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We develop the first causal and stable theory of a bulk-viscous relativistic pseudoplastic (or dilatant)
fluid. This new formalism brings to light the rheological properties of several relativistic physical systems.
Neutron star collisions can behave as a relativistic pseudoplastic material with viscous properties dictated
by the nonconservation of lepton currents due to weak decay. Two-temperature relativistic plasmas, such as
those surrounding supermassive galactic black holes, are predominantly pseudoplastic. Our framework can
also be employed to construct novel viscous models for the evolution of the Universe with pseudoplastic or
dilatant features.
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I. INTRODUCTION

Rheology is the study of how matter responds to
deformation [1–3]. Its main task is to determine relation-
ships of the form Π ¼ Π½θ�, which express a certain stress
component Π as a functional of the deformation rate θ that
caused such stress. Rheology emerged as a branch of fluid
mechanics one century ago motivated by the observation
that many real-world fluids (the so-called “non-Newtonian
fluids” [4]) defy the canonical Navier-Stokes descrip-
tion [5]. It was soon realized that all fluids are fundamen-
tally non-Newtonian, and Navier-Stokes hydrodynamics is
just the leading-order truncation of any (fluid-type) rheo-
logical relation Π½θ�. Such truncation is allowed only at
small spacetime gradients relative to some intrinsic scales
of the fluid. Non-Newtonian corrections appear if such
intrinsic scales are comparable to those associated with the
variation of the hydrodynamic variables [6–8].
Since most engineering-related flows (e.g., the Couette

flow [9]) are incompressible, nonrelativistic rheology
mainly focuses on shear phenomena. However, in relativity,
the situation is profoundly different. Many relativistic flows
(e.g., Bjorken flow [10] in the context of heavy-ion colli-
sions) experience large expansion rates. More importantly,
systems whose description relies on relativistic fluid dyna-
mics, namely the quark-gluon plasma formed in heavy-ion
collisions [11], neutron star merger simulations [12],
relativistic plasmas surrounding black holes [13], and
viscous cosmology [14], require careful treatment of bulk
(i.e., expansion-induced) viscosity, and are expected to
explore dynamical regimes where the simple Navier-Stokes

truncation [5,15] cannot be applied without displaying
causality violation and unphysical instabilities [16].
Therefore, one needs a causal and stable relativistic theory
of bulk-viscous rheology that allows us to express the
bulk stress Π in terms of the relativistic expansion rate
θ ¼ ∇μuμ, where uμ is the fluid’s 4-velocity. Here, we set
the foundations of such a theory and discuss a few relevant
applications. This work sheds new light on open questions
concerning viscous hydrodynamics in neutron star mergers
[17–22], heavy-ion collisions (e.g., concerning nonlinear
causality [23–25], cavitation [26–29], attractors [30–33]),
and cosmology [14,34–54]. Our metric has signature
ð−þþþÞ and c ¼ kB ¼ 1. When convenient, the notation
Ẋ ¼ uμ∇μX is also adopted.

II. STATEMENT OF THE PROBLEM

The simplest rheological model for fluids is the Navier-
Stokes constitutive relation, Π ¼ −ζθ, where ζ > 0 is a
linear susceptibility (independent from θ), known as the
bulk viscosity coefficient [5]. This model follows [55]
from assuming a quasistationary process and a small θ
(compared to some intrinsic scale of the system) expansion.
Real-world flows may break both these assumptions. If
the first assumption is violated, the fluid is called visco-
elastic [2]. In a pseudoplastic fluid, the second assumption
is violated [3]. The associated constitutive relations are,
respectively [57],

Viscoelastic ∶ τΠ̇þ Π ¼ −ζθ; ð1Þ
Pseudoplastic∶ Π ¼ −fθ; ð2Þ

where τ > 0 is a transport coefficient (the intrinsic scale),
independent from θ, while f is an arbitrary function of θ.
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Physically, a viscoelastic fluid is a material whose stress
exhibits a delay in the response to time-dependent defor-
mation rates. The term reflects the fact that, in the high-
frequency limit, (1) reduces to Hooke’s law of elasticity,
Π̇ ∝ θ [62]. A pseudoplastic fluid is a material whose bulk
viscosity coefficient, now defined as ζ ¼ −Π=θ, changes as
a function of the deformation rate. The term comes from the
fact that, usually, such a ζðθÞ decreases with θ so that the
induced stress is relatively small at large deformation rates.
As discussed below, both effects are present in neutron-star
matter, QCD critical dynamics, relativistic plasmas sur-
rounding black holes, and viscous cosmology.
The relativistic theory for viscoelasticity goes under

the name of Israel-Stewart theory [63,64]. Born as an
approximation of kinetic theory [65], its accuracy as an
(almost [66]) universal rheological model has been recently
established systematically, both within a thermodynamic
[67,68] and a linear-response framework [69]. On the
other hand, a relativistic theory for pseudoplasticity is still
missing. A straightforward implementation of (2) in a
relativistic hydrodynamic model would result in causality
violation and ultraviolet instabilities. Even combining (1)
and (2) into τΠ̇þ Π ¼ −fðθÞ, the resulting system of
equations would not be quasilinear [70], leading to insur-
mountable difficulties in establishing causality and well-
posedness of the initial value problem [71]. Moreover,
without a systematic procedure for computing fðθÞ from
microphysics, the applicability of rheological concepts in
concrete relativistic systems remains hypothetical. Below,
we present a simple mathematical procedure that allows
one to rewrite previously existing frameworks in rheo-
logical form, automatically including viscoelasticity and
pseudoelasticity. The resulting hydrodynamic theory can
be easily proven causal, stable, strongly hyperbolic, and
thermodynamically consistent. Furthermore, general for-
mulas are given to compute the rheological transport
coefficients directly from microphysics.

III. GENERAL MODELING

Our starting point is a simple observation: most of the
relativistic systems where bulk viscosity is important,
including our main systems of interest (neutron-star matter,
QCD near the critical point, ionized plasmas, and cosmo-
logical fluids), can be modeled within the same framework,
which we summarize below.
We consider the case where four effective fields para-

metrize the macroscopic state of the fluid: fuμ; ρ; n;ϕg,
representing the 4-velocity, the rest-frame energy density,
the rest-frame baryon density, and a nonequilibrium excur-
sion parameter, respectively. The first three fields are the
usual fluid dynamical variables whose existence reflects a
corresponding conservation law (momentum, energy,
and baryon number). The scalar field ϕ is an observable
that, due to the expansion of the fluid, is driven out of
local equilibrium. Usually, ϕ reflects the existence of a

weakly broken conservation law [72], e.g., a chemical
reaction [76]. Since here we only focus on bulk viscosity,
we assume that the stress-energy tensor Tμν and the baryon
current nμ are isotropic in the local rest frame so that [77],

Tμν ¼ ðρþ PÞuμuν þ Pgμν; nμ ¼ nuμ; ð3Þ

where Pðρ; n;ϕÞ is the nonequilibrium rheological pressure
and gμν is the (arbitrary) spacetime metric. The equations of
motion of the fluid are, therefore,

uμ∇μuν ¼ −ðgμν þ uμuνÞ
∇μP

ρþ P
;

uμ∇μρ ¼ −ðρþ PÞ∇μuμ;

uμ∇μn ¼ −n∇μuμ;

uμ∇μϕ ¼ −K∇μuμ − F: ð4Þ

The first three equations are the conservation laws,∇μTμν¼0

and ∇μnμ ¼ 0. The last equation models dissipation. Its
structure directly follows from isotropy and the assumption
that ϕ is the only nonequilibrium degree of freedom. The
coefficient Kðρ; n;ϕÞ is called the compressibility and
Fðρ; n;ϕÞ is the returning force. Therefore, to completely
specify the systems we are interested in, we only need to
know how to express fP;K; Fg in terms of fρ; n;ϕg.
Finally, the reader may note a similarity between (4) and

the Hydroþ effective theory framework, which was intro-
duced in Ref. [78] to describe a near-hydrodynamic system
with an additional mode that is parametrically slower than
the other modes. This is not a coincidence, given the broad
regime of applicability of Hydroþ [78].

A. Bulk rheology

Let us recast (4) into a rheological model for bulk viscosity,
which also accounts for pseudoplasticity. First, we note that
the equilibrium value ϕeqðρ; nÞ of the nonconserved mode ϕ
(at given ρ and n) can be computed from the relation
Fðρ; n;ϕeqðρ; nÞÞ ¼ 0 [78]. This follows from the fact that
the equilibrium state is stationary and nondeforming so that
0 ¼ uμ∇μϕ ¼ −F at equilibrium. Then, given the expression
for the nonequilibrium pressure, Pðρ; n;ϕÞ, we can define
the equilibrium pressure and the bulk scalar as

Peqðρ; nÞ ¼ Pðρ; n;ϕeqðρ; nÞÞ;
Πðρ; n;ϕÞ ¼ Pðρ; n;ϕÞ − Pðρ; n;ϕeqðρ; nÞÞ; ð5Þ

so that the energy-momentum tensor takes the usual bulk-
viscous form,

Tμν ¼ ðρþ Peq þ ΠÞuμuν þ ðPeq þ ΠÞgμν: ð6Þ

Inverting the second equation of (5), we obtain a relation of
the form ϕ ¼ ϕðρ; n;ΠÞ. Clearly, ϕeqðρ; nÞ ¼ ϕðρ; n; 0Þ
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and, since F vanishes at equilibrium, FΠ ¼ F=Π is non-
singular atΠ ¼ 0 as it converges to ∂ΠFðΠ ¼ 0Þ. Expressing
the last equation of (4) in terms ofΠ, we obtain a relation that
resembles Israel-Stewart theory (though here the equation is
valid also for large Π=Peq),

τΠuμ∇μΠþ Π ¼ −ζ∇μuμ; ð7Þ

where τΠðρ; n;ΠÞ and ζðρ; n;ΠÞ are now also rheological
functions of Π, given by

τΠ ¼ 1

FΠ

∂ϕ

∂Π

����
ρ;n
;

ζ ¼ −
1

FΠ

�
ðρþ Peq þ ΠÞ ∂ϕ

∂ρ

����
n;Π

þ n
∂ϕ

∂n

����
ρ;Π

− K

�
: ð8Þ

No approximation has been made above, meaning that (7) is
mathematically equivalent to (4) (the equivalence also holds
in curved spacetime).
Equation (7) is the relativistic theory for bulk rheology

we were looking for. Indeed, viscoelasticity is automati-
cally accounted for by the relaxation time, and all the
available formulations of Israel-Stewart bulk viscosity
(e.g., DNMR [65], or Hiscock-Linblom [64]) correspond
to particular choices of τΠðΠÞ and ζðΠÞ (see Supplemental
Material [79]). However, the theory can also describe
pseudoplasticity. In fact, suppose that the system has reached
an attractor state [30], where τΠuμ∇μΠ can be replaced with
some function hðρ; n;Π;∇μuμÞ. Then, we have an equation
of the form hðΠ;∇μuμÞ þ Π ¼ −ζðΠÞ∇μuμ. If we isolateΠ,
we obtain a (fully nonlinear) expression Π ¼ −fð∇μuμÞ,
which can be interpreted as a late-time pseudoplastic
constitutive relation. This further develops the idea of
effective transport coefficients that encode the contribution
from an infinite number of gradients, previously inves-
tigated in relativistic systems undergoing highly symmetric
flows [31,80–83]. In this context, the results of [31] show
that the hydrodynamic attractor found in kinetic and
holographic systems undergoing Bjorken flow is in the
pseudoplastic regime. We note, however, that the depend-
ence of ζ with gradients discussed above holds, in different
forms, for arbitrary flows (also in curved spacetime).
Furthermore, causality and stability issues are automati-
cally solved since (7) gives rise to a fluid model that is
thermodynamically consistent, symmetric hyperbolic, and
causal in the fully nonlinear regime (see Supplemental
Material [79]).

IV. BULK-VISCOUS RHEOLOGY OF NEUTRON
STAR MERGERS

We now argue that the ultradense matter formed in
neutron star mergers must have bulk-viscous rheological
properties. Current state-of-the-art simulations of neutron
star mergers (see, e.g., [22]) solve (4) coupled to Einstein’s

equations. Assuming npematter in the neutrino transparent
regime, ϕ corresponds to the charge fraction Y ¼ ne=n (ne
is the electron density), which only changes by weak-
interaction decays of neutrons and protons. This gives
K ¼ 0 [84,85] and F ¼ Γν=n, where Γν are the weak-
interaction rates, which include standard leakage schemes
[86,87] as well as direct and modified Urca net rates
[88,89]. In this case, P ¼ Pðρ; n; YÞ can be determined
directly from the underlying model for the equation of state
away from beta equilibrium. Then, our “dictionary rela-
tions” (8) can be used to directly determine the transport
coefficients for neutron-star matter far from beta equilib-
rium and define its rheological properties. Indeed, the first
study of this kind has been carried out in [90], where our
transport coefficients in (8) were evaluated numerically
using a realistic equation of state compatible with astro-
physical constraints. Therefore, the exact mathematical
equivalence between (4) and (7), established here, con-
clusively shows for the first time that the matter formed in
neutron star collisions is intrinsically viscous, going
beyond the linear response analyses of [19,91,92]. This
general result is valid for arbitrary equations of state, rates,
and dynamical spacetimes. Whether or not such viscous
effects can be measured using gravitational waves is still
under debate [21,22,93–97].

A. An analytical model

To further discuss the physics behind the mathematical
mapping leading to (8) and how pseudoplasticity affects
the dynamics of the bulk stress, we consider below an
oversimplified toy model for neutron-star matter, where
the mapping can be carried out analytically. Inspired by the
neutron-star models adopted in [20,92], we consider the
following relations [98]:

P ¼ n2e−Y; F ¼ ðn−1=2eY − 1ÞC−1; ð9Þ

whereC > 0 is a constant. This choice ofP andF reproduces
some qualitative features that neutron-star matter is expected
to have. For example, P decreases with Y at constant n [90].
Additionally, the equilibrium fraction Yeq ¼ ln

ffiffiffi
n

p
(com-

puted from the requirement that Feq ¼ 0) increases with n, as
predicted by nuclear models [20]. In the Supplementary
Material [79], we verify that the resulting equations of motion
are indeed causal, strongly hyperbolic [99], and thermody-
namically consistent arbitrarily far from beta equilibrium,
besides being covariantly stable [100,101], both thermo-
dynamically and hydrodynamically [102–104]. Using (5),
we obtain the equilibrium pressure and the bulk stress,
Peq ¼ n3=2 and Π ¼ n2e−Y − n3=2. From this, the expres-
sions for the transport coefficients (8) follow immediately:

τΠ ¼ C; ζ ¼
�
n3=2

2
þ 2Π

�
C: ð10Þ
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One can see that ζ exhibits a nontrivial dependence on Π.
Note that (10) holds for arbitrarily large values of Π.

B. Pseudoplasticity as an attractor

We can show that neutron-star matter modeled by (10)
is pseudoplastic. To this end, let us solve (7) along the
worldline of a fluid element (i.e., along an integral curve
of uμ), parametrized with the proper time t. Assuming a
constant expansion rate ∇μuμ, and using the transport
coefficients (10), we find

ΠðtÞ
PeqðtÞ

¼ Ae−ð1þ1
2
τΠ∇μuμÞt=τΠ −

1
2
τΠ∇μuμ

1þ 1
2
τΠ∇μuμ

; ð11Þ

where A is an integration constant. We see that if
τΠ∇μuμ > −2, then the system admits a late-time attractor
(the solution with A ¼ 0), where Π is a nonlinear function
of ∇μuμ. We can express this late-time constitutive relation
in Navier-Stokes form, Π ¼ −ζres∇μuμ, by defining a
resummed bulk viscosity coefficient (see Fig. 1),

ζres ¼
ζNS

1þ 1
2
τΠ∇μuμ

; ð12Þ

where ζNS ¼ ζðΠ ¼ 0Þ is the transport coefficient that
would enter the Navier-Stokes model. As can be seen, if
the fluid expands (i.e., ∇μuμ > 0), the effective viscosity is
reduced, and it tends to zero when∇μuμ → þ∞. This is the
standard signature of pseudoplasticity. If, however, the fluid
is compressed (i.e., ∇μuμ < 0), then the effective viscosity
becomes much larger than the Navier-Stokes viscosity. In
rheology, this is the hallmark of dilatant behavior [3]. For
τΠ∇μuμ < −2, the general solution (11) does not have a
late-time attractor.

C. Impact of pseudoplasticity

If a bulk-viscous fluid undergoes small quasiperiodic
oscillations of frequency ω around thermodynamic equi-
librium, the (approximate) damping time of the oscillation
due to bulk dissipation is [20] tdamp ¼ 2c2sðρþ PeqÞ×
ð1þ ω2τ2ΠÞ=ζω2, where cs is the speed of sound.
Keeping ω fixed, and treating tdamp as a function of the
reaction rate intensity C−1 [see (9) and (10)], tdamp has an
absolute minimum when τΠ ¼ ω−1. For this reason, it has
been argued that in neutron star mergers, bulk viscosity
should have the strongest impact in resonant regions [105],
where the relaxation timescale of β-reactions equals the
timescale of the hydrodynamic evolution. However, since
such an estimate is carried out in the linear regime, it can
only account for viscoelastic effects, and it completely
neglects pseudoplasticity. Interestingly, we see from Fig. 1
that pseudoplastic corrections are largest not at τΠ∇μuμ ¼ 1

(as the resonance argument might suggest) but in the limit
as τΠ → þ∞, i.e., when dissipation is negligible. This
explains why, in recent simulations of neutron-star migra-
tion [20] (which is a highly nonlinear process), rheological
effects were shown to be the largest when beta reactions are
suppressed, i.e., for uμ∇μY ≈ 0.

V. TWO-TEMPERATURE PLASMAS

Due to the high temperatures (around 107–1013 K)
achieved in black hole accretion, hydrogen becomes fully
ionized [106]. Since the ee and pp inelastic collisions are
much faster than ep inelastic collisions [107], the electron
and proton gases achieve kinetic equilibrium at two differ-
ent temperatures [108]. This allows us to rigorously model
the plasma using the formalism presented in this work,
where the additional nonequilibrium variable ϕ can be
identified with the electron pressure. Considering ultra-
relativistic electrons and nonrelativistic protons (with mass
set to unity, for simplicity), one can straightforwardly
derive the constitutive relations from thermodynamics
(see Supplementary Material, Sec. [79]),

P ¼ 2

3
ðρ − nÞ − ϕ; K ¼ 4

3
ϕ;

F ¼ 1

C

�
ϕ −

2

9
ðρ − nÞ

�
; ð13Þ

where C > 0 is a constant for simplicity. The exact bulk
transport coefficients in the rheological representation are

Peq ¼
4

9
ðρ − nÞ; τΠ ¼ C; ζ ¼ 2C

81
ðρ − nþ 63ΠÞ:

ð14Þ

The equilibrium equation of state for the pressure has an
adiabatic index 13=9 [106], in agreement with simulations

FIG. 1. Pseudoplastic features of our neutron-star matter toy
model (9) (blue) compared with the Navier-Stokes prediction
(dashed). The resummed bulk viscosity coefficient ζres (rescaled
by ζNS ¼ PeqτΠ=2) is plotted as a function of the expansion rate
∇μuμ (in units of τ−1Π ).
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of M 87 jets [109]. Working out the late-time attractor
of a plasma undergoing uniform expansion leads to the
resummed bulk viscosity coefficient (see Fig. 2),

ζres ¼−
9þ τΠ∇μuμ− 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 2τΠ∇μuμþðτΠ∇μuμÞ2

q

4ðτΠ∇μuμÞ2
9ζNS:

ð15Þ

We note that two-temperature plasmas are predominantly
pseudoplastic. Appreciable deviations from Navier-Stokes
appear when τΠ∇μuμ is of order 10, i.e., the nearly
collisionless regime considered in black hole accretion
simulations [110,111].

VI. BULK VISCOUS COSMOLOGY

As the Universe cools down, the relevant degrees of
freedom vary, changing the thermodynamic conditions, the
degree of ionization, and the radiation-matter ratio [112,113].
Thus, viscous effects in the expanding Universe can be
modeled as equilibration processes between the dominant
equation of state in a certain era and the dominant equation of
state in the next era [114,115]. One can qualitatively describe
each transition era-by-era through a simple two-fluid model
with four free parameters, which gives us a rough estimate of
the pseudoplastic features of the Universe at the transition.
Consider a cosmological fluid comprised of two inter-

acting components, with energy densities ρ1 and ρ2 and
pressures P1 ¼ w1ρ1 and P2 ¼ w2ρ2, with constant w1 >
w2 > 0. The interaction between the two components takes
the form of a dissipative energy exchange, which drives
the system towards local thermodynamic equilibrium. For
clarity, we assume the equilibrium condition is ρ1 ¼ αρ2,

for some constant α > 0. Then, the conglomerate fluid
can be described using the results of this work, with
nonequilibrium mode ϕ ¼ ρ2, and constitutive relations,

P ¼ w1ρþ ðw2 − w1Þϕ; K ¼ ð1þ w2Þϕ;

F ¼
�
ϕ −

ρ

1þ α

�
C−1; ð16Þ

where, again, C > 0 is assumed constant. The exact bulk
transport coefficients in the rheological representation are

Peq ¼
αw1 þ w2

αþ 1
ρ τΠ ¼ C;

ζ

C
¼ ραðw1 − w2Þ2

ð1þ αÞ2 þ
�
1þ w1 þ αw2

1þ α

�
Π: ð17Þ

One can solve these equations in a Friedmann-Lemaître-
Robertson-Walker background [112] with constant Hubble
parameter H > 0. The resulting late-time attractor gives
us a resummed bulk viscosity coefficient, which can be
expressed in terms of y ¼ 3ðw1 − w2ÞτΠH as follows (see
Fig. 3):

ζres
ζNS

¼ 1þ α

2αy2

h
αðy − 1Þ − ðyþ 1Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ αÞ½αðy − 1Þ2 þ ðyþ 1Þ2�

q i
: ð18Þ

For α > 1, the Universe exhibits a dilatant behavior for not
too large values of τΠH. For α ≤ 1, it is always pseudo-
plastic, namely ζres < ζNS. Failure to account for these
effects may lead to overestimating (or underestimating,
in the dilatant case) the impact of viscous effects in the
cosmological evolution.

FIG. 2. Pseudoplastic features of a two-temperature plasma (9)
(blue) compared with the Navier-Stokes prediction (dashed).
The resummed bulk viscosity coefficient ζres [rescaled by ζNS ¼
2τΠðρ − nÞ=81] is plotted as a function of the expansion rate
∇μuμ (in units of τ−1Π ).

FIG. 3. Pseudoplastic features of an expanding two-component
universe undergoing dissipative energy transfers, as predicted by
equation (18).
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VII. CONCLUSIONS

We constructed the first causal and stable theory of rheo-
logical bulk-viscous systems in relativity. This paves the
way for systematically investigating the novel rheological
properties displayed by relativistic systems. Our formalism
is employed to show that neutron star mergers are intrinsi-
cally bulk-viscous systems with rheological pseudoplastic
properties. Relativistic pseudoplasticity is also predicted to
emerge in two-temperature relativistic plasmas surrounding
supermassive galactic black holes. Our framework can be
employed to formulate new viscous cosmological models
with pseudoplastic features.
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100, 106014 (2019).

[9] L. Landau and E. Lifshitz, Fluid Mechanics, v. 6, 2nd ed.
(Pergamon Press, New York, 1987).

[10] J. D. Bjorken, Phys. Rev. D 27, 140 (1983).
[11] P. Romatschke and U. Romatschke, Relativistic Fluid

Dynamics In and Out of Equilibrium, Cambridge Mono-
graphs on Mathematical Physics (Cambridge University
Press, Cambridge, England, 2019).

[12] L. Rezzolla and O. Zanotti, Relativistic Hydrodynamics
(Oxford University Press, New York, 2013).

[13] K. Akiyama et al. (Event Horizon Telescope Collabora-
tion), Astrophys. J. Lett. 930, L16 (2022).

[14] I. Brevik, O. Gron, J. de Haro, S. D. Odintsov, and E. N.
Saridakis, Int. J. Mod. Phys. D26, 1730024 (2017).

[15] C. Eckart, Phys. Rev. 58, 919 (1940).
[16] W. A. Hiscock and L. Lindblom, Phys. Rev. D 31, 725

(1985).
[17] M. G. Alford, M. Braby, and A. Schmitt, J. Phys. G 35,

115007 (2008).
[18] L. Gavassino, M. Antonelli, and B. Haskell, Classical

Quantum Gravity 38, 075001 (2021).

[19] T. Celora, I. Hawke, P. C. Hammond, N. Andersson, and
G. L. Comer, Phys. Rev. D 105, 103016 (2022).

[20] G. Camelio, L. Gavassino, M. Antonelli, S. Bernuzzi, and
B. Haskell, Phys. Rev. D 107, 103032 (2023).

[21] E. R. Most, S. P. Harris, C. Plumberg, M. G. Alford, J.
Noronha, J. Noronha-Hostler, F. Pretorius, H. Witek, and
N. Yunes, Mon. Not. R. Astron. Soc. 509, 1096 (2021).

[22] E. R. Most, A. Haber, S. P. Harris, Z. Zhang, M. G. Alford,
and J. Noronha, arXiv:2207.00442.

[23] F. S. Bemfica, M. M. Disconzi, V. Hoang, J. Noronha, and
M. Radosz, Phys. Rev. Lett. 126, 222301 (2021).

[24] C. Plumberg, D. Almaalol, T. Dore, J. Noronha, and J.
Noronha-Hostler, Phys. Rev. C 105, L061901 (2022).

[25] C. Chiu and C. Shen, Phys. Rev. C 103, 064901 (2021).
[26] G. Torrieri and I. Mishustin, Phys. Rev. C 78, 021901

(2008).
[27] K. Rajagopal and N. Tripuraneni, J. High Energy Phys. 03

(2010) 018.
[28] G. S. Denicol, C. Gale, and S. Jeon, Proc. Sci. CPOD2014

(2015) 033.
[29] M. Byres, S. H. Lim, C. McGinn, J. Ouellette, and J. L.

Nagle, Phys. Rev. C 101, 044902 (2020).
[30] M. P. Heller and M. Spalinski, Phys. Rev. Lett. 115,

072501 (2015).
[31] P. Romatschke, Phys. Rev. Lett. 120, 012301 (2018).
[32] M. Strickland, J. Noronha, and G. Denicol, Phys. Rev. D

97, 036020 (2018).
[33] J. Jankowski andM. Spaliński, Prog. Part. Nucl. Phys. 132,

104048 (2023).
[34] T. Padmanabhan and S. M. Chitre, Phys. Lett. 120A, 433

(1987).
[35] W. A. Hiscock and J. Salmonson, Phys. Rev. D 43, 3249

(1991).
[36] D. Pavon, J. Bafaluy, and D. Jou, Classical Quantum

Gravity 8, 347 (1991).
[37] M. Zakari and D. Jou, Phys. Rev. D 48, 1597 (1993).
[38] R. Maartens, Classical Quantum Gravity 12, 1455 (1995).
[39] W. Zimdahl, Phys. Rev. D 53, 5483 (1996).
[40] J. C. Fabris, S. V. B. Goncalves, and R. R. de Sa, Gen.

Relativ. Gravit. 38, 495 (2006).

L. GAVASSINO and JORGE NORONHA PHYS. REV. D 109, 096040 (2024)

096040-6

https://doi.org/10.1016/j.physrep.2020.04.002
https://doi.org/10.1103/PhysRevD.100.106014
https://doi.org/10.1103/PhysRevD.100.106014
https://doi.org/10.1103/PhysRevD.27.140
https://doi.org/10.3847/2041-8213/ac6672
https://doi.org/10.1142/S0218271817300245
https://doi.org/10.1103/PhysRev.58.919
https://doi.org/10.1103/PhysRevD.31.725
https://doi.org/10.1103/PhysRevD.31.725
https://doi.org/10.1088/0954-3899/35/11/115007
https://doi.org/10.1088/0954-3899/35/11/115007
https://doi.org/10.1088/1361-6382/abe588
https://doi.org/10.1088/1361-6382/abe588
https://doi.org/10.1103/PhysRevD.105.103016
https://doi.org/10.1103/PhysRevD.107.103032
https://doi.org/10.1093/mnras/stab2793
https://arXiv.org/abs/2207.00442
https://doi.org/10.1103/PhysRevLett.126.222301
https://doi.org/10.1103/PhysRevC.105.L061901
https://doi.org/10.1103/PhysRevC.103.064901
https://doi.org/10.1103/PhysRevC.78.021901
https://doi.org/10.1103/PhysRevC.78.021901
https://doi.org/10.1007/JHEP03(2010)018
https://doi.org/10.1007/JHEP03(2010)018
https://doi.org/10.22323/1.217.0033
https://doi.org/10.22323/1.217.0033
https://doi.org/10.1103/PhysRevC.101.044902
https://doi.org/10.1103/PhysRevLett.115.072501
https://doi.org/10.1103/PhysRevLett.115.072501
https://doi.org/10.1103/PhysRevLett.120.012301
https://doi.org/10.1103/PhysRevD.97.036020
https://doi.org/10.1103/PhysRevD.97.036020
https://doi.org/10.1016/j.ppnp.2023.104048
https://doi.org/10.1016/j.ppnp.2023.104048
https://doi.org/10.1016/0375-9601(87)90104-6
https://doi.org/10.1016/0375-9601(87)90104-6
https://doi.org/10.1103/PhysRevD.43.3249
https://doi.org/10.1103/PhysRevD.43.3249
https://doi.org/10.1088/0264-9381/8/2/014
https://doi.org/10.1088/0264-9381/8/2/014
https://doi.org/10.1103/PhysRevD.48.1597
https://doi.org/10.1088/0264-9381/12/6/011
https://doi.org/10.1103/PhysRevD.53.5483
https://doi.org/10.1007/s10714-006-0236-y
https://doi.org/10.1007/s10714-006-0236-y


[41] R. Colistete, J. C. Fabris, J. Tossa, and W. Zimdahl, Phys.
Rev. D 76, 103516 (2007).

[42] B. Li and J. D. Barrow, Phys. Rev. D 79, 103521 (2009).
[43] A. Avelino and U. Nucamendi, J. Cosmol. Astropart. Phys.

04 (2009), 006.
[44] W. S. Hipolito-Ricaldi, H. Velten, and W. Zimdahl,

J. Cosmol. Astropart. Phys. 06 (2009), 016.
[45] W. S. Hipolito-Ricaldi, H. Velten, and W. Zimdahl, Phys.

Rev. D 82, 063507 (2010).
[46] J.-S. Gagnon and J. Lesgourgues, J. Cosmol. Astropart.

Phys. 09 (2011).
[47] O. F. Piattella, J. C. Fabris, and W. Zimdahl, J. Cosmol.

Astropart. Phys. 05 (2011) 029.
[48] H. Velten and D. Schwarz, Phys. Rev. D 86, 083501 (2012).
[49] H. Velten and D. Schwarz, J. Cosmol. Astropart. Phys. 09

(2011) 016.
[50] I. Brevik and O. Gron, in Recent Advances in Cosmology,

edited by A. Travena and B. Soren (Nova Science
Publishers, 2013).

[51] M.M. Disconzi, T. W. Kephart, and R. J. Scherrer, Phys.
Rev. D 91, 043532 (2015).

[52] M.M. Disconzi, T. W. Kephart, and R. J. Scherrer, Int. J.
Mod. Phys. D 26, 1750146 (2017).

[53] N. Cruz, E. González, and G. Palma, Gen. Relativ. Gravit.
52, 62 (2020).

[54] N. Cruz, E. González, and G. Palma, Mod. Phys. Lett. A
36, 2150032 (2021).

[55] A choice of hydrodynamic frame is also made, see [56].
[56] K. Kovtun, J. Phys. A 45, 473001 (2012).
[57] Equation (1) is just the simplest model for viscoelasticity,

known as the “Maxwell model” [8,58,62]. Other more
complicated expressions are known (e.g., the Burgers model
[59,60]). The most general time-dependent linear rheo-
logical relation takes the form ΠðtÞ ¼ R

Gðt − t0Þθðt0Þdt0,
where G is some linear-response Green’s function [61].

[58] L. Gavassino and M. Antonelli, Classical Quantum Grav-
ity 40, 075012 (2023).

[59] J. Málek, K. R. Rajagopal, and K. Tůma, Fluids 3, 69
(2018).

[60] L. Gavassino, Classical QuantumGravity 40, 165008 (2023).
[61] G. S. Denicol, J. Noronha, H. Niemi, and D. H. Rischke,

Phys. Rev. D 83, 074019 (2011).
[62] L. Landau and E. Lifshitz, Theory of Elasticity (Pergamon

Press, New York, 1970).
[63] W. Israel and J. M. Stewart, Ann. Phys. (Leipzig) 118, 341

(1979).
[64] W. A. Hiscock and L. Lindblom, Ann. Phys. (Leipzig) 151,

466 (1983).
[65] G. S. Denicol, H. Niemi, E. Molnár, and D. H. Rischke,

Phys. Rev. D 85, 114047 (2012).
[66] M. P. Heller, R. A. Janik, M. Spaliński, and P. Witaszczyk,

Phys. Rev. Lett. 113, 261601 (2014).
[67] L. Gavassino, M. M. Disconzi, and J. Noronha, arXiv:

2302.03478.
[68] L. Gavassino, M. M. Disconzi, and J. Noronha, arXiv:

2302.05332.
[69] D. Wagner and L. Gavassino, Phys. Rev. D 109, 016019

(2024).
[70] Y. Choquet-Bruhat, General Relativity and the Einstein

Equations (Oxford University Press, New York, 2009).

[71] M. M. Disconzi, arXiv:2308.09844.
[72] In response theory, a weakly broken conservation law

is a gapped mode ϕ whose relaxation time τϕ is para-
metrically slow compared to the relaxation time τmicro of all
other gapped modes [73,74]. Under this assumption, one
can define a quasi-hydrodynamic regime, valid over the
timescale τmicro ≪ t ≲ τϕ, where the fluid exists in a
quasi-equilibrium state, and ϕ plays the role of a gener-
alized thermodynamic variable (see [75], p. 118).

[73] S. Grozdanov, A. Lucas, and N. Poovuttikul, Phys. Rev. D
99, 086012 (2019).

[74] L. Gavassino, M. Antonelli, and B. Haskell, Phys. Rev. D
106, 056010 (2022).

[75] L. Landau and E. Lifshitz, Statistical Physics, 3rd ed.
(Pergamon Press, 1980).

[76] L. Gavassino and M. Antonelli, Front. Astron. Space Sci.
8, 686344 (2021).

[77] C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation
(W.H. Freeman and Co., San Francisco, 1973).

[78] M. Stephanov and Y. Yin, Phys. Rev. D 98, 036006 (2018).
[79] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevD.109.096040 contains
some formal derivations that were omitted from the main
text.

[80] G. S. Denicol and J. Noronha, Phys. Rev. D 97, 056021
(2018).

[81] J.-P. Blaizot and L. Yan, Phys. Lett. B 780, 283 (2018).
[82] A. Behtash, C. N. Cruz-Camacho, S. Kamata, and M.

Martinez, Phys. Lett. B 797, 134914 (2019).
[83] G. S. Denicol and J. Noronha, Nucl. Phys. A1005, 121748

(2021).
[84] B. Carter, Covariant Theory of Conductivity in Ideal

Fluid or Solid Media (Springer-Verlag Berlin, 1989),
Vol. 1385, p. 1.

[85] G. L. Comer and D. Langlois, Classical Quantum Gravity
11, 709 (1994).

[86] M. H. Ruffert, H. T. Janka, and G. Schaefer, Astron.
Astrophys. 311, 532 (1996).

[87] S. Rosswog and M. Liebendörfer, Mon. Not. R. Astron.
Soc. 342, 673 (2003).

[88] D. G. Yakovlev, A. D. Kaminker, O. Y. Gnedin, and P.
Haensel, Phys. Rep. 354, 1 (2001).

[89] M. G. Alford, A. Haber, S. P. Harris, and Z. Zhang,
Universe 7, 399 (2021).

[90] Y. Yang, M. Hippert, E. Speranza, and J. Noronha, Phys.
Rev. C 109, 015805 (2024).

[91] L. Gavassino, M. Antonelli, and B. Haskell, Classical
Quantum Gravity 38, 075001 (2021).

[92] G. Camelio, L. Gavassino, M. Antonelli, S. Bernuzzi, and
B. Haskell, Phys. Rev. D 107, 103031 (2023).

[93] M. G. Alford, L. Bovard, M. Hanauske, L. Rezzolla, and
K. Schwenzer, Phys. Rev. Lett. 120, 041101 (2018).

[94] P. Hammond, I. Hawke, and N. Andersson, Phys. Rev. D
107, 043023 (2023).

[95] M. Chabanov and L. Rezzolla, arXiv:2307.10464.
[96] P. L. Espino, P. Hammond, D. Radice, S. Bernuzzi,

R. Gamba, F. Zappa, L. F. L. Micchi, and A. Perego, arXiv:
2311.00031.

[97] J. L. Ripley, A. Hegade K. R., R. S. Chandramouli, Yunes,
and Nicolas, arXiv:2312.11659.

RELATIVISTIC BULK RHEOLOGY: FROM NEUTRON STAR … PHYS. REV. D 109, 096040 (2024)

096040-7

https://doi.org/10.1103/PhysRevD.76.103516
https://doi.org/10.1103/PhysRevD.76.103516
https://doi.org/10.1103/PhysRevD.79.103521
https://doi.org/10.1088/1475-7516/2009/04/006
https://doi.org/10.1088/1475-7516/2009/04/006
https://doi.org/10.1088/1475-7516/2009/06/016
https://doi.org/10.1103/PhysRevD.82.063507
https://doi.org/10.1103/PhysRevD.82.063507
https://doi.org/10.1088/1475-7516/2011/09/026
https://doi.org/10.1088/1475-7516/2011/09/026
https://doi.org/10.1088/1475-7516/2011/05/029
https://doi.org/10.1088/1475-7516/2011/05/029
https://doi.org/10.1103/PhysRevD.86.083501
https://doi.org/10.1088/1475-7516/2011/09/016
https://doi.org/10.1088/1475-7516/2011/09/016
https://doi.org/10.1103/PhysRevD.91.043532
https://doi.org/10.1103/PhysRevD.91.043532
https://doi.org/10.1142/S0218271817501462
https://doi.org/10.1142/S0218271817501462
https://doi.org/10.1007/s10714-020-02712-z
https://doi.org/10.1007/s10714-020-02712-z
https://doi.org/10.1142/S0217732321500322
https://doi.org/10.1142/S0217732321500322
https://doi.org/10.1088/1751-8113/45/47/473001
https://doi.org/10.1088/1361-6382/acc165
https://doi.org/10.1088/1361-6382/acc165
https://doi.org/10.3390/fluids3040069
https://doi.org/10.3390/fluids3040069
https://doi.org/10.1088/1361-6382/ace587
https://doi.org/10.1103/PhysRevD.83.074019
https://doi.org/10.1016/0003-4916(79)90130-1
https://doi.org/10.1016/0003-4916(79)90130-1
https://doi.org/10.1016/0003-4916(83)90288-9
https://doi.org/10.1016/0003-4916(83)90288-9
https://doi.org/10.1103/PhysRevD.85.114047
https://doi.org/10.1103/PhysRevLett.113.261601
https://arXiv.org/abs/2302.03478
https://arXiv.org/abs/2302.03478
https://arXiv.org/abs/2302.05332
https://arXiv.org/abs/2302.05332
https://doi.org/10.1103/PhysRevD.109.016019
https://doi.org/10.1103/PhysRevD.109.016019
https://arXiv.org/abs/2308.09844
https://doi.org/10.1103/PhysRevD.99.086012
https://doi.org/10.1103/PhysRevD.99.086012
https://doi.org/10.1103/PhysRevD.106.056010
https://doi.org/10.1103/PhysRevD.106.056010
https://doi.org/10.3389/fspas.2021.686344
https://doi.org/10.3389/fspas.2021.686344
https://doi.org/10.1103/PhysRevD.98.036006
http://link.aps.org/supplemental/10.1103/PhysRevD.109.096040
http://link.aps.org/supplemental/10.1103/PhysRevD.109.096040
http://link.aps.org/supplemental/10.1103/PhysRevD.109.096040
http://link.aps.org/supplemental/10.1103/PhysRevD.109.096040
http://link.aps.org/supplemental/10.1103/PhysRevD.109.096040
http://link.aps.org/supplemental/10.1103/PhysRevD.109.096040
http://link.aps.org/supplemental/10.1103/PhysRevD.109.096040
https://doi.org/10.1103/PhysRevD.97.056021
https://doi.org/10.1103/PhysRevD.97.056021
https://doi.org/10.1016/j.physletb.2018.02.058
https://doi.org/10.1016/j.physletb.2019.134914
https://doi.org/10.1016/j.nuclphysa.2020.121748
https://doi.org/10.1016/j.nuclphysa.2020.121748
https://doi.org/10.1088/0264-9381/11/3/021
https://doi.org/10.1088/0264-9381/11/3/021
https://doi.org/10.1046/j.1365-8711.2003.06579.x
https://doi.org/10.1046/j.1365-8711.2003.06579.x
https://doi.org/10.1016/S0370-1573(00)00131-9
https://doi.org/10.3390/universe7110399
https://doi.org/10.1103/PhysRevC.109.015805
https://doi.org/10.1103/PhysRevC.109.015805
https://doi.org/10.1088/1361-6382/abe588
https://doi.org/10.1088/1361-6382/abe588
https://doi.org/10.1103/PhysRevD.107.103031
https://doi.org/10.1103/PhysRevLett.120.041101
https://doi.org/10.1103/PhysRevD.107.043023
https://doi.org/10.1103/PhysRevD.107.043023
https://arXiv.org/abs/2307.10464
https://arXiv.org/abs/2311.00031
https://arXiv.org/abs/2311.00031
https://arXiv.org/abs/2312.11659


[98] We have set all dimensional constants to one for conven-
ience. Furthermore, we have decided to neglect the
temperature dependence of the pressure and the reaction
rate to simplify the analysis.

[99] L. Rezzolla and O. Zanotti, Relativistic Hydrodynamics,
edited by L. Rezzolla and O. Zanotti (Oxford University
Press, New York, 2013), ISBN-10: 0198528906; ISBN-13:
978-0198528906.

[100] L. Gavassino, Phys. Rev. X 12, 041001 (2022).
[101] L. Gavassino, Phys. Lett. B 840, 137854 (2023).
[102] L. Gavassino, Classical QuantumGravity 38, 21LT02 (2021).
[103] L. Gavassino, M. Antonelli, and B. Haskell, Phys. Rev.

Lett. 128, 010606 (2022).
[104] L. Gavassino, Classical QuantumGravity 39, 185008 (2022).
[105] M. G. Alford, L. Bovard, M. Hanauske, L. Rezzolla, and

K. Schwenzer, Phys. Rev. Lett. 120, 041101 (2018).
[106] S. T. S. Shapiro, Black Holes, White Dwarfs,and Neutron

Stars: The Physics of Compact Objects (WILEY-VCH
Verlag GmbH and Co. KGaA, Mörlenbach, 1983).

[107] P.M. Bellan, Fundamentals of Plasma Physics (Cambridge
University Press, Cambridge, England, 2006).

[108] K. Akiyama et al. (Event Horizon Telescope Collabora-
tion), Astrophys. J. Lett. 875, L5 (2019).

[109] M. Mościbrodzka, H. Falcke, and H. Shiokawa, Astron.
Astrophys. 586, A38 (2016).

[110] M. Chandra, C. F. Gammie, F. Foucart, and E. Quataert,
Astrophys. J. 810, 162 (2015).

[111] F. Foucart, M. Chandra, C. F. Gammie, E. Quataert, and
A. Tchekhovskoy, Mon. Not. R. Astron. Soc. 470, 2240
(2017).

[112] S. Weinberg, Gravitation and Cosmology: Principles and
Applications of the General Theory of Relativity, 1st ed.
(John Wiley & Sons, Inc., New York, 1972), p. 657.

[113] S. Dodelson, Modern Cosmology (Academic Press,
Amsterdam, 2003).

[114] S. Weinberg, Astrophys. J. 168, 175 (1971).
[115] N. Udey and W. Israel, Mon. Not. R. Astron. Soc. 199,

1137 (1982).

L. GAVASSINO and JORGE NORONHA PHYS. REV. D 109, 096040 (2024)

096040-8

https://doi.org/10.1103/PhysRevX.12.041001
https://doi.org/10.1016/j.physletb.2023.137854
https://doi.org/10.1088/1361-6382/ac2b0e
https://doi.org/10.1103/PhysRevLett.128.010606
https://doi.org/10.1103/PhysRevLett.128.010606
https://doi.org/10.1088/1361-6382/ac79f4
https://doi.org/10.1103/PhysRevLett.120.041101
https://doi.org/10.3847/2041-8213/ab0f43
https://doi.org/10.1051/0004-6361/201526630
https://doi.org/10.1051/0004-6361/201526630
https://doi.org/10.1088/0004-637X/810/2/162
https://doi.org/10.1093/mnras/stx1368
https://doi.org/10.1093/mnras/stx1368
https://doi.org/10.1086/151073
https://doi.org/10.1093/mnras/199.4.1137
https://doi.org/10.1093/mnras/199.4.1137

