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A yet undetected class of gravitational wave signals is represented by the close encounters between
compact objects in highly-eccentric (e ∼ 1) orbits, that can occur in binary compact systems formed in
dense environments such as globular clusters. The expected gravitational signals from these close
encounters are short-duration pulses that would repeat over a much longer timescale in case of multiple
passages at periastron. These sources represent a unique opportunity of exploring astrophysical formation
channels as well as a different way of testing general relativity. Furthermore, in the case of binary systems
containing neutron stars, the observation of these sources could help to constrain the neutron star equation
of state, thanks to the signature left in the gravitational wave signal by the f-modes excitation that can occur
during the encounter. The detection and parameter estimation of these signals is however challenging given
the short duration of expected signals and the sensitivities of current ground-based gravitational wave
interferometers. We present a novel approach to perform fast detection and parameter estimation of
gravitational wave signals from binary close encounters that exploits probabilistic machine learning. We
have used conditional normalizing flows to model complex probability distributions and therefore infer
posterior distributions for the source parameters. This architecture is able to perform inference in a very
short time and its output can be directly compared with classical methods. Fast detection and parameter
estimation is very important as it could trigger electromagnetic follow-up campaigns and offer the
possibility to study these events in a multimessenger context. To develop and test the algorithm, we have
focused on the simulations of single bursts emission obtained using the Effective Fly-by formalism and
embedded in the noise of Advanced LIGO and Virgo during their third observing run (O3). Our proposed
model outperforms standard Bayesian methods in accuracy and is ∼5 orders of magnitude faster, being able
to produce 5 × 104 posterior samples in just 0.5 s. The results are extremely promising and constitute the
first successful attempt for a fast and complete parameter estimation of binary close encounters using deep
learning, offering a new approach to study the evolution of orbital parameters of compact binary systems.
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I. INTRODUCTION

The detection of gravitational waves represents a revo-
lution in the way we probe the Universe and provides a new
and independent tool to investigate the physics of extreme
compact objects. For instance, the first detection of
gravitational waves from the coalescence of a binary black
hole system, GW150914 [1], provided the observational
proof of the existence of stellar-mass black holes with
masses greater than ≃25M⊙ and established that binary
black holes can form in nature and can merge within a
Hubble time. Furthermore, the detection of gravitational
waves from the event GW170817 and its associated
electromagnetic counterparts marked the birth of a new

era in multimessenger astrophysics [2,3]. The joint obser-
vation of electromagnetic and gravitational waves provided
the first confirmation that binary neutron star coalescence
are progenitors of short gamma-ray bursts [4], and allowed
the investigation of the origin of heavy elements [5,6].
Furthermore, multimessenger observations of GW170817
offered a new way of investigating the equation of state of
neutron stars [7,8], testing general relativity [9] and
measuring the Hubble constant [10].
The third gravitational wave transient catalog (GWTC-3)

[11] contains 90 events detected by Advanced LIGO and
Virgo during the first three observing runs (O1, O2, O3)
from 2015 to 2020. All these events are associated with
the coalescence of compact binary systems (CBCs) con-
taining black holes and/or neutron stars. More specifically,
several dozens are consistent with binary black hole
(BBH) systems. The growing population of BBHs observed
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through gravitational waves allowed to perform population
studies that seem to support the presence of more than one
binary formation channel [12,13]. There seem to be twomain
formation channels [14]: BBHs can be the outcome of
isolated binary evolution, i.e., they can form from the
evolution of stars paired together at birth, or they can form
dynamically, through strong stellar encounters in dense
environments as young, globular, and nuclear clusters or
active galactic nuclei. A deeper understanding of these
different formation mechanisms is crucial in order to fully
explain the BBH population so far observed.
Recent simulations of dynamical interactions in

globular clusters have predicted the existence of popula-
tions of binaries merging with non-null eccentricity
(e > 0.05) [15,16]. Despite gravitational wave emission
being in general an efficient mechanism for the orbit
circularization during the binary evolution, these works
have revealed the existence of BBH subpopulations form-
ing in orbits with eccentricities e ∼ 1. We will refer to them
as close encounters (CE).
Accurate measurement of the parameters of CE signals is

of paramount importance to study dynamical formation
channels as well as gravity in the strong field regime. At the
moment no confident gravitational wave signal emitted
during a CE has been detected, making these sources new
and potentially interesting to search for [17,18].
Due to the high eccentricity of these systems, the

expected gravitational wave emission differs from the
chirplike waveform detected from CBCs. Eccentricity
induces a modulation in the waveform that, in the limit
e → 1, transforms it into a series of repeated short duration
bursts emitted during each periastron passage.
The burst-like nature of the signal, combined with the

expected low signal-to-noise ratio, makes the detection of
these sources particularly challenging. While current search
strategies are based on unmodeled searches, Deep Learning
has been proposed as a possible new approach to analyze
these sources [19,20].
This paper present a novel approach to the detection and

parameter estimation of gravitational waves from CEs
based on probabilistic machine learning. Our approach
exploits normalizing flows (NFs) to combine Bayesian
inference methods with deep learning. This approach has
been successfully tested on other types of sources. For
instance, BBH coalescences have been studied with
DINGO [21,22]. We will focus on single burst emission
from encounters of binary black hole systems, as they are
ones most likely to be detected by the current generation of
interferometric detectors. We defer to subsequent work the
application to the case of repeated bursts. The paper is
organized in this way. In Sec. II we discuss the dynamical
scenarios for the formation of CEs and their expected
gravitational wave emission derived from the effective fly-
by formalism. Section III introduces normalizing flows
and their properties. In Sec. IV we discuss HYPERION, the

NF-based pipeline that we have developed for parameter
estimation using NFs. Section V contains the training on a
simulated dataset and the resulting performance of the
pipeline. Finally, Sec. VI discusses the results and limi-
tations of this approach.

II. BINARY CLOSE ENCOUNTERS AS
GRAVITATIONAL WAVE SOURCES

The canonical formation channel for BBH systems is via
isolated binary evolution driven by stellar physics [23].
Stellar evolution further predicts the existence of a gap in
the BH mass distribution from 50þ20

−10M⊙ to approximately
120M⊙ because of pair-instability supernovae. The main
uncertainties in the boundaries of this mass gap are related to
limited knowledge of processes at play during the evolution
of massive stars: e.g., the 12Cðα; γÞ16O reaction [13].
However, population studies, made possible thanks to

catalogs of observed gravitational wave events, have
revealed a slightly different picture. In particular, the
inferred distribution for the primary mass component in
GWTC-3 does not exhibit a sharp drop at ∼50M⊙ [13] as
one would expect from the outlined formation channel. The
presence of a tail at higher masses seems to suggest that a
fraction of the observed BBHs could have formed through
additional formation channels that have to be of dynamical
origin, i.e., from N-body interaction between stars and/or
black holes.
Besides the mass distribution, another ingredient that can

provide clues to the formation channel is the spin orientation
of the binaries. For instance, isolated field binary evolution is
believed to produce components with preferably aligned
spins [24] in contrast to dynamical encounterswhich can lead
to isotropic spin-orbit misalignment [25]. There are currently
evidences for the spin distribution to requiremisalignment as
well as events with anti-aligned spins [13]; this could suggest
that some of the observed BBHs formed dynamically, but
further investigations are needed.
Therefore, this has led to the examination of these addi-

tional channels, which are possible in highly dense stellar
environments. Examples of such environments are globular
clusters which have central densities ρc ≥ 104M⊙ pc−3 [26],
young stellar clusters with ρc > 103M⊙ pc−3 [26,27],
nuclear star clusters of galactic nuclei [28] as well as active
galactic nuclei [29].

A. Dynamics in dense stellar environments

Given the high stellar density in globular clusters, single-
single, binary-single and even binary-binary interactions
can take place and influence the evolution of binary
systems. These interactions have been studied through
numerical N-body simulations and have revealed a wide
spectrum of possible final states [30,31].
Recent simulations in globular clusters [15,31] have

indeed confirmed that multiple resonant interactions can
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lead to the formation of highly eccentric compact binaries.
A subset of these binaries forms in a condition in which
energy loss due to gravitational wave emission produces a
capture: the inspiral phase of the binary speeds up, leading
to a merger with a non-negligible eccentricity. More
importantly, a subset of them is expected to merge within
the LIGO-Virgo-KAGRA frequency range [16].

B. Highly eccentric compact binaries in globular
clusters: Populations and rates

Dynamical interactions in globular clusters can produce
different populations of merging systems, each one with its
typical eccentricity. The dominant frequency fpeakGW at which
these binaries emit gravitational waves is [16]

fpeakGW ¼
ffiffiffiffiffiffiffiffi
GM

p

π

ð1þ eÞ1.1954
½að1 − e2Þ�3=2 ð1Þ

with M being the total mass of the binary, a its semimajor
axis, and e the eccentricity.
BBHs mergers formed through dynamical interactions in

globular clusters fall into three major categories [16,31],
depending on the timescale TGW for gravitational wave
emission to drive a binary to merge and the average
timescale TSE between two successive encounters. In
particular they are defined as [16]:

TGW ∝ a4ð1 − e2Þ7=2; TSE ∝ na2σ

�
1þ GM

2aσ2

�
ð2Þ

where n and σ are the number density and the velocity
dispersion in the cluster, respectively.
The first category of BBH mergers is that of ejected

inspirals, which are binary systems that, by the recoil from
close interaction, acquire a center of mass velocity that
exceeds the escape velocity of the cluster and get ejected
from it. These mergers produce gravitational waves with
fpeakGW ≤ 10−2 Hz while being characterized by a nonzero
eccentricity (e > 0.01) [32,33]. For this reason, they are
among the major sources detectable by LISA [34].
The in-cluster mergers are a second category of binaries

merging inside the cluster due to dynamical encounters, but
not due to significant emission of gravitational waves
during the encounters. They can be of two kinds: 2-body
and 3-body mergers. The former are binary black holes that
survive a binary-single interaction with semimajor-axis and
eccentricities such that their inspiral times are less than
interaction times (∼107 years [35]). Their eccentricity is
expected to be similar to that of ejected inspirals and the
fpeakGW near the LISA sensitivity band [36]. The latter are still
formed through binary-single interactions. However, their
pericenter distance is perturbed in such a way that the
energy lost over one orbit through gravitational wave
radiation is larger than the initial energy of the 3-body

system. Timescales associated with this process are thus
much smaller (∼1 year), which implies gravitational waves
frequency peaks in the ground-based detector sensitivity
bands [35,36].
Finally, the category of gravitational wave captures

consist of binaries that inspiral and merge during a resonant
interaction itself due to the strong emission of gravitational
waves. This interaction can be a binary-single, binary-
binary, or even a single-single. In the latter, two initially
unbound objects experience an encounter on a hyperbolic
orbit that causes the binary to become bound and rapidly
merge. They typically result in fGW ≥ 10−1 Hz. However,
this mechanism is also able to produce highly eccentric
binaries (e ∼ 1) that will merge within the sensitivity band
of ground-based detectors with timescales O(seconds).
Given the high eccentricities of this last subset, some of
them are close enough to the unbound limit to experience
fly-by encounters [16]. The expected rate of eccentric BBH
captures is expected to be 1–2 Gpc−3 yr−1 in the local
universe (z < 1) [16].

C. Astrophysical relevance of CE observations

Close encounters carry distinctive signatures that can be
used to differentiate between different formation channels,
hence probing the underlying mechanisms responsible for
the binary formation and merger. Tests of general relativity
can also be carried out with such sources. For eccentric
bound orbits, the smallest pericenter distance can be
rp=M∼4 (G¼c¼1 units) corresponding to vp∼0.7c [37].
Therefore, CEs provide themselves as a unique laboratory
to test general relativity in the strong-field regime: higher
order effects such as radiation reaction and tides are indeed
expected to become dominant. Other than that, eccentricity
can be used to put constraints on alternative or modified
theories of gravity [38]. Neutron star’s equation of state can
also be constrained if one of them is present in the binary.
In the case of CBCs, the effects related to the equation
of state become relevant only during the late inspiral and
post-merger phase. In the case of eccentric inspiral, on
the contrary, f-modes on the NS surface can be excited
during each close interaction [39]. CE events could be
potentially interesting also from a multimessenger point of
view, eitherwhen neutron stars [40] and/or BHs are involved.
As already mentioned, CEs can happen between two
BHs embedded in the accretion disk of an active galactic
nuclei [29] and, in such a gas rich environment, the merger
can also yield a significant, detectable EM counterpart (see
e.g. [41,42]).
CEs could also be the source of a stochastic background

from primordial black holes. Close hyperbolic encounters
from primordial black holes have been recently proposed
as a detectable source for Einstein Telescope [43]. Being
not resolvable, this emission results in overlapping
bursts forming a stochastic background. In this work we
will consider BBH gravitational wave captures at high
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eccentricity (e ∼ 1), since they are expected to be detectable
with current ground-based interferometers.

D. Waveforms for eccentric close encounters

In order to be able to infer the parameters of a CE source, an
accurate theoretical description of the gravitational wave
signal emitted is needed. The presence of eccentricity, which
is the defining feature of these system, poses several chal-
lenges. In first place, it makes mandatory to have accurate
waveformsmodels. Indeed, even a small orbital eccentricity, if
not correctly accounted for, is able to introduce systematic
biases that exceed the statistical errors in parameter estima-
tion [44]. As an example in [45] it has been shown that black
hole captures might be misclassified as standard CBCs.
Currently, the most accurate gravitational wave wave-

forms are obtained through numerical relativity simulations,
which have the drawback of being extremely computation-
ally costly. This is due to the great velocities reached during

the encounter which impose small integration steps. On the
other hand, successive periastron passages happen on much
wider timescales. Numerical relativity simulations available
today, hence, only cover a limited number of orbits [46,47]
and have shown that the gravitational wave emission consists
in a series of repeated burst signals.
Since numerical relativity waveforms are too expensive

to be exploited during an online analysis, it is crucial to
also pursue an analytical approach. In order to account for
relativistic effects such as radiation reaction, the post-
Newtonian formalism is widely used. This method, which
works well for binaries in quasicircular orbit, has difficul-
ties in the high eccentricity limit since it is based on a post-
circular expansion where the eccentric orbit is seen as a
perturbation of a circular one. Previous attempts to describe
eccentric waveforms in this way have been done in [48,49]
up to eccentricities ≲0.8 for widely separated binaries.
However this approach suffers from post-Newtonian
convergence issues when considering higher e or smaller

FIG. 1. Top: plus and cross polarizations waveforms obtained with the effective fly-by formalism. The captions indicate the BH
masses, while other relevant parameters are e ¼ 0.9 and p̄ ¼ 15. Note the different timescales. Bottom: FFT of the plus polarizations
above. We see that the signals lie in the LIGO and Virgo sensitivity band and that the increase of the total mass M results in a peak at
lower frequencies.
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separations [37]. Therefore the description of close encoun-
ter mergers is not fully feasible with it.
An alternative solution is represented by a formalism

recently developed: the effective fly-by formalism [37,50].
The difference with respect to other analytical approaches
is that the periastron passage in the eccentric orbit is
obtained by perturbing a parabolic fly-by. That defines
the post-parabolic approximation [50]. Hence, the effective
fly-by formalism provides an accurate analytical descrip-
tion of the single burst emission at each periastron passage
by modeling the single close passage as fly-by: i.e., a
perturbation on a parabolic orbit. This method overcomes
the issues of the post-circular approximation and is best
suited for higher eccentricities. It is also possible to derive
the whole inspiral waveforms from a single burst by adding
many of these. In order to do so, it is necessary to include
radiation reaction effects to track the evolution of the
orbital parameters through time. Time-domain waveforms
produced with this formalism (henceforth referred to as
EFB-T) are given by [50]

hþ;×ðtÞ ¼ −
M2η

p½lðtÞ�dL
X6
k¼0

X2
n¼0

ϵnΦðn;kÞðι;ψÞ þOðϵ3Þ ð3Þ

where M is the total mass of the binary, η ¼ m1m2=M2 the
symmetric mass ratio, ι-ψ the inclination and polarization
angles respectively, p is the semilatus rectum of the orbit
which corresponds to the distance perpendicular to the
semimajor axis to one of the focuses. In G ¼ c ¼ 1 units, it
can be measured in M⊙ units, and it is convenient to
normalize it with respect to the total mass M: p̄≡ p=M. It
is also related to the pericenter distance by

r̄p ¼ p̄
1þ e

ð4Þ

lðtÞ is the mean anomaly defined as

lðtÞ ¼ 2π

TorbðtÞ
ðt − tpÞ ð5Þ

with tp the time of periastron passage and Torb the orbital
period. The relation p½lðtÞ� accounts for radiation reaction
effects at 2.5 post-Newtonian order (see Sec. III B in [50]).
The waveforms so computed are valid only near tp
(t∈ ½−tl¼π; tl¼π�) and reproduce the parabolic limit as e → 1.
Examples of the EFB-T plus and cross polarizations

waveform are given in Fig. 1. From Eq. (3) the parameter
that mainly affects both polarizations is the total mass M.
Withother parameters fixed,moremassive binaries result in a
longer and broader burst signal peaked at lower frequencies.
Even so, the bursts have very short duration ≲1 s, and an
overall peak frequency in the range 10–100 Hz.
The good accuracy of these waveforms has been studied

in [50] by comparing it with numerical waveforms at

leading post-Newtonian order [51] and full numerical
relativity.

III. NORMALIZING FLOWS
FOR PARAMETER ESTIMATION

A. Basic definitions

The objective of Bayesian Inference in the context of
gravitational wave data analysis is to obtain the posterior
distribution for the parameters describing the signal. To
compute it in the case of close encounters sources, we
have exploited, in this work, the method of normalizing
flows [52]. They are a powerful class of generative models
capable of modeling complex probability distributions
pðxÞ out of simpler base distributions by means of a
learned invertible transformation. The transformation can
be conditioned on data thus making it possible to model
surrogate posteriors qðθjsÞ ≈ pðθjsÞ. The key aspect of
this approach is that it does not require any likelihood
evaluation as the flow learns how to map θ to the base
distribution via a simulation-based process. Furthermore,
inference requires only to evaluate the inverse transforma-
tion on samples from the base distribution, thus leading to a
significant reduction in computational inference time.
To introduce the definition of a normalizing flow, let x be

a vector in an input data space X , distributed as x ∼ pðxÞ: a
normalizing flow is then defined by an invertible map
(bijection) fϕ∶ X → U from the input data space X to a
latent space U of a random variable u ∼ πψ ðuÞ

x⟶
fϕ

u ∼ πψ ðuÞ ðforward passÞ ð6Þ
Our notation follows [53], with ϕ and ψ parameters f and π
depend respectively upon. Since Eq. (6) is nothing but a
change of variable, the probability distribution pðxÞ can be
expressed in terms of the base distribution as:

pðxÞ¼πψðuÞjdetJ fϕ j¼πψðfϕðxÞÞ
����det

�
∂fϕðxÞ
∂x

����� ð7aÞ

logpðxÞ ¼ log πψ ðfϕðxÞÞ þ log

���� det
�
∂fϕðxÞ
∂x

����� ð7bÞ

where J fϕ ¼ ð∂fϕ
∂x Þ is the Jacobian of the transformation.

The map fϕ is learned by performing the forward pass
specified by Eq. (6), then the sampling of pðxÞ is
straightforward and simply consists in evaluating the
inverse f−1ϕ over samples from the base distribution

x⟵
f−1ϕ

u ∼ πψ ðuÞ ðinverse passÞ ð8Þ
This evaluation can be done as long as some conditions
hold. First, πψ ðuÞ must be easy to sample and evaluate.
To this scope, the uniform or Gaussian distribution are best
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suited. Second, fϕ must be invertible, and third: fϕ and its
inverse are differentiable. Furthermore, data and latent
spaces share the same topology and dimensionality: the
common choice is X ¼ U ¼ RD.

B. Expressive power and flexibility

It is interesting to consider whether a flow-based model
can represent any distribution. If pðxÞ and πψðuÞ are
well behaved distributions satisfying the autoregressivity
assumption:

pðxÞ ¼
YD
i¼1

pðxijx<iÞ; pðxijx<iÞ> 0 ∀ i;x∈RD ð9Þ

then there exists a diffeomorphism F that can map πψðxÞ
into pðxÞ [52]. Although this guarantees its existence, it
does not provide a closed formula for F, so that it must be
learned by optimizing a function fϕ. Therefore the expres-
sive power of a normalizing flow, i.e. its ability to model
complex distributions, strictly depends on the form of fϕ.
Making flows more expressive can be achieved by increas-
ing the flexibility of the bijection fϕ. For instance, given
that a single function may not be sufficient, the whole
bijection can be constructed as a combination of inter-
mediate bijections:

fϕ ¼ fð1Þϕ1
∘fð2Þϕ2

∘ � � � ∘fðKÞϕK
ð10Þ

each one with its own set of parameters ϕi to be optimized.
Under this assumption, the Jacobian can be factorized:

J fϕ ¼
YK
j¼1

J
fðjÞϕj

ð11Þ

Then Eq. (7b) reads

logpðxÞ ¼ logπψ ðfϕðxÞÞþ
XK
j¼1

log jdetJ
fðjÞϕj

ðuj−1Þj ð12Þ

This shows also the meaning of the name “normalizing
flows”: the input samples x undergoes a series of composite
bijections to be gradually transformed into noise: i.e. pðxÞ
flows through each discrete step to be normalized. The
reverse is true when computing the inverse to sample pðxÞ.
Figure 2 gives a graphical representation of this concept. As
will be discussed in Sec. III G, the bijections may be
parametrized with the support of deep neural networks to
increase expressiveness.

C. Likelihood-free inference

The main application of a normalizing flow model is
probability density estimation and sampling, as stated by
Eq. (7a). This approach is useful in cases where it is
possible to have access to a collection of samples drawn
from an unknown distribution that we would like to
reconstruct. Indeed, by fitting the model through Eq. (6)
then new samples can be generated as illustrated by Eq. (8).
However the list of possible applications for such models
does not end up here, as they can also perform variational
inference. We will focus more on this kind of application as
it fits our studying purposes.
Our goal is to infer probability distributions for a set of

implicit parameters θ that better describe some observation
data x. In our particular case x≡ sðtÞ is the strain time
series containing the gravitational wave signal of a close
encounter, and θ the parameters of the physical system that
generated it. From the Bayes theorem

pðθjsÞ ∝ pðθÞpðsjθÞ ð13Þ
The posterior distribution pðθjsÞ is traditionally com-

puted either with Monte Carlo Markov Chain (MCMC) or
nested sampling by repeated evaluations of the likelihood
pðsjθÞ. This can become a bottleneck in many situations,
either because the likelihood function can be costly to
evaluate or because it may be not well defined thus
preventing a tractable computation. Alternatively, normal-
izing flows provide themselves as a natural method to

FIG. 2. A schematic representation of the inverse pass of a normalizing flow where the bijection is made up by a series of composite
functions. During the inverse pass (sampling) the samples from the base distribution are gradually transformed in each step into a more
complex distribution to match the target. Adapted from [54].
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approximate the posterior by producing a surrogate pos-
terior qðθjsÞ in a tractable way. This can be done by making
the bijection conditioned on the observed data.

pðθjsÞ ≈ qðθjsÞ ¼ πψðfϕðθ; sÞÞ
���� det

�
∂fϕðθ; sÞ

∂θ

����� ð14Þ

It is worth emphasizing that Eq. (14) does not require
any likelihood evaluation to perform inference. The only
requirement is to be able to simulate the data from a given
set of parameters θ� extracted from a prior distribution:

θ� ∼ pðθÞ; s� ∼ pðsjθ�Þ ð15Þ

By this simulation process, the model indirectly incor-
porates both the prior over the parameters and the
likelihood since the data points are generated accor-
dingly. Therefore, this whole approach goes under the
name of likelihood-free inference or even simulation-based

inference [55]. As in other methods based on machine
learning, inference is significantly faster since the computa-
tional cost is mostly during the training phase.

D. Training of normalizing flows

The training of normalizing flow models consists in
optimizing the set of parameters ϕ upon which the bijection
fϕ depends by minimizing a suitable loss function. Given
our purposes of inferring a surrogate gravitational wave
posterior, in order for qðθjsÞ ≈ pðθjsÞ it is necessary to
minimize the distance between the two. The most straight-
forward measure of how close two distributions are is the
Kullback-Leibler divergence [56]. The true posterior is in
principle unknown but we can use the simulated set of
samples fθðiÞ; sðiÞgNi¼1 to minimize the forward KL diver-
gence KL½pjjq�.
It is possible to derive an expression for the loss in the

following way

L ¼ KL½pðθjsÞjjqϕðθjsÞ�

¼
Z

dspðsÞ
Z

dθpðθjsÞ log
�
pðθjsÞ
qϕðθjsÞ

�

¼
Z

dspðsÞ
�
−
Z

dθpðθjsÞ log qϕðθjsÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
H½pjjqϕ�

þ
Z

dθpðθjsÞ logpðθjsÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
H½pjjp�¼cost

�

≃ −
Z

dθpðθÞ
Z

dspðsjθÞ log qϕðθjsÞ

≃ −
1

N

XN
i¼1

log qϕðθðiÞjsðiÞÞ ð16Þ

where H½pjjqϕ� is the differential cross-entropy between the two distributions and H½pjjp� can be discarded, being constant
with respect to the flow’s parameters. At the fourth line we have applied the Bayes theorem to express the cross entropy in
terms of the likelihood instead of the unknown posterior and in the last passage we leveraged the fact that we are in a
simulation based context [cf. Eq. (15)] which implies that the integral can be approximated via Monte Carlo methods.
Therefore, minimizing the KL divergence is equivalent to minimizing the cross-entropy between p and q. By substituting

Eq. (7b) we obtain the final formula

L ¼ −
1

N

XN
i¼1

�
log πψðfϕðθðiÞ; sðiÞÞÞ þ log

���� det
�
∂fϕðθðiÞ; sðiÞÞ

∂θ

�����
�

ð17Þ

So, minimizing the loss defined by Eq. (17) guarantees
that the distribution inferred by the flow will converge to an
optimal approximation for the true posterior. That relation
remarks another time the likelihood-free nature of this
approach since even to optimize the flow no likelihood
evaluations are required: hence, the likelihood enters in the
model via the simulated dataset.
Furthermore, the optimization of the parameters can be

performed via stochastic gradient methods since unbiased
estimators for the gradients are given by [52]:

∇ϕL ≈ −
1

N

XN
i¼1

∇ϕπψðfϕðθðiÞ; sðiÞÞÞ

þ∇ϕ log jJ fϕðθðiÞ; sðiÞÞj ð18aÞ

∇ψL ≈ −
1

N

XN
i¼1

∇ψπψðfϕðθðiÞ; sðiÞÞÞ ð18bÞ

Eq. (18b) is due to the fact that in some applications the
base distribution can be learned together with the flow as

DEEP LEARNING TO DETECT GRAVITATIONAL WAVES FROM … PHYS. REV. D 109, 102004 (2024)

102004-7



well. However in the case of likelihood-free inference is
common practice to keep it fixed.
In deriving Eq. (17) we opted to minimize the forward

KL divergence KL½pjjq�. In principle, there are other
possible divergence measures that can be minimized: here,
we motivate our choice. An alternative could have been the
reverse KL divergence KL½qjjp�. This is typically adopted
when the target density p is easy to evaluate but difficult to
sample, which is not our case with posteriors over gravi-
tational wave parameters. There is, however, a much more
profound reason why the reverse is not the best option. First
of all, KL divergence is not symmetrical. Thus, minimizing
either one or the other leads to different results, as the
optimized distribution will show different behaviors. More
specifically, the forward KL is mass covering while the
reverse is mode seeking. An intuitive explanation can be
suggested. In the forward case, in order for KL to not
diverge, q > 0 whenever p > 0, meaning it must cover the
whole support of p. Conversely, in the reverse case, being p
at the denominator: q ¼ 0 whenever p ¼ 0, thus forcing q
to seek for the dominant mode in p. In the case of a
multimodal distribution, as gravitational wave posteriors
are, a mass covering approximant is preferable since it will
not exclude less dominant modes that could provide
interesting information.

E. Normalizing flows for gravitational
wave data analysis

Two main algorithms are currently exploited to infer the
Bayesian posteriors over gravitational wave parameters:
MCMC and nested sampling. Both are based on Markov
Chains and obtain samples frompðθjsÞ bymeans of repeated
likelihood evaluations. This implies several computational
drawbacks. First of all, the computational efficiency of these
algorithms is severely limited by waveform generation,
which can take about 10−3 s≲ hτi≲ 1 s [57], depending
on the particular waveformmodel used. This, combinedwith
the elevated number of required likelihood evaluations
Oð107Þ [58], gives a hint about the amount of time required
to perform an analysis. Second, being based on Markov
Chains, the produced samples show correlation, which has to
be accounted for, thus reducing the number of effective
samples. The high inference time is perhaps themost relevant
limitation since it also impacts multimessenger observations
as an early warning strategy is hardly implementable.
Furthermore, the typically adopted Gaussian likelihood
(see, e.g., [59]) assumes Gaussian (wide sense) stationary
noise in the detector. Such a condition is not always
completely satisfied as detectors may manifest both non-
Gaussianities and nonstationarities like the frequent short
transients known as glitches. Therefore, if the noise assump-
tions are violated, the whole analysis can be affected by
biases. Parameter estimation analyses typically require a
precise knowledge of the waveform models. In the case of
close encounters, where uncertainties exist on the waveform

modeling, it has been shown that the recovery of parameters
(e.g., the masses) is limited by a small number of accessible
bursts during the inspiral [60]. A NF-based approach can
leverage the generalization capabilities of deep neural net-
works to better recover the parameters with a limited amount
of information, providing, at the same time, reduced infer-
ence times.
Finally, computational efficiency will become a key

aspect of data analysis in future observing runs as well
as in the third-generation detector era. As a consequence of
the higher sensitivity of future instruments, it is expected a
∼103 increase in the event rateR. As an example,R≳ 105

events/year for the Einstein Telescope [61]. Faster and more
efficient algorithms will be crucial for the success of those
experiments.
Normalizing flows provide themselves as a valid alter-

native able to supply to the limitations of traditional
methods. In fact, as we discussed in Sec. III C, the cost
of inference is completely amortized as likelihood evalu-
ations are not required, and expensive waveform compu-
tations are performed only once during training. The fact of
being a simulation-based inference has another implication
worth emphasizing: it does not suffer from the limiting
assumption about Gaussianity and stationarity of the noise,
provided that an adequate description is available.

F. Model selection with normalizing flows

Another kind of analysis that strictly depends on
parameter estimation is model selection (or hypothesis
testing), which in the case of gravitational waves may refer
to signal detection, i.e., testing the hypothesis of the
presence or absence of a signal in the strain, or even
discriminating between two waveform models what is
better at describing the data. This is done by computing
the Bayes factor B12 ¼ Z1=Z2 which compares the evi-
dences (or marginal likelihoods) of the two hypothesis.
Furthermore, when computed in the case of the null
hypothesis of having only noise (Z2 ¼ Lnoise), B12 can
be exploited as a detection statistic.
Although the product of a normalizing flow model is a

direct approximation of the posterior, the evidence can be
estimated as well through importance sampling, which is
nothing but a Monte Carlo estimate. More precisely

Z ¼
Z

dθpðθÞpðsjθÞ ¼
Z

dθ
pðθÞpðsjθÞ
qðθjsÞ qðθjsÞ ð19Þ

By sampling the flow posterior qðθjsÞ, which is optimized
by minimizing the mass covering forward KL divergence,
we can get an estimator of the evidence from importance
sampling weights.

Ẑ ¼ 1

N

XN
i¼1

pðθiÞpðsjθiÞ
qðθijsÞ

¼ 1

N

XN
i¼1

wi ð20Þ
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The only disadvantage is that wi relies on the analytical
likelihood to be computed. However, since they can be
computed separately, the whole procedure can be paral-
lelized in principle, reducing its computational cost.

G. Constructing the flow

We now discuss how normalizing flows can be con-
structed by implementing the bijection fϕ to be expressive
and computationally efficient at the same time. When
referring to computational efficiency, the interest is to find
a function whose Jacobian, actually its determinant, is fast
to compute. The function must also be easy to invert and
rapid to evaluate both in the forward and inverse pass. On
the other hand expressiveness refers to a sufficiently
flexible transformation able to deal with highly complex
distributions. More in general since fϕ∶ RD → RD acts on
D-dimensional vectors, it has the general form:

ui ¼ gϕi
ðθi;ΘiÞ; Θi ¼ ciðθÞ ð21Þ

where ci is the conditioner, which specifies how the
bijection acts on the various dimensions and, in particular,
on which set of components Θi does θi depends. It is not
required for it to be a bijection. gϕ is instead the trans-
former: a monotonic function, hence invertible, that
actually transforms the input variables. The set of param-
eters ϕ of fϕ contains both parameters of the conditioner
and transformer. Since, however, the conditioner is typi-
cally specified before the training and it is not part of the
optimization, its are just hyperparameters. For this reason,
henceforth, we’ll refer to ϕ as the parameters of the
transformer only.
The most simple flow that can be constructed is the so-

called element-wise flow whose conditioner treats each
vector dimensions independently Eq. (22).

8>>>>><
>>>>>:

u1 ¼ gϕ1
ðθ1Þ

u2 ¼ gϕ2
ðθ2Þ

..

.

uD ¼ gϕD
ðθDÞ

; detJ fϕ ¼
YD
i¼1

∂gϕi

∂ui
ð22Þ

This flow is efficient both in the forward and inverse pass
due to the simple Jacobian: being a diagonal matrix, its
determinant is just the product of the diagonal. However, it
lacks expressiveness since each component is transformed
independently. Hence, it will not be able to capture all the
eventual dependencies and degeneracies among the various
elements. In the case of gravitational waves, there are a lot
of dependencies between parameters. As an example, recall
from Eq. (3) that in the case of close encounters, the strain
amplitude is hþ;×ðtÞ ∝ M2=dL which induces a degeneracy
between the total mass and the luminosity distance. Other
degeneracies can arise, for instance, when considering the

localization of the source and the antenna pattern response
of the detectors. There are other architectures able to deal
with such situations, like the autoregressive conditioner or
the coupling layers.
The former, in particular,models the dependencies between

variables assuming an autoregressive structure Eq. (9) where
each component θi depends upon θj<i components. With this
assumption the bijection Eq. (21) becomes

ui ¼ gϕi
ðθiÞ with ϕi ¼ Fðθ1∶i−1Þ ð23Þ

In most cases, gϕ is taken to be an analytical invertible
function whose parameters ϕ are the output of a neural
network here denoted with F [62].
The autoregressive transformation Eq. (23) is charac-

terized by having a low triangular Jacobian

J fϕðθÞ ¼

2
6664

∂u1
∂θ1

0

. .
.

A ∂uD
∂θD

3
7775 ð24Þ

hence making the computation of its determinant equiv-
alent to the element-wise flow Eq. (22).
Nevertheless, the whole architecture of autoregressive

flows manifests inefficiency when computing the inverse
transformation (inference) as it takes a recursive structure.
In fact, the sampling of θi from u requires to have already
sampled θ1∶i−1 thus turning this operation in a sequential
and non parallelizable one: see e.g. Fig. 3 in [52]. The
computational cost scales in particular as OðDÞ. It is,
therefore, an unavoidable aspect of autoregressive flow to
have either one of the two passes to be inefficient.1

Although they are, in principle, the most expressive since
they are able to account for any dependence in the
variables, the computational cost either for training or
sampling scales badly with high dimensional inputs.
Coupling layers were introduced in [53] to overcome the

efficiency limitations of autoregressive flows while main-
taining their expressiveness. The idea behind a coupling layer
is to split the parameter space in two equally dimensional
subsets θ ¼ ðθd; θD−dÞ with d ≃D=2. The second half is
then transformed element-wise and conditioned on the first
half, which is mapped through an identity.

	
u1∶d ¼ θ1∶d
udþ1∶D ¼ gϕðθdþ1∶D; θ1∶dÞ

ð25Þ

1It has been proposed indeed a slight variation of this flow
which is the inverse autoregressive flow [63]. The recursive
structure is moved from the inverse to the forward pass, but it
cannot be removed.
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The Jacobian is still a low triangular matrix

J fϕðθÞ ¼

2
64
Id 0

A DD−d

3
75; D ¼ diag

�
∂udþ1∶D

∂θdþ1∶D

�
ð26Þ

However, since the upper left block is simply the identity
matrix, the computational cost scales as OðD − dÞ. It turns
out that computing both forward and inverse is an efficient
operation that can be further parallelized. The only draw-
back of this layer is that a single one is not sufficient, as
only half of the components get actually transformed. To
enhance the expressiveness, it is possible to stack multiple
of these layers with random permutations of θ indexes in
between. Hence, fϕ is given by Eq. (10) and the full
Jacobian by Eq. (11). If the numberK of layers is sufficient,
the output will be equivalent to an autoregressive one due to
the fact that, in the end, each component is transformed,
being conditioned on every other component. As a “rule of
thumb,” K should at least be equal to D.
Coupling layers provide themselves as the optimal choice

both in terms of expressiveness, flexibility, and computa-
tional cost: in fact, both training and sampling are equally
fast. Moreover, they are also relatively easy to implement.
We now describe the invertible transformation. Any

strictly monotonic function, being invertible, can be applied,
provided, however, it is differentiable and with an easy-
to-compute inverse. In the continuation of this discussion,
we will consider two of the most widely adopted. Affine
transformations were among the first functions to be
proposed as suitable transformers. The same work introduc-
ing coupling layers adopted this form exploiting exponential
rescaling [53,64]:

	u ¼ gϕðθÞ ¼ θ ⊙ exp ½sðθÞ� þ tðθÞ
θ ¼ g−1ϕ ðuÞ ¼ ½u − tðuÞ� ⊙ exp ½−sðuÞ� ð27Þ

In Eq. (27), ⊙ denotes the Hadamard (or element-
wise) product. The parameters of this function are hence
ϕ ¼ ft; sg: shift and scale.
Combined with coupling layers, the transformation of

Eq. (27) has proven to be flexible and expressive enough to
model complex distributions as images [65] or even audio
waveforms [66].
Another flexible transformation was introduced in [67]

as an avenue to model extremely complex and multi-
modal distributions while retaining the property of being
analytical, differentiable, and easy to invert. The idea is to
map an interval ½−B;B� ⊂ X into ½−B; B� ⊂ U by inter-
polating a rational quadratic spline between a set of sorted
knots fxk; ykgKk¼0 where both the knots and their internal
derivatives fδkgK−1k¼1 are parametrized as the output of a
neural network. Computing the inverse requires solving
a 2nd order equation, which can be done analytically

(see Eqs. (6)–(8) in [67]). This kind of transformation is
extremely flexible, and it naturally induces multimodality
by increasing the number K of knots. Therefore, it has been
mainly applied in the context of image generation.

IV. HYPERION’s ARCHITECTURE

We present here the “hyperfast close encounter inference
from observations with normalizing-flows” pipeline
(HYPERION). This pipeline takes as input 1 s of whitened
strain time series and returns as output samples from the
posterior probability pðθCEjsÞ. More specifically, the
parameters over which it makes inference are: the total
massM, mass ratio q, eccentricity e0,

2 semilatus rectum p̄0,
luminosity distance dL, the time of periastron passage δtp,
right ascension α and declination δ. The general structure of
HYPERION is depicted in Fig. 3 along with input/output
relations between its building blocks.
The core of the model is a normalizing flow, which

reconstructs the posterior distribution. Given that it is a
conditional probability distribution, the flow must be
supplied with the most informative context as possible.
Therefore, we introduced in the model another building
block, fundamental as well: an embedding neural network.
Acting as a feature extractor, its primary task is to extrapolate
the information in the noisy strain time series and to compress
it to a lower dimensional form. This procedure has the
purpose of filtering out all the irrelevant features, mainly the
noise content. Other than the embedding one, other deep

FIG. 3. Schematic overview of HYPERION which is composed of
a normalizing flow and embedding neural network acting on
input strain data. Solid arrows represents input-ouput relations:
red apply during training, blue ones when performing inference
while black ones are always present.

2the subscript 0 refers to the value when the mean anomaly
l ¼ 0, i.e., the periastron passage.
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neural networks are implemented in the normalizing flow
itself, thus making our model reach the number of ∼180
millions of trainable parameters. HYPERION was developed
with PYTHON 3.10 and PYTORCH 2.1.0 [68].

A. The embedding network

The presence of such an element in our model can
be justified by the following reason. In the process of
likelihood-free inference, the likelihood enters indirectly as
the result of a simulation procedure. It means that the NF is
able to determine the best mapping fϕ∶ Θ → U based on

the similarity between the joint samples fθðiÞCE; sðiÞg that it is

supplied with. A raw data representation, like the strain
time series, is not the optimal choice, even if whitened.
That is both because of the low signal to noise ratio for
CE signals and because of the morphology of the signal
itself, which does not show directly a clear dependency on
all the θCE parameters. Hence, a feature extractor is
necessary. The overall architecture of the embedding net-
work shown in Fig. 4(a) is the result of several optimiza-
tions and improvements.
It is composed of two convolutional neural network

(CNN) blocks that perform the feature extraction from the
input time series: 1 s sampled at fs ¼ 2048 Hz with each
of the 3 channels corresponding to a given interferometer

FIG. 4. (a): The general architecture of the embedding network is composed of two CNN blocks acting in different ways and a ResNet
block that efficiently compresses the extracted features into a (1,256) dimensional tensor. More specifically, the CNN block on the left
extracts features related to the signal morphology, while the other on the right focuses more on temporal correlated patterns. (b): Detailed
architecture of the ResNet block.
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(H1, L1, V1). The first block consists of three 1D convolu-
tional layers with fixed kernel size ¼ 5 and [32, 64, 128]
numbers of filters respectively. Between each layer, there
are pooling layers and also batch normalization layers,
whose addition was found to be beneficial. This first block
is able to learn features related to the shape or morphology
of the signal which are relevant for a subset of θCE. Given,
however, the translational invariance of the neuron’s
response in such block, it is unable to learn features that
are mostly correlated with their.
Indeed, in our earlier experiments, the inference about

fδtp; α; δgwas not great as we were simply recovering their
priors. The reason for the effect on sky localization can be
easily understood by the fact that it is determined by the
relative shifts in arrival time of the signal in each detector.
For long signals, like those produced by coalescences,
multiple time instants can be compared: i.e., the informa-
tion spreads over a wide temporal interval. For a burst
signal, on the contrary, all the emission is concentrated over
a small time interval, which implies that the sky localization
information strongly correlates with δtp itself.
This motivated introducing a parallel CNN block acting

differently from the former. The crucial difference is
that many convolutional layers, with different filters and
kernel sizes, slide independently over the time series and
after each of them a global max pooling layer keeps the
maximum neuron’s response. The resulting outputs are
then concatenated together, and in this way, the temporal
information about the neuron’s response gets preserved.
The output of each CNN block is then passed to linear

layers with 2048 neurons that are subsequently concatenated

and then compressed into a final layer with 256 output
neurons bymeans of the ResNet block [Fig. 4(b)]. This block
is composed of four sub-blocks sized [2048, 1024, 512, 256]
respectively, each one containing 3 skip connections. In
contrast to regular linear layers, skip connections proved to
be more efficient at compressing the dimensionality of the
network’s output without loss of meaningful information.
Regarding activation functions, we have found the best
results with the ELU rather than ReLU. To reduce at
minimum the chances of overfitting the embedding network,
especially the ResNet block, makes extensive use of dropout
layers.
We decided to exploit CNNs and not recurrent neural

networks (RNNs) mainly for two reasons. RNNs are
suited for the analysis of long temporal correlated
sequences. In our case, as already explained, the infor-
mation is localized in time. CNNs are better suited to
extract feature on different timescales, therefore they have
been proposed as a viable machine learning method for
gravitational wave data analysis. Furthermore, the recur-
rent structure of RNNs negatively impacts the computa-
tional cost of inference.

B. The normalizing flow

The NF implemented in HYPERION adopts Coupling
Layers, given their properties and computational effi-
ciency, combined with affine transformations Eq. (27).
The whole normalizing flow scheme is shown in Fig. 5
where we made explicit the structure of the affine coupling
layer Eq. (28).

FIG. 5. The architecture of the normalizing flow implemented in HYPERION which consists of a stacking of 32 coupling layers with
affine transformations. The red arrows refer to training, while the blue ones to inference (inverse of the transformation).
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ðtrainingÞ∶
	
u1∶d ¼ θ1∶d

udþ1∶D ¼ θdþ1∶D ⊙ exp ½sdþ1∶Dðθ1∶dÞ� þ tdþ1∶Dðθ1∶dÞ

ðinferenceÞ∶
	
θ1∶d ¼ u1∶d
θdþ1∶D ¼ ½udþ1∶D − tdþ1∶Dðu1∶dÞÞ� ⊙ exp½−sdþ1∶Dðθ1∶dÞ�

ð28Þ

The architecture consists of 32 layers: a sufficiently high
number to guarantee a proper mixing between all the θCE
components in order to capture all the dependencies and
degeneracies. In between every coupling layer, a random
permutation shuffles the parameter’s space indexes. This
can be seen as an additional transformation with a Jacobian
equal to 1. The permutation matrices are then saved as
parameters of the model for reproducibility. We also tested
rational quadratic splines, given their expected expressive-
ness, but they turned out to be sub-optimal. The posteriors
produced were excessively multimodal, with clear signs of
either underfitting or overfitting in some cases: this was
also confirmed by the training and validation losses during
the optimization.
The affine couplings depend upon two parameters:

scale s and shift t. Both of them are the output of a fully
connected neural network (Fig. 6), which takes as input
both the identity-mapped parameters and the embedded
strain. In our implementation, each layer has its own
network that is optimized independently for an overall
more precise inference. The network for the scale and shift
parameters are nearly identical except for the activation
function. While the shift’s one adopts the ELU, the other
one adopts the tanh to prevent numerical instabilities that
can arise otherwise due to the fact that s enters into an
exponential. The hyperbolic tangent is also a better choice
than the Sigmoid since it allows both ≤1 and ≥1 scale
factor values.

C. Pre- and postsamples processing

Since the various parameters in θCE might have wide and
different numerical ranges, a direct usage of their strict
value would certainly result in numerical instabilities
when fed to the neural networks. For that reason, each
parameter is rescaled to have zero mean and unit variance.
This reduces their numerical range while keeping intact the
shape of their prior distribution at the same time. Means μ
and standard deviations σ are computed from the training
dataset and saved as model hyperparameters. At the end of
the inference phase, all the samples are brought back to
their original physical range.

V. SIMULATIONS AND RESULTS

A. Training dataset

Since likelihood-free inference with normalizing flows
relies on simulated training data samples that must reflect
the properties of real ones, the simulation of the training
dataset is one of the most delicate operations of this work.

The dataset is made up by joint samples D ¼ fθðiÞCE; sðiÞgNi¼1

where θCE are the close encounter gravitational wave signal
parameters and s is the corresponding strain time series
sampled at 2048 Hz. This sampling frequency implies a
Nyquist frequency fnyq ¼ 1024 Hz large enough to capture
the frequency spectrum of CE BBH, whose peak frequency
is in the band 10–100 Hz. We prepared a dataset of N ¼
5 × 106 samples, being the best compromise between an
accurate inference and computational training cost. The
first step in generating the dataset is the sampling of θCE
from prior distributions. Those parameters are then fed
into the effective fly-by model to produce plus and cross
template polarizations hþ;×ðtÞ. Depending on the source
sky coordinates, the template is afterward projected onto
Advanced LIGO and Virgo detectors. This simulated signal
is embedded into 8 seconds of Gaussian colored noise
sampled from the reference O3a amplitude spectral density
and saved in a hierarchical data format file. We allowed the
amplitude spectral density to vary for each simulated event
in order to reproduce the nonstationarity of background
noise. In this work, we have not included transient noises
like glitches since the capability of analyzing the time series
of three detectors simultaneously automatically rejects
local sources of noise. This whole procedure is parallelized,
therefore significantly reducing the simulation time to
Oð10 hÞ on a AMD EPYC 7301CPU with 32 cores / 64
threads.

FIG. 6. Neural network architecture for the affine coupling
layer Eq. (28). Each of the 32 coupling layers in HYPERION

contains such a network that gets optimized independently. Note
the different activation functions for the scale parameter branch.
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The prior distributions over θCE are listed in Table I.
These population parameters can be grouped into the
following categories:
Mass components: we adopted a uniform prior overm1;2

(Fig. 7). As the strain amplitude in the EFB-T model Eq. (3)
scales with the total massM, the model makes inference on
M ¼ m1 þm2 and q ¼ m2=m1. The condition m2 ≤ m1

reduces the number of effective simulations and hence
computational resources;
EFB-T parameters: namely the eccentricity e0, semilatus

rectum p̄0 (normalized with the total mass M) and time of
peri-astron passage δtp with respect to a reference GPS
time. The ranges for these parameters are chosen for the
template waveforms to provide the highest match with
Numerical Relativity. In particular, we adopt the same prior
choices of [20];

Gravitational wave localization parameters: the sky
angles α (RA) and δ (DEC) whose prior is chosen to be
uniform over the sphere. For the luminosity distance dL we
chose the range 100 Mpc–2 Gpc. We opted for a uniform
prior to produce a more balanced dataset. It is worthwhile
to note also that, since from Eq. (3) hðtÞ ∝ M2=dL a biased
estimate of dL could indeed introduce a bias also in the
estimate of M;
Other gravitational wave parameters: additional param-

eters relevant for the simulations of the gravitational wave
emission are the GPS time at which the event occurs, which
is fixed for all the simulations, polarization angle ψ and
inclination angle ι between the orbital angular momentum
and the line of sight. For the last two, we adopt standard
physical priors. At the moment, these parameters are not
included in the inference process.

B. Training procedure

We trained the model for 250 training epochs, each one
ending after the flow has been optimized over 1000 batches
made of 512 samples.
We used the ADAM optimizer [69] with an initial

learning rate of 10−4. During the training, 10% of the
dataset was reserved for validation, and the learning rate
was reduced by 50% after 10 epochs without validation
loss improvements. Before training, the training dataset
is completely simulated and preprocessed. In particular,
during the preprocessing phase, the strain is whitened and
cropped to one second. No highpass filter was applied to
avoid the risk of cutting out relevant signal frequencies.
During training, we did not apply any augmentation except
for the time of periastron passage δtp, which is randomly
drawn from the prior (Table I) for any training sample
loaded into the GPU. The relative strain time series is rolled
accordingly. Given the short duration of the signal, there
is no risk for it to get too close to the time series edges.

FIG. 7. Prior distributions over the mass parameters. (a): uni-
form prior over mi with the condition m2 ≤ m1. This is the prior
implemented in the simulations. (b): The same mass prior but in
terms of total mass M ¼ m1 þm2 and mass ratio q ¼ m2=m1.
Instead of the two mass components, HYPERION makes inference
on M and q. TABLE I. Prior distributions of the simulated BBH CE

population. The first set of parameters is the one over which
HYPERION makes inference, while the rest enters only in the
simulation phase. α and δ are right ascension and declination
respectively.

θCE Distribution Minimum Maximum

m1 [M⊙] Uniform 10 100
m2 ≤ m1 [M⊙] Uniform 10 100
p̄0 Uniform 13 25
dL [Mpc] Uniform 100 2000
e0 Uniform 0.85 0.95
α Uniform 0 2π
δ cos −π=2 π=2
δtp [s] uniform −0.25 0.25

ψ Uniform 0 π
ι sin 0 π
GPS time Fixed 1370692818.0
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This augmentation has proven to be quite effective at
reducing overfitting. The training history is shown in Fig. 8.
As both the training and validation loss are in close
agreement, we conclude there is no sign of overfitting.
The value of 512 for the batch size is an optimal com-
promise between the training stability and final model
accuracy. Moreover, the usage of only 1000 batches for
optimization during each epoch ensures a good covering of
the training sample’s parameter space without the model
having seen the whole dataset. This strategy is similar to the
one adopted in [70].

Tuning the learning rate η was a crucial aspect of the
training phase. The typical starting value of η0 ¼ 10−3

has been demonstrated to be too large and did not allow
a proper optimization. We have also tested different
annealing strategies, like the cosine annealing, although
we found best results with the strategy outlined earlier.
The whole training phase took around 20 hours on a Dell
PowerEdge R7425 machine equipped with NVIDIA
A30 GPUs.

C. Performance on parameter inference

To test the ability of HYPERION to recover θCE and its
overall performance, we have simulated an additional test
set. This set is composed of other 103 simulated signals
with the same distribution as the training one. The SNR
distribution of the test set is shown in Fig. 9: both for the
individual detectors and for the network. The network SNR
shows, in particular, a peak around a value of 5 as seen in
previous works [20,60].

HYPERION’s inference has been compared with the
one produced by BILBY [71], adopting the DINESTY [72]
sampler. We tested different hyperparameters/settings,
although with minimal discrepancies in the outputs. Hence-
forth we will refer to the results obtained with these
settings: r-walk sampling method, nlive ¼ 1000, nact
¼ 50, npool ¼ 42.
With these parameters, 5 × 103 posterior samples were

obtained in ∼10 hours. Using the same hardware, we
produced 5 × 104 samples in 16 seconds by HYPERION

running on the CPU only. When using the GPU, the same
amount of samples were produced in just 0.5 seconds,
improving by almost 5 orders of magnitude over standard
Bayesian methods. Even on a CPU, the model can exploit,
at most, hardware parallelization offered by the PYTORCH

FIG. 8. Plot of the training history. Left: training and validation loss over the 250 training epochs. The close agreement between the
two indicates no issue of overfitting. Right: learning rate schedule during training.

FIG. 9. SNR distribution of the signals in the Test Dataset. Top:
SNR distribution for each of the simulated detectors. Bottom:
network SNR distribution.
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deep learning library. The higher inference time required
by BILBY (Oð10h) is mainly due to the elevated number
∼107–108 of likelihood evaluations required and the
account for the autocorrelation time in the MCMC chains.
In Figs. [10–12] we show corner plots comparing the
obtained posteriors for some of the simulated test signals.
The upper quantiles, as well as the sky-maps, refer to
HYPERION. The sky-maps, in particular, are produced with a
subset of 104 samples with the tool ligo.skymap [73].

VI. DISCUSSION

The results obtained by testing HYPERION on simulated
data show a very promising performance when compared
with traditional parameter estimation based on Bayesian
inference. The agreement between the parameter’s values
estimated by HYPERION and Bilby (e.g., in Fig. 10) shows
that NFs are a viable and robust alternative to traditional
Bayesian methods since they provide the same accuracy on
results but on much shorter timescales. At the same time, as
shown in Fig. 12, HYPERION maintains the capability of
providing informative posteriors even in the presence of low
SNR signals. This can be seen, for instance, in the estimate of
the total mass M in Fig. 12, where HYPERION correctly
produces values peaked around the simulated values (e.g.,
M ≃ 40M⊙) instead of reproducing the prior distribution.
Results on posteriors using Bilby suggest that low SNR

signals might require additional fine-tuning of the nested
sampling hyperparameters.
We note that the time shift δtp parameter has narrow

marginalized posteriors. This illustrates the efficiency of
the Embedding Network and, in particular, of its Con-
volutional layers, which are able to recognize CE patterns
even in the lowest SNR scenarios. In fact, one of the
advantages of a time domain representation is that time-
related patterns are directly accessible, in opposition to a
frequency domain representation in which they manifest as
phase shifts. Therefore, HYPERION is able to work as a
standalone detection pipeline by using the Bayes factor
statistic (Sec. III F). When analyzing simulated data con-
taining only noise, the posterior for δtp produced by
HYPERION gets excessively broad, resembling the prior,
thus indicating that the embedding network found no
matches with known signals in the data.
As far as sky localization is concerned, we expect CE

waveforms to be more difficult to localize than longer CBC
waveforms, given their shorter duration and/or lower SNR.
Indeed, with a shorter signal, it becomes more difficult
to estimate the relative temporal shifts between the detec-
tors because that information is concentrated in time. As a
consequence, sky localization area increases with lower
SNR or waveforms peaked at lower frequencies, as in
Fig. 12. Although this aspect affects both standard methods

FIG. 10. Comparison of posterior samples produced by
BILBY and HYPERION for a test signal with network SNR ≃ 30
(dL ≃ 100 Mpc). The posterior for most of the parameters are
well overlapping, except for eccentricity e0 which only HYPERION

is able to estimate. On the other hand, BILBY gives a slightly better
estimation of the localization.

FIG. 11. Comparison of posterior samples produced by BILBY

and HYPERION for a test signal with network SNR ≃ 12
(dL ≃ 700 Mpc). In this case, only HYPERION’s posteriors are
informative since BILBY essentially reproduces the priors. δtp is
the better-estimated parameter. The sky-localization’s posteriors
show bimodality: the dominant mode is, however, the one
containing the right value for (α, δ).
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and HYPERION, we notice that the latter provides better
performance on localization for low SNR signals. This can
be interpreted as proof of the efficiency of the localization
CNN block in HYPERION’s embedding network.
It can be further noticed that those posteriors (in

particular the right ascension α) show multimodality,
which is related to periodicity in coordinates that induces
a degeneracy for values near 0 and 2π. This multimodality
is also a manifestation of the ability of NFs to model
complicated distributions.
To further validate HYPERION’s results we reweighted the

posteriors with importance sampling, with the method
described in Sec. III F and compared the two distributions.
A metric for the inferred posterior’s goodness can be defined
as ϵ ¼ 1

n ð
P

i wiÞ2=ð
P

i w
2
i Þ∈ ð0; 1� (sample efficiency) [74]

where wi are the importance weights and n the total number
of posterior samples. We show an example in Fig. 13 for
which ϵ ≈ 0.8. We obtain similar results also for other test
samples. The high efficiency can be justified by the fact that
the test samples comes from the same distribution as the
training ones (i.e., there are no OOD samples).
Although the results on the test set suggest the good

performance of HYPERION, it is crucial to provide more
accurate metrics to assess the power of this approach.
Given the probabilistic and Bayesian nature of the model, a

suitable test for its accuracy is the probability–probability
plot. This is a test used in Bayesian data analysis and
widely adopted in the context of gravitational waves. The
idea behind this test is to give a frequentist interpretation of
Bayesian credible levels for the 1D marginalized posterior
distributions. As an example, given a CL ¼ 0.8, for an
optimal model, it means that in the 80% of the cases, the
true parameter value will lie in an interval that encloses

FIG. 12. Comparison of posterior samples produced by
BILBY and HYPERION for a test signal with network SNR ≃ 6
(dL ≃ 1400 Mpc). In this case, only HYPERION’s posteriors are
informative since BILBY reproduces the priors. The estimate ofM
is emblematic as BILBY completely misses the right value, which
is correctly estimated by HYPERION. The greater sky-localization
area can be due to this signal peaking at lower frequencies where
the sensitivity is worse.

FIG. 13. Comparison between the posterior inferred by
HYPERION and the importance-reweighted posterior for the test
sample of Fig. 12.

FIG. 14. Probability-probability plot for a set of 1024 posterior
evaluations from the test set. Each cumulative distribution lines
up pretty well along the diagonal with a spread limited within the
2σ (gray regions) for almost all the C.L. interval. In the legend is
also reported for each θCE the KS statistics result. This plot has
been made with a BILBY built-in function.
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80% of the posterior probability, regardless of the skewness
of the distribution.
To perform the test, we first drew a set of N data samples

from the test set. For each of them we computed the
posteriors and determined the percentile score of the
true θCE parameter values in each marginalized posterior.
We then took the cumulative distribution (CDF) for each
of the θCE. As the optimal case is represented by the
percentiles being distributed according to a uniform one
Uð0; 1Þ, we tested whether the CDFs lay on the diagonal.
Figure 14 shows the result of the PP test for a set of

N ¼ 1024 draws. It is possible to notice that all the CDFs
are well distributed along the diagonal with minimal spread
limited within 2σ for almost all the C.L. intervals. To
quantify how close the percentile distributions are to a
uniform, a two-tail Kolmogorov-Smirnov test is performed.
The output p–values are shown in Fig. 14 as well. For
each of the θCE, the p–values are greater than 0.1 with the
combined one ≃0.5, thus implying a good recovery of
the parameters. Assuming a confidence level of 95%
(threshold at α ¼ 0.05), it is therefore not possible to reject
the null hypothesis that the obtained CDFs are drawn from
a uniform distribution since p > α. The parameter with the
highest p–value is the total mass M reaching ≃0.7, which
does not surprise given the strong dependency of the
effective fly-by waveforms on it.
One of the main differences between a normalizing flow

model such as HYPERION and standard methods is that it
does not use Markov chains. MCMC algorithms have to
account for correlation within the chains by thinning them.
This has an impact on the efficiency since the number of
effective samples is reduced, or equivalently, to obtain
the same Neff samples longer chains need to be produced
(see Sec. 3 of [75]). On the contrary, NFs are able to
draw a set of N independent samples directly, and to prove
it we computed the autocorrelation time. In particular, τ̂θ is
determined for each of the θCE set of samples with

τ̂θ ¼ 1þ 2
XM
τ¼1

ĉθðτÞ ð29Þ

where ĉðτÞ is the autocorrelation function computed with
the fast Fourier transform algorithm, and M is the first τ
value for which the autocorrelation exceeds a threshold
value (ĉθðτÞ < 0.01).
Applying Eq. (29) the estimated autocorrelation time is

τ̂θ ¼ 3 ∀ θ: the smallest amount possible. The outlined
procedure has been repeated for several different posteriors
with no changes in the results. This hence indicates that all
the posterior samples produced by HYPERION are valid.
We address now the major limitations of this work

and how they can be alleviated in the future. Being this
work a proof of concept in the analysis of close encounters,
we chose limited prior bounds for the simulations.
However, extended simulations can be carried out anytime.
The training dataset size can be, therefore, accordingly

increased, provided that it is possible to account for the
higher training time. Besides, our simulations assumed
Gaussian and stationary noise. By considering also artifacts
like nonstationarity and/or glitches in the simulations, this
inference scheme can be made even more robust.

VII. CONCLUSIONS

In this work, we introduced HYPERION, a deep
learning-based pipeline to detect and perform Bayesian
parameter estimation on gravitational wave signals pro-
duced by binary close encounters. No firm detection of
gravitational waves from close encounters has been
achieved so far, making these sources particularly interest-
ing to broaden our view of the gravitational wave Universe.
Detecting and measuring parameters of close encounters
could, therefore, help to shed light on the dynamical
formation channels of compact binaries and explain the
observed population. Furthermore, their detection would
confirm the expectations of a sub-population of compact
binaries merging with non-null eccentricities.
Moreover, their low-latency detection would allow the

trigger of electromagnetic follow-up observations neces-
sary to study a potential electromagnetic counterpart as
well as the surrounding environment. Detecting close
encounters is difficult because of their intrinsic low
signal-to-noise ratio, which makes them a hard target for
current interferometers. Moreover, the short duration of the
expected gravitational wave signal impacts the capability to
estimate the sky coordinates and other parameters. Deep
learning is a promising tool for fast analysis of gravitational
wave data that could constitute a viable approach for the
study of this particular source. Since the standard methods
for parameter estimation are based on a Bayesian frame-
work, we explored the application of probabilistic machine
learning. In particular, we focused on Normalizing Flows,
an emerging machine-learning technique that is able to
infer posterior distributions on very short timescales.
Compared to other methods, such as MCMC, that require
many likelihood computations, NFs introduce a faster
posterior sampling based on a likelihood-free approach.
The architecture of HYPERION consists of two main parts:

an embedding network whose goal is to extract features
from the strain time series collected by a network of
ground-based interferometers and an affine coupling flow
for the quick reconstruction of the posterior distribution and
the estimation of the source parameters. The training of
HYPERION pipeline was carried out adopting the effective
fly-by waveforms on a set of ∼5 × 106 simulated signals,
obtaining extremely promising results on the test set. The
value of the reconstructed parameters is consistent with the
simulated values even in low signal-to-noise ratio cases.
Furthermore, the HYPERION pipeline is ∼5 orders of
magnitudes faster than traditional algorithms, providing
the reconstruction of the posterior distribution on time-
scales of 0.5 s instead of ∼10 h.
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These results show that the NF-based approach is a
viable and robust strategy for real-time detection and
parameter estimation of signals from close encounters,
also enabling electromagnetic follow-up campaigns.
There are several other prospects about how this work

might be extended or improved in the future. In this work,
we focused in particular on CE signals from binary black
holes as they are the most likely to be observed with the
current generation detector, both in terms of SNR and
expected rates. Nevertheless, CE emission is expected also
from systems containing neutron stars, and they constitute a
potential source for ground-based third-generation detec-
tors like Einstein Telescope or Cosmic Explorer [76,77],
or spaceborne missions like LISA [78]. Future work will
include the analysis of repeated bursts from multiple
periastron encounters, allowing to track the evolution of
orbital parameters during the inspiral phase.
The deep learning method presented in this work will

permit rapid systematic searches for transients produced by
close encounters, with the exciting possibility of detecting
these signals and exploring the formation scenarios of
binary compact systems in the Universe. Furthermore, this

inference scheme is not limited to gravitational waves
emitted by close encounters. With minimal changes,
e.g., by employing a different waveform model during
training and/or changing its hyperparameters, HYPERION

can be adapted to search for other kinds of sources, e.g.,
other kinds of burst-like signals.
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