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Autoregressive search of gravitational waves: Denoising
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Because of the small strain amplitudes of gravitational-wave (GW) signals, unveiling them in the
presence of detector/environmental noise is challenging. For visualizing the signals and extracting their
waveform for a comparison with theoretical prediction, a frequency-domain whitening process is
commonly adopted for filtering the data. In this work, we propose an alternative template-free framework
based on autoregressive modeling for denoising the GW data and extracting the waveform. We have tested
our framework on extracting the injected signals from the simulated data as well as a series of known
compact binary coalescence (CBC) events from the LIGO data. Comparing with the conventional
whitening procedure, our methodology generally yields improved cross-correlation and reduced root mean

square errors with respect to the signal model.
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I. INTRODUCTION

The existence of a gravitational wave (GW) is one of the
most remarkable predictions of general relativity (GR) [1,2].
A GW is a tidal acceleration that propagates in spacetime at
the speed of light. According to the Einstein field equation, it
requires stress at an order of ¢?/8zG ~ 102 Nm™2 to
produce a unit of curvature. Therefore, the amplitude of
GW is expected to be very small, and it requires catastrophic
phenomena involving compact objects to produce such tiny
ripples in the spacetime (e.g., binary black hole mergers).

It is the small amplitude of a GW that makes the detection
challenging. The first compelling evidence for the existence
of GWs came indirectly from the long-term pulsar timing of
the Hulse-Taylor binary PSR B1913 + 16 [3]. The behavior
of this binary (e.g., decay of orbital period) is fully consistent
with the prediction by GR as the system loses its orbital
energy in GW.

Thanks to the improved sensitivity, on September 14,
2015, the advanced Laser Interferometer Gravitational-
Wave Observatory (LIGO) has directly detected a GW
event, GW150914, from a binary black hole (BBH)
coalescence for the first time [4]. This has opened the
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possibility of exploring our Universe without limiting to
the window of electromagnetic radiation. Two years later,
the era of multimessenger astronomy was highlighted
by the discovery of GW event GW170817 resulting from
the merger of two neutron stars (NSs) [5-7], which was found
to be associated with the y—ray burst GRB 170817A [8].
This marks the first case that both GW and electromagnetic
radiation were detected from the same astrophysical object.

Currently, in the Gravitational Wave Transient
Catalog (GWTC) maintained by LIGO/Virgo/KAGRA
Collaboration [9-13], there are 93 GW transient events
so far that have been confidently detected (i.e., probability
of origin from an astrophysical source p,y,, > 0.5). These
include 89 from BBH coalescence, two from NS-NS
mergers, and two from BH-NS mergers. Apart from these
confident events, there are >20 marginal candidates.

For further advancing GW astronomy, while enhancing the
instrumental sensitivity is vitally important e.g., [14],
progress can also be achieved by improving the methodology
of data processing and analysis. Currently, the standard
search method for CBC events in the GW community is
matched filtering cf. [15], which is done by cross-correlating
atemplate of known waveform and the interferometer output
at different time delays to produce a filtered output. With the
signal-to-noise ratio (SNR) as the ratio of the value of the
filtered output to the corresponding value root mean square

© 2024 American Physical Society
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value for the noise, it can be proven that a matched filter
comprising the ratio of the template of the actual waveform to
the spectral noise density of the interferometer can optimize
the SNR under several assumptions [16].

Although the technique of matched filtering has unveiled a
considerable population of GW events as aforementioned, it
has a number of limitations. For the matched filter to
have optimal performance, the data have to fulfill the
assumptions of wide-sense stationarity (WSS) and zero
means, which are generally not satisfied in the raw interfero-
metric data. And, most importantly, the construction of a
matched filter requires knowledge of the waveform for the
expected signal. However, the forms of the GW signal from
many possible sources are poorly modeled (e.g., highly
eccentric BH binaries) or even unknown (e.g., fast radio
bursts). In such cases, matched filtering technique cannot be
employed. Even for the cases in which the waveform can be
determined such as circular BH binaries, this technique still
requires the construction of a large template bank to cover a
sufficiently large parameter space. A search over this extensive
template bank by brute force is computationally expensive.

Furthermore, even though the technique of matched
filtering is capable of detecting the GW signals from
CBC events with known waveform, it does not enable
one to visualize the signal directly. For visualizing the GW
signal from the data and extracting its waveform for a
comparison with the prediction by numerical relativity e.g.,
Fig. 1 in [4], one must filter the raw time series with a
bandpass filter for removing the data out of the detectors’
most sensitive frequency band and apply the frequency-
domain whitening process for suppressing the colored
noises at low frequencies and the spectral lines resulted
from instrumental/background effects. Frequency-domain
whitening is a procedure to equalize the spectrum through
dividing the Fourier coefficients by the estimate of the
amplitude spectral density of the noise. While this is
considered as a standard procedure and has been adopted
for noise suppression in many works e.g., [17,18], it is still
important to explore alternative techniques for denoising
and compare their performance with that of conventional
whitening filter. For example, Tsukada et al. have proposed
a time-domain whitening filter for optimizing latency in the
CBC data analysis pipeline [19].

In this paper, we explore the feasibility of a template-free
method based on autoregressive modeling in filtering GW
data. In Sec. II, we provide an overview of the method-
ology. In Sec. III, we will demonstrate the feasibility of our
framework by a series of experiments. We will summarize
our results and provide an outlook for further development
in Sec. IV.

II. METHODOLOGY

A. Autoregression

Time series data that we acquire in nature can be affected
by various random processes and exhibit stochastic

behaviors. Due to the high sensitivity of GW detectors,
the raw data are typically corrupted with the various kinds
of noise e.g., [20], in which the assumptions for the
matched filter to attain the optimal performance such as
stationarity are generally not fulfilled. In our proposed
framework, we adopted an autoregressive (AR) approach in
developing an efficient time-domain noise filtering scheme
without any a priori knowledge on the noise.

In a recent astronomical application of AR modeling,
Caceres et al. have developed a methodology of the
autoregressive planet search (ARPS) for treating a wide
variety of stochastic processes so as to improve the search
of transit signals by exoplanets in the residuals after noise
reduction [21]. In an exoplanet search, people are looking
for small dips in the light curve resulting from a transit
submerged by the much larger brightness variability of the
parent stars. The aperiodic colored noise in the photometric
data is notoriously difficult to treat [22]. With a procedure
based on AR, Caceres et al. have demonstrated the stellar
variability can be identified and removed.

We notice that the aforementioned challenge is shared by
the GW astronomy, namely searching for the small strain
amplitude of GW signals in the presence of instrumental/
environmental noise with amplitude orders of magnitude
larger. This comparison has motivated us to explore whether
the AR technique can also be applied in extracting GW
signals.

AR modeling can be applied to any dynamical system
whose status in the present time has a dependence on its
past status (i.e., autocorrelated behavior). The simplest
model AR(p) can be built by regression with the estimate
at time 7, X,, being modeled by the linear combination of
past values x,_; plus a random noise term:

)4
X = Z aix,_; + €, (1)
i=1

where p is the order of AR model (i.e., the number of lags
in the model), a; are the model parameters, x,_; is the ith
past data, and ¢, is the noise term distributed as a Gaussian
with zero mean and unknown variance.

In the application of ARPS, the best-fit AR model can
be treated as a good estimator of stochastic noise. By
subtracting the model from the raw data, the residuals can
be obtained as follows:

X, =x—2% (2)

where X is the best-fit AR model on data x. From x,, we can
investigate whether any astrophysically interesting signals
can be extracted see [21,23].

B. Autoregressive integrated moving-average
model (ARIMA)

However, for an AR model to provide a legitimate
description of the data, the time series is assumed to be
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stationary. For the time series with systematic trends, such
data cannot be treated by the AR model. For converting a
nonstationary time series into a stationary one, the differ-
encing operation is found to be efficient (e.g., x; = x; — x,_;,
where x} is the differenced series obtained from the change
between consecutive values in the original time series). With
the backshift operator B defined as Bx; = x,_;, the afore-
mentioned process can be described as (1 — B)x,. This is
known as first-order differencing. To generalize the process
to a higher orders, the operation can be modified as

xg = (1= B)"x, (3)

which is commonly referred to as an integrated process (1) of
dth order. The output x,; can be modeled as a stationary time
series.

While the AR model uses past values in a time series to
predict the current value, a moving average model of order
g, MA(q), predicts the current value by a linear combi-
nation of past error terms

q
.;Ct :Zbief—j+€t’ (4)
Jj=1

where €,_; is the error term for the jth time step in the time
series x; and b; are the model parameters.

Combining Egs. (1), (3), and (4), an autoregressive
integrated moving-average model (ARIMA) can be con-
structed as

P q
(1-B)x, = Zaixz—i + Z bi€,_j + €, (5)
i—1 =

with a; and b; estimated simultaneously for the whole
time series by any optimization method (e.g., maximum
likelihood). On the other hand, the orders of the model
(e.g., p, q, d) can be determined by the procedures of model
selection.

By applying ARIMA modeling to the light curves of
156717 stars as observed by NASA’s Kepler satellite,
Caceres et al. shows that the brightness fluctuations of
the parent stars can be effectively reduced. Subsequent
searches of transitlike signals from the ARIMA residuals
resulted in a recovery of a significant fraction of confirmed
exoplanets [23].

We started our experiment by testing whether the existing
code auto.arima from the R package FORECAST [24] is
capable of fitting the ARIMA model to GW data with the
orders and the parameters of the model estimated auto-
matically. auto.arima was used in constructing ARPS
pipeline [23].

We have tested whether auto.arima can extract
the waveform of GW150914 from LIGO data obtained
by both detectors in Hanford (H) and Livingston (L) with a
sampling frequency of 4 kHz. The data were downloaded
from the event portal managed by the GW Open Science
Center (GWOSC) [25]. However, since the strain amplitude

is at an order of h <107!8, the modeling apparently
suffered from an underflow problem.

In order to circumvent the underflow, we have normal-
ized the data to the order of unity. In this case, auto.
arima yields the orders of (p,q,d) = (4,0, 1). By sub-
tracting the resultant model from the original data, we
have obtained the residuals. However, even with the
aid of a low-pass filter, we are unable to identify any
waveform that resembles that of GW150914 from the
residuals. In view of such an undesirable behavior, instead
of employing auto.arima as in [21,23], we are going to
develop our own algorithm, which is more suitable for
reducing noise in GW data.

In our proposed framework, we break the noise reduc-
tion process into a sequence of procedures as shown in
Fig. 1. Hereafter, we refer it as sequential ARIMA model
(seqARIMA), which consists of four stages: integrated
process, autoregressive process, moving-average process,
and bandpass filtering.

In this section, we take the LIGO data of GW150914
(Hanford, 32 s, 4 kHz sampling) to demonstrate the
performance of seqARIMA. The effects of each stage in
our procedure are illustrated in Fig. 2 and described in the
following subsections (i.e., Secs. Il C-II F).

Raw data (x,)

*d=0

Integrated process
(See Sec. 11 C)

KPSS test * d=d+1

Yes

No

Autoregressive process

(See Sec. Il D)
X, =x—X

Moving-average process
(See Sec. Il E)

v

Band-pass filter
(See Sec. Il F)

FIG. 1. The structure of our proposed framework seqARIMA.
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by using the LIGO-H data of GW150914.

C. Integrated process

As a first step of our proposed framework, the integrated
process plays an essential role for ensuring the stationarity
of a given GW time series.

For demonstrating the procedure, we start with the raw
LIGO-H data of GW150914 (top panel in Fig. 2) and with
the parameter corresponding to the order of differencing
initialized as d=0. We employ the Kwiatkowski—Phillips—
Schmidt—Shin (KPSS) test [26], which is a standard test for
stationarity [27], to examine whether the raw data exhibits
trend and nonzero mean level. Figure 2 clearly shows that
the raw data is nonstationary.

Instead of ensuring global stationarity on the entire input
time series, we consider local or segmented stationarity
within time windows, which are comparable to the signal
duration from the typical BBH coalescence. A segment
within a time series refers to a sequence of data points
collected or recorded at a given time interval. Most time
series segmentation algorithms can be classified into three
primary categories: sliding windows, top-down, and bottom-
up approaches [28]. Lovric€ et al. have demonstrated that the
process of segmenting time series into a limited number of
homogeneous segments aids in the extraction of time seg-
ments with similar observations [29]. These techniques
process the input time series and return a piecewise linear
representation (PLR). Our method, however, divides time

series into nonoverlapping times series of equal length for
the best performance. Since the total length of the time
series is much longer (32 s) than the duration of the typical
BBH coalescence signal (i.e., <0.5 seconds), the whole
time series is divided into 64 segments, and the KPSS test is
applied on each segment with the length 0.5 s (i.e.,
t, = 0.5). If the p values from KPSS test on all those
segments are greater than or equal to our predefined
threshold (p value = 0.1), the given data is determined
as a stationary time series. The threshold is chosen to be
larger than the conventional value of p value = 0.05 so as to
reduce the false negatives.

Otherwise, if there is any segment that exhibits nonsta-
tionary behavior, we modify the parameter d as d + 1 and
apply differencing by Eq. (3). Such a process will be iterated
until x, satisfies the stationary condition by passing the KPSS
test (see Algorithm 1). In the second panel of Fig. 2, we show
an optimal differencing model for our test data with d = 2.

Since the result of hypothesis test can be influenced by the
volume of data used, we further test the robustness of
Algorithm 1 by running KPSS test on different #,. In the
aforementioned experiment, we took #, = 0.5 s, which gives
~2000 data points for a sampling rate of 4 kHz. For
investigating the possible impact of nonstationarity detection
by the length of data segment, we have rerun Algorithm 1 on
the same data by varying 7, from 0.25 s to 0.75 s, and we
found that all cases yield the same optimal differencing
model with d = 2. In view of this, we conclude that the
results from KPSS test and hence Algorithm 1 are robust, and
our adopted segment length of ¢, = 0.5 s is sufficient.

Algorithm 1. Integrated process (Sec. IIC).

Input: x;, the input time series,

t;, the time length of x,,

t, = 0.5, the length of each segment,

¢, = 0.1, the threshold for the acceptance of p
values

Output: Xy

Initialization: ng = [7,/t,], the number of segments,

S = {sy,..., 5, }, the consecutive segments
1 d=0 ’
2 while true do
3 Xg = (1 - B)dx,
4 for i =1 to ny do
5 Perform KPSS test on s;
6 Compute the p values for the level stationarity p;
value and the trend stationarity p; value with s;
7 if pp >c,and pr>c, V sieqi1..a, then
8 return x,
9 else
10 d=d+1

D. Autoregressive process

Once the stationary dataset is obtained as an output x,; of
the integrated process, we build the AR model of x,;. A set
of AR models can be produced by
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FIG. 3. Effects of AR with different p,,,, on the difference data

of d=2. These time series are the residuals obtained by
subtracting the fitted AR model from the data (i.e., x, outputted
by Algorithm 2).

P
Xap = z aiXg i + €, (6)
i=1

where p €{1, ..., Prax}-

For constructing a set of candidate models, we need to
fix the upper bound of p, which is set by the hyper-
parameter p,... The optimal AR model is determined by
model selection based on Akaike information criteria
(AIC) [30], which is defined as AIC = 2p +nln(6—p2),
where n is the sample size, and 8p2 is the maximum
likelihood estimator for the variance of the noise term. For
each model in the set, AIC is calculated. The model that
attains the optimal AIC will be selected.

We have examined the effect with different values of
Pmax DY subtracting the corresponding optimal AR model
from the data [cf. Eq. (2)]. The results are shown in Fig. 3,
which shows that p,.. = 8192 (corresponding to ~2
seconds for 4 kHz sampling frequency) can lead to a
recognizable waveform in the residuals.

We have examined whether the result can be further
improved by setting p..« at higher values. However,
among all the experiments presented in this work, we
found that the optimal p selected by AIC all converged
below 8192 even with p,,, set at higher values. In view of
this, we fixed p.x = 8192 as the hyperparameter through-
out this work for an efficient computation.

In our framework, the model parameters (i.e., AR
coefficients {a;}) are estimated by Burg method, which
fits the model to x, for minimizing the sums of squares of
forward and backward linear prediction errors [31,32]. The
function ar .burg from the R package STATS is adopted in
our experiment.

Since AR is the major component of our procedure, before
we apply it to the data with a CBC signal embedded, we have
first investigated its performance on the pure noise data and
examined whether the processed data can satisfy the require-
ments of stationarity and normality cf. [33]. For this test, we
have used both simulated and real noise data. We started by
generating 100 simulated noise data of 32 s from sampling
the updated Advanced LIGO sensitivity design curve [34],
and we have processed them with Algorithms 1 and 2. For
comparison, we have also separately processed the simulated
noise with the standard whitening. To quantify the difference
between the distribution of the data from normality, we have
run the Anderson-Darling (A-D) test [35]. Taking the p value
of 0.05 as the benchmark for rejecting the null hypothesis,
all the simulated data fail to pass the A-D test, which
yields a mean p value of ~107'6. This suggests they are
all significantly different from a Gaussian distribution. After
subtracting the noise data from the AR models, ~70% of
these samples become conform with normality (yield a p
value >0.05), and we found that whitening results in a similar
fraction that passes the A-D test.

On the other hand, all these simulated noise data are
found to pass the KPSS test and do not demonstrate any
nonstationarity. In order to search for the nonstationary
noise data for the experiment, we have searched over the
LIGO data. We have chosen 24 time segments that do not
encompass any confirmed GW events and yield a p value
smaller than 0.05 in the KPSS test. Also, all these segments
do not conform with normality, which yields a mean p
value of ~107'% in the A-D test. After whitening (or
processing with our method), all 24 processed pure noise
data pass the KPSS test (all yield p value >0.1). Also, both
methods result in a similar fraction (~65%) for passing the
normality test. Therefore, we conclude that both our
method and whitening have a comparable performance
on the pure noise in attaining normality and stationarity. As
an example, we compare the power spectral density (PSD)
for one of our real noise sample with those of AR residuals
and whitened data in Fig. 4. These plots also demonstrate
the capability of a AR model in line removal. In the low
panels, we have also constructed the quantile-quantile
(Q-Q) plots for comparing the distribution of the data with
the normal distribution. They clearly show that both AR
residuals and the whitened data distribute as a Gaussian.

For our test data, which encompasses the transient signal
from GW150914, an optimal AR order of p = 7931 is
obtained. Before passing to the next stage of processing, we
obtain the residual time series x, by subtracting the optimal
model from x, [cf. Eq. (2), Algorithm 2]. The waveform of
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FIG. 4. Upper panels: PSDs of the pure noise data, AR residuals, and the whitened data. Lower panels: Q-Q plots for comparing the
distributions of the raw/processed data (red lines) and with a Gaussian distribution (black lines).

AR residual data is shown in the third panel in Fig. 2, in
which the modulation resulting from the BBH coalescence
starts emerging. To further suppress the random fluctuation
in x,, we proceed to the next stage (see below).

Algorithm 2. Autoregressive process (Sec. II D).

Input: x,, the input time series,

Pmax = 8192: the maximum number of the order of the
autoregressive process

Qutput: x,

1 Estimate the parameters ¢, of an AR(p) model on x, with the
variance af, calculated using Burg’s method and

{¢). Pop} = argminy , AIC for p€ {1, ... pru}

with AIC =2p + nn(s,?

Obtain time series &, —from the optimal model {dps Popt}

Po
return the residual x, = x; — X

wnm AW

Popt

E. Moving-average process

Different from the conventional ARIMA model [Eq. (5)]
in which MA performs the regression with the past forecast
errors ¢€;, in our framework, MA refers to the method of
estimating the trend in the residuals, which is taken as a
form of low-pass finite impulse response filter. The process
is expressed as follows:

(7)

where ¢ is the order of MA, and k = (¢ — 1)/2. Since we
consider a two-sided (centered) MA, if an even value of
order ¢ is specified, two MAs of k rounded down and
rounded up will be averaged cf. [36].

For choosing the value of ¢, a model with small g might
have the signal remain buried by the random fluctuations in
X,. On the other hand, a large ¢ can smear out the signal.
Since the GW from the BBH coalescence has its frequency
varying, a MA model with a fixed g can suffer from the
aforementioned trade-off. Another problem of a single MA
model is found when large values of g are adopted. In
Fig. 5, we show the power spectral density (PSD) of the
output from the MA model with different ¢ annotated as
blue lines in each panel. Within our concerned frequency
band (32-512 Hz), we found that power spectral leakage
starts appearing with ¢ > 7, which can be possibly resulted
from oversmoothing.

To overcome the aforementioned problems, rather than
using only a single MA(g), we adopted the method of
ensemble of averages (EOA) cf. [37], which combines MAs
fromarange of ¢ (¢ € {1...qma })- It aggregates a number of
MAs with an ensemble of moving averages. In our work, we
utilize the EOA and demonstrate that using the median as the
collector function can be a very effective filter (Algorithm 3).

Figure 6 shows the outputs of EOA for different
choices of ¢,,,x. Empirically, we found that ¢,,,,, = 20 with
a median collector function gives a desirable result. It can
eliminate most random fluctuations and retains the signal
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fidelity as all three stages of coalescence (i.e., inspiral,
merger, and ringdown) can be clearly visualized.
Furthermore, with EOA, the problem of spectral power
leakage in PSD is resolved (annotated as red lines in Fig. 5).

Algorithm 3. Moving-average process (Sec. I1E).

Input: x,,
4 €{qmin» --+» Gmax }» the order of the moving average
where ¢, = 1 and g, = 20 by default

Output: xgop

1 for 9 = Gmin 10 Gmay do

2 Xg = éz_];:—k Xrtj

3 % =median({x, . ...,xqmax})

4 return X

F. Bandpass filtering

In the last step of our framework, we have xgo bandpass
filtered in the frequency range of 32-512 Hz for removing
noise out of this band (e.g., seismic noise at low frequencies
and photon shot noise at high frequencies). We adopt the
finite impulse response (FIR) filter by using the functions
filtfilt and £irl from the R package SIGNAL [38]. The
bandpass filtered signal of GW150914 is shown at the
bottom panel in Fig. 2.

In comparison with the output from the previous step
(i.e., Xgoa), N0 significant improvement can be found as a
result of bandpass, which indicates that seqARIMA has
already efficiently suppressed the noise in the raw data.

Although the bandpass does not appear to be necessary in
the case of GW 150914, we keep it in our framework to ensure
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FIG. 6. EOA with a median collector on the output of AR stage.
Collector function aggregates MAs from g = 1 t0 ¢ = ¢yay-

all unwanted modulations outside this band are removed for
the sake of comparing with the whitening results.

III. EXPERIMENTAL RESULTS
A. Simulated data

For comparing the performance between the frequency-
domain whitening filter and seARIMA in noise reduction
as well as waveform visualization, we have carried out a
series of experiments. We started by simulating clean
waveforms of a BBH coalescence at different luminosity
distance d; by the code get td_ waveform from pPyCBC
[39] with the model SEOBNRv4 opt.

We have considered d; in a range from 200-4000 Mpc with
a step size of Ad; =200 Mpc. In order to analyze the
denoising performance for a variety of waveforms, for each
d;, we have generated 100 waveforms of randomly sampled
individual component masses m; and m,. For the other
parameters such as dimensionless spin and eccentricity, the
default values of get _td waveformare adopted (see [40]).

These waveforms are defined as the signals s.

For the sampling of waveform parameters, we have firstly
fitted the distributions of m; and m, from all the 81 confirmed
BBH CBC events with the R package GAMLSS [41]. Among all
the distribution functions available in GAMLSS [42], gener-
alized Beta distributions of the second kind provides the best
description in accordance with AIC, and we sampled m; and
m, from these best-fitted distributions.
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For each d;, we have generated 100 noise data of 32 s,
which is defined as n. They are sampled from a PSD
simulated by aLIGOZeroDetHighPower in PyCBC
from LALSimulation with low freq cutoff of 15 Hz.
Each of them are generated with different random seed. The
preparation of the simulated data was finished by injecting
s in a random time location of 7.

This simulated dataset allows us to compare the perfor-
mance of seqARIMA and whitening filter in extracting
the injected signal at varying d;. In both methods of
seqARIMA and whitening, the same bandpass filter of
32-512 Hz was applied. For whitening, we have adopted a
segment length of 4 s and an overlap percentage of 50% in
all experiments. Such choices of whitening parameters
follow the standards given by the PyCBC documentation [43].

For quantifying the fidelity of the extracted signal, we
computed the cross-correlation functions (CCFs) defined as

[Se]

CCF(/) = ) s(03(r—1). (8)

I=—00

where s is the simulated waveform, and § is the denoised
data. Then we obtained the maximum values of |CCF|,
CCF,ax, as the metric of measuring the similarity between
the s and $. In order to evaluate the noise reduction
performance, we also computed the root-mean-square
errors (RMSEs) defined as

NS—§2
D o

where N is the length of data, which reflects how the noise
is suppressed in the whole time series.

For each d;, we have resampled » with 100 different
random seeds and computed the median and the 95% con-
fidence interval of CCF,,,, and RMSE from this sample.

In Fig. 7, the results are shown for d; = 400, 2000,
3000, and 4000 Mpc. For a visual comparison of the
similarity of the extracted signal and the injected waveform
s, we have also overlaid s in all the panels of Fig. 7 as the
red solid curves.

In the left panels of Fig. 8, we compare how CCF,,,, and
RMSE vary with d; in both schemes. The error bars represent
95% confidence intervals calculated from 100 simulated
waveforms with randomly sampled m; and m, as well as
different random seeds for generating the noise. Comparing
the extracted signals by these two methods, we found that
those obtained by seqARIMA generally have a larger degree
of similarity with s and lower level of noise. Although
whitening process attains better results for small distances
(d;, <600 Mpc), seqARIMA has shown an advantage in
denoising for increasing d; (i.e., larger CCF,, and
reduced RMSE).

In the right panels of Fig. 8, we show the fractional
improvements in both metrics as yielded by seqARIMA at
different d;. Comparing with the whitening results at

RMSE =

d; =400 Mpc

0.00 0.05 0.10 0.15 0.20 0.25

Normalized strain

00 0.05 0.10 0.15 0.20 0.25

Time —tg (s)

FIG. 7. The comparison of extracted waveforms from the
simulated data (top panel) by whitening (middle panel), and
seqARIMA denoising (bottom panel) for d; = 400, 2000, 3000,
and 4000 Mpc, from top to bottom, respectively. In each panel,
we have overlaid the injected signal (red lines) on the data (black
lines). For the sake of comparison, the strain amplitudes are
normalized in each panel.

d; = 4000 Mpc, seqARIMA has improved CCF,,, by
~42% and suppressed RMSE by ~23%.

B. LIGO data

To demonstrate the capability of seqARIMA in handling
real data, we have attempted to extract the signals from a
number of known GW events from the LIGO data. In this
test, we have chosen all the events in GWTC-1 as observed
during the first and second observation runs (O1 and O2) in
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FIG. 8. Left panel: the comparison of CCF,,, and RMSE
between the injected signal and the waveform extracted from
seqARIMA (red triangles) and the whitening process (blue circles)
with varying d; . The error bars represent 95% confidence errors
calculated from 100 sampled parameters and 100 different random
seeds. Right panel: fractional difference of CCF,,,, and RMSE
resulted from seqARIMA denoising with respect to the corre-
sponding metrics resulted from whitening as a function of d; .

2015-2017 [44] plus two additional interesting events. All
the data with a length of 4096 s with 4 kHz sampling
frequency are obtained from GWOSC. Except for the NS-NS
merger GW170817, we windowed the 4096 s data with a
frame of 32 s for all the events. For GW 170817, because of its
much longer timescale, we applied a window of 50 s instead.

1. GWTC-1 events

All 11 events in GWTC-1 can be well extracted by
seqARIMA. In Fig. 9, we show the spectrograms/oscillograms
of the extracted signals from three representative cases,
GW150914, GW151012, and GW170817, as detected by
both observatories in Hanford (H: left panels) and Livingston
(L: right panels). For the results of other GWTC-1 events, we
have put them in the Appendix (Fig. 11).

GW150914 is the first case that a GW signal was directly
detected [4]. Its high signal-to-noise (SNR) of 26 has put it
among the strongest signals of BBH merger detected so
far. In Sec. II, we have already used this case for illustrating
the feasibility of seqARIMA, in which we demonstrate that
the signal of GW 150914 can be clearly recovered. In the top
row of Fig. 9, we have produced the spectrograms of this
event with Q transform for visualizing how the frequency of
the signal varies over the entire process. The characteristic
sweeping chirp can be clearly seen in the spectrograms.

GW151012 is the BBH merger detected with a SNR of 10,
which puts it as the weakest signal in GWTC-1 [44]. Its low
significance as found from the initial discovery in O1 did not

make it as a confirmed detection, and hence, it was firstly
considered as a candidate that was named as LVT151012
[45]. With a more detailed analysis, it was found to meet the
criteria of a confident detection and was subsequently
renamed as GW151012. In the second row of Fig. 9, we
show the spectrograms of the signals of GW151012 as
extracted by seqARIMA. The chirplike feature can be seen
from the denoised data though it is not as clear as in the case
of GW150914 because of its low significance.

The GW signal from the event GW170817 is resulted
from a merging NS-NS binary, which is the first GW event
that has the counterpart detected across the whole electro-
magnetic spectrum [5-8]. It is associated with a short y—ray
burst GRB170817A, detected by Fermi gamma-ray burst
monitor (GBM) 1.7 s after the coalescence [8]. It has
provided a long-sought evidence for the link between NS-
NS mergers and short y-ray bursts. Unlike BBHs, the
inspiral time of GW170817 is much longer. Therefore, we
take this event as a test for the capability of our framework
in handling a signal with a longer timescale. Apart from
adopting a wider window in the analysis, since LIGO-L
data of GW170817 suffered from the transient noise (or
glitch) at the GPS time of 1187008881.389 (around 1.1 s
before the coalescence), we have used the data after noise
subtraction following the glitch model described in [5,46].
The spectrograms of GWI170817 resulting from
segARIMA denoising are shown in the bottom panels of
Fig. 9. The inspiral and the merging process over ~30 s can
be clearly visualized in both data.

2. GW190814 & GW200105_162426

Apart from reproducing the GWTC-1 events, we have
further tested our framework on two additional sources:
GW190814 and GW200105_162426. These events were
chosen because their inferred properties are somewhat
different from those 11 events in GWTC-1.

GW190814 was detected in the third observing run (O3)
with a SNR of 25 [47]. Parameter estimation suggests that
the masses of the compact objects in their progenitor binary
are highly unequal. While one component has its mass
estimated as ~23M which is consistent with a stellar BH,
the mass of the other one is likely lying in a range of
~2.5-3M o, which put it in a mass gap of being either a very
massive NS or a low-mass BH. In Fig. 1 of [47], we notice
that the timescale of GW190814 is ~2-3 s long, which is
different from those of GWTC-1 sources. Therefore, we
have included GW190814 in our test.

For the same reason, we have also included
GW200105_162426 (hereafter, GW200105) in our experi-
ment. It was detected by a single detector (LIGO-L) during
O3 with an SNR of ~14 [48]. It is estimated to have
component masses of ~8.9M and ~1.9M , which makes
it likely an NS-BH binary. The signal of GW200105 shows
a track of excess power with increasing frequency over
~3 s in the spectrogram (see Fig. 1 in [48]).
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FIG. 9. The spectrograms and oscillograms of seqARIMA-denoised LIGO data of GW150914, GW151012, and GW170817 as
selected from GWTC-1 (results for the other GWTC-1 events are shown in Fig. 11). The color scale for the normalized power of the
spectrogram is given at the upper-left corner of each panel. The reference epochs ¢, for each case are the event time reported in GWOSC.

For GW170817, the glitch-removed LIGO-L data is used.

In Fig. 10, we show the spectrograms of these two
sources produced in our framework. The tracks of the
signals in both cases are clearly visible. In comparing the
spectrogram of GW200105 resulted from seqARIMA and
the one obtained from spectral whitening as shown in Fig. 1
of [48], we found that our result can attain a higher clarity
that shows the inspiraling stage has a duration up to ~6 s.

In order to compare the performance of signal extraction
by whitening and seqARIMA, we computed the CCF,,,
and RMSE resulting from both schemes with reference
to the waveforms generated by pyCBC with the model of

SEOBNRv4 opt for BBHs and IMRPhenomPv2 for
GW170817 (BNS), GW190814 (mass gap), and GW200105
(NSBH) according to the parameters given in the correspond-
ing literature. The results are summarized in Table 1.

For comparing RMSE between seqARIMA and whitening,
we have seen general improvement in most cases. However,
there are a few cases that the noise reduction resulted from
seqARIMA are worse than that from whitening. The most
notable one is from the LIGO-L data of GW150914. This
might suggest that for the events with SNR sufficiently large as
in the case of GW150914, seqARIMA may not have the

102003-10



AUTOREGRESSIVE SEARCH OF GRAVITATIONAL WAVES: ...

PHYS. REV. D 109, 102003 (2024)

GW190814 (H)

500
400

300

n
S
3

Frequency (Hz)
8

h(10%)

-35 -30 25 20 -i5 -1.0 -05 00 05 10
Time - to (s)

Frequency (Hz)

Frequency (Hz)

GW190814 (L)

-25 -2.0

1.5

h(10%2)

Time -ty (s)

E -0 05
Time - to (s)

00 05 10

FIG. 10. The spectrograms and oscillograms of seqARIMA-denoised data of GW190814 (LIGO-H, L) and GW200105_162426

(LIGO-L).

TABLE I. The comparison of RMSE and CCF,,,, yielded by
whitening and seqARIMA on 13 confirmed CBC events as
observed by LIGO with reference to the model waveform as
specified in the literature. The third row of each event shows the
percentage change resulted from seqARIMA with respect to
whitening. For GW200105, LIGO-H was not operational during
this event as hence there is no data available [48].

RMSE CCFax
Event name  Dataset H1 L1 H1 L1

Whiten 0.034 0.0288 0.628  0.488
GW150914 seqARIMA  0.024 0.0321 0.646  0.607
-29.4% +11.4% +2.83% +24.4%

Whiten  0.0318 0.0326 0.127  0.0922
GW151012 seqgARIMA 0.0304 0.0311 0.201  0.177
—-4.39% —4.71% +57.9% +92.1%

Whiten  0.0119 0.0119 0.0763 0.0736
GWI151226 seqARIMA 0.0114 0.0117 0.145  0.109
-4.05% —1.81% +90.6% +47.6%

Whiten  0.0289 0.0283 0.212  0.212
GW170104 seqARIMA 0.0262 0.0264 0.298  0.293
-927% —6.71% +40.3% +38.2%

(Table continued)

TABLE 1. (Continued)

RMSE CCFax

Event name  Dataset Hl LI Hl L1
Whiten 0.0145 0.0144 0.0926 0.105

GW170608 seqARIMA 0.0138 0.0143 0.18 0.143
—492% —123% +94% +37%

Whiten 0.0375 0.0391 0.278 0.379

GW170729 seqARIMA 0.033  0.0309 0.443 0.51
—122% -20.9% +59.7% +34.5%

Whiten 0.0328 0.0309 0.246 0.305

GWI170809 seqARIMA 0.0315 0.0304 0.367 0.35
=375% —-1.5% +49.4% +15%

Whiten 0.0309  0.027 0.303 0.402

GWI170814 seqARIMA 0.0255 0.0276  0.467 0.546
—-17.6% +2.0% +54% +35.8%

Whiten  0.00836 0.00828 0.0719  0.106

GWI170817 seqARIMA 0.00816 0.00793 0.113 0.163
—2.38% —4.16% +57.1% +54.1%

Whiten 0.035 0.0335 0.119 0.273

GWI170818 seqARIMA 0.0325 0.0319 0.218 0.359
—-719% —-4.99% +82.9% +31.2%

102003-11

(Table continued)



KIM, HUI, YAN, LEUNG, OH, KONG, LIN, and LI

PHYS. REV. D 109, 102003 (2024)

TABLE 1. (Continued)

RMSE CCFpnax
Event name  Dataset H1 L1 H1 L1
Whiten 0.0336 0.0349 0.306 0.3
GWI170823 seqARIMA 0.0352 0.0337 0.434 0.362

+4.18% —-3.51% +41.7% +20.7%

Whiten  0.0118 0.0117 0.0951  0.109

GW190814 seqARIMA 0.0113 0.0112 0.171  0.182
-4.68% —4.62% +79.7% +67.2%

Whiten 0.0121 0.0316

GW200105 seqARIMA 0.0115 0.174
-5.59% +449%

advantage over the conventional whitening. This is also
reflected by the nonmonotonic behavior for the small values
of d; in Fig. 8.

On the other hand, in terms of CCF,,, (i.e., the similarity
between the extracted signals and the model), seqQARIMA
has shown improvement in all our tested cases.

IV. SUMMARY AND FUTURE PROSPECTS

In this work, we have proposed a novel denoising
technique in processing GW data, which is based on
autoregressive modeling. By coupling with other tech-
niques (i.e., integrated process, EOA), we have developed
a framework we refer to as seqARIMA pipeline (cf. Fig. 1).
The effects of each component in the pipeline have been
investigated (see Fig. 2 and Secs. Il C-II F for details). We
have tested the performance of our proposed framework
with a series of experiments.

We have examined the ability of seqARIMA pipeline in
extracting the simulated GW signal with varying waveform
and distance. By comparing the noise-subtracted time series
and the injected signal (Fig. 7), we have computed CCF,,,,
and RMSE resulting from both seqARIMA and whitening
process. At larger distances, we found that seqARIMA can
attain a higher CCF,,, and lower RMSE than those resulting
from whitening (Fig. 8).

We have also applied our method in extracting a number of
known GW events from the LIGO data. All 11 events cata-
loged in GWTC-1 can be well recovered by seqARIMA
(Figs 9 and 11). We have further tested the method in two
additional sources GW190814 (mass-gap object) and
GW200105 (NS-BH merger), which have the timescale of
their GW signals different from those in GWTC-1. We showed
their signals can also be successfully extracted (Fig. 10).

We have further compared the CCF,,, and RMSE
resulting from both seqARIMA and whitening by compar-
ing the noise-subtracted time series of these events with the
model waveforms generated in accordance with the param-
eters specified in the corresponding literature (see Table I).
We found that seqQARIMA generally yields improvement
over whitening in terms of these performance metrics.

We have demonstrated that seARIMA can enhance the
noise suppression, and therefore, it is capable of providing
an alternative to the conventional frequency-domain whiten-
ing process. For further improving the denoising perfor-
mance, seqARIMA can be coupled with deep learning.
Many recent studies have investigated the feasibility of
denoising the GW data with deep neural network and
showed that this can significantly suppress the noise and
recover the signal e.g., [49—52]. We notice that these recent
studies remain using whitening as a preprocessing pro-
cedure. Therefore, it will be encouraging to explore whether
combining seqARIMA with these machine-learning based
architectures can boost the denoising performance to a
further extent. By substituting whitening with our proposed
method, dedicated studies can also explore whether param-
eter estimation can also benefit from seqARIMA.

We can also consider the feasibility of incorporating
seqARIMA into a template-free low-latency detection pipe-
line. Since whitening can be a dominant source for the
latency, it is desirable to reduce the computational cost in
this stage e.g., [19]. However, the conventional frequency-
domain whitening process does not have many degrees of
freedom for improving the computational efficiency. On the
other hand, the complexity of seqARIMA can be controlled by
the hyperparameters p .., and g, which gives the flexibility
of this process. For example, in trading off the fidelity of the
extracted signal, a low p.,, can result in a more efficient
modeling. Therefore, one can examine whether seqARIMA
can be adopted in a candidate identification pipeline. With the
improved noise subtraction, the signal from a CBC or burst
event can possibly be identified as a cluster of bright pixels in
the spectrograms e.g., [53,54], which allows a GW event
candidate to be detected without a priori knowledge of its
waveform. A quantitative analysis on the execution speed of
our proposed framework will be important for examining the
capability of rapid real-time processing.
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APPENDIX: SPECTROGRAMS AND OSCILLOGRAMS OF GWTC-1 EVENTS PRODUCED
BY OUR FRAMEWORK
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FIG. 11. The spectrograms and oscillograms of seqARIMA-denoised LIGO data of GWTC-1 sources which are not shown in Fig. 9.
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FIG. 11. (Continued)
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