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In Eq. (8), there should be additional normalization factors given by Nc=Tr½Uð−iβ −∞;−∞Þe−βH�. The correct
expressions are
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γfund ¼
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Im

Z
dthTrc½Uð−∞; tÞEiðtÞUðt; 0ÞEið0ÞUð0;−∞Þ�iT;Q;

where the subscript T in the expectation value denotes that the state on which this expectation value is calculated is a thermal
density matrix, while the subscriptQmeans that this thermal state contains a static external color charge in the fundamental
representation, e.g., a heavy quark. Mathematically, this expectation value is defined as hOiT;Q ≡ NcTr½Uð−iβ −
∞;−∞ÞOe−βH�=Tr½Uð−iβ −∞;−∞Þe−βH� and thus is different from that in Eq. (1).
In Eq. (15), there should be an overall minus sign in the second, third and fourth line because the electric field in

Euclidean signature differs from the electric field in Minkowski signature by a factor of i, induced by the definitions τ ¼ it
and A0ð0Þ ¼ iA4ð0Þ.
Equation (35) should read
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The correction lies in the π2 terms in the innermost parenthesis that multiplies Nc and an overall factor of 2. This follows
immediately from the known results at ω > 0 and the ω-even part we found in Eq. (20).
We note that this ω-even part is exactly the difference at next-to-leading order (NLO) between the spectral functions

ρþþ
adj ðωÞ and ρfundðωÞ. Indeed, the differenceΔρ between spectral functions we found in this work in Eq. (20) reproduces the
difference between the transport coefficients γadj and γfund present in [1]. However, a more detailed examination reveals that
the ω-odd term proportional to π2 we report here, which is the same for both ρþþ

adj and ρfund, and the previous result of the
Euclidean QCD calculation of ρfund in [2] differ. To be explicit, we report that the term proportional to π2 in ρfund should be
−π2=6 instead of −2π2=3 (a factor of 1=4 smaller than in [2], where it appears as −8π2=3 and should be −2π2=3 in their
normalization convention). In Appendix A we show a cross-check of the correctness of our result and in Appendix B we
indicate where the calculation of [2] goes wrong.

We thank Mikko Laine for invaluable discussions that helped us determine the origin of the discrepancy between the
results for ρfund and ρþþ

adj present in the literature.
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APPENDIX A: VERIFICATION OF THE DIFFERENCE BETWEEN ρ + +
adj AND ρfund

The value of the π2 term in ρþþ
adj at ω > 0 can be traced back to [3] and was further verified in [4] to be π2=3. If we further

know that its ω-even part is given by our results, i.e., π
2

2
sgnðωÞ, then it follows that the value of these terms for general ω is

given by −π2=6þ sgnðωÞπ2=2. Since a cross-check already exists for the result at ω > 0 with both real and imaginary time
calculations, here we cross-check the value of the difference ρþþ

adj − ρfund with an imaginary time calculation.

The imaginary-time difference we calculate here is

ΔGðτÞ≡GadjðτÞ − GfundðτÞ; ðA1Þ

which can be brought into a rather succinct form after expanding the Wilson lines to linear order in A [which is sufficient to
get the difference up to Oðg4Þ]:
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The subscript OðgÞ indicates that only the tree-level 3-gluon vertex contributes, and T E denotes Euclidean time ordering
(bigger imaginary time arguments are implicitly pushed to the left of the expression). It is interesting to see that the
Matsubara zero mode of the gauge field appears explicitly in these expressions.
A direct calculation in dimensional regularization (DR), introducing Feynman parameters when appropriate, leads to
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where all of the dependence on kn is outside the curly bracket, and the terms inside the curly bracket simply correspond to a
numerical prefactor.
One can show that ΔρðωÞ ¼ 2ImfΔG̃ðknÞgkn→−iðωþi0þÞ. Performing the analytic continuation kn → −iðωþ i0þÞ means

that we obtain

−ik3n × ðk2nÞD−4 → ω3 × ð−ω2 − iω0þÞD−4 ¼ ω3jωj2D−8 × e−iπsgnðωÞðD−4Þ; ðA4Þ

where the analytic continuation from kn to ω is taken by continuously deforming kn starting from the real axis into
the imaginary axis, without actually crossing the imaginary axis (i.e., without crossing the negative k2n axis). Its imaginary
part is

Imfω3jωj2D−8 × e−iπsgnðωÞðD−4Þg ¼ πð4 −DÞsgnðωÞω3jωj2D−8 þOððD − 4Þ3Þ: ðA5Þ

It then follows that the difference between spectral functions in the limit D → 4 is purely determined by the divergent
contribution to ΔG̃ðknÞ, i.e., the last term inside the curly bracket of (A3). In the limit, ð4 −DÞΓð4 −DÞ → 1, and we may
set D ¼ 4 elsewhere. The integral over Feynman parameters gives a simple result,
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with which
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just as we obtained via our real time calculation.
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APPENDIX B: RESOLVING THE TENSION WITH PREVIOUS RESULTS

We now discuss the calculation in [2] of the terms proportional to π2 and how they arrived at a different result. In short,
the issue is that the IR regulators employed in [2] fundamentally alter the analytic structure of the integral to be calculated.
In [2], the integral structure that generates the π2 terms is given by their Eq. (A.42),

δ3mĨ5 ¼
32π3

ð4πÞ2
Z
k
Im

�Z
1=2

0

ds
k2n

k2n þ k2
2k2n
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��
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; ðB1Þ

where we have omitted the DR scale μ, and written the expression without the IR regulator λ present in their work (they

write k2n
k2nþk2þλ2

instead of k2n
k2nþk2 next to the ds integral sign). We have also written 2k2n in the place of k2n − k2 (the numerator on

the second fraction under the s integral sign) because one can show that their difference will not lead to any terms
proportional to π2 in the result. Furthermore, we have multiplied their expression by 16π3 so that it contributes to ρfund as the
numerical factor obtained from (B1) that multiplies 2g4TFNcðN2

c − 1Þω3=ð3ð2πÞ3Þ. That is to say, the result of the
multiplication of (B1) with 2g4TFNcðN2

c − 1Þω3=ð3ð2πÞ3Þ is an additive contribution to ρfund. (Because of all of these
changes we denote the first symbol as δ3m instead of δ3.)
The calculation of [2] proceeds by introducing a regulator in the form of a mass term, then doing the analytic

continuation, taking the imaginary part, and evaluating the integrals at the end. This would work if such a regulator did not
change the positions of the poles relative to the branch cuts of the integrand, which, crucially, it does. If we view the
integrand of Eq. (B1) as a function of kn in the complex plane, at each fixed k, then there are poles at kn ¼ �ik, branch cuts
starting at kn ¼ �ik and extending to �i∞ due to the integration over s, and a branch cut between kn ¼ �ik due to the
explicit logarithm in the integrand. See Fig. 1 for a graphic representation.
Starting from this picture, introducing a regulator in the denominator of the first factor under the s integral sign amounts

to moving the positions of the poles into the branch cut generated by the integration over s. Since the analytic continuation is
essentially a limit taken by starting in the ReðknÞ > 0 region of Fig. 1, it is crucial that the position of the poles relative to the

FIG. 1. Graphic representation of the pole structure of Eq. (B1) in the complex kn plane at fixed k. Poles are represented with blue
crosses, the branch cut between −ik and þik is represented by a red zigzag line, and the branch cuts above and below �ik are
represented by wavy green lines. The latter branch cut is induced by the presence of the Wilson line. Left: the pole structure without a
regulator. Right: the pole structure with the regulator used in [2]. Without the branch cuts induced by the Wilson line, this regulator is not
problematic because the branch cut denoted by a red zigzag line does not intersect the poles. However, with the branch cuts induced by
the Wilson line, moving the poles in this manner qualitatively alters the pole structure because the contributions from the regions where
ik < �ImðknÞ < i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ λ2

p
, ReðknÞ ≈ 0 will contribute with an opposite sign to the unregulated version.
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branch cuts stays the same so that the analytic structure of the correlation function one intends to calculate stays unaltered.
The regulator in [2] does not satisfy this requirement. Indeed, one can verify by a direct numerical calculation that

δ3mĨ5ðωÞ ¼
π2

3
Im

�
k2n

ffiffiffiffiffi
k2n

q �
kn→−iωþ0þ

; ðB2Þ

as opposed to ð−2π2=3ÞImfk2n
ffiffiffiffiffi
k2n

p
gkn→−iωþ0þ , which is what was found in [2].

Furthermore, there is an additional contribution that the calculation in Appendix A.4 of [2] did not consider, which to our
knowledge was first calculated in [5] (see pages 154–160). It originates explicitly from the Matsubara zero mode.
This contribution that was neglected in [2] corresponds to −π2=2 in our normalization of the terms in the parenthesis with
the prefactor Nc in the expression for ρþþ

adj ðωÞ (the corrected Eq. (35) at the beginning of this erratum). It then follows that
the term proportional to π2 in the sought result is π2=3 − π2=2 ¼ −π2=6, as claimed at the beginning of this erratum with
regard to Eq. (35).
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