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In the present work, we derive a linearly stable and causal theory of relativistic third-order viscous
hydrodynamics from the Boltzmann equation with relaxation-time approximation. We employ viscous
correction to the distribution function obtained using a Chapman-Enskog like iterative solution of the
Boltzmann equation. Our derivation highlights the necessity of incorporating a new dynamical degree of
freedom, specifically an irreducible tensor of rank three, within this framework. This differs from the recent
formulation of causal third-order theory from the method of moments which requires two dynamical
degrees of freedom: an irreducible third-rank and a fourth-rank tensor. We verify the linear stability and
causality of the proposed formulation by examining perturbations around a global equilibrium state.
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I. INTRODUCTION

The primary objective of ultrarelativistic heavy-ion
collisions is to create and study a novel state of nuclear
matter characterized by extremely high temperature and/or
density. In this extreme environment, composite states
known as hadrons lose their distinct identity, undergoing
dissolution into a quark-gluon plasma (QGP), where quarks
and gluons exist in a deconfined state [1–7]. Relativistic
dissipative hydrodynamics has been successfully applied to
study the collective behavior of QGP [8,9]. These collisions
give rise to a fluid under extreme conditions, characterized
by gradients of fluid velocity and temperature that are
substantial when compared to the characteristic micro-
scopic scales of the system [10,11]. The effort to under-
stand the hydrodynamic behavior of QGP created in
ultrarelativistic heavy-ion collisions has spurred significant
research in formulation of relativistic dissipative fluid
dynamics from microscopic theory—a topic that continues
to be an area of active research to this day [12,13].
Relativistic dissipative hydrodynamics is formulated

through an order-by-order expansion in powers of

spacetime gradients, with ideal hydrodynamics correspond-
ing to the zeroth order. The first order theory containing the
viscous effects, commonly referred to as the relativistic
Navier-Stokes theory [14,15], is known to be ill defined
since it involves parabolic differential equations which
leads to acausality and numerical instability. Causality was
restored in second order Israel-Stweart (IS) theory [16] with
its hyperbolic equations [17] although stability may not
be assured. On the other hand, IS theory lead to some
undesirable effects such as reheating of the expanding
medium [18] and emergence of negative longitudinal
pressure [19,20]. Moreover, the scaling solutions of IS
theory exhibit disagreement with transport results for large
viscosities, indicating the breakdown of second-order
theory. It was argued that an empirical inclusion of
higher-order terms significantly improved the agreement
with transport result [21,22], highlighting the necessity of
formulating relativistic dissipative hydrodynamics beyond
the second-order IS theory.
Several authors have explored the formulation of rela-

tivistic third-order dissipative fluid-dynamics within vari-
ous frameworks such as phenomenological description
based on the second law of thermodynamics [21,23] and
kinetic theory using Chapman-Enskog-like expansion [24]
and gradient expansion [25]. Recently, the linear stability
and causality of third-order theory, formulated in Ref. [24],
was analyzed and was shown to be acausal and unstable
[26]. In order to address this issue, a heuristic modification
to this theory was proposed by introducing a new dynami-
cal degree of freedom [26]. In a follow-up work, the authors
derived this framework from kinetic theory using the
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method of moments [27]. This formulation required the
inclusion of novel degrees of freedom corresponding to
irreducible tensors of rank 3 and 4, and was shown to be in
good agreement with exact solution of the Boltzmann
equation within Bjorken flow scenario. On the other hand,
iterative Chapman-Enskog method has also been employed
quite successfully in the formulationof relativistic dissipative
hydrodynamics, leading to good agreement with kinetic
theory solutions [22,24]. Moreover, it was shown that the
non-equilibrium corrections to the distribution function,
obtained using maximum entropy prescription, matches
exactly with the iterative Chapman-Enskog results at linear
order [28,29]. It is therefore important to explore the
formulation of causal and stable third-order hydrodynamics
with iterative Chapman-Enskog-like expansion of the
Boltzmann equation in relaxation-time approximation.
In this article, we present the derivation of a linearly

stable and causal theory of relativistic third-order viscous
hydrodynamics from the Boltzmann equation with relax-
ation-time approximation. To this end, we use viscous
corrections to the distribution function obtained from a
Chapman-Enskog-like iterative solution of the Boltzmann
equation. The derivation underscores the essential inclusion
of a novel dynamical degree of freedom in this framework,
namely an irreducible three-rank tensor. This is in contrast
with the recent formulation of causal third-order theory
from the method of moments which required two dynami-
cal degrees of freedom for moment closure: an irreducible
third-rank and a fourth-rank tensors [27]. To validate our
formulation, we analyze its linear stability and causality by
investigating perturbations around a global equilibrium
state. This work is organized as follows: In Sec. II, we
review the derivation of third-order viscous evolution
equation using Chapman-Enskog like iterative solution
of the Boltzmann equation. In Sec. III, we derive the
framework to restore causality in third-order viscous
evolution equation. In Sec. IV, we study the linear stability
and causality of the third-order viscous hydrodynamics.
Finally, we summarize and conclude our work in Sec. V.
Throughout the text, we use natural units where
ℏ ¼ c ¼ kB ¼ 1. We consider Minkowski metric in this
workwhich is denoted bygμν ¼ diagð1;−1;−1;−1Þ.Weuse
bold font to denote three-vectors and employ center-dot to
denote scalar products of both three- and four-vectors,
i.e., a · b ¼ a0b0 − a · b.

II. THIRD-ORDER VISCOUS
EVOLUTION EQUATION

The hydrodynamic evolution of a system, without net
conserved charges, is determined by the conservation
equations of energy and momentum. The conserved
energy-momentum tensor can be represented in terms of
the single-particle phase-space distribution function and
decomposed into hydrodynamical tensor degrees of free-
dom. In this study, we further consider a system of massless

particles, resulting in the absence of bulk viscosity.
The energy-momentum tensor for such a system can be
written as

Tμν ¼
Z

dPpμpνfðx; pÞ ¼ ϵuμuν − PΔμν þ πμν; ð1Þ

where, dP≡ gd3p=½ð2πÞ3jpj� is Lorentz invariant momen-
tum integral measure with g being the degeneracy factor.
Here, pμ is the particle four-momentum and fðx; pÞ is the
single-particle phase-space distribution function with xμ

representing the position four-vector. In the tensor decom-
position ϵ and P are energy density and thermodynamic
pressure, respectively, πμν is the shear-stress tensor and uμ

is the fluid four-velocity defined in the Landau frame,
uμTμν ¼ ϵuν. Moreover, we have the orthogonality con-
dition uμπμν ¼ 0 and introduced the notation Δμν ≡ gμν −
uμuν as the projection operator orthogonal to uμ.
The hydrodynamic equations for evolution of ϵ and uμ

are obtained from the energy-momentum conservation
equations, ∂μTμν ¼ 0, and can be written as

ϵ̇þ ðϵþ PÞθ − πμνσμν ¼ 0; ð2Þ

ðϵþ PÞu̇α −∇αPþ Δα
ν∂μπ

μν ¼ 0: ð3Þ

Here, we have used the notations Ȧ≡ uμ∂μA for the
comoving derivative, ∇α ≡ Δμα

∂μ for spacelike derivative,
θ≡ ∂μuμ for expansion scalar and σμν ≡ 1

2
ð∇μuνþ

∇νuμÞ − 1
3
θΔμν for the velocity stress tensor. Using the

Landau matching condition, ϵ ¼ ϵeq with ϵeq being the
equilibrium energy density, we obtain ϵ ¼ 3P ∝ β−4 in
the case of massless particles. The derivative of inverse
temperature, β≡ 1=T, can be obtained from Eqs. (2)
and (3) as

β̇ ¼ β

3
θ −

β

12P
πμνσμν; ð4Þ

∇αβ ¼ −βu̇α −
β

4P
Δα

ν∂μπ
μν: ð5Þ

These expressions for derivatives of βwill be further used for
obtaining the third-order viscous evolution equation.
In this work, we consider a system of relativistic particles

with vanishing chemical potential, close to the local
thermodynamic equilibrium. In this case, the single particle
phase-space distribution function can be written as
f ¼ feq þ δf, where the deviation from equilibrium is
assumed to be small (δf ≪ feq). In this work, we further
assume that the equilibrium is described by classical
Maxwell-Boltzmann distribution in Jüttner form, feq ¼
exp ð−βu · pÞ, with u · p≡ uμpμ. Using Eq. (1), the form
of πμν can be expressed in terms of δf as
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πμν ¼ Δμν
αβ

Z
dPpαpβδf; ð6Þ

where, Δμν
αβ ≡ 1

2
ðΔμ

αΔν
β þ Δμ

βΔν
αÞ − 1

3
ΔμνΔαβ is a traceless

and doubly symmetric projection operator, which is
orthogonal to uμ as well as Δμν.
The nonequilibrium phase-space distribution function

can be obtained by solving the kinetic equation such as
Boltzmann equation. The relativistic Boltzmann transport
equation under relaxation-time approximation (RTA) for
the collision term is given by [30]

pμ
∂μf ¼ −

u · p
τR

δf; ð7Þ

where τR is the relaxation time.We note that RTA is a simple
yet useful model for the collision kernel, which satisfies
fundamental conservation equations when τR is independent
ofmomenta anduμ is defined in the Landau frame [30,31]. In
order to calculate dissipative corrections to the distribution
function,Chapman-Enskog-like iterative solution to theRTA
Boltzmann equation is considered, where the particle dis-
tribution function is expanded in powers of space-time
gradients about its equilibrium value [32]

f ¼ feq þ δf; δf ¼ δfð1Þ þ δfð2Þ þ � � � : ð8Þ

Here, δfðnÞ is the nonequilibrium correction which is nth
order in derivatives.
For first- and second-order in derivatives, we have,

δfð1Þ ¼ −
τR
u · p

pμ
∂μfeq; ð9Þ

δfð2Þ ¼ τR
u · p

pμpν
∂μ

�
τR
u · p

∂νfeq

�
: ð10Þ

The first-order expression of πμν, which is the relativistic
version of the Navier-Stokes equation, can be calculated by
using δf ¼ δfð1Þ from Eq. (9) in Eq. (6) and is obtained as

πμν ¼ 2τRβπσ
μν; βπ ¼

4

5
P: ð11Þ

Using the above expression in Eq. (9), the first order
viscous correction to the distribution function is obtained as

δf1 ¼
βfeq

2βπðu · pÞp
αpβπαβ þOð∂2Þ: ð12Þ

The above expression was shown to have several desirable
features in the context of particle production in heavy-ion
collision [33].
Following the methodology discussed in Ref. [34], the

evolution equation for shear stress tensor can be obtained
by taking the comoving derivative of Eq. (6) as

π̇hμνi ¼ Δμν
αβ

Z
dPpαpβδḟ: ð13Þ

In the above equation, δḟ can be obtained by rewriting
Eq. (7) as

δḟ ¼ −ḟeq −
1

u:p
pμ∇μf −

δf
τR

: ð14Þ

Using the above expression of δḟ, Eq. (13) becomes,

π̇hμνi þπμν

τR
¼−Δμν

αβ

Z
dppαpβ

�
ḟeqþ

1

u ·p
pγ∇γf

�
: ð15Þ

It is important to observe that in order to obtain second-
order shear evolution equation, the distribution function in
Eq. (15) needs to be computed up to first order, i.e., δf1.
Therefore, second order shear-evolution equation is
obtained by substituting Eq. (12) in Eq. (15), as [22]

π̇hμνi þπμν

τπ
¼ 2βπσ

μνþ2πhμγ ωνiγ −
10

7
πhμγ σνiγ −

4

3
πμνθ; ð16Þ

where ωμν ≡ ð∇μuν −∇νuμÞ=2 is the vorticity tensor. Here,
τπ ¼ τR is the shear relaxation time, which is obtained
to be as τπ ¼ η=βπ by comparing the first-order evolution
Eq. (11) with the relativistic Navier-Stokes equation
πμν ¼ 2ησμν, with η being the coefficient of shear viscosity.
For the third-order shear evolution equation, the distri-

bution function on the right-hand side of Eq. (15) needs to
be computed up to second order in viscous corrections, i.e.,
δf ¼ δf1 þ δf2. Using the derivatives of β from Eqs. (4)
and (5), as well as Eq. (16) for σμν in Eqs. (9) and (10),
second-order viscous correction to the distribution function
is obtained as [33]

δf2 ¼
feqβ

βπ

�
5

14βπðu · pÞp
αpβπγαπβγ −

τπ
u · p

pαpβπγαωβγ−
τπ

3ðu · pÞp
αpβπαβθ þ

6τπ
5

pαu̇βπαβ

−
ðu · pÞ
70βπ

παβπαβ −
τπ
5
pαð∇βπαβÞ þ

3τπ
ðu · pÞ2 p

αpβpγπαβu̇γ −
τπ

2ðu · pÞ2 p
αpβpγð∇γπαβÞ

þ β þ ðu · pÞ−1
4ðu · pÞ2βπ

ðpαpβπαβÞ2
�
þOð∂3Þ: ð17Þ
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Finally, substituting δf ¼ δf1 þ δf2 from Eqs. (12) and (17), and keeping terms up to cubic order in derivatives, third-order
evolution equation is obtained as [24]

π̇hμνi ¼ −
πμν

τπ
þ 2βπσ

μν þ 2πhμγ ωνiγ −
10

7
πhμγ σνiγ −

4

3
πμνθ þ 25

7βπ
πρhμωνiγπργ −

1

3βπ
πhμγ πνiγθ

−
38

245βπ
πμνπργσργ −

22

49βπ
πρhμπνiγσργ −

24

35
∇hμðπνiγu̇γτπÞ þ

4

35
∇hμðτπ∇γπ

νiγÞ

−
2

7
∇γðτπ∇hμπνiγÞ þ 12

7
∇γðτπu̇hμπνiγÞ −

1

7
∇γðτπ∇γπhμνiÞ þ 6

7
∇γðτπu̇γπhμνiÞ

−
2

7
τπω

ρhμωνiγπργ −
2

7
τππ

ρhμωνiγωργ −
10

63
τππ

μνθ2 þ 26

21
τππ

hμ
γ ωνiγθ: ð18Þ

Linear stability and causality analysis of the above equation
was discussed in Ref. [26] and it was found that terms
containing second-order spacelike derivatives of the shear-
stress tensor leads to the occurrence of additional unstable
modes. In the above equation, the terms contributing to
instability and acausality are ∇hμðτπ∇γπ

νiγÞ, ∇γðτπ∇hμπνiγÞ
and∇γðτπ∇γπhμνiÞ. In the following, we restore causality in
the formulation of relativistic third-order viscous hydro-
dynamics from RTA kinetic theory using Chapman-
Enskog-like iterative solution.

III. RESTORING CAUSALITY AT THIRD-ORDER

In Ref. [26], authors proposed a mechanism to restore
causality in third-order hydrodynamic theories by promot-
ing the spacelike gradients of the shear-stress tensor to a
new hydrodynamical variable which is a third rank
tensor, i.e.,

∇hμπνλi → ρμνλ: ð19Þ

Here, Ahμνλi ≡ Δμνλ
αβρA

αβρ with a symmetric traceless six rank projection operator, orthogonal to the fluid four-velocity,
defined as

Δμνλ
αβρ ≡ 1

6
½Δμ

αðΔν
βΔλ

ρ þ Δν
ρΔλ

βÞ þ Δμ
βðΔν

αΔλ
ρ þ Δν

ρΔλ
αÞ þ Δμ

ρðΔν
αΔλ

β þ Δν
βΔλ

αÞ�

−
1

15
½ΔμνðΔλ

αΔβρ þ Δλ
βΔαρ þ Δλ

ρΔαβÞ þ ΔμλðΔν
αΔβρ þ Δν

βΔαρ þ Δν
ρΔαβÞ

þΔνλðΔμ
αΔβρ þ Δμ

βΔαρ þ Δμ
ρΔαβÞ�: ð20Þ

The expression for ρμνλ in terms of δf is given by

ρμνλ ¼ Δμνλ
αβρ

Z
dP

pαpβpρ

u · p
δf: ð21Þ

We observe that the above expression for ρμνλ has the same
dimension as that of πμν and corresponds to r ¼ −1 for
expression of ρμνλr , provided in Ref. [27].
We note that the first-order viscous correction to the

distribution function does not contribute to the expression
of ρμνλ as substituting Eq. (12) in Eq. (21) leads to
vanishing result. Using the second-order viscous correction
to the distribution function from Eq. (17) in Eq. (21), the
“Navier-Stokes equivalent” result for ρμνλ is obtained as

ρμνλ ¼ 3

7
τπ∇hμπνλi −

18

7
τπu̇hμπνλi: ð22Þ

The above equation states that the expression for ρμνλ is at-
least second-order. By comparing the Eq. (22) with the
relativistic “Navier-Stokes” analog equation, ρμνλ ¼
3
7
ηρ∇hμπνλi, we obtain ηρ ¼ τπ . In order to compare our

result with that obtained usingmomentmethod, we calculate
the expression for ρμνλ−1 of Ref. [27] in the massless case

ρμνλ−1 ¼ 18

49
τπ∇hμπνλi −

18

7
τπu̇hμπνλi: ð23Þ

Comparing Eqs. (22) and (23), we observe that the expres-
sion for ηρ differs in the two cases. From the iterative
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Chapman-Enskog-like approach, we obtain ηρ ¼ τπ whereas the moment method leads to ηρ ¼ ð6=7Þτπ .
Up to third-order the terms containing the spatial derivative of πμν in Eq. (18) can be replaced using Eq. (22) in terms of

derivative of ρμνλ. Therefore, the expression for evolution of shear stress tensor in Eq. (18) can be rewritten as

π̇hμνi ¼ −
πμν

τπ
þ 2βπσ

μν þ 2πhμγ ωviγ −
10

7
πhμγ σviγ −

4

3
πμνθ þ 24

7βπ
πρhμωviγπργ −

5

21βπ
πhμγ πviγθ

−
52

245βπ
πμνπργσργ −

15

49βπ
πρhμπviγσργ −

2

7
τπω

ρhμωviγπργ −
4

7
τππ

ρhμωviγωργ −
8

63
τππ

μνθ2

þ 26

21
τππ

hμ
γ ωviγθ −∇γρ

γhμνi þ 1

7βπ
πγhμπνiβωγβ: ð24Þ

The detailed steps for the derivation are provided in Appendix A. We immediately observe that the shear stress tensor is now
coupled to a novel degree of freedom ρμνλ, which satisfies its own equation of motion. To obtain a complete third-order
formulation, it is necessary to derive the evolution equation for ρμνλ up to third-order.
The evolution equation of ρμνλ is obtained by taking the comoving derivative of Eq. (21) and projecting the completely

symmetric and traceless part,

ρ̇hμνλi ¼ Δμνλ
γδσ

�
Δ̇γδσ

αβρ

Z
dP

pαpβpρ

ðu · pÞ δf

�
þ Δμνλ

αβρ

Z
dPpαpβpρ

�
δḟ

ðu · pÞ −
δf

ðu · pÞ2 Dðu · pÞ
�
; ð25Þ

where, we remind that the notation ρhμνλi ≡ Δμνλ
γδσρ

γδσ represents the traceless symmetric projection orthogonal to uμ. Using
Eq. (14) in (25), we obtain

ρ̇hμνλi þ 1

τR
ρμνλ ¼ Δμνλ

γδσ

�
Δ̇γδσ

αβρ

Z
dP

pαpβpρ

ðu · pÞ δf

�
− Δμνλ

αβρ

Z
dPpαpβpρ

� ˙feq
ðu · pÞ þ

pγ∇γf

ðu · pÞ2 þ
δf

ðu · pÞ2Dðu · pÞ
�
: ð26Þ

Using the expressions for derivatives of feq in the above equation, along with Eqs. (4) and (5) for derivatives of β, we obtain

ρ̇hμνλi þ 1

τR
ρμνλ ¼ Δμνλ

γδσ

�
Δ̇γδσ

αβρ

Z
dP

pαpβpρ

ðu · pÞ δf

�
− Δμνλ

αβρ

Z
dP

pαpβpρ

u · p

�
ðu · pÞ

�
βθ

3
−

β

12P
πγδσγδ

�
þ βpγu̇γ

�
feq

− Δμνλ
αβρ

Z
dPpαpβpρpγ

�
∇γ

�
feq

ðu · pÞ2
�
þ 2pσð∇γuσÞ

ðu · pÞ3 feq þ∇γ

�
δf

ðu · pÞ2
�
þ 2pσð∇γuσÞ

ðu · pÞ3 δf

�

− Δμνλ
αβρ

Z
dP

pαpβpρpγu̇γ
ðu · pÞ2 δf: ð27Þ

It is apparent from the form of the above equation that the relaxation time τR can be identified with novel relaxation time τρ.
The six rank tensor, Δγδθ

μνλ is orthogonal to 4-velocity and second rank tensor, i.e. Δγδθ
μνλu

μ ¼ 0, Δγδθ
μνλΔμν ¼ 0. Using these

properties, and Eqs. (12) and (17) for δf ¼ δf1 þ δf2, as well as Eqs. (4), (5) for derivatives of β, the first term on the right-
hand side of Eq. (27) is obtained in terms of thermodynamic integrals as

Δμνλ
γδσ

�
Δ̇γδσ

αβρ

Z
dP

pαpβpρ

ðu ·pÞ δf

�
¼−

3β

βπ
Ið2Þ52 ðu̇hμπνλiÞ−

6τπβ

βπ
Ið2Þ52 ðωγhμπνγ u̇λiÞ−

15β

7β2π
Ið2Þ52 ðπγhμπνγ u̇λiÞþ

2βτπ
βπ

Ið2Þ52 θðπhμνu̇λiÞ: ð28Þ

Now, considering the second term of Eq. (27) and using properties, uαΔμνλ
αβρ ¼ uβΔμνλ

αβρ ¼ uρΔμνλ
αβρ ¼ ΔαβΔμνλ

αβρ ¼
ΔαρΔμνλ

αβρ ¼ ΔρβΔμνλ
αβρ ¼ 0, the contribution from second term vanishes. Similarly, the third and fourth terms of Eq. (27)

can be calculated and details of the calculation can be found in Appendix B. Finally, the evolution equation of ρμνλ is
obtained as
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ρ̇hμνλi þ 1

τρ
ρμνλ ¼ 3

7
∇hμπνλi −

18

7
u̇hμπνλi −

187

81
ρμνλθ −

10

7
τπu̇hμπνλiθ −

36

7
τπω

γhμπνγ u̇λi

−
389

441βπ
πγhμπνγ u̇λi −

343

105βπ
u̇γπγhμπνλi þ

18

7
τπu̇γωγhμπνλi −

6

7
τπω

γhμ∇γπ
νλi

−
6

7
τπω

γhμ∇νπλiγ −
6

7
τππ

hμ
γ ∇νωλiγ −

47

63βπ
πhμν∇γπ

λiγ −
11

21βπ
πγhμ∇γπ

νλi −
665

441βπ
πγhμ∇νπλiγ : ð29Þ

By comparing second-order terms in the above equation
with the “Navier-Stokes”-equivalent equation, ρμνλ ¼
3
7
ηρ∇hμπνλi, we obtain ηρ ¼ τπ . Furthermore, in relaxation-

time approximation, all relaxation times are identical,
i.e. τπ ¼ τρ ¼ τR.
We can compare the relativistic third-order evolution

equation for viscous hydrodynamic derived in this work

with that obtained in [27]. In the latter work, the deriva-
tion of third-order relativistic dissipative fluid dynamics
employed the method of moments, incorporating two
novel degrees of freedom. These degrees of freedom were
associated with the irreducible tensors of rank 3 and 4. For
ease of comparison, we express the third order evolution
equation obtained in Ref. [27] as

τππ̇
μν þ πμν ¼ 2ησμν þ 2τππ

hμ
λ ω

νiλ − δπππ
μνθ − τπππ

hμ
λ σ

νiλ − τπγ
Ω
−1Δ

μν
αβ∇λΩαβλ þ τπτπΩu̇αΩμνα − τπγ

Θ
−2Θμναβσαβ: ð30Þ

Here, Ωμνλ and Θμναβ are the two novel degrees of freedom. They satisfy their own equation of motion and were obtained as

τΩΩ̇hμναi þΩμνα ¼ δΩΩΩμναθ þ 3τΩΩλhμνωαi
λ þ τΩΩσ

hμ
λ Ωναiλ þ 3

7
ηΩ∇hμπναi − 3τΩγ

π
1π

hμνu̇αi

þ τΩΘΘμναβu̇β − τΩγ
Θ
−1Δ

μνα
λσρ∇βΘλσρβ; ð31Þ

τΘΘ̇hμναβi þ Θμναβ ¼ δΘΘΘμναβθ þ 4τΘΘλhμναωβi
λ þ τΘΘσ

hμ
λ Θναβiλ þ lΘπσ

hμνπαβi þ lΘΩ∇hμΩναβi þ τΘΩu̇hμΩναβi: ð32Þ

Here, third rank tensor Ωμνλ corresponds to our ρμνλ via the relation ρμνλ−1 ¼ γΩ−1Ωμνλ. The value of different coefficients in
Eqs. (30) to (32) for the classical and massless case can be found in Ref. [27] and some of them are given below:

γΩ−1 ¼
β

7
; γΘ−2 ¼

β2

72
;

δππ
τπ

¼ 4

3
;

τππ
τπ

¼ 10

7
; τπΩ ¼ β

7
; δΩΩ ¼ −

5

3
τΩ; τΩΩ ¼ −

7

3
τΩ; ηΩ ¼ 6

β
τΩ:

ð33Þ

The viscous coefficient associated with new dynamical
degree of freedom, the third rank tensor, is found to be
ηρ ¼ τπ in our case and ηΩ ¼ 6

β τΩ in [27]. We note that the

equation of motion for ρμνλ in our case, given in Eq. (29),
is not coupled to a new degree of freedom, hence it forms
a closed set of equations. Therefore, it is not required to
find a evolution equation for a 4th rank tensor in the
present case.

IV. LINEAR STABILITY AND CAUSALITY
ANALYSIS

In this section, we analyze the stability of the third-order
fluid dynamical formulation in its linear regime, which is
donevia a linear stability analysis. In this analysis, the system

is assumed to be initially in a global equilibrium state and
performs small perturbations on the hydrodynamic variables
around such state. In a stable fluid-dynamical formulation,
the perturbations are damped with time, allowing the fluid to
return to its initial global equilibrium state. In contrast, an
unstable theory would cause the perturbations to increase
exponentially over time and the systemwill never return to its
initial equilibrium state. In the present work, the linear
contributing terms in the evolution equation of πμν in
Eq. (24) and ρμνλ in Eq. (29) are

π̇hμνi ¼ −
πμν

τπ
þ 2βπ σμν −∇γρ

γhμνi þ � � � ð34Þ

and
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ρ̇hμνλi ¼ 1

τρ
ρμνλ þ 3

7
∇hμπνλi þ � � � ; ð35Þ

respectively. The dots denote nonlinear terms, and will not contribute to the linear stability analysis.
We consider the following perturbations on the hydrodynamic variables

ϵ ¼ ϵ0 þ δϵ; uμ ¼ uμ0 þ δuμ; πμν ¼ δπμν; ρμνλ ¼ δρμνλ; ð36Þ

with ϵ0 and uμ0 being the energy-density and 4-velocity of the background global equilibrium, while πμν and ρμνλ are the
perturbations themselves. Under these perturbations, the linearized Eqs. (34) and (35) becomes

τπD0δπ
μν þ δπμν ¼ η

�
∇μ

0δu
ν þ∇ν

0δu
μ −

2

3
Δμν

0 ∂λδuλ
�
−
3

7
τπ∇0

γδρ
γμν; ð37Þ

τρD0δρ
μνλ þ δρμνλ ¼ ηρ

�
1

7
ð∇λ

0δπ
μν þ∇ν

0δπ
μλ þ∇μ

0δπ
νλÞ − 2

35
ðΔμν

0 ∇0
αδπ

λα þ Δμλ
0 ∇0

αδπ
ναÞ þ Δνλ

0 ∇0
αδπ

μαÞ
�
: ð38Þ

The causality and stability of the above linear equations
were studied in [26] and the following constraints were
obtained on transport coefficients,

�
3τπð1 − c2s Þ − 4

η

ϵ0 þ P

�
τρ >

27

35
ηρτπð1 − c2s Þ; ð39Þ

3ð1 − c2s Þτπ ≥
4η

ϵ0 þ P
: ð40Þ

Equation (39) necessitates the existence of nonzero time-
scale τρ, which is essential for both causality and stability.
For the case of classical and massless particles, the above
conditions simplify to

ηρ <
7

3
τρ;

τπ ≥
2η

ϵ0 þ P
: ð41Þ

Our results for the transport coefficient, ηρ ¼ τρ ¼ τπ ¼
5η=ðϵþ PÞ, is thus consistent with the conditions listed
above. Therefore, we conclude that the present formulation
of relativistic third-order viscous hydrodynamics is linearly
causal and stable.

V. SUMMARY AND OUTLOOK

In summary, we have derived the causal and stable
third-order viscous hydrodynamics from the relativistic
Boltzmann transport equation using the iterative

Chapman-Enskog-like expansion. We demonstrated that
a causal relativistic third-order theory requires the inclu-
sion of a new dynamical degree of freedom, i.e., an
irreducible tensor of rank 3. This feature of our formu-
lation differs from the theory developed using method of
moments, which necessitates the inclusion of two irre-
ducible tensors, one of rank 3 and another of rank 4. We
derived the equation of motion of new degree of freedom,
ρμνλ and calculated its associated transport coefficients.
Additionally, by considering perturbations around a
global equilibrium state, we showed that these transport
coefficients are in compliance with stability and causality
constraints.
Looking forward, it will be interesting to extend the

present formalism to a more general case of system of
massive particles and as well as to a system of particles with
conserved charges. This would require one to calculate the
expressions for second-order viscous corrections to the
distribution function in these two cases. These involved
calculations, within the present framework, is left for
future work.
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APPENDIX A: EVOLUTION EQUATION OF πμν

We have the third-order evolution equation for the shear
stress tensor, Eq. (18) as
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π̇hμνi ¼ −
πμν

τπ
þ 2βπσ

μν þ 2πhμγ ωνiγ −
10

7
πhμγ σviγ −

4

3
πμνθ þ 25

7βπ
πρhμωνiγπργ −

1

3βπ
πhμγ πνiγθ

−
38

245βπ
πμνπργσργ −

22

49βπ
πρhμπνiγσργ−

24

35
∇hμðπνiγu̇γτπÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

1

þ 4

35
∇hμðτπ∇γπ

νiγÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
2

−
2

7
∇γðτπ∇hμπνiγÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

3

þ 12

7
∇γðτπu̇hμπνiγÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

4

−
1

7
∇γðτπ∇γπhμνiÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

5

þ 6

7
∇γðτπu̇γπhμνiÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

6

−
2

7
τπω

ρhμωνiγπργ −
2

7
τππ

ρðμωνiγωργ −
10

63
τππ

μνθ2 þ 26

21
τππ

hμ
γ ωνiγθ: ðA1Þ

The underbracketed six terms in the above equation contains the second order spacelike derivative of shear stress tensor
which lead to the additional unstable modes. Writing the above six terms separately as

π̇hμνið6Þ ¼ −
24

35
∇hμðπνiγu̇γτπÞ þ

4

35
∇hμðτπ∇γπ

νiγÞ − 2

7
∇γðτπ∇hμπνiγÞ þ 12

7
∇γðτπu̇hμπνiγÞ

−
1

7
∇γðτπ∇γπhμνiÞ þ 6

7
∇γðτπu̇γπhμνiÞ;

¼ −
24

35
∇hμðπνiγu̇γτπÞ þ

12

7
∇γðτπu̇hμπνiγÞ þ

6

7
∇γðτπu̇γπhμνiÞ þ

1

7
∇γ

�
4

5
gαγΔμν

αβτπ∇λπ
βλ ðA2Þ

−2Δμν
αβτπ∇απβγ − Δμν

αβτπ∇γπαβ
�
−

4

35
ð∇αΔμν

αβτπ∇λπ
βλÞ − 1

7
∇γðτππαβ∇γΔμν

αβÞ: ðA3Þ

Using Eq. (22), we can obtain ∇γρ
γhμνi as follows,

∇γρ
γhμνi ¼ ∇γ

�
Δμν

αβ

�
3

7
τπ∇hγπαβi −

18

7
τπu̇hγπαβi

��
; ðA4Þ

¼ ∇γ

�
3

7
τπΔ

μν
αβΔ

γαβ
ρσδ∇ρπσδ

�
−
18

7
∇γðτπΔμν

αβΔ
γαβ
ρσδu̇

ρπσδÞ; ðA5Þ

¼ −
1

7
∇γ

�
4

5
ΔαγΔμν

αστπ∇δπ
σδ − 2Δμν

ρδτπ∇ρπγδ − Δμν
σδτπ∇γπσδ

�
−
18

7
∇γðτπΔμν

αβΔ
γαβ
ρσδu̇

ρπσδÞ: ðA6Þ

On using Eq. (A6), Eq. (A3) can be written as

π̇hμνið6Þ ¼ −
24

35
∇hμðπνiγu̇γτπÞ þ

12

7
∇γðτπu̇hμπνiγÞ þ

6

7
∇γðτπu̇γπhμνiÞ −∇γðΔμν

αβρ
γαβÞ

−
18

7
∇γðτπΔμν

αβΔ
γαβ
ρσδu̇

ρπσδÞ − 4

35
ð∇αΔμν

αβτπ∇λπ
βλÞ − 1

7
∇γðτππαβ∇γΔμν

αβÞ: ðA7Þ

Above equation can be further simplified by using the following identity,

18

7
∇γðτπΔμν

αβΔ
γαβ
ρσδu̇

ρπσδÞ ¼ 6

7
∇γðu̇γπμνÞ þ

12

7
∇γðu̇ρπγδΔμν

ρδÞ −
24

35
∇γðu̇δΔγαΔμν

ασπσδÞ; ðA8Þ

and hence we obtain Eq. (A7) as

π̇hμνið6Þ ¼ −∇γðΔμν
αβρ

γαβÞ − 4

35
τπð∇αΔμν

αβÞ∇λπ
βλ −

1

7
∇γðτππαβ∇γΔμν

αβÞ þ
24

35
τππ

βλu̇λ∇αΔμν
αβ; ðA9Þ
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¼ −∇γðΔμν
αβρ

γαβÞ − 1

7
ð∇γτπÞπαβ∇γðΔμν

αβÞ −
τπ
7
παβ∇2ðΔμν

αβÞ þ
24

35
τππ

βλu̇λ∇αΔμν
αβ

−
τπ
7

�
4

5
gαγ∇λπ

βλ þ∇γπ
αβ

�
ð∇γΔμν

αβÞ: ðA10Þ

Now, we will contract the above equation with Δρσ
μν for symmetric traceless contribution. In process of doing it, we obtain

Δρσ
μν∇γðΔμν

αβÞ as follows

Δρσ
μν∇γðΔμν

αβÞ ¼
1

2
½−ð∇γuμÞuαðΔρσ

μαÞ − ð∇γuνÞuβðΔρσ
νβÞ − ð∇γuμÞuβðΔρσ

μαÞ − ð∇γuμÞuαðΔρσ
μβÞ�: ðA11Þ

Similarly, one can calculate Δρσ
μν∇αðΔμν

αβÞ and Δρσ
μν∇2ðΔμν

αβÞ. Using these derivatives and replacing uβð∇λπ
βλÞ with

−πβλð∇λuβÞ, Eq. (A9) simplifies to

π̇hρσið6Þ ¼ −Δρσ
μνð∇γΔ

μν
αβρ

γαβÞ þ 1

7βπ
πγhρπσiασγα þ

2

21βπ
θπhρα πσiα þ 2

63
τπθ

2πρσ −
2

35βπ
πρσσλβπ

βλ: ðA12Þ

Therefore, we finally obtain the third-order evolution equation of shear stress tensor as

π̇hμνi ¼ −
πμν

τπ
þ 2βπσ

μν þ 2πhμγ ωviγ −
10

7
πhμγ σviγ −

4

3
πμνθ þ 24

7βπ
πρhμωviγπργ −

5

21βπ
πhμγ πviγθ

−
52

245βπ
πμνπργσργ −

15

49βπ
πρhμπviγσργ −

2

7
τπω

ρhμωviγπργ −
4

7
τππ

ρhμωviγωργ −
8

63
τππ

μνθ2

þ 26

21
τππ

hμ
γ ωviγθ − Δμν

αβ∇γðΔαβ
σδρ

γσδÞ þ 1

7βπ
πγhμπνiβωγβ: ðA13Þ

APPENDIX B: EVOLUTION EQUATION OF ρμνλ

In this appendix, we derive the evolution equation of third rank tensor ρμνλ. In the process of deriving it, firstly we took the
comoving derivative of ρμνλ and obtain the following equation

ρ̇hμνλi þ 1

τR
ρμνλ ¼ Δμνλ

γδσ

h
Δ̇γδσ

αβρ

Z
dP

pαpβpρ

ðu · pÞ δf
i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðiÞ

− Δμνλ
αβρ

Z
dPpαpβpρ

� ˙feq
ðu · pÞ|fflfflffl{zfflfflffl}
ðiiÞ

þ pγ∇γf

ðu · pÞ2|fflfflffl{zfflfflffl}
ðiiiÞ

þ δf
ðu · pÞ2Dðu · pÞ
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

�

ðivÞ

: ðB1Þ

1. Term (i)

The first term of Eq. (B1) is

ðiÞ ¼ Δμνλ
γδσ

�
Δ̇γδσ

αβρ

Z
dP

pαpβpρ

ðu · pÞ δf
�
: ðB2Þ

The six rank tensor, Δμνλ
γδσ is orthogonal to 4-velocity and second rank tensor, i.e. Δμνλ

γδσuμ ¼ 0, Δμνλ
γδσΔμν ¼ 0.

Using these properties and the form of second-order viscous correction, the first term contribution in terms of
thermodynamic integral is obtained as
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ðiÞ ¼ Δμνλ
γδσ

�
Δ̇γδσ

αβρ

Z
dP

pαpβpρ

ðu · pÞ δf

�
¼ −

3β

βπ
Ið2Þ52 ðu̇hμπνλiÞ −

6τπβ

βπ
Ið2Þ52 ðωγhμπνγ u̇λiÞ

−
15β

7β2π
Ið2Þ52 ðπγhμπνγ u̇λiÞ þ

2βτπ
βπ

Ið2Þ52 θðπhμνu̇λiÞ: ðB3Þ

The values of different thermodynamic integral can be found in Appendix C.

2. Term (ii)

The second term of Eq. (B1) is

ðiiÞ ¼ −Δμνλ
αβρ

Z
dP

pαpβpρ

ðu · pÞ
˙feq: ðB4Þ

The comoving derivative of ˙feq is

˙feq ¼ −
�
ðu · pÞ

�
βθ

3
−

β

12P
πμνσμν

�
þ βpμu̇μ

�
feq: ðB5Þ

Since, uαΔμνλ
αβρ ¼ uβΔμνλ

αβρ ¼ uρΔμνλ
αβρ ¼ ΔαβΔμνλ

αβρ ¼ ΔαρΔμνλ
αβρ ¼ ΔρβΔμνλ

αβρ ¼ 0. Hence, the second term has no contribution.

ðiiÞ ¼ −Δμνλ
αβρ

Z
dP

pαpβpρ

ðu · pÞ
˙feq ¼ 0: ðB6Þ

3. Term (iii)

The third term of Eq. (B1) is

ðiiiÞ ¼ −Δμνλ
αβρ

Z
dP

pαpβpρpγ∇γðfeq þ δfÞ
ðu · pÞ2 ; ðB7Þ

which can be further simplified as

ðiiiÞ ¼ −Δμνλ
αβρ

Z
dPpαpβpρpγ

�
∇γ

�
feq

ðu · pÞ2
�
− feq∇γ

�
1

ðu · pÞ2
�
þ∇γ

�
δf

ðu · pÞ2
�
− δf∇γ

�
1

ðu · pÞ2
��

; ðB8Þ

¼ −Δμνλ
αβρ

Z
dPpαpβpρpγ

�
∇γ

�
feq

ðu · pÞ2
�

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
ðaÞ

þ 2pσð∇γuσÞ
ðu · pÞ3 feq|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

ðbÞ

þ∇γ

�
δf

ðu · pÞ2
�

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
ðcÞ

þ 2pσð∇γuσÞ
ðu · pÞ3 δf

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
�

ðdÞ

: ðB9Þ

The term (a) is

ðaÞ ¼ −Δμνλ
αβρ∇γ

Z
dp

pαpβpρpγ

ðu · pÞ2 feq: ðB10Þ

Using the definition of thermodynamic integral, the above equation is obtained as

ðaÞ ¼ −Δμνλ
αβρ½Ið2Þ42 f∇γðΔαβÞΔργ þ∇γðΔργÞΔαβ þ∇γðΔαρÞΔβγ þ∇γðΔβγÞΔαρ

þ∇γðΔρβÞΔαγ þ∇γðΔαγÞΔρβg þ ð∇γI
ð2Þ
42 ÞfΔαβΔργ þ ΔαρΔβγ þ ΔαγΔβρg�;

¼ −Δμνλ
αβρI

ð2Þ
42 ½∇ρðΔαβÞ þ∇βðΔαρÞ þ∇αðΔρβÞ�; ðB11Þ
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where,

∇ρðΔαβÞ ¼ ∇ρðgαβ − uαuβÞ ¼ −ð∇ρuαÞuβ − uαð∇ρuβÞ:|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
vanishes on contraction with six rank tensor

ðB12Þ

Hence, the contribution from (a) is zero.
The term (b) is

ðbÞ ¼ −2ð∇γuσÞΔμνλ
αβρ

Z
dP

pαpβpρpγpσ

ðu · pÞ3 feq; ðB13Þ

¼ −2ð∇γuσÞΔμνλ
αβρ½Ið3Þ50 ðuαuβuρuγuσÞ þ Ið3Þ51 ðΔαβuρuγuσ þ Δαρuβuγuσ þ Δαγuβuρuσ

þ Δασuβuρuγ þ Δβρuαuγuσ þ Δβμuαuρuσ þ Δβσuαuρuγ þ Δργuαuβuσ þ Δρσuαuβuγ

þ ΔγσuαuβuρÞ þ Ið3Þ52 ðΔαβΔργuσ þ ΔαρΔβγuσ þ ΔαγΔβρuσ þ ΔαβΔρσuγ þ ΔαρΔβσuγ

þ ΔασΔρβuγ þ ΔαβΔγσuρ þ ΔαγΔβσuρ þ ΔαβΔγσuρ þ ΔαγΔβσuρ þ ΔαβΔγσuρ

þ ΔασΔβγuρ þ ΔαρΔγσuβ þ ΔαγΔρσuβ þ ΔασΔργuβ þ ΔβρΔγσuα þ ΔβγΔρσuα

þ ΔβσΔργuαÞ�: ðB14Þ

On contraction with six rank tensor, this term also vanishes.
The term (c) is

ðcÞ ¼ −Δμνλ
αβρ

Z
dPpαpβpρpγ∇γ

�
δf

ðu · pÞ2
�
; ðB15Þ

¼ −Δμνλ
αβρ∇γ

Z
dPpαpβpρpγ

�
δf

ðu · pÞ2
�
: ðB16Þ

Using the following identity,

Δαρpρ ¼ phαi ¼ pα − ðu · pÞuα; ðB17Þ

Eq. (B16) is obtained as

ðcÞ ¼ −Δμνλ
αβρð∇μuαÞ

Z
dPpβpρpμ δf

u · p
− Δμνλ

αβρ

Z
dPuαpβpρpμ∇μ

�
δf
u · p

�
− Δμνλ

αβρ∇μ

Z
dPphαipβpρpμ δf

ðu · pÞ2 ;

¼ −Δμνλ
αβρð∇μuαÞ

Z
dPpβpρpμ δf

u · p
− Δμνλ

αβρð∇μuβÞ
Z

dPpαpρpμ δf
u · p

− Δμνλ
αβρð∇μuρÞ

Z
dPpαpβpμ δf

u · p

− Δμνλ
αβρð∇μuμÞ

Z
dPpαpβpρ δf

u · p
− Δμνλ

αβρ∇μ

Z
dPphαiphβiphρiphμi

�
δf

ðu · pÞ2
�
: ðB18Þ

After putting the form of second order viscous correction to the distribution function, the above equation comes out to be
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ðcÞ ¼ −
18βτπ
5βπ

u̇γΔμνλ
αβρI

ð1Þ
42 ½ð∇βuαÞπργ þ ð∇ρuαÞπβγ � þ 3βτπ

5βπ
Ið1Þ42 Δ

μνλ
αβρ½ð∇βuαÞð∇γπργÞ þ ð∇ρuαÞð∇γπβγ Þ�

−
9βτπ
βπ

Δμνλ
αβρI

ð3Þ
63 ½4ð∇βuαÞπργ u̇γ þ 4ð∇γuαÞπβγ u̇ρ þ 2ð∇γuαÞπρβu̇γ� þ

3βτπ
βπ

Ið3Þ63 Δ
μνλ
αβρ½4ð∇βuαÞð∇γπργÞ

þ 4ð∇γuαÞð∇ρπβγ Þ þ 2ð∇γuαÞð∇γπ
ρβÞ� − ρμνλθ þ 3

7
∇hμπνλi þ 6Δμνλ

αβρπ
β
γωργ∇α

�
βτπ
βπ

Ið3Þ63

�

þ βτπ
βπ

Ið3Þ63 Δ
μνλ
αβρ½6ωργ∇απβγ þ 6πβγ∇αωργ� − 30

14
Δμνλ

αβρπ
γβπργ∇α

�
β

β2π
Ið3Þ63

�
−
30β

7β2π
Ið3Þ63 ∇μνλ

αβρπ
ρ
γ∇απγβ

þ 2πβρθΔμνλ
αβρ∇α

�
τπβI

ð3Þ
63

βπ

�
þ 2βτπ

βπ
θIð3Þ63 Δ

μνλ
αβρ∇απβρ − Δμνλ

αβρð10Δργπασπβσ þ 8πραπβγÞ∇μ

�
β2Ið4Þ84

4β2π

�

− Δμνλ
αβρ

�
β2Ið4Þ84

4β2π

�
∇γð10Δργπασπβσ þ 8πραπβγÞ − Δμνλ

αβρð10Δργπασπβσ þ 8πραπβγÞ∇μ

�
βIð5Þ84

4β2π

�

− Δμνλ
αβρ

�
βIð5Þ84

4β2π

�
∇γð10Δργπασπβσ þ 8πραπβγÞ: ðB19Þ

The term (d) is

ðdÞ ¼ −Δμνλ
αβρ

Z
dPpαpβpρpγ

�
2pσð∇γuσÞ
ðu · pÞ3

�
δf: ðB20Þ

Putting the form of δf and solving for its contribution, we have

ðdÞ ¼ −
β

βπ

�
24τπ
5

�
Ið3Þ63 u̇

ρ½3σhμνπλiρ � þ 12βτπ
5βπ

Ið3Þ63 Δ
μνλ
αβρðσαβ∇γπργÞ − 6τπ

�
β

βπ

�
Ið5Þ84

�
2σhλμπνiρ u̇ρ þ 2σhλνπμiρ u̇ρ

þ 2ωhλμπνiρ u̇ρ þ 2ωhλνπμiρ u̇ρ þ 2σhλγ πμνiu̇γ þ 2σhλγ πμνiu̇γ þ 10

3
θπhμνu̇λi þ 2θπhμλu̇νi þ 2θπhνλu̇μi

�

þ τπ

�
β

βπ

�
Ið5Þ84 Δ

μνλ
αβρ½2ð∇γπβαÞð∇ρuγÞ þ 2ð∇γπαβÞð∇γuρÞ þ 6θð∇ρπαβÞ�: ðB21Þ

4. Term (iv)

The term (iv) is

ðivÞ ¼ −Δμνλ
αβρ

Z
dPpαpβpρ

�
δf

ðu · pÞ2Dðu · pÞ
�
: ðB22Þ

Simplifying the above term and using the form of δf, the term (iv) is obtained as

ðivÞ ¼ −Δμνλ
αβρ

Z
dP

pαpβpρpγu̇γ
ðu · pÞ2 δf; ðB23Þ

¼ −3
β

βπ
Ið3Þ63 π

hμνu̇λi þ 6β
τπ
βπ

Ið3Þ63 u̇
hμπνγωλiγ −

30β

14β2π
Ið3Þ63 u̇

hμπνγπλiγ þ
2βτπ
βπ

Ið3Þ63 θðu̇hμπνλiÞ

−
β2

4β2π
Ið4Þ84 ½10ðπγhμπνγ u̇λi þ 8u̇γπhμνπλiγÞ� −

β

4β2π
Ið5Þ84 ð10πγhμπνγ u̇λi þ 8u̇γπhμνπλiγÞ: ðB24Þ

Finally, adding the terms (i), (ii), (iii) and (iv) and using the values of different integrals given in Appendix C, the evolution
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equation for ρμνλ is obtained as,

ρ̇hμνλi þ 1

τρ
ρμνλ ¼ 3

7
∇hμπνλi −

18

7
u̇hμπνλi −

187

81
ρμνλθ −

10

7
τπu̇hμπνλiθ −

36

7
τπω

γhμπνγ u̇λi

−
389

441βπ
πγhμπνγ u̇λi −

343

105βπ
u̇γπγhμπνλi þ

18

7
τπu̇γωγhμπνλi −

6

7
τπω

γhμ∇γπ
νλi

−
6

7
τπω

γhμ∇νπλiγ −
6

7
τππ

hμ
γ ∇νωλiγ −

47

63βπ
πhμν∇γπ

λiγ −
11

21βπ
πγhμ∇γπ

νλi −
665

441βπ
πγhμ∇νπλiγ : ðB25Þ

APPENDIX C: THERMODYNAMIC INTEGRALS

We define the thermodynamic integrals

IðmÞ
nq ¼ 1

ð2qþ 1Þ!!
Z

dpðu · pÞn−2q−mðΔαβpαpβÞqfeq; ðC1Þ

and state the following relation

Ið0Þnq ¼ 1

β
½−Ið0Þn−1;q−1 þ ðn − 2qÞIð0Þn−1;q�: ðC2Þ

With the above definition, we identify Ið0Þ20 ¼ ϵ and Ið0Þ21 ¼ −P. The values of different integrals are as follows

Ið2Þ52 ¼ 4T5

5π2
¼ Ið1Þ42 ; Ið4Þ84 ¼ 4T6

63π2
; Ið5Þ84 ¼ 4T5

63π2
; Ið3Þ63 ¼ −

4T5

35π2
:
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