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In the present work, we derive a linearly stable and causal theory of relativistic third-order viscous
hydrodynamics from the Boltzmann equation with relaxation-time approximation. We employ viscous
correction to the distribution function obtained using a Chapman-Enskog like iterative solution of the
Boltzmann equation. Our derivation highlights the necessity of incorporating a new dynamical degree of
freedom, specifically an irreducible tensor of rank three, within this framework. This differs from the recent
formulation of causal third-order theory from the method of moments which requires two dynamical
degrees of freedom: an irreducible third-rank and a fourth-rank tensor. We verify the linear stability and
causality of the proposed formulation by examining perturbations around a global equilibrium state.
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I. INTRODUCTION

The primary objective of ultrarelativistic heavy-ion
collisions is to create and study a novel state of nuclear
matter characterized by extremely high temperature and/or
density. In this extreme environment, composite states
known as hadrons lose their distinct identity, undergoing
dissolution into a quark-gluon plasma (QGP), where quarks
and gluons exist in a deconfined state [1-7]. Relativistic
dissipative hydrodynamics has been successfully applied to
study the collective behavior of QGP [8,9]. These collisions
give rise to a fluid under extreme conditions, characterized
by gradients of fluid velocity and temperature that are
substantial when compared to the characteristic micro-
scopic scales of the system [10,11]. The effort to under-
stand the hydrodynamic behavior of QGP created in
ultrarelativistic heavy-ion collisions has spurred significant
research in formulation of relativistic dissipative fluid
dynamics from microscopic theory—a topic that continues
to be an area of active research to this day [12,13].

Relativistic dissipative hydrodynamics is formulated
through an order-by-order expansion in powers of
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spacetime gradients, with ideal hydrodynamics correspond-
ing to the zeroth order. The first order theory containing the
viscous effects, commonly referred to as the relativistic
Navier-Stokes theory [14,15], is known to be ill defined
since it involves parabolic differential equations which
leads to acausality and numerical instability. Causality was
restored in second order Israel-Stweart (IS) theory [16] with
its hyperbolic equations [17] although stability may not
be assured. On the other hand, IS theory lead to some
undesirable effects such as reheating of the expanding
medium [18] and emergence of negative longitudinal
pressure [19,20]. Moreover, the scaling solutions of IS
theory exhibit disagreement with transport results for large
viscosities, indicating the breakdown of second-order
theory. It was argued that an empirical inclusion of
higher-order terms significantly improved the agreement
with transport result [21,22], highlighting the necessity of
formulating relativistic dissipative hydrodynamics beyond
the second-order IS theory.

Several authors have explored the formulation of rela-
tivistic third-order dissipative fluid-dynamics within vari-
ous frameworks such as phenomenological description
based on the second law of thermodynamics [21,23] and
kinetic theory using Chapman-Enskog-like expansion [24]
and gradient expansion [25]. Recently, the linear stability
and causality of third-order theory, formulated in Ref. [24],
was analyzed and was shown to be acausal and unstable
[26]. In order to address this issue, a heuristic modification
to this theory was proposed by introducing a new dynami-
cal degree of freedom [26]. In a follow-up work, the authors
derived this framework from kinetic theory using the
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method of moments [27]. This formulation required the
inclusion of novel degrees of freedom corresponding to
irreducible tensors of rank 3 and 4, and was shown to be in
good agreement with exact solution of the Boltzmann
equation within Bjorken flow scenario. On the other hand,
iterative Chapman-Enskog method has also been employed
quite successfully in the formulation of relativistic dissipative
hydrodynamics, leading to good agreement with kinetic
theory solutions [22,24]. Moreover, it was shown that the
non-equilibrium corrections to the distribution function,
obtained using maximum entropy prescription, matches
exactly with the iterative Chapman-Enskog results at linear
order [28,29]. It is therefore important to explore the
formulation of causal and stable third-order hydrodynamics
with iterative Chapman-Enskog-like expansion of the
Boltzmann equation in relaxation-time approximation.

In this article, we present the derivation of a linearly
stable and causal theory of relativistic third-order viscous
hydrodynamics from the Boltzmann equation with relax-
ation-time approximation. To this end, we use viscous
corrections to the distribution function obtained from a
Chapman-Enskog-like iterative solution of the Boltzmann
equation. The derivation underscores the essential inclusion
of a novel dynamical degree of freedom in this framework,
namely an irreducible three-rank tensor. This is in contrast
with the recent formulation of causal third-order theory
from the method of moments which required two dynami-
cal degrees of freedom for moment closure: an irreducible
third-rank and a fourth-rank tensors [27]. To validate our
formulation, we analyze its linear stability and causality by
investigating perturbations around a global equilibrium
state. This work is organized as follows: In Sec. II, we
review the derivation of third-order viscous evolution
equation using Chapman-Enskog like iterative solution
of the Boltzmann equation. In Sec. III, we derive the
framework to restore causality in third-order viscous
evolution equation. In Sec. IV, we study the linear stability
and causality of the third-order viscous hydrodynamics.
Finally, we summarize and conclude our work in Sec. V.
Throughout the text, we use natural units where
h=c=kyz=1. We consider Minkowski metric in this
work which is denoted by g** = diag(1,—1,—1,—1). Weuse
bold font to denote three-vectors and employ center-dot to
denote scalar products of both three- and four-vectors,
ie,a-b=a"h"—a-b.

II. THIRD-ORDER VISCOUS
EVOLUTION EQUATION

The hydrodynamic evolution of a system, without net
conserved charges, is determined by the conservation
equations of energy and momentum. The conserved
energy-momentum tensor can be represented in terms of
the single-particle phase-space distribution function and
decomposed into hydrodynamical tensor degrees of free-
dom. In this study, we further consider a system of massless

particles, resulting in the absence of bulk viscosity.
The energy-momentum tensor for such a system can be
written as

T"”:/de”p”f(x,p) = eufu’ — PA" + 7, (1)

where, dP = gd’p/[(27)?|p|] is Lorentz invariant momen-
tum integral measure with g being the degeneracy factor.
Here, p* is the particle four-momentum and f(x, p) is the
single-particle phase-space distribution function with x*
representing the position four-vector. In the tensor decom-
position ¢ and P are energy density and thermodynamic
pressure, respectively, z# is the shear-stress tensor and u*
is the fluid four-velocity defined in the Landau frame,
u, T" = eu”. Moreover, we have the orthogonality con-
dition u,7** = 0 and introduced the notation A" = g —
utu’ as the projection operator orthogonal to u*.

The hydrodynamic equations for evolution of € and u/
are obtained from the energy-momentum conservation
equations, d, 7" = 0, and can be written as

¢+ (e+P)0—n"c,, =0, (2)
(€ + P — VP + AZ9,7" = 0, (3)

Here, we have used the notations A = ua,A for the
comoving derivative, V* = A#*9, for spacelike derivative,
0 =o0,u" for expansion scalar and o E%(V"u”—l—
Viut) —%HA/“’ for the velocity stress tensor. Using the
Landau matching condition, € = €., with €., being the
equilibrium energy density, we obtain € = 3P « ~* in
the case of massless particles. The derivative of inverse

temperature, = 1/T, can be obtained from Egs. (2)
and (3) as

Py P
P=30"15p o @
va — s ﬂ a v
ﬂ = —ﬂu - EA,/dﬂﬂ” . (5)

These expressions for derivatives of § will be further used for
obtaining the third-order viscous evolution equation.

In this work, we consider a system of relativistic particles
with vanishing chemical potential, close to the local
thermodynamic equilibrium. In this case, the single particle
phase-space distribution function can be written as
f = feq +0f, where the deviation from equilibrium is
assumed to be small (6f < f¢q). In this work, we further
assume that the equilibrium is described by classical
Maxwell-Boltzmann distribution in Jiittner form, f., =
exp (—pu - p), with u - p = u, p*. Using Eq. (1), the form
of 7# can be expressed in terms of Jf as
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" = Ay / dP p®p’sf, (6)

where, Alj =73 (AGAL + ABAY) —FA™A,, is a traceless

affp — 2
and doubly symmetric projection operator,
orthogonal to u, as well as A,,.

The nonequilibrium phase-space distribution function
can be obtained by solving the kinetic equation such as
Boltzmann equation. The relativistic Boltzmann transport
equation under relaxation-time approximation (RTA) for
the collision term is given by [30]

which is

Prof = —%@ﬁ (7)

where 7y is the relaxation time. We note that RTA is a simple
yet useful model for the collision kernel, which satisfies
fundamental conservation equations when 7y is independent
of momenta and u* is defined in the Landau frame [30,31]. In
order to calculate dissipative corrections to the distribution
function, Chapman-Enskog-like iterative solution to the RTA
Boltzmann equation is considered, where the particle dis-
tribution function is expanded in powers of space-time
gradients about its equilibrium value [32]

f = feq+6f. Sf =8fW 46D ... (8)
Here, 6f" is the nonequilibrium correction which is nth
order in derivatives.

For first- and second-order in derivatives, we have,

TR
5f(1) = _npﬂapfeq’ (9)
52 = TR u pYo, 10
f u- pp yfeq ( )

The first-order expression of 7##*, which is the relativistic
version of the Navier-Stokes equation, can be calculated by

using 8f = 61 from Eq. (9) in Eq. (6) and is obtained as

4
= 2ot fr= P (11)
Using the above expression in Eq. (9), the first order
viscous correction to the distribution function is obtained as

Pl

=25 p)

papﬂﬂaﬂ + 0(02) (12)

The above expression was shown to have several desirable
features in the context of particle production in heavy-ion
collision [33].

Following the methodology discussed in Ref. [34], the
evolution equation for shear stress tensor can be obtained
by taking the comoving derivative of Eq. (6) as

) = AL / dP p°p/sf. (13)

In the above equation, §f can be obtained by rewriting
Eq. (7) as

of

of = ~fu=o PV = (19

Using the above expression of §f, Eq. (13) becomes,

. 1
) —l—g: —A’;Z/dpp”’pﬁ (feq +Hp7vyf) . (15)
It is important to observe that in order to obtain second-
order shear evolution equation, the distribution function in
Eq. (15) needs to be computed up to first order, i.e., §f;.
Therefore, second order shear-evolution equation is
obtained by substituting Eq. (12) in Eq. (15), as [22]

H 10
)+ —op om 21 ) — 7ﬂ§”0’“>7
T

n

4
—370. (16)

where @ = (VFu* — V¥u#) /2 is the vorticity tensor. Here,
7, = 7 is the shear relaxation time, which is obtained
to be as 7, = n/f, by comparing the first-order evolution
Eq. (11) with the relativistic Navier-Stokes equation
7 = 2not, with  being the coefficient of shear viscosity.

For the third-order shear evolution equation, the distri-
bution function on the right-hand side of Eq. (15) needs to
be computed up to second order in viscous corrections, i.e.,
of = 6f1 + 6f». Using the derivatives of f from Eqgs. (4)
and (5), as well as Eq. (16) for ¢** in Egs. (9) and (10),
second-order viscous correction to the distribution function
is obtained as [33]

feqﬂ 5 Tr Tr 67, .
6fr = pepPrhmy, — —"— p*p’rlhws,— popPn .0+ ptiln,
2 B [14B.(u-p) " uep 7 3(u- p) s ’
(” p) . 3t . T,
a a V/i i3 anf 7 _ a B 7 \V
0p, " b~ 5 < P"(Vmgp) + - py PP P Rty = 5 PPP (Vyap)
ﬁ + (’" i P) : 2 3
+ 5 (PPPrep)? | + O(). (17)
4(” : p)zﬂlr /
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Finally, substituting 6f = 6f + 6f, from Egs. (12) and (17), and keeping terms up to cubic order in derivatives, third-order

evolution equation is obtained as [24]

i 10
) = _r + 2,0 + 271'7(/”(1)1’)7 - 77[;,”6”
T
- M hY 2 P U
2450, Pr 498, or

2 12
- ?VY(T,TV(”JT”)Y) + 7 V

2 2 10 26
- arﬂa}po‘w"”’ﬂpy - arﬂﬂpo‘w"ww - @T”ﬂ"wez + 2 T

PY

Linear stability and causality analysis of the above equation
was discussed in Ref. [26] and it was found that terms
containing second-order spacelike derivatives of the shear-
stress tensor leads to the occurrence of additional unstable
modes. In the above equation, the terms contributing to
instability and acausality are V* (Tﬂvyﬂy>y), Vy(r,,v<”7r’“>7’)
and Vy(r,,V”7t<”">). In the following, we restore causality in
the formulation of relativistic third-order viscous hydro-
dynamics from RTA kinetic theory using Chapman-
Enskog-like iterative solution.

)y — gﬂ/wg + gﬂp(ﬂwvwﬂp - L”f/‘ﬂv)m

P T3p,
24

-V (ai,) + % V¥ (z,V,797)

1 6
(Tu g7 — 7 V, (2, Vz)) + 7 V, (¢ i )

(ﬂa)y>y9‘

(18)

III. RESTORING CAUSALITY AT THIRD-ORDER

In Ref. [26], authors proposed a mechanism to restore
causality in third-order hydrodynamic theories by promot-
ing the spacelike gradients of the shear-stress tensor to a
new hydrodynamical variable which is a third rank
tensor, i.e.,

Vighd) — prot, (19)

Here, A4 = Aﬁ;’;Aaﬂp with a symmetric traceless six rank projection operator, orthogonal to the fluid four-velocity,

defined as

1
ZZ -
Aaﬁﬂ 6

[AG(ASAS + AAG) + AG(ALAS + AYAL) + AR(ALA) + ALAL)]

1
- E [Aﬂy(AﬁAﬁp + A;;’Aap + A?)AH[)’) + A”A(AZA/)’/) + A;A(zp + A;AH[)’)

TA(AGAg, + AfAG, + AGAG)].

The expression for p#** in terms of df is given by

vk . AMVA
P - Aaﬂ/)

/dppapﬁppaf. (21)

u-p

We observe that the above expression for p#** has the same
dimension as that of #z#* and corresponds to r = —1 for
expression of p’,M , provided in Ref. [27].

We note that the first-order viscous correction to the
distribution function does not contribute to the expression
of p* as substituting Eq. (12) in Eq. (21) leads to
vanishing result. Using the second-order viscous correction
to the distribution function from Eq. (17) in Eq. (21), the
“Navier-Stokes equivalent” result for p** is obtained as

(20)

3 18
Pt = ?T”vwﬂ'l/ﬂ) — 77,,1}t<”7t”’1>. (22)

The above equation states that the expression for p#** is at-
least second-order. By comparing the Eq. (22) with the
relativistic  “Navier-Stokes” analog equation, pH* =
3y,V¥r), we obtain 7, = 7,. In order to compare our

result with that obtained using moment method, we calculate

the expression for p" ”li of Ref. [27] in the massless case

p’i’f = gr Vgrd) — 17—8T,,1}t<”7r’”1>.

o 23)

Comparing Egs. (22) and (23), we observe that the expres-
sion for 7, differs in the two cases. From the iterative
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Chapman-Enskog-like approach, we obtain 7, = 7, whereas the moment method leads to 77, = (6/7)z,.
Up to third-order the terms containing the spatial derivative of z#* in Eq. (18) can be replaced using Eq. (22) in terms of
derivative of p***. Therefore, the expression for evolution of shear stress tensor in Eq. (18) can be rewritten as

5 12 HMU v v 10 v 4 v 24 v v
i) — e + 2f,0" + 2,1;#0) b — 7”§ﬂ0 b — gﬂu 0+ T, 7w >y,,py _ Tﬁﬂﬂ;ﬂﬂ )79
— 245 e, — 295 ﬂﬂ<ﬂﬂv>y%y — _Tﬂwpwwv)yﬂp — _Tﬂﬂp(ﬂwvwwpy - — 1,76
+ %T et — v pri) 4 L,,r(ﬂ,;@ﬁw . (24)
21 =7 r 7B, 7

The detailed steps for the derivation are provided in Appendix A. We immediately observe that the shear stress tensor is now
coupled to a novel degree of freedom p***, which satisfies its own equation of motion. To obtain a complete third-order
formulation, it is necessary to derive the evolution equation for p** up to third-order.

The evolution equation of p** is obtained by taking the comoving derivative of Eq. (21) and projecting the completely
symmetric and traceless part,

. apbh pp 5]'0 5f
puwh) — AR AT / apZL L spl 4 A / dP pepl pr - D(u- 25
! y‘s”[ “w -y )+ Bt PP ) T G P P @)

where, we remind that the notation p#4 = A’;;ipy‘s" represents the traceless symmetric projection orthogonal to u#. Using
Eq. (14) in (25), we obtain

. 1 A
p(/“//w _|_ ;pl’””l = Al;ga

A 700 papﬂpp :|_ HvA a,p |: f;,q Pyvyf 5f . :|
{Aaﬁp/dP (- p) of Aaﬁp/de p’p’ (u-p)+(u-p)2+(u-p)20(u Pl (26)

Using the expressions for derivatives of f in the above equation, along with Eqs. (4) and (5) for derivatives of 5, we obtain

0
r) (ﬁ— - Lﬂ&%) + ﬁp%} feq

1 . apf P A o} P
p(um>+_pﬂm_Aﬂm[Ay(sn/de p’p 5f] —A’;;ﬁ,/de P’p [(u
TR

yéo | “app (Lt . p) u-p 3 12P
fe 2p°(V,t,) 5f 1\, 2r° (Vi)
—A”M/dpa/}ﬂyv q 4 \v/ Y S
app p*p"p"p { 7(<u.p)2>+ - p) Jeq +Vy (- p) + (- py /
anbpb i
_A;M/dpwg . 27
app (u . p)2 f ( )

Itis apparent from the form of the above equation that the relaxation time 7 can be identified with novel relaxation time z,,.

The six rank tensor, Aﬁi is orthogonal to 4-velocity and second rank tensor, i.e. Aﬁgu" =0, A%A"” = (. Using these
properties, and Egs. (12) and (17) for 6f = 6f + 6f,, as well as Eqgs. (4), (5) for derivatives of j, the first term on the right-
hand side of Eq. (27) is obtained in terms of thermodynamic integrals as

. @pf pP 3 6 15 2
A’;(’;f, [AZ‘;‘;/dP‘D(up.pp) 5f] :—ﬁ—ﬂlgzz)(uw;m))_;_rr/jl(s?(wymﬂ;uz))_%[gé)(ﬂmﬂ;m))jL gfnlézz)g(jz-(ﬂl/ul))‘ (28)

S . . A J A A
Now, considering the second term of Eq. (27) and using properties, u“A’;;p = uﬂA’;;p = uﬂA’;;p = A“ﬂA’;;p =

A”’/’Afi’/’;} = AP AZ’/'; = 0, the contribution from second term vanishes. Similarly, the third and fourth terms of Eq. (27)

can be calculated and details of the calculation can be found in Appendix B. Finally, the evolution equation of p#** is
obtained as
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1 3 18 187 10 36
p</'”/i> —+ apﬂ”ﬁ = ? V(ﬂﬂ—l'/{) — _7 u<ﬂﬂ.l/ﬂ> — _81 pﬂylg — _7 Tﬂl;l<ﬂﬂv/1>g — _7 Tﬂa)]’(ﬂﬂ"}jiﬂ')
39 . 343 18 6 )
3415, it — 1055, i, /¥ 4 7Tﬂuya)7<"ﬂ A — ?Tﬂ.aﬂ(ﬂvyﬂ: A

6 6
- ?'L',,a)“"V’“ﬂ,/}> - 71,,755”V”w1>7

By comparing second-order terms in the above equation
with the “Navier-Stokes’-equivalent equation, p** =
31,V we obtain 5, = 7. Furthermore, in relaxation-
time approximation, all relaxation times are identical,
Le. 7, =1, = 3.

We can compare the relativistic third-order evolution
equation for viscous hydrodynamic derived in this work

T, 7" + o = 2nott + 21,,7:/%” WVt — 8, "0 — Tﬂﬂﬂéﬂ o

47
_ _ gl

634, 4

665
vl (29)

( v _
v,z 4414,

YN grA)
218,77

with that obtained in [27]. In the latter work, the deriva-
tion of third-order relativistic dissipative fluid dynamics
employed the method of moments, incorporating two
novel degrees of freedom. These degrees of freedom were
associated with the irreducible tensors of rank 3 and 4. For
ease of comparison, we express the third order evolution
equation obtained in Ref. [27] as

- T,,yg_zl AZ;V QP LT T i, QP — Tﬂyﬁ)z@””"/’)aaﬁ. (30)

Here, Q"** and @ are the two novel degrees of freedom. They satisfy their own equation of motion and were obtained as

) 3
TQQ<”WI> + QHra — 6999/“/{19 + 31.991(/411(0(1)/1 + TQQO’E”QMXM + ?T’IQVWH:MI> - 31.9]/711”(#1/”(1)

+ TQ@@ﬂyaﬁuﬂ - 79791 AgZZVﬂ(aAgpﬂ, (31)

TO(;)(um/f) + @ = §ou@ P + 4T®@/1</wawﬂ> 1+ T%Gé”@mﬂﬂ + f®ﬂ5<ﬂvﬂaﬂ> + fenggmﬂ) + T@gi,(ﬂgmﬂ), (32)

Here, third rank tensor *** corresponds to our p*** via the relation p"" ”lﬂ =y, Q*“*, The value of different coefficients in
Egs. (30) to (32) for the classical and massless case can be found in Ref. [27] and some of them are given below:

o b y@:ﬁi Ser _ 4 Tge 10
—1 -2 725

The viscous coefficient associated with new dynamical
degree of freedom, the third rank tensor, is found to be

1, = T, in our case and ng = %TQ in [27]. We note that the

equation of motion for p** in our case, given in Eq. (29),
is not coupled to a new degree of freedom, hence it forms
a closed set of equations. Therefore, it is not required to
find a evolution equation for a 4th rank tensor in the
present case.

IV. LINEAR STABILITY AND CAUSALITY
ANALYSIS

In this section, we analyze the stability of the third-order
fluid dynamical formulation in its linear regime, which is
done via alinear stability analysis. In this analysis, the system

s S — 5 - 7 _6
00 — 3797 oo = 379, ﬂg—ﬂfg

(33)

is assumed to be initially in a global equilibrium state and
performs small perturbations on the hydrodynamic variables
around such state. In a stable fluid-dynamical formulation,
the perturbations are damped with time, allowing the fluid to
return to its initial global equilibrium state. In contrast, an
unstable theory would cause the perturbations to increase
exponentially over time and the system will never return to its
initial equilibrium state. In the present work, the linear
contributing terms in the evolution equation of #** in
Eq. (24) and p*** in Eq. (29) are
v

) — T +28, 6" — vypﬂ/w) N (34)

T

and
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p(ﬂuﬂ} — lp/wﬂ + ;v(;t,tv@ 4 (35)

T,

respectively. The dots denote nonlinear terms, and will not contribute to the linear stability analysis.
We consider the following perturbations on the hydrodynamic variables

€ = €y + ¢,

ut = uly + Sut,

o = St prA = SphA (36)

with €, and u}, being the energy-density and 4-velocity of the background global equilibrium, while 7#* and p** are the
perturbations themselves. Under these perturbations, the linearized Eqgs. (34) and (35) becomes

2 3
7, Do + 6n =1 (Vﬁéu” + Viou =3 Al(;U@Aé“/I) =S Vyop, (37)

1 2
7,DopHt 4 5p*t =1, {5 (Vion + Vot + Vi snt) — 3 (ARNV9574 4 ARVOS72e) + AYV9sa) |, (38)

The causality and stability of the above linear equations
were studied in [26] and the following constraints were
obtained on transport coefficients,

n 27
37,(1=¢?) _4€0+P 7, >£i1p1,,(1 -c2), (39
4n
1-cH)z, > . 4
(-2 Y (0)

Equation (39) necessitates the existence of nonzero time-
scale 7,, which is essential for both causality and stability.
For the case of classical and massless particles, the above
conditions simplify to

(41)

Our results for the transport coefficient, n, =7, = 7, =
5n/(e + P), is thus consistent with the conditions listed
above. Therefore, we conclude that the present formulation
of relativistic third-order viscous hydrodynamics is linearly
causal and stable.

V. SUMMARY AND OUTLOOK

In summary, we have derived the causal and stable
third-order viscous hydrodynamics from the relativistic
Boltzmann transport equation using the iterative

Chapman-Enskog-like expansion. We demonstrated that
a causal relativistic third-order theory requires the inclu-
sion of a new dynamical degree of freedom, i.e., an
irreducible tensor of rank 3. This feature of our formu-
lation differs from the theory developed using method of
moments, which necessitates the inclusion of two irre-
ducible tensors, one of rank 3 and another of rank 4. We
derived the equation of motion of new degree of freedom,
p** and calculated its associated transport coefficients.
Additionally, by considering perturbations around a
global equilibrium state, we showed that these transport
coefficients are in compliance with stability and causality
constraints.

Looking forward, it will be interesting to extend the
present formalism to a more general case of system of
massive particles and as well as to a system of particles with
conserved charges. This would require one to calculate the
expressions for second-order viscous corrections to the
distribution function in these two cases. These involved
calculations, within the present framework, is left for
future work.
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APPENDIX A: EVOLUTION EQUATION OF =

We have the third-order evolution equation for the shear
stress tensor, Eq. (18) as
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(A1)

The underbracketed six terms in the above equation contains the second order spacelike derivative of shear stress tensor

which lead to the additional unstable modes. Writing the above six terms separately as

- \Hv v 2 v 12 : v
! = —gv ()7 it,7,) + 5 v (22, 77) =29, (2, V07)) + 9, (i)
1 6
- V7(7”V7ﬂ<””>) + 7 vy(Tﬂurﬂwv)),
2

= - SRV i) + 2, e + 5, i) + 19, (L gt 90

—ZAZ'/}T,,V”H/”V - A’;;;T,,VVH“W > (V“A” y

1
i V, o) — 7V7,(T,,ﬂ"/}VJ’A’;7,).

Using Eq. (22), we can obtain Vyp7<””> as follows,

L (3 18 . .
Vyp7</‘”> =V, [AZ,; <?Tﬂv<7ﬂaﬂ> _71-””(7” ﬂ>>] ,

pod pod

VAT o 138 VAT o
= vy< INANGAYZ, 5) =V, (e N A i 7).

pod

18
= ——V ( AT Ao, Vsrn” — 201 Sz, VP — A’;gr,[vyﬂ"‘s) - 7V (z A””Amﬂu”n'"‘s).

On using Eq. (A6), Eq. (A3) can be written as

Y 24 12 7 v 6 ; v v _ya
ﬂ§g)> = —EV ( r,,) + 7V (1,,u<”7z >7) _;_?vy(fﬂur,[(ﬂ >> — Vy(A’;ﬁpy 7)
v Q Vel a v 1 a v
—7vy( AN ) — (v Ny Van) = 2V, (2,n PV L),

Above equation can be further simplified by using the following identity,

18 6 12 24
7V ( AﬂL/A}’Ul/juﬂﬂ- ) 7vy(u}'ﬂﬂb) + = 7 v (upﬂy(sA/w) __v (M(;AW’A#U (,—5)’

and hence we obtain Eq. (A7) as

v v 4 v 1 . 24 ' )
ey = =V, (o) = 22w (VA) Vi = 2V, (0,m PV Nl + Z2 i, VAl
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v ya 1 a v 2 Q v 24 ; a A HV
==V, (AL ?) ~ 7(9},7,,)71 PN (AL — 57 V2 (ALy) + T T,y VAL,
Tz 4 a Q v
- (5 AT A /}> (VrAly). (A10)

Now, we will contract the above equation with A}y for symmetric traceless contribution. In process of doing it, we obtain
ARV (AL) as follows

AV (Dp) = 5 [= (VN )ug(Aha) = (V7 ug (A7) — (V7 Yug (M) — (V7 )ug(A45)]. (A1)

N[ =

Similarly, one can calculate AfZV*(A%g) and AV?(AL5). Using these derivatives and replacing uy(V,7”) with
—P*(V,uz), Eq. (A9) simplifies to

»\po. o v ya 1 o) 2 o)a 2 c c
JTEZ)> = —Au(V, AuprP) + En”pﬂ 196, + mﬁn’flpﬂ o 4 @T,ﬁzﬂ” ~ 355 o0t (A12)
Therefore, we finally obtain the third-order evolution equation of shear stress tensor as
w (v " v L0 10 v 4 v 24 v 5 v
) = - +2B,0" + 21 @) — 7,#45 by — gﬂu 0 + Eﬂpww 12, — mﬂﬁﬂ” )70
52 ) 1 ) 2 ; 4 ) 8 .
— 2455, ™o, — 195, g >V6M — 7Tﬂa)ﬂ<ﬂw >7,L-py — 71”,1-/1(;40) >J’a)m, — afﬂﬂﬂ 62
26 (u v)y v af yos 1 y(u - v)p
+ 5] Tty @ 0 — ALV, (Ags07°) —l—%ﬂ 7w, (A13)

APPENDIX B: EVOLUTION EQUATION OF p#*

In this appendix, we derive the evolution equation of third rank tensor p#*. In the process of deriving it, firstly we took the
comoving derivative of p** and obtain the following equation

1 . AP f 'V f 5f
- (uua) A _ AHVA yoo p p°p NLZ a P eq V4 y. .
P + —p* = A G[Aa /dPiéf A dP p®p’p + + D(u-p)|. B1
r o0 |abp (u- p) & (u-p) (u-p)? (u-p)? N
—— N——

(@) (i) (iii) (iv)

1. Term (i)
The first term of Eq. (B1) is
(l) — A | ATOO /deapﬂpﬂ 5f (Bz)
yoo afp (Ll i P) .
The six rank tensor, A’;;ﬁ is orthogonal to 4-velocity and second rank tensor, i.e. A;’;iu,, =0, A’;giAW =0.

Using these properties and the form of second-order viscous correction, the first term contribution in terms of
thermodynamic integral is obtained as
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. P pr 3 6
()= & [AZ‘;‘; [ apZ ] = - 1) - S G e
p p/ b/

D (arligbicd)) + gr 20(zw i), (B3)

The values of different thermodynamic integral can be found in Appendix C.

7ﬁ2 52

2. Term (ii)
The second term of Eq. (B1) is

i) =, [ PP (B4

The comoving derivative of f.eq is
fa= = p (B =L ) + i e (®5)
Since, u(’A’;;i = u/’Aflei = u/’A’o‘[;i AY A’;;i = A“"’A’;{”’1 AP A’;'/;i = 0. Hence, the second term has no contribution.
(i) = —A / de( pﬂ;’; fig =0. (B6)

3. Term (iii)
The third term of Eq. (B1) is

app
(iif) = —A% / ap P PPp Vilfeg + 01 ), (B7)

(u- p)?

which can be further simplified as

=t farr o5 55) ) 5 ) o )]

=~ farrowr (9 (Gn) T (G ) Y o

(a) (b) (c) (d)

The term (a) is

B P Y
(a) = —A™'V / Ppp f feg- (B10)

app VY
Using the definition of thermodynamic integral, the above equation is obtained as

(a) = Al

BTGV, (AD) A + V(A7) AY + V,(A%) AP + V(A7) A

+ V,(AP)AT 4V (AT) AP} + (V, 1‘(‘2;){ ADPAPY + AW AP 1 A APPY],
= —AMILD VP (AD) + VP (A%) 4 Ve (AP)], (B11)

096039-10



CAUSAL THIRD-ORDER VISCOUS HYDRODYNAMICS WITHIN ... PHYS. REV. D 109, 096039 (2024)

where,

VP (A%) = VP (g% — uouP) = —(VPuub — u*(Vrul). (B12)

vanishes on contraction with six rank tensor

Hence, the contribution from (a) is zero.
The term (b) is

a b P pt no
. PP’ p'p
(b) = =2(V,u )AZ/,ﬁ/dP—(u'pP feqs (B13)

— _2(v u )AI{;;;?)[ ( )( au/}u/)uy ) + I( )(A(l/}upuyuﬂ + Aupu[)’u}/uo' + Aayu/)’u/)ua
+ AP ut + AP uCu u® 4+ AP uCulu® + APuCulut 4+ AP uuPu’ + AP utuPur
+ N’"u"‘uﬁuﬂ) + Ig?(A"ﬂAWu" + AYAPrye + A APP Yo - AP NPT - A% APyt
+ ADAPBYyr 1 ABATT P 4 AW AP + AP AT + AT AP - AYBATO P
+ AN P - APAYTYP 4 AW APT P AQTAPY P L AP ATy + APY APO Y
+ AP AP (B14)

On contraction with six rank tensor, this term also vanishes.
The term (c) is

of
(0 =-ati [ap v, () (B15)
g "\(u-p)*
5f
=A™y /deapﬁp/’p7’< > (B16
wr (- pP? ’
Using the following identity,
A?p, = p = p*— (u- p)uc, (B17)
Eq. (B16) is obtained as
Sf 5f of
_ /41//1 a 0 A a 0 #Ui a) . f
(c) = =Dy, (V,u”) / deﬁpfp”u_ p—Aa/;,) / dPu®p’ p’ p'V, (u p) WA / dPp'® p’ p* p* TR
v, 6f V. o 5f . o 5f
= —AL (Y, )/deﬂp"p” .p - ALY, Mﬂ)/de PP .p—AZﬂﬂp(V u”)/de Py —— p
v v of
A’;ﬂ'; u”)/de pﬂpﬂ - A’;ﬂ’;vﬂ/de ) ple) plu ><(u : p)z)' (B13)

After putting the form of second order viscous correction to the distribution function, the above equation comes out to be
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The term (d) is
v. 2p”(V uo-)

(@) =A% / P rrp ppy{ﬁ o (B20)

Putting the form of 6f and solving for its contribution, we have

24 12
(d) = ’5 ( tn >Ié33)uﬂ[3g(/w ;1)] + 5? 163 Aﬁ;ﬁ( N1 7)) — 61, (g) Ié? |:20<'1ﬂ7r[y,>it/’ + 26@”7[?1,]0

) 10
+ 2a)<1"n'p> w + 2a)<’1”7r”p> u + 20'5171'”” u + 20]971"”> u + 3 Orv it 4 207 WA ) 4 207 WA k)
+7 ( ﬁﬂ ) 1) A 2(V1 2P (VPu,) + 2(V72) (V,uP) + 60(VPn). (B21)

4. Term (iv)

The term (iv) is

o) =~ [ e[ 2o )| (822)

Simplifying the above term and using the form of §f, the term (iv) is obtained as

[N NN
LN VA p p p pu,
(lU) —Azﬂp/dpwéf, (B23)
p Ve 2 308 y 285 1) g ylh g
__3/3_123 g h) +6ﬁ/5 163 i wW 14 63 Mﬂyﬂ-ﬁ)y_i_ 5 g(uw” )
) B s
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Finally, adding the terms (i), (ii), (iii) and (iv) and using the values of different integrals given in Appendix C, the evolution
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equation for p** is obtained as,

1 3 18 187 36
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389 ) 343 | ) 18 | 6 B
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APPENDIX C: THERMODYNAMIC INTEGRALS
We define the thermodynamic integrals
1) = i [ AP PY T Qg ) e
(2g + 1) K e
and state the following relation
o _ 1. 0
Iflq) = [_} [_Iijl,q—l + (n— Q’Q>Il('z—)l,q]' (C2)
With the above definition, we identify Ié%) = ¢ and Igi) = —P. The values of different integrals are as follows
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