses [7,53,56-58].
Furthermore, because of their flexibility, these spline
models highlight the regions of parameter space that drive
a measured correlation, and the regions of parameter space
which are more uncertain.

In particular, we find that the mean of the y ¢ distribution
likely increases with mass ratio, the width likely broadens
with redshift, and may also broaden for more massive
binaries. Importantly, it is also possible that not all of these
claims are true at the same time. Perhaps a correlation with
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one parameter may masquerade as a correlation with
another parameter when analyzed under the false hypoth-
esis. Reference [58] studied this possibility using linear
models which simultaneously fit the correlation with m, g,
and z, and found that the data is not yet informative enough
to answer this question, though it appears possible that all
correlations are real. While we do not consider simulta-
neous models in this work, we do observe the Bayes factors
all appear consistent, suggesting the data is not yet infor-
mative enough to pick out any mismodeled correlations.

Each of these potential correlations may prove to be
important probes of the astrophysical environments which
produce BBHs. The observed anticorrelation between the
mean of the y.y distribution with mass ratio may indicate
that the BBHs observed come from binaries which expe-
rience mass ratio reversal using an optimistic common
envelope (CE) prescription [95], or isolated binaries which
either undergo a CE phase with large CE efficiency or stable
mass transfer with super-Eddington accretion [47,96].
It is also possible that hierarchical mergers in a dense
environment can produce the observed correlation; we
would expect hierarchical mergers involving just one
second-generation black hole from a previous merger to
have more extreme mass ratios and higher spins, e.g., [52].
However, in an environment with isotropic spin symmetry,
the y. distribution must be centered on zero, and so
one would expect a broadening of the distribution at
small mass ratios, not an increase in the mean. In order
to produce the observed correlation, then, the environment
must break isotropy symmetry somehow [97], e.g., in an
AGN disk [44,97]. Finally, if the observed BBHs do not
originate from one channel, but a superposition of multiple,
e.g., [25,26], a (linear) correlation may arise from a
Simpson’s-type paradox, where multiple populations nat-
urally separated in y.; —¢g space are interpreted as a
correlation [28]. Especially in this last scenario, a flexible
nonlinear model will help shed light on the origin of the
Xetf — g correlation as we move into O4.

The correlation with redshift probes evidence for other
kinds of pathways toward merging stellar mass BBHs. This
observation is commonly explained by connecting the spin-
up of a BH or its progenitor with the delay time to merger.
If the spin-up mechanism of BH progenitors is stronger
for closer separations, the remnant BBH system will radiate
energy to GWs more rapidly, and hence merge earlier.
Because BBHs are born at a higher rate at higher redshifts,
this results in a positive correlation between spin magnitude
and redshift [40,98-100]. One potential mechanism is
tidal torques: the spin-up due to tidal torques is amplified
if the binary is at a smaller initial separation. If the stellar
progenitors retain some angular momentum upon collapse,
the BH spins should be correlated with the observed
redshift at merger [39,101,102]. This is complicated by
the expectation that formation in the field produces nearly
aligned spins. In this scenario, then there should be a

positive correlation between redshift and the mean of the
Gaussian; increasing the width requires larger spins with a
more isotropic tilt distribution. If there are strong supernova
kicks, however, this can even out the spin tilts and give a
Xeir distribution more centered on zero [103-106].

Finally, a correlation between y.; and the primary
mass is most naturally understood as a signature of
hierarchical mergers. In this paper, we observe a broad-
ening of the y.¢ distribution as the primary mass increases,
with varying levels of confidence depending on the model
(see Appendix A). This is precisely the expectation of a
hierarchical merger picture in an environment endowed
with isotropy symmetry [52,107-109]. That said, the most
recent studies which directly searched for signatures of
hierarchical mergers in the LVK catalog strongly disfavor
scenarios where all the LVK BBHs are formed hierarchi-
cally [110-112], though they cannot be ruled out as a
subpopulation.

To understand how we might probe nonlinear correla-
tions in the future, we also simulated nonlinearly correlated
universes consistent with the data collected thus far. In a
universe with a nonlinear correlation between y ¢ and mass
ratio, we found that a linear model may still be appropriate
with ~400 detections, although this is of course heavily
dependent on how nonlinear the true correlation is. For a
nonlinear correlation in the z—y. s plane, we find
that a linear model may be significantly disfavored as
we approach ~400 detections. Because the nonlinear
correlations we assumed were consistent with LVK data
collected thus far, it is possible that linear models for
correlation will begin to fail by the end of O4.

However, we also encountered a few drawbacks with
spline functions. For one, flexible models are intrinsically
high dimensional, and thus sampling from the hyperposterior
can become significantly more expensive. Second, spline
models are perhaps too good at finding nonlinearities, to the
point of confidently finding nonlinear features even when
they are not present (see Appendix D). To be confident in a
spline feature, one should recover the feature varying the
number of nodes or the locations of the nodes, or even
directly estimate the false alarm probability as in Ref. [113].

In this paper, we argue that flexible models for corre-
lation offer a complementary but equally important per-
spective compared to strongly parametrized models.
Foremost, spline models can effectively fit a much wider
range of potential correlations. We do not a priori expect
nature to provide us with linear correlations, or even
correlations that can be well approximated by a line,
e.g., [49-52]. The correlations in nature may be strongly
nonlinear, or perhaps form as a result of a superposition of
subpopulations, and these can only be observed when
analyzed with a sufficiently flexible model. Of course, it is
possible the correlations will indeed turn out to be linear,
however we can only observe such a phenomenon by
allowing for the alternative.
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APPENDIX A: EFFECTIVE SPIN DISTRIBUTION
AND PRIMARY MASS

We also search for potential correlation in the population
between the y. distribution and the primary mass m;.
Previous studies have searched for the same correlation
(see, e.g., Refs. [56,58]) using a linear model for the mean
and width in Eq. (4), and discovered weak evidence for a
trend in the width of the y.q distribution.

Using the same spline approach described above, we

place nodes between m i, = 2 and m . = 100, linearly

spaced in m}/ 3. A uniform node spacing does not easily

allow for structure at ~10-30M , which we would like to
probe. Instead, linearly spaced in m%/ 3 cluster nodes

towards m; ~ 10-30M, were found to be satisfactory:

u(0) = S(m1|(2,,umf; 0)s -ees (100,/%‘.‘.:1\,))

Ino(9) = S(m;|(2,Ino,,.0). ... (100,In0, .y)). (Al)
We show a comparison between the spline model with four
nodes and the linear model, in Fig. 7. The linear model and
spline models appear broadly consistent; indeed the model
evidences do not show any preference for one model over
another (see Appendix B, Fig. 9. We also show the results
for all spline runs in Fig. 10 in Appendix B).

We also compute the slope of the mean and width at the
fiducial value mj] = 35M, and here we find stronger
evidence for a positive slope in some spline models than
in the linear model. We chose m} = 35M, to coincide
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FIG. 7. A comparison between the linear model and four node
spline model for correlation between y. and primary mass,
inferred using GWTC-3. Solid lines represent the median, while
the shaded region represents the central 90% credible interval,
and the dashed lines show the boundary of the prior 90% interval.
The upper panel shows the mean of the y.;; Gaussian as a function
of primary mass m;, while the lower panel represents the standard
deviation of the y.y distribution.

roughly with the location of the Gaussian “peak” in the
primary mass distribution [7,11], and so represents a
physically interesting region of parameter space. The linear
model finds a broadening at higher primary masses with
significance ~93%, while the spline models vary in
significance, the model with four nodes notably exhibits
a broadening at 98.7% credence. We show posteriors on the
slope at m} = 35M, in Fig. 8.

APPENDIX B: INFERENCES ON GWTC-3,
EXTRA ANALYSES AND EVIDENCES

We also run each correlation inference with 3—6 nodes
for the mean and standard deviation spline functions. For
the y.; — g correlation, we show the constraints on the
mean and standard deviation functions in Fig. 9. We do not
observe any strong preference for including more nodes in
the spline correlation functions; there is a generic “Occam’s
penalty” for including more nodes beyond what is neces-
sary to appropriately fit the data. We show the evidence
of the GWTC-3 data given all our correlation models in
Fig. 9; note the evidences are still inconclusive at this
stage, though a correlation with mass ratio is somewhat
preferred.
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FIG. 8. Posteriors on the derivative of the mean and width of the
Gaussian as a function of primary mass. Each posterior is broadly
consistent, with varying levels of confidence that the slope is
greater than zero. The derivative of the mean at m, = 35M, has
nearly equal support for being positive or negative, while the
derivative of the width is positive at ~85%—-99.7% confidence for
each model.

TABLE III.

m; linear - .
m; 3 nodes
m1 4 nodes - — e
m1 5 nodes — e
m; 6 nodes{ ——e—
glinear] o
g 3 nodes
% q 4 nodes — e
= g 5 nodes - e
g 6 nodes - e
slinearl LT
Z 3 nodes e
Z 4 nodes — e
z5nodes{ —eo—|
z6nodes|{ +—eo——
52 53 54 =5
l0g102

FIG.9. Evidences of the GWTC-3 catalog given each of the y
correlation models. Evidence uncertainties include the average
Monte Carlo uncertainty intrinsic to the likelihood estimator,
added in quadrature with the nested sampling uncertainty of
DYNESTY.

Credibility of a positive slope in the evolution of the mean (denoted du > 0) at the fiducial value, and of a positive slope in

the evolution of the width (denoted do > 0). The column on the left is the model assumed, where “Spline (N)” refers to the spline model
using N nodes. In each cell, the top line represents the credibility of a positive slope in the mean, and the bottom line represents the same

quantity for the width.

my (at mj = 35My) q (at g* =0.9) z (at z* =0.2)
Linear p(Opp > 0) =53.9% p(Ou > 0) =2.5% p(0.u > 0) =16.2%
(9,6 > 0) = 93.2% p(dq()' > 0) = 41.7% p(d.0 > 0) = 92.7%
Spline (3) p(0,u > 0) =55.0% p(O,u > 0) =13.4% p(o.u>0)=14.2%
(9,6 > 0) = 89.5% (9,0 > 0) = 33.0% p(d.0 > 0) = 95.6%
Spline (4) PO > 0) = 60.5% p(u > 0) = 18.7% p(0.u > 0) = 19.6%
(0,0 > 0) = 98.7% (0,0 > 0) = 44.5% p(0.0 > 0) = 98.0%
Spline (5) PO > 0) = 78.3% p(u > 0) =21.7% p(ou > 0) = 17.0%
p(0,,0 >0)=957% p(9,0 >0) =58.1% p(0.0 > 0) = 88.8%
Spline (6) PO > 0) = 77.8% p(d,u > 0) =30.0% p(0.u > 0) = 5.9%
p(0,,0 > 0) =93.6% p(0,0 > 0) = 65.5% p(0.6 > 0) = 98.6%
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APPENDIX C: NONLINEAR CORRELATION
IN Yerr—2

To study the potential risk of inferring a nonlinear
correlation a GWTC-3-like catalog from a linearly corre-
lated universe, we used 12 sets of 69 detections drawn
from an uncorrelated universe observed with Hanford
and Livingston in O4-like PSDs [88], in a similar process
to the method presented in Sec. IV. These synthetic events
were injected from a linearly correlated universe (namely,
uncorrelated with slope zero), with a mean p, = 0.06 and
width o, = 0.11, and the same thresholds, waveforms,
and parameter estimation techniques described in Sec. IV.
Then, we infer the y.; correlation with respect to the
redshift z for each synthetic catalog, using the method we
introduced in Sec. III. We compute the instantaneous slope
at the first three nodes for each hyperposterior sample, and
can then estimate the JS divergence between the posteriors
of the slopes at neighboring nodes.

We also show the slope posteriors at a fiducial value
7 = 0.2 in Fig. 11. We avoid choosing z* = 0, as the data
is uninformative in the limit of z — 0 for the same reason it
is uninformative for ¢ — 0. While some of the 69 BBH
events are closer than others, none of them are consistent
with being at 7z — 0, and indeed it is baked into the
population model where the probability density at a given
redshift is proportional to the differential comoving volume

dv,
V4 <Z) X 7
words, a flexible z — y.; correlation model, in particular
spline models with appropriate node density and place-
ment, will increase in uncertainty as z — 0. Indeed,
we observe this to some degree in each spline model in
Fig. 10, but it is especially clear in the spline model with

five nodes.

to have zero support at z — 0 [69,114]. In other
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FIG. 11. Posteriors on the derivative of the mean and width of

the Gaussian with respect to redshift at z* = 0.2, inferred on
GWTC-3 data. Each posterior is consistent, with varying levels of
confidence that the slope is greater than zero.

We also should note the significance of broadening with
redshift using the linear model is only 92.7%, while Ref. [58]
inferred a broadening at 98.6% credibility. We checked
various differences between our analyses, and discovered
that this difference arises from how selection effects are
estimated. In particular, Ref. [58] assumes a semianalytic
threshold on the network SNR p,.. > 9 for Ol and O2 events,
while we use a threshold of p,. > 10, following Ref. [7].
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FIG. 10. Spline correlations between y.q and each parameter we studied, primary mass m; (left column), mass ratio ¢ (center), and
redshift z (right). Solid lines represent the median, while the dashed lines represent the boundaries of the central 90% credible interval.
The upper panels represent the mean of the y.;; Gaussian as a function of each parameter, while the lower panels represent the standard

deviation of the y. distribution.
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APPENDIX D: NODE PLACEMENT AND BIAS
IN MOCK CATALOGS

In Sec. IV we study a universe with a nonlinear correla-
tion in the y.; — g plane. We find that, when we fix the
x-axis positions of the nodes to be different than the true
node positions, we may recover some bias in the inference.

Specifically, the results in Fig. 5 highlight one of the
drawbacks for using spline models. Fitting a spline model
to a smooth function often results in extraneous structure,
bumps that the spline function cannot remove entirely due
to its functional form [113]. In the case of the mock catalog
we simulated, the correlation is created using a spline node
placement (Table II) different from the spline node place-
ment scheme we recover with. Because of this, the spline
cannot simultaneously fit the correlation in the region of
near equal mass ratio while also effectively fitting the

region of more extreme mass ratios, and so it must
compromise with a suboptimal fit across the parameter
space. Hence, the spline model “wiggles” when it ideally
should be smooth.

Because we are not yet in the limit of infinitely many
nodes (we use four nodes in this inference), the spline
functions are not perfectly flexible. More nodes are
inherently more flexible, and so would presumably do a
better job at fitting the correlation. Similarly, using a correct
node placement scheme should also improve the fit. Indeed,
we find that when we analyze the mock catalog using the
same node positions as the true correlation (Table II), the
inferred correlation is closer to the truth. This highlights
the importance of either running with multiple node counts
and placement schemes, or marginalizing over the node
x-axis positions as well.
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