
Magnetic effect on the potential barrier for nucleosynthesis

Kiwan Park *

Department of Physics, OMEG, Soongsil University, 369, Sangdo-ro, Dongjak-gu,
Seoul 06978, Republic of Korea

Yudong Luo
School of physics, Kavli Institute for Astronomy and Astrophysics, Peking University,

Beijing 100871, China

Toshitaka Kajino
School of Physics, International Research Center for Big-Bang Cosmology and Element Genesis,

and Peng Huanwu Collaborative Center for Research and Education,
Beihang University, Beijing 100191, China;

Division of Science, National Astronomical Observatory of Japan, 2-21-1 Osawa,
Mitaka, Tokyo 181-8588, Japan

and Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-033, Japan

(Received 29 September 2023; accepted 21 March 2024; published 2 May 2024)

We investigate the impact of magnetic fields on the potential barrier between two interacting nuclei.
We addressed this by solving the Boltzmann equation and Maxwell’s theory in the presence of a magnetic
field, resulting in the determination of magnetized permittivity. Additionally, we derived the magnetized
Debye potential, which combines the conventional Debye potential with an additional magnetic
component. We then compared the Boltzmann approach with the Debye method. Both methods
consistently demonstrate that magnetic fields increase permittivity. This enhanced permittivity leads to
a reduction in the potential barrier, consequently increasing the reaction rate for nucleosynthesis.
Furthermore, the dependence on temperature and electron density in each approach is consistent. Our
findings suggest that magnetized plasmas from the hot big bang Universe to the solar interior have played a
crucial role in nucleosynthesis.
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I. INTRODUCTION

Magnetic fields (B) and plasmas are prevalent throughout
the Universe. However, despite extensive research, the role of
magnetic fields in the evolution of celestial plasma systems
remains only partially understood. On a macroscopic scale,
magnetic fields are associated with the instability of plasma
systems. Additionally, they transport angular momentum,
resulting in a deceleration of rapid collapses and facilitating
continued accretion. Nevertheless, our comprehension of
these phenomena only skims the surface of the magnetic
field’s role. Inreality,ourknowledgeof themicroscopiceffects
of magnetic fields, especially their impact on the synthesis of
fundamental elements in the Universe, is quite limited.
Nucleosynthesis remains a partially understood phe-

nomenon, and there have been longstanding debates about
the impact of (nonmagnetized) plasma on nuclear fusion.
Furthermore, research on the magnetic field’s influence on
nucleosynthesis has been quite limited. We believe that the

main reasons for overlooking the magnetic field are the
complexity it introduces and its exceedingly weak strength
in the early Universe. Nevertheless, a model that considers
a universally magnetized plasma environment is crucial for
achieving a comprehensive understanding. In this context,
our focus is to investigate the effects of magnetic fields on
nuclear reactions.
Nucleosynthesis proceeds through a series of processes

including the proton-proton (pp) chain,carbon-nitrogen-
oxygen cycle, triple-alpha reaction, and so on. The reaction
rate is represented as
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Here ϵ, μ, mp, E, and E0 are, respectively, “permittivity,”
“reduced mass,” “proton mass,” “thermal energy E ¼
3kBT=2,” and Gamow peak energy at temperature T.
And ϵrð¼ ϵ=ϵ0Þ is the relative permittivity, where
ϵ0ð¼ 8.85 × 10−12 F=mÞ is the permittivity in free space.
We, hereafter, call the exponential function of Eq. (2) the
“penetration factor” PðEÞ at the Gamow peak energy at
E ¼ E0. As this formula shows, the nucleosynthesis
requires a significant amount of energy to overcome the
Coulomb barrier between two fusing ions. For instance, in
the solar core (T ∼ 107 K) and the early Universe after the
big bang (t ∼ 1–102 s; T ∼ 1010 K), the reaction rates for
synthesizing deuterium 2H in the initial step of the pp chain
are suppressed by 1.53 × 10−7 and 0.21, respectively.
Furthermore, in the subsequent step involving 3He, these
rates are further reduced by 1.24 × 10−12 and 0.064.
The thermodynamic conditions of the plasma (i.e.,

density, pressure, and temperature) are the key parameters
for both astrophysical evolution and the nuclear reactions
for nucleosynthesis studies. In particular, the enhanced
electron density decreases the potential barrier, thereby
increasing the penetration factor and reaction rate.
However, modifying the electron density in the plasma
is a somewhat artificial laboratory process that deviates
from the natural state. Therefore, several models that
enhance the reaction rate without artificial manipulations
have been proposed. One such model is the screening
effect, which is attributed to the presence of densely packed
electrons surrounding the ions. The screening effect can
reduce the Coulomb barrier and enhance the reaction rate
(refer to Debye-Hückel screening in [1]).
Salpeter [2] proposed the concept of electron screening

surrounding fusing nuclei, which includes the static inter-
action among the fusing ions and electron clouds.
Subsequently, several studies and suggestions were based
on this ground breaking work. Bahcall et al. [3] solved the
Debye potential using the WKB approximation, where the
Coulomb wave function naturally emerges from Salpeter’s
formulation [2,4]. And, Gruzinov et al. [5] calculated the
partial differential equation for the electron density matrix
in the vicinity of two nuclei. Also, Dewitt et al. [6] and
Brüggen et al. [7] derived the reaction rate based on the free
energy between two ions under the assumption of weak
screening. Brown et al. [8] developed a comprehensive
model for fusion reactions in plasmas. These models
encompass Salpeter’s result under suitable conditions.
Concurrently, however, Salpeter’s static screening effect

was pointed out to be inappropriate for the dynamic stellar
core. Shaviv et al. [9], Carraro et al. [10], and Hwang et al.
[11] considered the dynamic effect with the different
velocities of nuclei and electrons. Opher et al. [12]
statistically reinterpreted Gibbs distribution of particles
in plasmas. And Shaviv et al. [13] studied the interaction
effect of electrons around the fusing nuclei. As these
examples show, authors come to their own plasma models

to the nucleus reactions with their own backgrounds and
models ([14], and reference therein). However, the effect of
a background magnetic field on permittivity ϵr ¼ ϵ=ϵ0 in
the penetration factor P ∼ exp½−gðϵ; E; Z1; Z2Þ� has not yet
been sufficiently studied in more detail [see Eq. (1)].
Alternatively, at a lower temperature case (i.e., non-

relativistic), the linear response theory is useful to calculate
the dielectric coefficient of the gas [15], which directly
determines the weak screening potential. The dominated
state is the ground state of the electron gas in the system.
For the astrophysical electron gas in the system, Jancovici
[16] calculated the screening potential of a relativistic
ultradegenerate plasma; the later studies indicate that such
screening potential could affect β-decay rate [17,18], as
well as the electron capture rate [19–22].
On the other hand,we brieflymentioned that the impact of

the magnetic field on nucleosynthesis has not been thor-
oughly studied. In fact, the magnetic field is as widespread
and ancient as plasma particles, including their (nucleo)
synthesis, in the Universe. The magnetic field has existed
ubiquitously since the big bang until today in various phases
of cosmic evolutionary history. In the very early Universe,
various quantum fluctuations, such as QCD or phase
transitions followed by plasma fluctuation (Biermann bat-
tery effect), induced magnetic fields [23–25]. These pri-
mordial magnetic fields are inferred to have been very weak
(10−62–10−19 G) compared to the currently observed mean
magnetic field strength of order (10−9–10−5 G) [26], which
implies various dynamo processes [27–29]. However, even
such aweakmagnetic field canmagnetize the light electrons
surrounding the nuclei. Moreover, this weak field, which
loosely constrains the charged particles (electrons), has a
more efficient effect on perturbing the distribution of
electrons compared to a strongmagnetic field, i.e., cyclotron
radius r ∼ 1=B. Typically, such weak magnetic fields are
overlooked in conventional plasma physics. Nonetheless,
during the early Universe, where these faint magnetic fields
emerged due to quantum fluctuations and plasma fluctua-
tions and where various nuclei were synthesized, the weak
fields may have played a pivotal role in enhancing nuclear
reactions.
The magnetic fields can alter the electron density that

shields the static electric field around heavy nuclei. We
emphasize that electrons superposed by the fields exhibit a
similar electric field shielding effect as dense electrons.
These series of processes reduce the potential barrier
between two reacting nuclei. We will demonstrate the
impact of the magnetic field on the permittivity, denoted
as ϵr ¼ ϵ=ϵ0, which, in turn, contributes to the penetration
factor PðEÞ for nucleosynthesis. However, a strong mag-
netic field suppresses the perturbation of electrons due to its
strong constraining effect.
Following this section, in Sec. II we show how to get the

permittivity with Boltzmann equation and electromagnetic
theory, analytically and numerically. But, here, we will
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exclude very detailed standard plasma standard theory. In
Sec. III, we show our numerical results for the magnetized
permittivity, potential barrier, and penetration factor. In
Sec. IV, we derive the magnetized Debye potential in
comparison with the potential energy from Boltzmann
equation. In Sec. V, we summarize our work.

II. THEORETICAL ANALYSIS I

A. Kinetic approach

Statistically, the many replicas of closed structures
composed of nuclei and electrons can be regarded as a
canonical ensemble system dominated by Hamiltonian
dynamics with generalized coordinates “qs” and momen-
tum “psð¼ msvs þ qsA;B ¼ ∇ ×AÞ.” Liouville’s theo-
rem indicates that the total time (material) derivative of
the density or distribution function in phase space is zero as
we move along the trajectory dominated by Hamiltonian
dynamics. Therefore, the alteration of the (external) mag-
netic field on the system results in changes in the
distributions of components in an inversely proportional
manner.
We consider a box dqdp in the phase space with the

distribution function fðq; p; tÞ (without subindex “s”).
The number of particles in the box is fðq; p; tÞdqdp.
The change of the particle number is represented with the
flux fðq; p; tÞq̇ and fðq; p; tÞṗ like

∂fðq; p; tÞ
∂t

dqdp

¼ fðq; p; tÞq̇dp − fðqþ dq; p; tÞq̇dpþ fðq; p; tÞṗdq
− fðq; pþ dp; tÞṗdq

∼ −q̇
∂fðq; p; tÞ

∂q
dpdq − ṗ

∂fðq; p; tÞ
∂p

dpdq: ð3Þ

⇒

�
∂f
∂t

þ q̇ ·
∂f
∂q

þ ṗ ·
∂f
∂p

�
dpdq ¼ 0: ð4Þ

With more familiar symbols, Eq. (4) is

∂f
∂t

þ v ·∇f þ a · ∇Vf ¼ 0 →
∂f
∂t

þ∇Γ · ðfvÞ ¼ 0 ð5Þ

→
∂f
∂t

þ ff;Hg ¼ 0: ð6Þ

Here Γ is a system state vector ðq; pÞ, and ff;Hg is
Poisson bracket. And, they are related with p ¼ −∂H=∂q
and q ¼ ∂H=∂p. This Liouville theorem indicates that the
net change of density or distribution function in phase
space is zero as we move along the trajectory dominated by
Hamiltonian dynamics. Mathematically, it is represented as
the material derivative (Df=Dt ¼ ∂f=∂tþ v ·∇f) in phase
space of ðq; pÞ. The change of the system variable results in
that of the distribution function modifying permittivity.

In comparison to the overall distribution fðr; v; tÞ, the
slightly higher (or lower) density electrons surrounding
the nucleus can be regarded as the perturbed distribution
f1ð¼ f − f0Þ [30]. Moreover, since the electrons shield the
electric field from the nucleus, they effectively act as bound
charges, ρb ¼

R
f1ðr; v; tÞdrdv, and polarize the system

with a dipole moment P. Then, by utilizing the convolution
property of Fourier transformation and taking its diver-
gence, we can separate the longitudinal permittivity ϵl from
the electric displacement field D ¼ ϵE as follows [31]:

∇ · ðϵEÞ ¼ ∇ · ðϵ0EÞ þ∇ · P ð7Þ

→ kϵlðk;ωÞEðk;ωÞ
¼ kϵ0Eðk;ωÞ − ρbðk;ωÞ

¼ kϵ0Eðk;ωÞ þ e
Z

f1ðk;ω; vÞdv: ð8Þ

We apply this relation to the system that is weakly
magnetized with the field strength B0. The perturbed
distribution function f1 is [32]

∂f1
∂t

þv ·∇f1− e
me

E ·∇Vf0−
e
me

v×B0 ·∇Vf1¼ 0: ð9Þ

We follow the standard plasma physics to solve this
equation [33]. Using vx ¼ v⊥ cosϕ, vy ¼ v⊥ sinϕ, and
cyclotron frequency ωce ≡ eB0=me, we can convert the
fourth term, i.e., Lorentz force, into ωce∂f1=∂ϕ. Then, the
Fourier transformed Boltzmann equation is represented as

∂f1
∂ϕ

− iðαþ β cosϕÞf1 þ
e

meωce
E ·∇Vf0 ¼ 0; ð10Þ

where α≡ ðkkvk − ωÞ=ωce and β≡ k⊥v⊥=ωce. And then,
we get

f1 ¼ −
e

meωce
eiðαϕþβ sinϕÞ

Z
ϕ
e−iðαϕ0þβ sinϕ0ÞE · ∇Vf0dϕ0:

ð11Þ

Applying f1 to Eq. (8), we can derive the magnetized
permittivity as follows:

ϵl ¼ ϵ0 þ
iϵ0

k2ωce
ω2
pe

Z
v⊥dv⊥dvkdϕeiðαϕþβ sinϕÞ

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{A

×
Z

ϕ
e−iðαϕ0þβ sinϕ0Þk ·∇VF0dϕ0:
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{B

ð12Þ

Here, plasma frequency ωpe is defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ne0e2=ϵ0me

p
,

and the volume element in cylindrical coordinate is
d3v ¼ v⊥dv⊥dvkdϕ. Plasma standard process shows how
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to solve the integral part of this equation (Eqs. (13)–(15),
refer to [33]). And, we use the anisotropic Maxwell
distribution F0 ¼ f0=ne0 for the analytic calculation:

F0 ¼
�

1

2πkBT⊥

��
1

2πkBTk

�
1=2

e−
ms

2kBTs
ðv2kþv2⊥Þ; ð13Þ

where the temperature depends on the direction of
the motion. The exponential term in “A” in Eq. (12)
can be represented by Bessel function eiðαþβ sinϕÞ ¼P∞

m¼−∞ JmðβÞeiðαþmÞϕ, and k ·∇V is written as kk∂=∂Vk þ
k⊥∂=∂V⊥ cosϕ (see [1,34] for the detailed standard proc-
ess). Combined A and “B” turn out to be

X
m;n

JmðβÞJnðβÞ
�
ikk
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þ i
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2
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�
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αþ n − 1
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	�
: ð14Þ

The index “n” is a dummy variable, and
R
2π
0 eiðm−nÞϕdϕ is

defined as Dirac delta function 2πδm;n. Using Bessel
recurrence relation, Jnþ1ðβÞ þ Jn−1ðβÞ ¼ ð2π=βÞJnðβÞ,
we can derive

ϵl
ϵ0
¼ 1þ2πω2

pe
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Z
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Z
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X
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�
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kBTe
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kBTe

�

×
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kkvk−ωþnωce
; ð15Þ

whereTe is the electron temperature. Before going further to
find out ϵl, we introduce other approached yielding
permittivity.

B. Comparison with other methods

There have been a couple of methods to derive permit-
tivity, each producing somewhat different results, both
formally and physically. Additionally, permittivities
obtained through conventional approaches are mostly
frequency dependent. These methods will be briefly intro-
duced here.

1. Harmonic oscillator and bound charges

An electrically neutral material (plasma) can be regarded
as an equivalent dipole system, i.e., a harmonic oscillator.
The motion of an electron bound to the nucleus or molecule
is described as

m
d2x
dt2

þmγ
dx
dt

þmω2
0x ¼ qE cosωt: ð16Þ

With P ¼ ðϵ − ϵ0ÞE, permittivity can be derived as
follows [35]:

ϵ ¼ ϵ0 þ
nq2e
me

X
j

fj
ω2
0j − ω2 − iγjω

: ð17Þ

Note that n is the number of charged particles per unit
volume, and fj is the number of electrons bound to the
nucleus or molecule j. As the result implies, permittivity is
not a fixed constant but a quantity that varies from −∞
to ∞.

2. Momentum equation and current density

The bulk motion of the unbound electrons forms a
current flow. Permittivity with current density J ¼ ρu
can be calculated with momentum equation

me
du
dt

¼ −eE −meνmu: ð18Þ

Here, “νm” indicates the collision frequency yielding a
frictional effect. This collision frequency corresponds to the
damping coefficient γ. If the plasma system is driven by the
harmonic electric field EðtÞ ¼ Ẽe−iωt, then we get
uðtÞ → ũe−iωt, where

ũ ¼ e
me

Ẽ
iω − νm

: ð19Þ

Then, using

J̃net ¼ −iωϵ0Ẽ − en0ũ

¼ −iωϵ0
�
1 −

ω2
pe

ω2 þ iωνm

�
Ẽ; ð20Þ

we find the relative permittivity,

ϵ=ϵ0 ≡ 1 −
ω2
pe

ω2 þ iωνm
∼ 1 −

ω2
pe

ω2
: ð21Þ

The result shows that as ω increases, ϵ approaches free
space permittivity ϵ0. An intriguing observation is that
when ω is smaller than the plasma frequency ωpe

(ω < ωpe), ϵ is negative. As ω approaches zero, ϵ becomes
negatively divergent (−∞). In contrast, ϵ converges to ϵ0
as ω → ∞.

3. Momentum equation and continuity equation
(fluidic approach)

On the other hand, Hatami [36] derived the sheath
properties in active magnetized multicomponent plasmas.
He solved the static (∂=∂t ¼ 0) continuity equation and
Navier-Stokes equation in a compressible plasma system
with a fixed magnetic field. The equations were solved with
some physically simplified assumptions, which is different
from conventional fluid approaches, such as mean field
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theory or eddy-damped quasinormalized Markovian
approximation [37–39]. Nonetheless, a consistent result
of decreasing jϕj with the B field is illustrated.
Additionally, Salimullah et al. [40] derived ϵ ∼Oð1=BÞ
using momentum and continuity equations.
Permittivity ϵ and magnetic permeability μ decide the

wave in the material. Various waves propagate in material
with ϵ > 0 and μ > 0. But, for ϵμ < 0 there is no
propagating wave, only the evanescent wave exists, in
principle [41]. However, if ϵ < 0 and μ < 0 (ϵμ > 0),
negative index material, then waves can propagate in the
material. Negative refractive index material is also called
left handed or metamaterial because of the opposite
direction of triple set of Faraday and Ampere’s law [42].

4. Boltzmann equation and current density

Bergman [43] applied a kinetic approach (Vlasov equa-
tion) to the Maxwell equation. He assumed that the
spatially inhomogeneous electric field would yield the
magnetic field through Faraday’s law, ∂B=∂t ¼ ∇ ×E,
which, in turn, induces the current density and electric
displacement field through Ampere’s law, ∇ × B ¼
μ0ðJþ ϵ0∂E=∂tÞ. And then, using Ohm’s law, the author

analytically derived permittivity tensor ϵ
↔ðk;ω; BÞ includ-

ing the transverse ϵ⊥ and longitudinal ϵk. The result is
formalistic and needs additional physical assumptions for a
practical use. For example, in a cold plasma (vth;e → 0), the
longitudinal component ϵ33 and transverse components ϵ11,
ϵ22 are represented as

ϵ11=ϵ0 ¼ ϵ22=ϵ0 ¼ 1 −
ω2
pe

ω2 − ω2
ce
; ð22Þ

ϵ33=ϵ0 ¼ 1 −
ω2
pe

ω2
ce
: ð23Þ

The transverse permittivity depends on ωpe and ω2 − ω2
ce,

so the effects of ne0 and B vary relative to ω. However, the
longitudinal permittivity is inversely proportional to ne0
and directly proportional to B. In contrast to Eq. (9) for the
external B0 field, this self-consistent system utilizes inter-
nally generated magnetic fields. Consequently, the field
scale is much smaller compared to B0 and exhibits more
interaction with the system.

C. Numerical calculation of longitudinal permittivity

For the numerical calculation of Eq. (15), we expand
Bessel function to make the equation more suitable [34]:

ϵl
ϵ0
¼1þ2πω2

pe

k2

Z
∞

−∞
dvk

Z
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0
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X
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�
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�X∞
s¼0

ð−1Þs
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2

�
nþ2s

�
2

: ð24Þ

Technically, longitudinal permittivity ϵl in this equation
represents the area between the horizontal axis of vk and
integrand. However, the typical residue theorem with
singularities cannot be applied because of the divergent
F0 with vk;im → �i∞ (see F0 ∼ exp½− me

2kBTe
ðv2k þ v2⊥Þ�).

Instead, we should integrate its principal value and poles
directly:

ϵl
ϵ0

¼ 1þ 2πω2
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−∞
dvk
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0

v⊥dv⊥
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me

kBTe
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kvk cos θ − ωþ nωce

�
F0
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s¼0

ð−1Þs
s!ðsþ nÞ!

�
mekv⊥ sin θ

2eB0

�
nþ2s

�
2
�

þ iπ
k
jkj

2πω2
pe

k2
X
n

me

kBTe
ðkvk cos θ þ nmeωceÞ

�X∞
s¼0

ð−1Þs
s!ðsþ nÞ!

�
mekv⊥ sin θ

2eB0

�
nþ2s

�
2

F0: ð25Þ

We applied the trapezoidal rule to calculate Eq. (25)
numerically [44]. The wave number k ranges from 1 to
3000, v ranges from vmin ¼ −108 to vmax ¼ 108, and the
mesh size is Δv ¼ 0.5. In principle, k → ∞, jvj → ∞, and
Δv should be ∼0. However, these environments mixed with
the huge (�c) and tiny figures (e;me; kB, etc.) are numeri-
cally unfriendly. Therefore, we chose Δv and jvj to ensure
that

R
v
−v F0dv ¼ 1. Other integrands were attached to F0

and calculated together. If jvj is scaled to be a unit, then Δv
is in the order of 10−9. In this case, the rescaled integrands,
including F0, yield additional numerical errors with a
unreliable result. A more advanced numerical scheme
does not seem to be necessarily required [45]. And, we

determined the electron density ne0 ¼ 8.18363 × 1013 m−3

and the temperature Te ¼ 2.38 × 106 K near the solar
tachocline regime (0.7R⊙), with an arbitrary frequency
ω ¼ 104 Hz smaller than the plasma frequency ωpe ¼
5.1 × 108 Hz. We used OPENMP with 64 cores (128 threads)
for the parallel computation.
The integrand has singular points vres;n that make the

denominator zero. Landau [46] suggested that energy
transport between particles and waves should take place
at the singularity (Landau damping). However, we do not
consider their interaction; that is beyond the scope of
our work. Therefore, we divided the integral range of vk
into two intervals: (vmin; vres;n − δ) and (vres;n þ δ; vmax),
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excluding the singular point vres;n. Also, theoretically, δ
should approach zero, but it is not practically well defined.
Near the singularity, the integration does not converge
before encountering computational roundoff errors.
Therefore, we chose an arbitrarily small value of δ ¼
500 nm, which corresponds to the boundary wavelength
between visible light and infrared. Landau suggested
energy transport between plasma particles and the wave
at v ¼ ω=k, implying δ ∼ 0. However, this value is numeri-
cally impractical. There is no convergence as δ decreases to
values near zero, within the limits of the roundoff error.
A real experiment is necessary to determine the distance at

which energy transport begins and the amount of energy
exchanges. Finally, we expanded Bessel function up to v18⊥
for the case that the wave number is almost parallel to the B
field, i.e., β ∼ sin θ ∼ 0. But, the result was already satu-
rated in the order of v10⊥ ∶ ϵðv10⊥ Þ ∼ ϵðv18⊥ Þ.

III. NUMERICAL RESULT

Figure 1(a) illustrates the Fourier-transformed evolv-
ing permittivity ϵ (¼ϵ0ϵr) under the influence of themagnetic
field. We calculated Eq. (25) with discrete values of
k (1–3000) and magnetic field strength (B¼0–1×10−5G).

(a) (b)

(c) (d)

FIG. 1. (a) ϵðkÞ in Fourier space. (b) ϵðkÞ depending on T (inversely proportional). (c) ϵðkÞ depending on ne0 (proportional).
(d) ϵðr=λDÞ in real space. The magnetic fields stronger than >4 × 10−9 G render the second and third term ∼ðme=BÞnþ2s in Eq. (25)
relatively negligible. Physically, the superposition of electrons, resulting from their cyclotron rotation around the magnetic field
(r ∼ 1=B), is inversely proportional to the strength of the magnetic field. The increasing superposing effect due to the weaker magnetic
field more efficiently shields the electric field from the nucleus. This is why the application of an increasing magnetic field converges to
the nonmagnetized case.
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The permittivity remains degenerate up to a critical wave
number kcrit, which depends on the strength of the magnetic
field. Beyond this critical point, it begins to deviate and
separate as k > kcrit. The amplification of ϵ is inversely
proportional to the magnetic field strength. For magnetic
fields stronger than 1 × 10−7 G as indicated by the dashed
line, the permittivity is practically the same as in the non-
magnetized case. This is technically attributed to the pres-
ence of theB term in the denominator of Eq. (25). In physical
terms, a weaker magnetic field induces a larger cyclotron
radius (r ∼ 1=B), increasing the superposition of electrons,
which results in the enhanced f1. Additionally, the results
suggest that themagnetic field interacts more efficiently with
shorter wavelengths i.e., larger values of k.
Figure 1(b) presents the evolution of ϵðkÞ as a function of

temperature with an applied magnetic field of 4.5 × 10−9 G.
The plot demonstrates that permittivity is inversely propor-
tional to temperature, similar to its relationship with the
magnetic field ϵ ∼ 1=T. However, their underlying mecha-
nisms are fundamentally different. Higher temperatures lead
to greater dispersion in the electron distribution function,
approximately following expð−mev2=kBTÞ, resulting in
a flatter distribution. This slowly changing the flat distribu-
tion leads to the increased symmetry in the integrand.
Consequently, the area between the integrand and the
horizontal axis decreases, resulting in a reduction in
permittivity.
Figure 1(c) illustrates the impact of electron density ne0

on permittivity. In comparison to the effects of magnetic
field or temperature, ne0 tends to increase permittivity
proportionally ϵ ∼ ne0. This is in contrast to Eqs. (21) and
(23), which are derived under the assumption of unbound
current flow.
Figure 1(d) presents the inverse Fourier-transformed

ϵrðr=λDÞ derived from ϵðkÞ in Fig. 1(a). Here, ‘r’ repre-
sents the distance normalized with the Debye length
λDð¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ0kBT=e2ne

p
≈ 1.17 × 10−2 cmÞ. The nucleus is

located at r ¼ 0, and its charge is represented by QδðrÞ.
To obtain ϵrðrÞ, we performed the inverse Fourier trans-
formation of ϵðkÞ from Fig. 1(a) using the following
formula:

ϵðrnÞ ¼
1

N

XN−1

k¼0

ϵðkÞ exp
�
i
2πkn
N

�
; ð26Þ

where N ¼ 3000 and n=N ¼ rn=λD. Permittivity is
numerically calculated through the discrete Fourier trans-
formation of Eqs. (9), (24), and (25) using the discrete wave
numbers. Essentially, Fourier transformation (FT) assumes
periodic values or functions. However, since FT involves
integrating arbitrary functions to transform them into
another domain, it can effectively decompose the internal
structure of a function into wave number or frequency
components, irrespective of whether the function exhibits

periodicity or not (Mathematical methods for physicists by
Arfken, chapter 15.2, 5th edition). Close to the nucleus, ϵ
exhibits distinct levels corresponding to the applied mag-
netic field. Permittivity is inversely proportional to the
magnetic field. Similar to ϵðkÞ, above a critical field Bcrit,
permittivity is no longer split but converges to that of the
nonmagnetized system. At n ∼ N − 1, cosð2πkn=NÞ is
almost equal to 1, which results in a sudden increase in
ϵ at r ∼ λD. The permittivity here is attributed to the electric
field emanating from the nucleus, whereas the permittivity
in Eq. (23) arises from the induced electric field generated
by the perturbed magnetic field. This represents more of an
additional adjustment to the permittivity rather than its
fundamental form.
Figure 2(a) illustrates the evolving potential energy,

denoted as ϕ ¼ Q=4πϵr, for a hydrogen nucleus with
permittivity ϵðrÞ. Since permittivity plays a crucial role
in the denominator, potential energy changes in proportion
to the magnetic field and approaches the nonmagnetized
potential as it surpasses the critical magnetic field. The
penetration factor PðEÞ is determined based on this
potential energy.
Figure 2(b) depicts how PðEÞ changes with the magnetic

field. The weak magnetic field decreases the potential
barrier, increasing the likelihood of penetration and con-
sequently boosting the reaction rate. In principle, the actual
potential barrier should encompass the interaction energy
among the screening charges surrounding the two interact-
ing nuclei and the surrounding lighter nuclei. However, we
do not delve into these complex effects as they are beyond
the scope of this paper. In Figs. 1 and 2, we demonstrated
the permittivity and potential energy derived using the
Boltzmann method. However, it would be more appropriate
to compare this statistical approach with a different method.
On the other hand, in Sec. II B, we have introduced a few

other methods to determine permittivity (also see Table I).
It is worthwhile to consider whether those approaches,
particularly Bergman’s method [43], can be applied to the
potential barrier for nucleosynthesis. However, to put it
briefly, it is not suitable for nuclear reactions. The potential
barrier originates from the electric field E of the nucleus
charge. However, Bergman’s approach assumes that the E
field is induced by the magnetic field ∂B=∂t ¼ −∇ ×E.
An electric field like this is not directly related to the
potential barrier. This simple criterion can be applied to
other approaches.
Figures 3(a) and 3(b) compare unmagnetized Debye

potential barriers ΦD (solid line),

ΦD¼ Q
4πϵ0r

exp

�
−

ffiffiffi
2

p
r

λD

�
; ϵ→ ϵ0exp

�
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nee2

ϵ0kBTe

s �
; ð27Þ

and unmagnetized Boltzmann potential barrier ΦB (other
lines) from

MAGNETIC EFFECT ON THE POTENTIAL BARRIER FOR … PHYS. REV. D 109, 103002 (2024)

103002-7



f1 ¼
e
ime

E ·∇Vf0
ðk · v − ωÞ : ð28Þ

Despite the same T ¼ 2.38 × 106 K and ne0 ¼ 8.18×
1013 m−3, there is a quantitative discrepancy between these
two potentials. However, as T increases or ne0 decreases,
ΦB grows to approach ΦD. Similarly, Figs. 3(c) and 3(d)
depict the dependence of ΦD on temperature and electron
density. As T decreases or ne0 decreases, ΦD decreases to
approach ΦB.
A closer examination of Figs. 3(a) and 3(c) reveal thatΦB

and ΦD exhibit a proportional dependence on temperature.
In contrast, Figs. 3(b) and 3(d) show an inverse proportion-
ality between ΦB and ΦD and ne0. To achieve similarity
betweenΦB andΦD, it is necessary to control eitherT or ne0.

This discrepancy arises from the different approaches used
in the statistical distribution function and the averaged
momentum (Langevin) equation. Nonetheless, the qualita-
tively consistent dependence on ne0 or T in both methods
implies the validity of statistical Boltzmann approaches.
In Figs. 4(a) and 4(b), we compared the magnetized

potential ΦB;B [solid line, Eq. (25)] and magnetized Debye
potential ΦD;B [other lines, Eq. (43)]. Additionally, the
unmagnetizedDebye potentialΦD is overlapped (diamond).
Figure 4(a) illustrates that ΦD;B, as well as ΦB;B, evolves
proportionally with the magnetic field. And, Fig. 4(b)
shows that the potential barrier is also proportional to the
temperature like the conventional Debye potential ΦD
and Boltzmann method ΦB. However, ΦD;B and ΦB;B

are inversely proportional to ne0, which is physically

TABLE I. Φ ∼OðXÞ or Oð1=XÞ simply indicates that Φ grows along with X or 1=X nonlinearly. R: reaction rate,
P: penetration factor, SðEÞ: slowly varying function, E: thermal energy, E0: Gamow peak energy [see Eqs. 1 and 2
and Fig. 2(b)], E: electric field (others), P: dipole moment [Eq. (7)], fð¼f0 þ f1Þ: distribution function, f0, f1:
mean and perturbed distribution function, F0ð¼f0=ne0Þ: Maxwell-Boltzmann distribution function, FðrÞ: function
for the modified potential [Eq. (39)], ne0: electron density, n: index [Eq. (24)], ϵð¼ϵ0ϵrÞ: permittivity, ϵ0:
permittivity in vacuum, ϵr: relative permittivity, ϵl: relative permittivity parallel to a B field (longitudinal direction),
vk; v⊥: velocity parallel and perpendicular to a B field, νm: collision frequency, U: mean velocity [Eq. (29)], FðrÞ:
modified potential factor [Eq. (39)], ΦB: Boltzmann potential without B, ΦD: Debye potential without B, ΦB;B:

magnetized Boltzmann potential, ΦD;B: magnetized Debye potential α ¼ kkvk−ω
ωce

, β ¼ k⊥v⊥
ωce

, ωce ¼ eB
me

(cyclotron

frequency), ω2
pe ¼ ne0e2

ϵ0me
(plasma frequency), λ2D:

ϵ0kBTe

nee2
(Debye length).

Harmonic Oscillator [Bound charge, Eq. (17)] Φ ∼Oð1=neÞ � � � � � �
Momentumþ Current [Eq. (21)] ∼OðneÞ � � � � � �
Boltzmannþ Current (Bergmann, longitudinal, vth ¼ 0) ∼OðneÞ � � � ∼Oð1=BÞ
(Bergmann, transverse, ω ¼ 0; vth ¼ 0) ∼Oð1=neÞ � � � ∼OðBÞ
Boltzmannþ Bound charge [Eq. (24)] ∼Oð1=neÞ ∼OðTÞ ∼OðBÞ
Magnetized Debye [Eq. (43)] ∼Oð1=neÞ ∼OðTÞ ∼OðBÞ

(a) (b)

FIG. 2. (a) Potential barrier with ϵðr=λDÞ with the magnetic field. (b) Penetration factor with ϵðr=λDÞ with magnetic field.
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reasonable. And, the unmagnetizedΦD coincides withΦD;B

forB ¼ 4 × 10−9G. This indicates thatΦD;Bwith thisB field
is already saturated [see Eq. (43)]. On the other hand, near
the nucleus (r ∼ 0), ΦB;B exhibits a pronounced ridgelike
feature in thevicinity of the nucleus instead of themonotonic
evolution. This is associated with the effect of short wave-
length (large k) interactingwith themagnetic effect. Besides,
the consistent influence ofne0 onΦD;B also exists, butwedid
not include this effect.

IV. THEORETICAL ANALYSIS II:
MAGNETIZED DEBYE POTENTIAL

We now consider the magnetic effect on the conventional
Debye potential. We assume an isotropic and homogeneous

plasma system, which is valid with a weak magnetic field.
Here, there is no exact critical B field. But as its strength
increases, the anisotropy in the system also grows. And, we
add Lorentz force and the (electromagnetic) collision
frequency νm to the Langevin (momentum) equation.
For the nucleus, the momentum equation is

mini
dUi

dt
¼ nieðEþUi×BÞ−kBT∇ni−νmminiUi: ð29Þ

⇒−
e
mi

∇ϕþ e
mi

UiB−
kBT
mi

∇ni
ni

−νmUiþ iωUi∼0: ð30Þ

And, the equation for the electron is

(a) (b)

(c) (d)

FIG. 3. In (a) and (b) the solid lines indicate potential energy ΦD without magnetic field. Other lines indicate Boltzmann potential
energyΦB depending on T and ne0. In (c) and (d) the solid lines indicate potential energyΦB without magnetic field. Other lines indicate
unmagnetized Debye potential energy ΦD with various T and ne0. Both ΦB and ΦD grow in proportion to the temperature, but they are
inversely proportional to ne0. The validity of Debye potential is guaranteed with Φ ≪ kBT=e ∼ 2 × 10−3 − 2 × 102.
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e
me

∇ϕ −
e
me

UeB −
kBT
me

∇ne
ne

− νmUe þ iωUe ∼ 0: ð31Þ

To derive niðrÞ and neðrÞ, we integrate these equations over
distance from infinity to r assuming quasicontinuous
velocity distribution (mean value theorem):

neð∞Þ ¼ nið∞Þ≡ n0;
Z

r

∞
∇ϕdr ¼ ΦðrÞ;Z

r

∞
Uidr → Uir̄i;

Z
r

∞
Uedr → −Ūer̄e: ð32Þ

For the ion, we have

ln
ni
n0

¼ −
e

kBT
Φþ ðeB −miνm þ imiωÞ

Ūir̄i
kBT

: ð33Þ

With the application of cyclotron motion, the Lorentz
force is valanced with the centrifugal force resulting in
r̄i ∼miŪi=eB. Also, we can apply the thermal energy
relation 3n0miŪ2

i ¼ kBT. Then, ion density is

ln
ni
n0

¼ −
eΦ
kBT

þ ðeB −miνm þ imiωÞ
1

3n0eB
: ð34Þ

→ ni ¼ n0 exp

�
−

eΦ
kBT

þ ðeB −miνm þ imiωÞ
3n0eB

�
: ð35Þ

Next, we derive ne in the same way:

ne ¼ n0 exp

�
eΦ
kBT

þ ðeBþmeνm − imeωÞ
3n0eB

�
: ð36Þ

Using Poisson equation −ϵ0∇2Φ ¼ eðni − neÞ þQδðrÞ,
we get ni − ne is as follows:

ni − ne ∼ n0

�
−
2eΦ
kBT

−
ðmi þmeÞðνm − iωÞ

3n0eB

�
; ð37Þ

where me can be neglected. The differential equation to be
solved is

1

r2
∂

∂r

�
r2

∂Φ
∂r

�
−

2

λ2D
Φ −

mi

3ϵ0B
ðνm − iωÞ ¼ 0: ð38Þ

With a trial function Φ ¼ eFðrÞ=4πϵ0r, we have

∂
2FðrÞ
∂r2

−
2

λ2D
FðrÞ ¼ 4πðνm − iωÞmir

3eB
: ð39Þ

This second-order inhomogeneous differential equation of
FðrÞ can be analytically solved:

FðrÞ ¼ c1e
−
ffiffi
2

p
r

λD þ c2e
ffiffi
2

p
r

λD þ 2πrmiλ
2
Dðiω − νmÞ
3eB

: ð40Þ

Now we can derive the potential function:

(a) (b)

FIG. 4. The solid lines in (a) and (b) represent the profile of potential energyΦB;B obtained from the magnetized Boltzmann equation,
Eq. (25), with B ¼ 4 × 10−9 G, T ¼ 2.38 × 106 K, and n0e ¼ 8.18 × 1013 m−3. In (a), the magnetized Debye potential ΦD;BðBÞ from
Eq. (43), with varying magnetic field and fixed ne0 and T, is compared. In (b), ΦD;BðTÞ, with varying temperature and fixed ne0 and
fixed magnetic field, is compared. The dependence on ne0 is not considered in this comparison. And the diamond lines represent
unmagnetized Debye potential energyΦD with the same T and ne0 asΦD;B of the dotted line. This shows that the strong magnetic effect
on the electron sphere is negligible.
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ΦðrÞ ¼ c1
Q

4πϵ0r
e−

ffiffi
2

p
r

λD þ c2
Q

4πϵ0r
e
ffiffi
2

p
r

λD þmiλ
2
D

6ϵ0B
ðiω − νmÞ:

ð41Þ

The result demonstrates that the potential energy comprises
two components: one arising from the nucleus and the other
from the magnetic field and collision effect, denoted as νm.
νm is influenced by the combined effects of the electric
field, magnetic field, and thermal pressure. Consequently,
the collision frequency may be confined to the inner range
of λD. Therefore, to ensure that Φð∞Þ ¼ 0, the value of c2
should be

c2 ¼ −
4πr
Q

e−
ffiffi
2

p
r=λD

iωmiλ
2
D

6B
: ð42Þ

If we set c1 ¼ 1, then the modified Debye potential is

ΦD;B ¼ Q
4πϵ0r

e−
ffiffi
2

p
r

λD −
νmmikBT
6n0e2B

: ð43Þ

This result demonstrates that the potential is directly
proportional to the magnetic field B, which is consistent
with the kinetic model [Fig. 2(a)]. ΦD;B also suggests that a
stronger magnetic field beyond a critical strength Bcrit
paradoxically negates its effect on the potential energy.
Technically, the potential barrier is inversely related to the
collision frequency νm, which establishes a connection
between the magnetic field and the centrifugal force in
Debye potential. Besides, the collisional effect makes
the system isotropic and homogeneous by transporting
momentum in all directions. And it prevents the potential
energy from diverging at infinity. Currently, there is no
exact νm known for Debye shielding. Therefore, we have
referred to the electron-charge collision frequency derived
from Coulomb collision cross section [33]:

νm ¼ n0e4 lnΛ
32ðπmeÞ1=2ϵ20ð2kBTÞ3=2

: ð44Þ

Plasma collision parameter Λ is defined as 12πn0λ3D, and
the Coulomb logarithm lnΛ typically falls in the range of
10 to 40 for most plasma systems. In our case, it is
approximately 22.3. It is important to note that the effects
of T or n0 on the Debye length λD are implicitly considered.
For example, Eq. (43) indicates that Φ appears to be
inversely proportional to T, but Fig. 4(b) demonstrates that
increasing temperature T actually raises Φ. This observa-
tion is consistent with ΦB;B as well.

V. SUMMARY

In our study, we tackled the problem of weak magneti-
zation by solving the Boltzmann equation within the
framework of an isolated canonical ensemble, which

consists of the nucleus and bound charges. Our inves-
tigation revealed an intriguing relationship: permittivity
exhibited an inverse proportionality to the strength of the
magnetic field. This finding indicated that the potential
barrier governing the fusion of two nuclei evolved in
tandem with the magnetic field’s intensity. Such a result
can be associated with Liouville’s theorem, a fundamental
concept in physics, which states that the net change in
density or distribution function in phase space is zero when
following a trajectory governed by Hamiltonian dynamics.
The presence of a weak magnetic field had a distinct

impact on the Boltzmann equation. It effectively reduced the
acceleration effect in the equation, which, in turn, led to a
decreased constraint on electrons imposed by the magnetic
field. Consequently, there was an increase in the fluctuating
electron distribution, denoted as f1ðr; v; tÞ in configuration
space, to compensate for the loss. The equation ∇ · ðϵEÞ ¼
ϵ0∇ ·Eþ e

R
f1drdp elucidates how the growth of f1

contributes to the rising permittivity, subsequently causing
a decrease in the potential barrier. However, it is worth
noting that for magnetic fields surpassing a critical thresh-
old, the electrons become strongly constrained, resulting in
behavior akin to a nonmagnetized system.
On the other hand, the statistical Boltzmann approach

comes with its limitations, primarily due to incomplete
Fourier transformations and constraints inherent to the
applied statistical theory. To assess the validity of the
Boltzmann method, we conducted a comparison between
the unmagnetized Boltzmann model and the conventional
Debye potential without a magnetic field. While there exists
a quantitative discrepancy between the two, their qualitative
consistency lends support to our analysis. Building upon
this, we derived the magnetized Debye potential energy
ΦD;B as a function of temperature, charge density, and
magnetic field. Notably, the influence of the magnetic field
on the system was not direct but rather indirect, coming into
play when thermal kinetic energy, centrifugal force, and
Lorentz force found a delicate balance.
We proceeded to compare the potential energy obtained

from the Boltzmann potential ΦB;B with ΦD;B, and, as
expected, there was a quantitative discrepancy. However,
both approaches exhibited consistent trends in relation to
the magnetic field, temperature, and the electron density. In
both cases, a weak magnetic field played a significant role
in reducing the potential barrier, leading to a substantial
increase in the penetration factor and reaction rate.
Finally, the figures and calculations in this paper are

related to the potential alterations in permittivity and
potential barriers within the solar core of which physical
conditions can be inferred. However, these plots and
calculations, generated using data from the early
Universe, encompassing temperature, density, and mag-
netic fields, can also illustrate changes in permittivity
and potential barriers. Such changes would result in
enhanced nuclear reaction rates, offering deeper insights

MAGNETIC EFFECT ON THE POTENTIAL BARRIER FOR … PHYS. REV. D 109, 103002 (2024)

103002-11



into nucleosynthesis influenced by the pervasive magnetic
fields in the Universe since the epoch of hot big bang
expansion until today throughout the Galactic and stellar
evolution. Beyond nucleosynthesis, the ability to maintain
the plasma’s neutral state and control the Coulomb poten-
tial through magnetic fields can have broader applications,
including chemical bonding and electrical conductivity.
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