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The analysis of gravitational-wave signals is one of the most challenging application areas of signal
processing, because of the extreme weakness of these signals and of the great complexity of gravitational-
wave detectors. Wavelet transforms are specially helpful in detecting and analyzing gravitational-wave
transients and several analysis pipelines are based on these transforms, both continuous and discrete. While
discrete wavelet transforms have distinct advantages in terms of computing efficiency, continuous wavelet
transforms (CWT) produce smooth and visually stunning time-frequency maps where the wavelet energy is
displayed in terms of time and frequency. In addition to wavelets, short-time Fourier transforms (STFT) and
Stockwell transforms (ST) are also used, or the Q-transform, which is a Morlet waveletlike transform
where the width of the Gaussian envelope is parametrized by a parameter denoted by Q [Chatterji et al.,
Classical Quantum Gravity 21, S1809 (2004)]. To date, the use of CWTs in gravitational-wave data
analysis has been limited by the higher computational load when compared with discrete wavelets, and also
by the lack of an inversion formula for wavelet families that do not satisfy the admissibility condition. In
this paper we consider Morlet wavelets parametrized in the same way as the Q-transform (hence the name
wavelet Q-transform) which have all the advantages of the Morlet wavelets and where the wavelet
transform can be inverted with a computationally efficient specialization of the nonstandard inversion
formula of Lebedeva and Postnikov [Lebedeva and Postnikov, R. Soc. Open Sci. 1, 140124 (2014)]. We
also introduce a two-parameter extension (the wavelet Qp-transform) which is well adapted to chirping
signals like those originating from compact binary coalescences (CBC), and show that it is also invertible
just like the wavelet Q-transform. The inversion formulas of both transforms allow for effective noise
filtering and produce very clean reconstructions of gravitational-wave signals. Our preliminary results
indicate that the method could be well suited to perform accurate tests of general relativity by comparing
modeled and unmodeled reconstructions of CBC gravitational-wave signals.
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I. INTRODUCTION

Since the first detection of gravitational waves (GW) in
2015 [1–3] the LIGO–Virgo–KAGRA (LVK) collaboration
has successfully analyzed and reconstructed gravitational-
wave transients (GWT) with different methods [4–6] which
fall into two large classes, the modeled methods and the
unmodeled methods. Modeled methods use theoretical
waveforms and matched-filtering to detect and analyze
GWTs [7–11] and they have been hugely successful in the
inference of the properties of merging compact binary
objects (see, e.g., [2], or [6] and references therein).
Unmodeled methods are based instead on the coherence
of data in different detectors, and make no assumptions on
signal waveform [12–20]. Even though they are not as
sensitive as modeled methods there are two main reasons to
continue developing and using them: first, their nonreliance

on prior models provides independent checks in the
detection and analysis of GWTs [3]. Second, unmodeled
methods are effective also when dealing with GW sources
where we lack precise theoretical waveforms, such as core-
collapse supernovae (CCSN) [21–23].
The lack of well-defined reference waveforms requires

the adoption of complex mathematical tools to extract
signals from background noise. The representations of
signals in the time-frequency (TF) domain are specially
useful to disentangle signals from noise and efficiently
evaluate the coherence of data in different detectors. Such
representations are obtained with a variety of methods, like
short-time Fourier transforms (STFT), Stockwell trans-
forms (ST) [24], wavelet transforms (WT) [25], and several
variants that mix the different approaches.
While all transforms are superficially similar, they differ

in important details, such as the existence of an inverse
transform. The invertibility of a TF representation is crucial
for further processing of the signals, such as filtering out*Corresponding author: andrea.virtuoso@ts.infn.it
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unwanted noise. Continuous wavelet transforms (CWT) do
have an exact reconstruction formula if and only if the
mother wavelet ψðxÞ satisfies the admissibility condition

Cψ ¼
Z þ∞

−∞

jψ̃ðyÞj2
jyj dy < ∞ ð1Þ

where ψ̃ðyÞ is the Fourier transform of ψðxÞ. This is
substantially equivalent to the condition that the mother
wavelet has a vanishing integralZ þ∞

−∞
ψðxÞdx ¼ 0 ð2Þ

(see, e.g., [26], Paragraph 2.4). When the admissibility
condition is satisfied, the wavelet transform of the time-
domain signal xðtÞ

Txðν; τÞ ¼
Z þ∞

−∞
xðtÞψ�

ν;τðtÞdt ð3Þ

is invertible with the standard formula

xðtÞ ¼ 1

Cψ

Z þ∞

−∞

Z þ∞

−∞
dν dτ Txðν; τÞψν;τðtÞ ð4Þ

Interestingly, other inversion formulas exist (see, e.g., [26],
Section 2.4) which also require the admissibility condition.
A TF representation should also have an excellent

resolution, both in time and in frequency. However, time
resolution στ and frequency resolution σν cannot be both
arbitrarily small, they are limited by the Gabor-Heisenberg
principle [27]

στσν ≥
1

4π
ð5Þ

The lower bound of this inequality is actually attained by
the Morlet wavelets [see Eqs. (9) and (10)].
Finally, the signal energy may be spread over regions of

arbitrary shape in the TF plane, and this means that in order
to achieve a sparse TF representation—i.e., a representation
that concentrates signal energy in as few components as
possible—we should be able to adapt the time and
frequency resolutions to follow the main features of the
TF representation of a signal. Sparse representations are
specially useful in the analysis of GW signals, because
sparseness favors signal detectability and helps signal
filtering and reconstruction.
Since the product of time resolution and frequency

resolution is fixed, it should be possible to set a balance
between resolutions to optimize the analysis of an input
signal. As an example, STFT lacks this tunability because it
has a fixed envelope window (and therefore fixed time and
frequency resolutions) for all frequencies: this implies that
at different frequencies the window encompasses a different
number of oscillations, which is often undesirable [28]. On

the contrary, WTs feature envelope windows with variable
width such that the number of oscillations is frequency-
independent, resulting in variable time and frequency
resolutions at different central frequencies. This scale
invariance is a precious feature which we retain in our
analysis of GWTs, just as in past works [15,17,29], and
which helps achieving sparse TF representations of signals.
The issue of setting an optimal balance of time and

frequency resolution is addressed by the Q-transform with a
Gaussian window function [30–34], which is defined by the
pair of equations

Xðτ; ν; QÞ ¼
Z þ∞

−∞
dt sðtÞgðt; τ; ν; QÞe−2πiνt ð6aÞ

gðt; τ; ν; QÞ ¼
�
8πν2

Q2

�
1=4

e−ð
2πνðt−τÞ

Q Þ2 : ð6bÞ

where sðtÞ is the time-domain representation of the signal for
which theQ-transform is evaluated, τ is the central time, ν the
central frequency and Q a parameter that sets the balance
between time (στ) and frequency (σν) resolution. The
Q-transform is not a continuous wavelet transform: even if
it inherits from wavelet transforms the property that its
window gðt; τ; ν; QÞ depends on the frequency ν—a key
property of wavelets—the oscillatory term e−2πiνt is not
centered at t ¼ τ, as forwavelets, but is the same for all times.
Still, the Q-transform is very similar to the Morlet

wavelet transform, and here we consider a version of the
Morlet wavelets with the addition of the Q parameter as in
the Q-transform for tunability of the time and frequency
resolutions. The wavelet version of the Q-transform that we
consider in this paper drops the requirement of a common
oscillatory term in the Q-transform, which is replaced by
e−2πiνðt−τÞ. With this substitution, we obtain a wavelet
version of the Q-transform, the wavelet Q-transform

Tðτ; ν; QÞ ¼
Z þ∞

−∞
dt sðtÞψ�ðt; τ; νÞ ð7Þ

with the wavelets

ψ�ðt; τ; ν; QÞ ¼
�
8πν2

Q2

�
1=4

e−ð
2πνðt−τÞ

Q Þ2−2πiνðt−τÞ: ð8Þ

where � denotes complex conjugate. The time and fre-
quency resolutions depend only on the Gaussian window,
and are found to be the same for both Q-transform and
wavelet Q-transform

σðQÞτ ¼ Q
4πν

ð9Þ

σðQÞν ¼ ν

Q
: ð10Þ
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It is important to note that both resolutions depend on ν.
Moreover, while low values of Q (∼2π) favor a better time
resolution with respect to frequency resolution, high values
of Q (≫ 2π) give good frequency resolution and poor time
resolution. In summary, when computing the wavelet
Q-transform with high values of Q the signal energy in
the TF plane is more spread in time compared to low values
ofQ. In contrast, with low values ofQ, the signal energy in
the TF plane has a higher spread in frequency compared to
high values ofQ. In all cases, the product of the resolutions
remains fixed at the lower bound of Gabor-Heisenberg
uncertainty inequality and endows this transform with the
best possible TF resolution.1

Unfortunately, the Morlet wavelets do not match the
admissibility condition, and the resulting WT is not
invertible with the standard formula: since the wavelet
Q-transform is just a parametrized version of the Morlet
wavelet transform it is not invertible as well.2 However,
recent progress on a wavelet inversion formula that does
not require the admissibility condition [37,38] means that
the wavelet Q-transform can provide both TF representa-
tions comparable to those of the standard Q-transform and
all the advantages of invertibility. We make further progress
in this direction and here we present a more efficient
inversion formula which also implements TF filtering. This
new inversion formula, which we discuss in Sec. II, is a real
game-changer, because it leads to computationally efficient
denoising and waveform reconstruction with the wavelet
Q-transform.
Next, in Sec. III we describe a variant of the wavelet

Q-transform that is better adapted at describing GW chirps
from CBCs and is still graced with an inverse formula. With
this parametrization, GW chirps are better modeled and the
Gaussian window can be made wider, as we discuss in
Sec. III C, giving in many cases a better match of the
wavelet with the chirping signal, as shown in Sec. IV.
Because of the new p parameter, we call this new transform
the wavelet Qp-transform.
In Sec. IV we apply the wavelet Qp-transform and the

associated denoising method discussed in Sec. II to some

well known GW events (GW150914, GW170817 and
GW190521 [1–3,39,40]), and compare the performance
of the wavelet Qp-transform to that of wavelet Q-transform.
We also evaluate the waveforms obtained with the denois-
ing formula for both transforms, comparing these with a
modeled reconstruction based on matched filtering. Finally,
we conclude the paper with a short discussion in Sec. V.

II. NONSTANDARD RECONSTRUCTION
FORMULA FOR THE WAVELET

Q-TRANSFORM

As explained in the Introduction, a major drawback of
the Morlet wavelets, and therefore of the wavelet
Q-transform, is that they do not satisfy the admissibility
condition. Here we introduce a modified form of the
alternative wavelet reconstruction formula recently pro-
posed by Lebedeva and Postnikov [37,38] which does not
require the admissibility condition. A complete derivation
of the reconstruction formula for the wavelet Q-transform is
given in the Supplemental Material [41], and the result is

sðτÞ ¼ 2

ð 2
πQ2Þ1=4Re½erfðQ2Þ�

× Re

�Z þ∞

0

dν
1

i
ffiffiffiffiffiffiffiffi
2πν

p
2πν

∂

∂τ
Tðτ; ν; QÞ

�
: ð11Þ

This new reconstruction formula is our first important
result, which represents a considerable advantage with
respect to the traditional Q-transform [31–33]. After dis-
cretization of the integral in Eq. (11) as usually done with
the standard formula (4) [42], the new formula allows the
application of specific TF filters.
In general, we can perform filtering by multiplying the

transform Tðτ; νÞ times a filter function. When filtering
means satisfying a predefined criterion C, e.g., passing an
amplitude threshold, then the filter is represented by an
indicator function 1Cðτ; νÞ equal to 1 wherever the criterion
is satisfied and 0 elsewhere. We find that an important
subclass of time-frequency filters, those that select only the
regions bounded by the L time-dependent frequency
intervals3 ½νlowl ðτÞ; νhighl ðτÞ� with l ¼ 1;…; L, can be imple-
mented in a computationally efficient way with the follow-
ing integral expression

sDðτÞ ¼ Re

�Z þ∞

−∞
df s̃ðfÞe2πifτwðτ; f; QÞ

�
; ð12Þ

where sDðτÞ is the denoised signal and where we have
introduced the TF window

1In actual implementations the tails of the Gaussian window
are truncated for two reasons: first, to improve computational
efficiency, and second, because with real signals which are time-
and band-limited at some point this truncation has to be done
anyway. As a result, the truncated wavelets have a slightly
reduced resolution.

2The BayesWave pipeline [16,17], which is based on Morlet
wavelets, bypasses the noninvertibility issue by picking one by
one individual wavelets within a Bayesian framework which
utilizes a reversible-jump Markov chain Monte Carlo
(RJMCMC), and then finally superposing all of them to recon-
struct the signal. This method produces good reconstructions but
the RJMCMC step is computationally very expensive. The
noninvertibility of Morlet wavelets can also be overcome by
shifting them to satisfy the admissibility condition [35]: in GW
data analysis, that possibility has been exploited in [36].

3We take into account the possibility of having multiple
unconnected intervals. This is important, e.g., when higher order
modes are present in CBC chirps [43], or in the case of
overlapping signals [44].
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wðτ; f; QÞ ¼ 1

erfðQ
2
Þ
X
l

�
erf

�
Q
2

�
f − νlowl ðτÞ
νlowl ðτÞ

��

− erf

�
Q
2

�
f − νhighl ðτÞ
νhighl ðτÞ

���
: ð13Þ

As an example, consider Fig. 1 which shows the real part of
a pair of Q-wavelets, and Fig. 2 which shows the corre-
sponding window functions for a single pair of values νlow

and νhigh.
The window functions are equivalent to narrow bandpass

filters in the frequency domain, with the larger Q’s
producing a sharper filter functions. Neither filter has a
compact support, however it is clear that the decay of the
filter tails is very fast, and therefore both filters are very
well localized in the sense first explained by Slepian
[45,46]. Notice also that both filter functions are real
and therefore act as noncausal filters.

Just as the coherence among detectors, a careful selec-
tion of the frequency intervals in the TF plane can also be
used to reject background noise; in the analyses that we
report in this paper we retain only those TF intervals having
an energy above a fixed threshold, as described in Sec. IV.

III. THE WAVELET QP-TRANSFORM

A. A wavelet transform
with chirping-frequency wavelets

In this section we introduce a variant of the wavelet Q-
transform where we let the frequency of the wavelet change
to adapt to the shape of gravitational wave chirps. A similar
idea was developed previously, in the context of the so-
called “chirplets” [16,47–52], with the goal of following
the TF evolution of the CBC inspiral phase. This was
achieved either by introducing the first derivative of the
wavelet frequency as a parameter

νðtÞ ¼ νðτÞ þ ∂ν

∂t

				
t¼τ

ðt − τÞ: ð14Þ

and by deploying a wide array of different methods to place
chirplets in the TF plane [16,47–52], or by modeling the TF
evolution of the signal with a more complex polynomial
parametrization [53,54]. The wavelet Qp-transform is based
on the same idea, but with an important difference: the
derivative ∂ν=∂tjt¼τ is itself a function of the local wavelet
frequency over the wavelet duration ½τ − στ; τ þ στ�:

∂ν

∂t

				
t¼τ

¼ ð1þ pÞνðτÞ − ð1 − pÞνðτÞ
ðτ þ στÞ − ðτ − στÞ

¼ 4πν2ðτÞ p
Q

¼ 1

2π

�
2πνðτÞ
Q

�
2

2pQ; ð15Þ

where we have used expression (9) for στ. The p parameter
determines the fractional frequency change with respect to
the central frequency over the ½τ − στ; τ þ στ� time interval.
The resulting nonlinear frequency change helps these wave-
lets in adapting to the CBC chirping gravitational-wave
signals.
As a result, the (conjugate) Qp-wavelets are described by

the following expression:

ψ�ðt; τ; ν; Q; pÞ ¼
�
8πν2

Q2

�
1=4

e−


2πνðt−τÞ

ffiffiffiffiffiffiffiffiffi
1þ2ipQ

p
Q

�2

−2πiνðt−τÞ:

ð16Þ

Figure 3 shows a pair of Qp-wavelets with different
central frequencies and positive p, which determines a
chirp with frequency increasing in the positive directions,
just as the CBC gravitational-wave chirps.
It is important to note that for Qp-wavelets the time

resolution is the same as in eq. (9), while the frequency

FIG. 1. Real part of a pair of Q-wavelets. The wavelet on the
left has been generated with Q ¼ 50, τ ¼ −1 s, and ν ¼ 15 Hz,
the one on the right with Q ¼ 10, τ ¼ 1 s, and ν ¼ 15 Hz. The
standard deviation of the Gaussian envelope is ≈0.34 s for the
wavelet on the left, and ≈0.07 s for the wavelet on the right.

FIG. 2. Window functions for the pair of wavelets in Fig. 1 and
a single pair of values νlow ¼ 10 Hz and νhigh ¼ 20 Hz. The solid
line corresponds to Q ¼ 50 and the dashed line to Q ¼ 10. The
wavelet with the longer duration produces a window with sharper
edges in the frequency domain.
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resolution differs from that found in Eq. (10). Indeed, it can
be shown that in the case of the Qp-wavelets

σðQpÞτ ¼ Q
4πν

ð17Þ

σðQpÞν ¼ ν

Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2pQÞ2

q
: ð18Þ

so that the lower bound of the Gabor-Heisenberg uncer-
tainty product is no longer reached if p ≠ 0. This reduced
resolution comes from the frequency spread due to the
chirping behavior and is discussed further in Sec. III C.
Using the Qp-wavelets in Eq. (16) we can write the wavelet
Qp-transform of a signal sðtÞ as

Tðτ; ν; Q; pÞ ¼
Z þ∞

−∞
dt sðtÞψ�ðt; τ; ν; Q; pÞ ð19aÞ

¼
Z þ∞

−∞
dt sðtÞ

�
8πν2

Q2

�
1=4

e−


2πνðt−τÞ

ffiffiffiffiffiffiffiffiffi
1þ2ipQ

p
Q

�2

e−2πiνðt−τÞ ð19bÞ

¼
Z þ∞

−∞
df s̃ðfÞψ̃�ðf; τ; ν; Q; pÞ ð19cÞ

¼
Z þ∞

−∞
df s̃ðfÞ

�
1

2πν2Q2

�
1=4 Qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2iQp
p e

−



Q

2
ffiffiffiffiffiffiffiffiffi
1þ2iQp

p f−ν
ν

�
2

e2πifτ ð19dÞ

where Fourier transforms are denoted by the overhead tilde.
When computing the wavelet Qp-transform, the p param-
eter aligns the wavelets along the chirp: positive values of p
are associated with a counterclockwise rotation, which
results in a better match of the transform with frequency-
increasing signals; negative values of p are associated with
a clockwise rotation, which results in a better match of the
transform with frequency-decreasing signals. Therefore,
the reduced frequency resolution is offset by the better
match of wavelet and signal. If p ¼ 0, i.e., if there is no

frequency chirp, we recover all the results obtained in the
case of the wavelet Q-transform.

B. Nonstandard inversion formula
for wavelet Qp-transform

The inversion formula for the wavelet Q-transform,
Eq. (11), as well as its denoising version, Eqs. (12) and
(13), can be extended to the wavelet Qp-transform. The
resulting formulas, which are proved in the Supplemental
Material [41], are

sðτÞ ¼ 2

ð 2
πQ2Þ1=4Re½erfð Q

2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ2iQp

p Þ�Re
�Z þ∞

0

dν
1

i
ffiffiffiffiffiffiffiffi
2πν

p
2πν

∂

∂τ
Tðτ; ν; Q; pÞ

�
: ð20Þ

sDðτÞ ¼ Re

�Z þ∞

−∞
df s̃ðfÞe2πifτwðτ; f; Q; pÞ

�
ð21Þ

wðτ; f; Q; pÞ ¼ 1

Re½erfð Q
2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ2iQp

p Þ�
X
l

�
erf

�
Q

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2iQp

p
�
f − νlowl ðτÞ
νlowl ðτÞ

��
− erf

�
Q

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2iQp

p
�
f − νhighl ðτÞ
νhighl ðτÞ

���
: ð22Þ

FIG. 3. Real part of a pair of Qp-wavelets. The wavelet on the
left has been generated with Q ¼ 50, τ ¼ −1 s, ν ¼ 15 Hz, and
p ¼ 0.1, the one on the right with Q ¼ 10, τ ¼ 1 s, ν ¼ 15 Hz,
and p ¼ 0.1. Because of the positive value of p the frequency
increases in the positive direction of time.

WAVELET-BASED TOOLS TO ANALYZE, FILTER, AND … PHYS. REV. D 109, 102010 (2024)

102010-5



Again, notice that setting p ¼ 0 we recover the previous
reconstruction formulas for the wavelet Q-transform. It is
important to remark that they critically depend on the
parametrization of the frequency derivative, which leads to
a solvable Gaussian integral.
Figure 4 shows an example of the complex window

wðτ; f; Q; pÞ in the case of the wavelet Qp-transform,
which is a complex function. We notice that the window

amplitude in the frequency domain (middle panel) is
slightly irregular: this is a manifestation of the Gibbs
phenomenon for this particular kind of wavelets. It is also
important to note that the window phase is frequency-
dependent (bottom panel): this window acts again as a
filter, but, unlike the window for the wavelet Q-transform, it
does not behave as a noncausal filter as a consequence of
the asymmetrical shape of the wavelet in the time domain.
Still, the phase is close to zero between νlow and νhigh, and
this means that for frequencies in this range the window
behavior is close to that of a noncausal filter. Numerical
experiments indicate that, as expected, the noncausal
behavior is more prominent for larger values of p and
for higher ratios ðνhigh − νlowÞ=Q. This means that by
keeping these values low, in specific applications we can
safely use the phase information provided by the wavelet
Qp-transform to complement the amplitude information.

C. Practical implementation of the
wavelet Q- / Qp-transform

The continuouswavelet transforms thatwe consider in this
paper are applied to data samples sðtnÞ (n ¼ 0;…; N − 1)
taken with sampling rate fs. The samples arewhitened using
an interpolated version of the power spectral density that
defines the spectral sensitivity of the detector and which is
independent from the sample rate with which the power
spectral density is obtained. On the other hand, since the
width of the frequency bins is a function of the sampling rate
each frequency bin in the transform of a sampled signal picks
up a total noise power which is a function of the sampling
rate. For this reason, a correct comparison with the noise
background, and therefore a correct whitening, requires a
transform that does not depend on the sampling rate. In the
Supplemental Material [41] we prove that the following
scaled (dimensionless) version of equation (19c) satisfies this
requirement

Tndðτ; ν; Q; pÞ ¼
ffiffiffiffiffi
fs

p
N

X
m

s̃ðfmÞψ̃�ðfm; τ; ν; Q; pÞ ð23Þ

where s̃ðfmÞ¼
P

nsðtnÞe−2πifmtn andm ¼ −N=2þ 1;…;þ
N=2. As a result, the individual values of the wavelet
Qp-transform jTðτ; ν; Q; pÞj2 corresponding to thewhitened
noise background, i.e., with Gaussian white noise Nð0; 1Þ,
follow a χ2 distributionwith 2 degrees of freedom,withmean
value and standard deviation equal to 2 for all reasonable
values of Q and p involved in GW data analysis (see the
Supplemental Material [41] for details).
In addition to the obvious discretization of time t and

frequency f due to sampling, and to the numerical
problems that this sampling carries with it [42], we must
also select a discrete tiling of the TF plane ðτ; νÞ to estimate
the continuous wavelet transforms in a graphically

FIG. 4. Window function determined by Qp-wavelets with
different Q’s. Here we take a single pair of values νlow ¼ 10 Hz
and νhigh ¼ 20 Hz (marked by the red vertical lines), ν ¼ 15 Hz,
and p ¼ 0.05. In each panel, the black solid line corresponds to
Q ¼ 100, and the black dashed line corresponds to Q ¼ 5. The
top panel shows the real part of the window function
wðτ; f; Q; pÞ, the middle panel shows its absolute value, the
bottom panel shows its phase (in radians). Outside the 10 Hz–
20 Hz interval, the phase of the window function oscillates wildly.
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satisfactory and computationally efficient way. To this end,
we address the following two issues:

(i) choice of a tiling represented by a discrete lattice of
points ðτi; νjÞ in the TF plane for the evaluation and
representation of the transform, assuming a time
range ½τmin; τmax� and a frequency range ½νmin; νmax�;

(ii) informed selection of Q and p to produce a signal
representation as sparse as possible.

We can link the positions ðτi; νjÞ of the tiles to the TF
resolutions, Eq. (17) and Eq. (18), of the wavelets in the
following way: first, we consider a set of frequencies fνjg
covering the ½νmin; νmax� range such that

νjþ1 ¼ νj þ ασνj ¼ νj
�
1þ α

Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2pQÞ2

q 
ð24Þ

where the tiling parameter α has been introduced and where
the notation σνj stresses the actual dependence of the
uncertainty on νj. Next, for each frequency νj, the times
τiðνjÞ are chosen accordingly

τiþ1ðνjÞ ¼ τiðνjÞ þ αστiðνjÞ ¼ τiðνjÞ þ α
Q

4πνj
; ð25Þ

where, again, the notation stresses the dependence on
frequency. The resulting tiling is similar to that used for
the multiresolution frames of discrete wavelets [26]. Since
the tile area is the constant α2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2pQÞ2

p
=4π and the

time and frequency ranges correspond to the TF area

ðτmax − τminÞðνmax − νminÞ

the total number of tiles is

Ntiles ¼
ðτmax − τminÞðνmax − νminÞ

α2
4πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð2pQÞ2
p : ð26Þ

Notice that a smooth representation of the continuous
wavelet transform requires a very redundant representation
where α ≤ 1, and that the computational load for the
wavelet Q- and Qp-transforms scales as

ðτmax − τminÞðνmax − νminÞ
α2

:

Moving on to the selection of optimal values ofQ and p,
we note first that we certainly need at least a few large-
amplitude cycles in the wavelet for a good determination of
the instantaneous frequency of a signal. We can compute
the number of cycles k in the range ½τ − nστ; τ þ nστ� by
integrating the phase 2πνðtÞ over t in the same range and
dividing by 2π, i.e.,

k ¼
Z

τþnστ

τ−nστ

�
νðτÞ þ ∂ν

∂t

				
t¼τ

ðt − τÞ
�
dt: ð27Þ

Using Eq. (15), with little additional algebra we find

Q ¼ k4π
2nþ n2p

: ð28Þ

Setting k > 1 and assuming p ≪ 1, we find the bound

Q >
4π

2þ p
∼ 2π: ð29Þ

Therefore, from now on we take Q≳ 2π.
There are no similar bounds on p although we expect a

limited frequency evolution within the same ½τ − nστ;
τ þ nστ� range, which leads to the rule-of-thumb p≲ 1=Q.
Since we aim at a sparse representation [25] after

removing the noise background, we filter out the tiles in
the TF plane that are below a preset energy threshold and
select those values of Q and p that maximize the energy
density ε of the surviving tiles

ε ¼
RR

jTðτ;ν;Q;pÞj2>thr jTðτ; ν; Q; pÞj2dτdνRR
jTðτ;ν;Q;pÞj2>thr dτdν

: ð30Þ

The procedure satisfies two goals: it maximizes the total
energy of the selected tiles and at the same time it
minimizes their TF area, leading to a representation of
the signal as compact as possible.
In this context, it is interesting to compare the wavelet Q-

transform and the wavelet Qp-transform: since Qp-wavelets
better adapt to a chirp, they can have a longer duration, i.e.,
a larger Q, and fewer above-threshold wavelets are actually
needed to represent a chirp. This gain in terms of sparsity of
wavelet representation is balanced by a loss in time
resolution: a larger Q corresponds to a larger TF uncer-
tainty product.

IV. APPLICATION TO A FEW NOTABLE
GW EVENTS

In this section we apply thewavelet Q- and Qp-transforms
to three well-known events detected during the first three
LIGO–Virgo observing runs: GW150914, GW170817, and
GW190521. The data are public and are taken from the
Gravitational-WaveOpenScienceCenterwebsite (GWOSC)
[55,56]. In each case, data sampled at 4096 Hz are down-
loaded, downsampled at 2048 Hz, and finally whitened
before analysis.4

A. GW150914

The first GW event was detected by the LIGO–Virgo
collaboration in 2015 [1] and widely analyzed with both

4For the decimation step we used the SciPy [57] function
scipy.signal.decimate, and for the whitening step the
GWpy [58] method whiten defined in the class TimeSeries.
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match-filtered methods and with unmodeled methods [2,3].
Here, we reanalyze the public data using both the wavelet
Qp- and the wavelet Q-transform on LIGO Livingston (L1)
and LIGO Hanford (H1) detectors’ data, evaluating the
maximum of the energy (“energy peak”), the energy density
above a given energy threshold defined in Eq. (30) and the
corresponding TF area. It is worth mentioning that even if
obtained with the wavelet Q-transform our TF map looks
very similar to thosemadewith the conventionalQ-transform
because in these representations the only difference is a phase
term that disappears when evaluating the local signal
energy jTndðτ; ν; Q; pÞj2.
We estimate the GW waveforms using the denoising

formula for both wavelet transforms, Eqs. (21), (22), (12),
and (13). In each case we evaluate the residuals between
data and the reconstructed waveforms: a good reconstruction
is expected to produce a Gaussian distribution of the
residuals, due to thewhiteningperformedbefore the analysis.
The resulting TF maps and the reconstructed waveforms
for the Hanford interferometer are shown in Fig. 5. The
Supplemental Material [41] includes an extended version of
this figure and a summary table with evaluations of the
performance of the transforms.
The wavelet Qp-transform produces a considerable

increase in both peak energy and energy density with
respect to the wavelet Q-transform: the increase of the
energy density is partly due to the corresponding lowering
of the TF-area, meaning that the wavelet Qp-transform
produces a more compact TF representation of the signal,
as expected. Note that these values depend on the threshold
chosen when calculating the energy density. Here, the
energy threshold has been set to Ethr ¼ 7: indeed, for a
Gaussian noise background, we expect only 0.1% of the
transform values to be above that threshold, as shown in the
Supplemental Material [41].
The waveforms (bottom panel in Fig. 5) have been

obtained applying the denoising formula to the correspond-
ing wavelet transform: in each case, pixels have been
selected if jTndðτ; ν; Q; pÞj2 > Ethr ¼ 7. The signal shapes
obtained with the wavelet Q- and Qp-transforms are
comparable to those obtained with LALInference, a pipe-
line based on matched-filtering and Bayesian estimation
[7], and reported in [1,2]. We evaluate the similarity
between the waveforms reconstructed with the wavelet
Q- and Qp-transforms and the LAL reconstruction with the
overlap:

O½sQp=Q; sLAL� ¼
ðsQp=Q; sLALÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðsQp=Q; sQp=QÞ · ðsLAL; sLALÞ

p ; ð31Þ

where the subscripts denote the kind of reconstruction and
ða; bÞ ¼ R

trs
aðtÞbðtÞdt is the scalar product calculated over

the time duration of the reconstructed signal. Both trans-
forms return an overlap very close to 1 (the ideal match), as
reported in Table 1 in the Supplemental Material [41]: this

is a remarkable result, considering that we used neither
templates as in modeled analyses [7] nor the likelihood
formalism of unmodeled analysis [15]. The effectiveness
of the denoising procedure is highlighted by the histograms
of the residuals, which have a distribution close to
Gaussian for both transforms and is corroborated by the
values of the standard deviations reported in Table 1 in the
Supplemental Material [41]. Overall, there is no major
difference between the waveforms obtained from wavelet
Qp- and wavelet Q-transform: this is probably due to the
fact that the signal energy is sufficiently high to be mostly
above threshold for both transforms. This is not the case for
the Virgo data of GW190521, which we discuss in the next
subsection.

FIG. 5. Q- and Qp-reconstruction of the first event GW150914,
using data fromH1. The top panel shows thewaveletQp-transform
and the middle panel shows the wavelet Q-transform; the color
bars display the energy scale, i.e., the value of jTndðτ; ν; Q; pÞj2.
The bottom panel shows the strain plot with the original data
(green), the waveform reconstructed with LALInference (blue)
(from [1]), and the waveform from the denoising formula for the
wavelet Qp-transform (red), Eqs. (21) and (22).
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B. GW190521

The analysis for GW190521 [40] is performed in the
same way as done for GW150914, with the addition of
Virgo (V1) data. In this case, Figure 6 shows the TF map
and the reconstructed waveform obtained with the wavelet
Qp-transform and V1 data; an extended version of the

figure can be found in the Supplemental Material [41],
which also includes a quantitative summary of the results in
Table 2.
This event differs from the previous one in many ways, it

has a lower signal-to-noise ratio, its duration is shorter and
the bandwidth is limited to lower frequencies, and it has been
detected by a three-interferometer network. V1 is the least
sensitive interferometer, and for this reason we lowered the
denoising threshold to Ethr ¼ 5, mainly to avoid cutting too
large a portion of the signal. Still, this threshold is suffi-
ciently high to effectively remove Gaussian noise, since in
that case only 0.7% of the transform values surpass this
energy threshold. As a general rule, the choice of the energy
threshold can be made by evaluating the energy distribution
of the transform values, identifying the signal by distin-
guishing it from the χ2 distribution of the Gaussian noise,
and finally choosing the threshold by setting a reasonable
trade-off between the removal of Gaussian noise and the
preservation of the GW signal.
The complete results are shown in Fig. 3 in the

Supplemental Material [41], where the thresholds for L1
and H1 have been kept at Ethr ¼ 7 as for GW150914. In
general, we note that the wavelet Qp-transform always
performs better than the wavelet Q-transform, as reported
in Table 2 in the Supplemental Material [41]. For Virgo the
improvement of thewavelet Qp-transformwith respect to the
wavelet Q-transform is more marked and it is important to
note that results are considerably improved by careful
filtering, even though the threshold has been lowered with
respect to that used for the other detectors. With the wavelet
Qp-transform several pixels pick up a higher energy density
and cross the energy threshold. Overall, the reduction of the
TF area due to the compactness of the wavelet Qp-transform
representation is overcompensated by the larger number of
above-thresholdpixels, leading to a noticeable increase of the
TF area of the wavelet Qp-transform with respect to the
wavelet Q-transform. In other words, with the wavelet
Q-transform many pixels that are likely to originate from
the signal remain below threshold, while with the wavelet
Qp-transform they move above threshold, a clear improve-
ment due to the introduction of the p parameter, and overall,
the energy density also increases. We remark that the
wavelets of both transforms are energy-normalized, therefore
any difference in energy is given only by the better/worse
match of the signal with the wavelets.
The waveforms obtained with the denoising formulas

applied to the TF map obtained with both wavelet trans-
forms are quite good for L1 and H1 and comparable with
those obtained with LALInference and reported in [40],
with a high value of the overlap. The low energy values for
both transforms affect the Virgo reconstruction, and in that
case the overlap with LAL reconstruction is lower.
However, the wavelet Qp-transform has a larger number
of above-threshold pixels and a much better waveform
reconstruction, resulting in a considerably higher overlap

FIG. 6. Q- and Qp-reconstruction of GW190521, using data
from V1. The top panel shows the wavelet Qp-transform and the
middle panel shows the wavelet Q-transform; the colorbars
display the energy scale, i.e., the value of jTndðτ; ν; Q; pÞj2.
The bottom panel shows the strain plot with the original data
(green), the waveform reconstructed with LALInference (blue)
(from [40]), and the waveform from the denoising formula for the
wavelet Qp-transform (red), Eqs. (21) and (22).
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with the LAL reconstruction with respect to that of
Q-transform.

C. GW170817 and glitch denoising

A peculiarity of the GW170817 detection [39] is that
about a second before the merger a loud glitch was
observed in the L1 data: in the analysis performed by
the LIGO–Virgo collaboration the glitch was successfully
removed with noise mitigation techniques [2,8,59]. Here,
we focus on the removal of this glitch using the Qp-wavelet
denoising formula. We do so by performing first a wavelet
Qp-transform of the original data by using the combination
of Q and p values giving the best representation of the GW
signal: then, we apply the denoising formula setting to zero
all pixels above an energy threshold of 25. Again, this
threshold has been chosen by evaluating the transform
energy distribution, identifying both the signal and the
glitch distributions, and finally taking a threshold that does
not cut off the signal while removing the glitch only. In this
way, we obtain a denoised TF map and a filtered time
series, for which we compute again the wavelet Qp-trans-
form with the same Q and p pair maximizing the energy
density of the GW signal.
Our results are shown in the two panels of Fig. 7: the

wavelet Qp-transform of the filtered series (bottom panel)
shows that the glitch (well visible in the upper panel) has
been almost completely removed.

V. CONCLUSIONS

In this paper we presented important improvements to the
Q-transform. We extended the Q-transform to the wavelet
Q-transform—a parametrized version of the Morlet wavelet
transform—which does have an inversion formula, unlike
the Q-transform. This result extends the applicability of the
formula originally obtained by Lebedeva and Postnikov
[37], leading to an original denoising algorithm which is
both effective and computationally efficient. While the
wavelet Q-transform, just as the Q-transform, has a minimal
uncertainty in the time-frequency plane, it does not have an
optimal performance in the case of chirping signals like
those produced byCBCs.We found a useful variant—which
we dubbed the wavelet Qp-transform—which can still be
inverted and produces sparser representations of the gravi-
tational-wave signals from CBCs. We have fully charac-
terized these wavelets, both in the time and in the frequency
domain, also studying their statistical fluctuations and
correlation properties in presence of a Gaussian white noise
background.We have produced a Python implementation of
both transforms and used it to analyze some important
gravitational-wave signals detected by the LIGO/Virgo
Collaboration during the O1 and O2 observing runs.
These tests illustrate the higher efficiency of the wavelet
Qp-transform for chirping signals, and also the excellent
performance of the transform as a denoising tool.
The results presented here are encouraging, even though

we have tested the transforms on a very small set of GW
events, and they suggest more systematic studies involving
a larger number of events or a set of simulations.
There remain several unanswered questions. The most

pressing is how to combine the data streams of several
gravitational-wave detectors exploiting their coherence.
Finally, we wish to remark that the inversion formula

described in this paper, in particular its denoising version of
Eqs. (12) and (13), which we developed for the analysis of
GW signals, can be applied to many other fields like music,
medicine, geophysics, engineering and in general in all
those fields which require the analysis of noisy, transient
signals.

A first implementationof thewaveletQ- andQp-transforms
in Python, following the guidelines provided by the GWpy
moduleqtransform.py [58], is freely available at the link
https://zenodo.org/doi/10.5281/zenodo.10649072, including
as an example the analysis of GW150914.
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