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For the study of the structure of baryons it is necessary to investigate the production of a baryon pair in
eþe− annihilation. The baryon-antibaryon pair production at the electron-positron linear collider makes it
possible to investigate in detail the basic structure of the Standard Model. The creation of baryon-
antibaryon pairs in electron-positron annihilation provides an increasingly powerful tool at higher c.m.
energies. We present phenomenological results for Σ0Σ̄0 production in eþe− interaction at the BESIII
and BABAR Colliders. In the present work, we investigate a hyperon pair produced in the reaction
eþe− → Σ0Σ̄0. We calculate the total cross section of the process eþe− → Σ0Σ̄0 taking into account the
contributions of the D-meson loop and three gluon loops as well as the interference of all diagrams to the
Born approximation. For these contributions large relative phases are generated with respect to the pure
electromagnetic mechanism. For the large momentum transferred region we obtain as a byproduct a fit of
the electromagnetic form factor of the Σ hyperon.
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I. INTRODUCTION

It is understandable that the Universe consists of bary-
ons, the lightest baryons and nucleons account essentially
for all of the observable matter. In fact, understanding the
structure of nucleons is of high importance for the whole set
of baryons forming the lowest SU(3) octet. To understand
the strong interaction in the confinement domain, i.e.,
where quarks form hadrons is one of the most challenging
questions in contemporary physics.
The study of the electromagnetic structure of hadrons,

which began with the pioneering work of Hofstadter [1,2],
up to now remains an open and interesting field of research
in high energy physics. We can say that one of the most
basic tools for studying the structure of the nucleon is the
production of hadrons in electron-positron interaction at
high energies.
The electromagnetic form factors (EMFFs), which can

be investigated using the process of electron-positron
interaction, are among the most basic quantities containing
information about the internal structure of the nucleon.
The electromagnetic form factors of nucleons with a large

momentum transfer provide valuable information about
their structure. In [3], the cross section of the reactions
p̄p → eþe− and eþe− → p̄p are analyzed in the near-
threshold region and are used for the proton of the effective
form factor (form factors GE and GM) at energies close to
the p̄p threshold. The authors of [4] highlighted the
presence in the BABAR data of deviations in the timelike
form factors of protons from the point behavior of the
proton-antiproton electromagnetic current in the reaction
eþe− → p̄p. Therefore, in this work, a form factor was
used in the form of F0 þ Fosc, where F0 is a parametriza-
tion expressing the long-term trend of the form factor, and
Fosc is a function of the form exp(-Bp)cos(Cp), where p is
the relative momentum of the final p̄p-pair. In [5], the
effective EMFFs of the proton and neutron in the timelike
region are investigated at the electron-positron annihilation
into antinucleon-nucleon (N̄N) pairs, which are treated in
the distorted wave Born approximation. In [6], the method
of effective optical potential that well describes the NN̄
scattering phases and a sharp dependence of the NN̄
production cross sections was used for the pp̄ and nn̄
production in eþ e annihilation near the threshold. The
authors of this work used the electromagnetic form factors
GE and GM for protons and neutrons near the threshold.
In [7,8] it was proposed that the electromagnetic form

factors of hadrons can be studied for timelike region
momentum transfers, q2 > 0, through measuring hadron
pair production cross sections in electron-positron colli-
sions process.
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The electromagnetic form factor in the timelike region in
terms of available data [9–17] is consistent with naive
quark counting rules and the perturbative QCD (pQCD)
prediction at large q2 [18,19]. In this case, the use of the
timelike form factors can offer a unique opportunity to
study the inner structure of hadrons and the electromagnetic
property of hyperons.
Today, most of our knowledge of the experimentally

established nucleon resonances listed in [20] is mainly from
the electron-positron and proton-proton (proton-antiproton)
interaction experiments.
It is necessary to note that in the transition region

between the perturbative and nonperturbative regimes the
ψð3770Þ has a mass of the charmonium resonance.
Therefore, to study the structure of baryons one should
investigate the production of a baryon pair in eþe−
annihilation. Therefore, the study of strong and hadronic
decays of the ψð3770Þ will provide knowledge of its
structure in perturbative and nonperturbative strong inter-
actions in this energy region [21].
It must be emphasized that the BESIII have collected the

largest data sample of eþe− collisions at 3.773 GeV. After
analyzing samples together with data, it became possible to
theoretically investigate exclusive decays of ψð3770Þ tak-
ing into account the interference of resonant and nonreso-
nant amplitudes.
The charmonium states with JPC ¼ 1−−, such as J=ψ ,

ψð3770Þ, and others, are productions through electron-
positron annihilation into a virtual photon at electron-
positron colliders. This is followed by a decay in these
charmonium states, i.e., decay into light hadrons through
either the three-gluon process (eþe− → ψ → ggg →
hadrons), or the one-photon process (eþe− → ψ →
γ� → hadrons).
According to the Okubo-Zweig-Iizuka (OZI) rule, the

ψð3770Þ, the lowest lying 1−− charmonium state above the
DD̄ threshold, is expected to decay dominantly into theDD̄
final states [22,23]. In [24], it was shown that the binary
with two particles produced in the final states give the
possibility to further simplify the consideration of the
processes with charmonium in the intermediate state.
The study of the process of ψð3770Þ production in eþe−

annihilation and its subsequent decay into two hadron is a
test of the prediction of QCD, which can be understood
based on quark distribution amplitudes in hadron-hadron
pairs, and the total hadron helicity conservation. Due to its
richness of cc̄ states the ψð3770Þ is one of those prominent
structures in the hadronic cross section, that are of great
interest to theory [20].
At the energy around 3.770 GeV, the well-established

ψð3770Þ resonance is the only observed structure, i.e., the
ψð3770Þ is the lowest mass charmonium resonance above
the open charm pair DD̄ production threshold. It is
expected that the ψð3770Þ resonance can decay almost
entirely into a pureDD̄ [25] and the baryon-antibaryon pair

production at an electron-positron collider can be tested by
fundamental symmetries in the baryon sector, in particular
when the probability of the process is enhanced by a
resonance such as the J=ψ (or ψ) [26].
It is necessary to note that the BESIII Collaboration

performed high-precision studies of a possible threshold
enhancement in the eþe− → Σ�Σ̄∓ [27] and Ξ−Ξ̄þ [28]
processes and also showed that the cross section is non-
vanishing near the threshold. This means that the threshold
effect obtained in this way will be useful for measuring the
near-threshold pair generation of hyperons Σ0Σ̄0, which
was observed in the BESIII [29] and BABAR [13]
experiments.
We should note that the eþe− → Σ0Σ̄0 process has been

studied in detail by many authors, and several experiments
are extremely important for modern high-energy physics
[13,29–41].
In the present paper, the first problem is the calculation

of the total cross section with allowance for the D-meson
loop and three gluon contributions within the framework of
QED and the SM.
Our aim in this paper is to study the characteristics of the

Σ0Σ̄0 production process with taking into account the
contributions of the D-meson loop and three gluon loops
in the Born approximation.

II. THE PROCESS e+ e − → Σ0Σ̄0

IN BORN APPROXIMATION

In this section, in the leading order we want to consider
the Σ0Σ̄0 production in the process electron-positron
annihilation. The process is written in the form,

eþðp1Þ þ e−ðp2Þ → Σ0ðq1Þ þ Σ̄0ðq2Þ; ð1Þ

where p1, p2 are 4-momenta of the positron and electron in
the initial state; q1, q2 are 4-momenta of the Σ0 and Σ̄0 in
the final state.
The kinematics for the process can be written in terms of

the following Mandelstam invariants:

s ¼ ðp1 þ p2Þ2 ¼ ðq1 þ q2Þ2;
t ¼ ðp1 − q1Þ2 ¼ ðp2 − q2Þ2;
u ¼ ðp1 − q2Þ2 ¼ ðp2 − q1Þ2: ð2Þ

In this process, it follows from (2) that the sum of
Mandelstam invariants, which we will use, can be con-
nected, in the form

sþ tþ u ¼ 2m2
e þ 2M2

Σ; ð3Þ

where me and MΣ are the electron and Σ0 hyperon masses,
respectively. In this work, we neglect the mass of the
electron me.
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The “master formula” for evaluating the cross section for
the process (1) has the form,

dσ ¼ 1

8s

X
spins

jMj2dΦ2; ð4Þ

the square of the matrix element is summed over all
possible spin states of the initial and final particles.
The phase-space element of final particles dΦ2 can be

written in the following form:

dΦ2 ¼ ð2πÞ4δðp1 þp2 − q1 − q2Þ
dq1

ð2πÞ32E1

dq2

ð2πÞ32E2

¼ 1

ð2πÞ2 δðp1 þp2 − q1 − q2Þ
dp1

2E1

dp2

2E2

¼ jpj
16π2

ffiffiffi
s

p dΩΣ

¼ β

16π
d cosθΣ; ð5Þ

where dΩΣ ¼ dϕΣd cos θΣ ¼ 2πd cos θΣ, and ϕΣ and
θΣ are the azimuthal and the polar angles of the final
Σ-hyperon momentum in the c.m. system, that is θΣ is
the angle between the directions of the momenta of the
initial electron p2 and the final Σ-hyperon q1 (Fig. 1).
The modulus of three momenta of the final Σ0-hyperon
(or Σ̄0-hyperon) is fixed in this case by the δ-function in the
phase volume, i.e.,

jpj≡ jq1j ¼ jq2j ¼
ffiffiffi
s

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2
Σ

s

r
¼

ffiffiffi
s

p
2

β;

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2
Σ

s

r
; ð6Þ

where β is the velocity of the Σ0-hyperon in the eþe− c.m.
system, s is the square of the c.m. energy, and MΣ is the
mass of the Σ0-hyperon.
The four-momenta of the leptons and Σ0-hyperons are

given by

p2 ¼
ffiffiffi
s

p
2

ð1; 0; 0; 1Þ; p1 ¼
ffiffiffi
s

p
2

ð1; 0; 0;−1Þ;

q1 ¼
ffiffiffi
s

p
2

ð1; β sin θΣ; 0; β cos θΣÞ;

q2 ¼
ffiffiffi
s

p
2

ð1;−β sin θΣ; 0;−β cos θΣÞ:

The Feynman diagram for eþe− annihilation into a virtual
photon, with further production of the Σ0Σ̄0 pairs in the
Born approximation of the process (1) is illustrated in
Fig. 2(a).
In the Born approximation, the process (1) is described

by a cleanly electrodynamic diagram with Fig. 2(a). We can
write the matrix element corresponding to the Feynman
diagrams for the process eþðp1Þ þ e−ðp2Þ → Σ0ðq1Þ þ
Σ̄0ðq2Þ in the Born approximation as follows:

MB ¼ −
e2

s
½v̄ðp1Þγμuðp2Þ�½ūðq1ÞΓμðqÞvðq2Þ�; ð7Þ

where the quantity e is the elementary electric charge, i.e.,
e ¼ ffiffiffiffiffiffiffiffi

4πα
p

, α ≈ 1=137 is the fine structure constant [20],
and s is the squared the total invariant mass of the lepton
pair. To describe the composite nature of the hyperons
(baryons), form factors have been introduced. As shown in
Fig. 2(a), for the annihilation process, the γΣ0Σ̄0 ðγBB̄Þ
current can be written in terms of the Pauli form factors F1

and F2. The vertex function ΓμðqÞ, which describes the
vertex of the photon with hyperons [Fig. 2(a)] can be
written as follows:

ΓμðqÞ ¼ F1ðq2Þγμ −
F2ðq2Þ
4MΣ

ðγμq̂ − q̂γμÞ; ð8Þ

whereMΣ is the hyperon (baryon) mass, q is the transferred
momentum. Here, for q̂ we will use the notation q̂ ¼ qνγν.
In (8) the functions F1ðq2Þ and F2ðq2Þ are the form factors
of Σ-hyperons and are usually normalized as follows,
F1ð0Þ ¼ 0 and F2ð0Þ ¼ μΣ, where μΣ is the Σ-hyperon
anomalous magnetic moment.
However, in the work [42] the authors showed that this

pointlike behavior of the proton near the threshold is not so

FIG. 1. The definition of the scattering angle θΣ from (5) in the
c.m. system.

(a) (b)

FIG. 2. The Feynman diagrams describing for the eþe− →
Σ0Σ̄0 process corresponding to the Born approximation (a) and
the intermediate state ψð3770Þ charmonium (b).
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unambiguous, i.e., the nontrivial structure of the baryon
starts to manifest itself even at relatively low q2 and thus
one must take into account the structure of these effects.
Moreover, a comparison of the Born cross section with the
data below will show that we cannot do without a form
factor. However, it should be noted here that in the timelike
region, due to small statistics and, consequently, due to
large errors in experimental data, it is not possible to
distinguish between the electric GE and magnetic GM form
factors in the experiment.
Therefore, we, like many authors, will use the approxi-

mation jGEj ¼ jGMj, from which it follows that
F2ðq2Þ ¼ 0. Thus, we introduce the effective form factor
F1ðq2Þ ¼ Gðq2Þ, which was used on the basis of QCD
in [18,43].
For the square of the matrix element by (7), after

calculating the trace and taking into account the form
factor F1ðq2Þ ¼ Gðq2Þ the following formula can be
obtained:X

spins

jMBj2 ¼ 64π2α2jGðsÞj2ð2 − β2 sin2 θΣÞ: ð9Þ

Using (9) and taking into account the expressions for the
phase volume in (5), the differential cross section (4) can be
written in the following form:

dσBðsÞ ¼
πα2β

2s
jGðsÞj2ð2 − β2 sin2 θΣÞd cos θΣ: ð10Þ

To obtain the total cross section, it is necessary to integrate
this expression (10) over all possible scattering angles
d cos θΣ ¼ sin θΣdθΣ. The integration limits for the angles
are determined as follows:

0 ≤ θΣ ≤ π:

After integrating over the angle θΣ, we obtain an expression
for the total cross section in the Born approximation in the
following form:

σBðsÞ ¼
2πα2

3s
βð3 − β2ÞjGðsÞj2: ð11Þ

The form factor GðsÞ, for which we use the pQCD form
from [18,43], which takes into account the running of the
QCD coupling constant αs,

GðsÞ ¼ C
s2 log2ðs=Λ2

QCDÞ
; ð12Þ

where C is a free parameter, ΛQCD is the QCD scale
parameter. It is necessary to note that the constant C should
be fitted to the experimental data for hyperon-antihyperon

production in the energy range of the corresponding
experiment.
In the present work of Σ0Σ̄0 pair production, we fix this

constant using the BESIII measurement [29] presented in
Fig. 3. At the valueΛ ¼ 300 MeV for the parameter C after
fitting in the Born cross section from (11) with respect to
these data we have the value,

C ¼ ð59.12� 1.6Þ GeV4; ð13Þ

which we will use further for the Σ-hyperon electromag-
netic form factor (12). It should be noted that the equation
for the form factor GðsÞ (12) with the constant C from (13)
works for a relatively large momentum transferred q2.
Here, it does not pretend to work near the threshold, since
the Coulomb-like enhancement factor with many delicate
features plays an important role [3,44], or a manifestation
of the wavelike nature of hyperon (baryon) of the stabi-
lization after its emerging from the vacuum [45].

III. THE QUARKONIUM ψð3770Þ
INTERMEDIATE STATE

We would like to note that in the process (1) the main
task in this work is to describe the effect of excitation of the
ψð3770Þ charmonium resonance. As seen in Fig. 3, the
total cross section in the Born approximation (1), which
includes only the electromagnetic mechanism, cannot
describe this delicate behavior near the charmonium
resonance ψð3770Þ. Therefore, in this region, it is neces-
sary to take into account the additional contribution to the
amplitude that appears from the diagram with ψð3770Þ in
the intermediate state [Fig. 2(b)] and is enhanced by the
Breit-Wigner propagator. Thus, we can calculate the con-
tribution of the additional mechanism, when the ψð3770Þ

FIG. 3. The total cross section for the process eþe− → Σ0Σ̄0 as
a function of the c.m. energy. Black line is the total cross section
in Born approximation (11). The curve errors origin from the
form factor constant (13) fitting errors.
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[IGðJPCÞ ¼ 0−ð1−−Þ] charmonium resonance is excited in
the intermediate state. In this case, the total amplitude of the
process (1) will be the sum of two amplitudes,

M ¼ MB þMψ ; ð14Þ

where MB is the amplitude (7) of the process (1) in the
Born approximation [Fig. 2(a)], andMψ already takes into
account the contribution of the intermediate state of
ψð3770Þ charmonium, the enhanced by the Breit-Wigner
factor [Fig. 2(b)],

Mψ ¼ 1

s−M2
ψ þ iMψΓψ

Jeē→ψ
μ ðqÞ

�
gμν−

qμqν

M2
ψ

�
Jψ→Σ0Σ̄0

ν ðqÞ;

ð15Þ

where Mψ ¼ 3773.7 MeV and Γψ ¼ 27.2 MeV [20] are
the mass and total decay width of ψð3770Þ resonance;

Jeē→ψ
μ ðqÞ and Jψ→Σ0Σ̄0

ν ðqÞ are the currents that describe the
transition of an electron-positron pair into the ψð3770Þ
resonance and the transition of the ψð3770Þ resonance into
a Σ0Σ̄0 pair, respectively. We take into account the fact that

the currents Jeē→ψ
μ ðqÞ and Jψ→Σ0Σ̄0

ν ðqÞ in (15) have to be

conserved, that is qμJeē→ψ
μ ðqÞ ¼ qμJψ→Σ0Σ̄0

μ ðqÞ ¼ 0. Here,
following the paper [46], we assume that the vector current
Jeē→ψ
μ ðqÞ will have the same structure as in the case of a

photon according to (7), i.e.,

Jeē→ψ
μ ðqÞ ¼ ge½v̄ðqþÞγμuðq−Þ�; ð16Þ

only with another constant ge ¼ Fψ→Σ0Σ̄0

1 ðM2
ψ Þ, which is

equal to the value of the form factor Fψ→Σ0Σ̄0

1 ðM2
ψÞ on the

mass of charmonium, i.e., is the value of the form factor of
the vertex ψ → Σ0Σ̄0 at the ψð3770Þ mass shell [here we
accept the same approximation as in the Born case and

assume that Fψ→Σ0Σ̄0

2 ðM2
ψÞ ¼ 0�. Knowing the total decay

width of ψ → eþe−, which is equal to Γψ→eþe− ¼ 261 eV
[20], one can calculate this constant ge,

ge ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12πΓψ→eþe−

Mψ

s
¼ 1.6 × 10−3: ð17Þ

It is shown in [47] that the possible imaginary part of the
vertex eē → ψ is small, less than 10% of the real part.
Therefore, we neglect such a possible imaginary part.
We can now calculate the contribution of the intermedi-

ate charmonium to the cross section. If we substitute the
total amplitude from (14) in the general formula for the
cross section (4), then for the total cross section, we obtain
the following expression:

σ ∼ jMj2 ¼ jjMBj þ eiϕjMψ jj2
¼ jMBj2 þ 2 cosϕjMBj · jMψ j þ jMψ j2
∼ σB þ σint þ σψ ; ð18Þ

where ϕ is the relative phase between the Born contribution
MB and the additional contributionMψ . Thus, we need to
calculate only the contribution of charmonium σψ to the
cross section and the contribution of the interference of
charmonium with Born σint. Evaluating σψ and taking into
account the Born cross section σB from (11) and the
interference contribution σint with the phase ϕ, one can
calculate the total cross section including both contribu-
tions using (18) in the following form:

σψ ¼
�

σint
2 cosϕ

ffiffiffiffiffi
σB

p
�

2

: ð19Þ

Thus, we need to calculate the interference of the BornMB
contribution with the contribution that takes into account
charmonium in the intermediate state of the Mψ .
According to the general formula (4), the interference
contribution to the cross section of the process can be
written in the standard form,

dσint ¼
1

8s

X
spins

2Re½Mþ
BMψ �dΦ2: ð20Þ

In order to obtain the contribution to the total cross section,
we need to integrate in (20) over the phase space of the final
particles,

σintðsÞ ¼
1

4s2
Re

�P
sðJeē→γ

μ Þ�Jeē→ψ
ν

s −M2
ψ þ iMψΓψ

·
X
s0

Z
dΦ2ðJμγ→Σ0Σ̄0Þ�Jνψ→Σ0Σ̄0

�
; ð21Þ

where
P

s and
P

s0 are the summations over the spin states
of the initial and final particles, respectively. We now use
the method of invariant integration over the total final phase
volume, the second term in (21) can be written in the
following form:

X
s0

Z
dΦ2ðJμγ→Σ0Σ̄0Þ�Jνψ→Σ0Σ̄0

¼ 1

3

�
gμν −

qμqν

q2

�X
s0

Z
dΦ2ðJαγ→Σ0Σ̄0Þ�Jψ→Σ0Σ̄0

α : ð22Þ

Using the explicit form containing lepton currents Jeē→γ
μ

from (7) and Jeē→ψ
ν from (16), and applying the conserva-

tion of the currents, we can calculate
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X
s

ðJeē→γ
μ Þ�Jμeē→ψ

¼ −ege
X
s

½ūðp2ÞγμðqÞvðp1Þ�½v̄ðp1Þγμuðp2Þ�

≈ −egeSp½cp2γμcp1γ
μ� ≈ 4eges: ð23Þ

Substituting this result into (21) and using the explicit
form of the two-particle phase volume of the final particles
from (5) and the invariant integration method from (22),
we obtain the interference contribution to the total
cross section in the following expression in a simplified
form:

σintðsÞ ¼
egeβ
48πs

Re

�
1

s −M2
ψ þ iMψΓψ

×
Z1
−1

d cos θΣ0

X
s0
ðJα

γ→Σ0Σ0Þ�Jψ→Σ0Σ̄0

α

�
: ð24Þ

In formula (24), the subintegral expression describes all the
dynamics of the transformation of charmonium into the
Σ0Σ̄0 pair and can be expressed in a separate form,

SiðsÞ ¼
egeβ
48πs

Z1
−1

d cos θΣ0

X
s0
ðJα

γ→Σ0Σ̄0Þ�Jψ→Σ0Σ̄0

α : ð25Þ

Thus, the interference contribution to the total cross
section (24) can be written in the form,

σintðsÞ ¼ Re

�
SiðsÞ

s −M2
ψ þ iMψΓψ

�
: ð26Þ

The subscript index i in (25) denotes different possible
mechanisms of this transition. For example, the usual
OZI-permitted mechanism through the D-meson loop,
shown in Fig. 4, is quite possible. Since the mass of the
charmonium ψð3770Þ is above the threshold for the
production of the DD̄-pair, it is natural to expect that
the D-meson loop will be the main mechanism in this
reaction. However, since the excess over the thresholds is
minor (Mψ − 2MD ≈ 39 MeV, i.e., relative to the char-
acteristic energies in the problem, this value is about 1%),
we expect this contribution to be small and it is also
necessary to consider other possible mechanisms. We
think that a significant contribution will be made by the
OZI-forbidden mechanism shown in Fig. 5, which occurs
due to the three-gluon annihilation of charmonium into a
Σ0Σ̄0 pair.
Using the procedure, which is described in [48]

[Eqs. (15) and (16)], and with the help of the interfer-
ence contribution (26) with the total relative phase
between the Born amplitude MB and the charmonium
contribution Mψ , we can reconstruct the total cross
section.

IV. THE D-MESON LOOP MECHANISM

In this section, we will calculate the contribution of the
intermediate charmonium with the transition to the final
state Σ0Σ̄0 hyperon pair through the D-meson loop,
which is presented in Fig. 4. In order to calculate the
contribution of the D-meson loop to the cross section, we
need to calculate the quantity of SD from (25), which
enters into (26). For this, we have to construct the
amplitude of the MD corresponding to Fig. 4, and then
extract the value of the SD from it. Now we can write,
according to Feynman’s rules, the D-meson loop con-
tribution to the amplitude corresponding to the diagram
in Fig. 4,

FIG. 4. D-meson loop mechanism of the Feynman diagram
contributing to the Σ0Σ̄0 production in the process eþe− → Σ0Σ̄0

at the one-loop level.

FIG. 5. Three-gluon mechanism of the Feynman diagram
contributing to the Σ0Σ̄0 production in the process eþe− → Σ0Σ̄0.
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MD ¼ ge
16π2

½v̄ðp1Þγμuðp2Þ�
q2 −M2

ψ þ iMψΓψ
·
Z

dk
iπ2

½ūðq1Þγ5ðk̂þMΞÞγ5vðq2Þ�ð2kþ q2 − q1Þμ
ðk2 −M2

ΞÞððk − q1Þ2 −M2
DÞððkþ q2Þ2 −M2

DÞ
×GψDD̄ðq2; ðkþ q2Þ2; ðk − q1Þ2ÞGΞDΣðk2; ðk − q1Þ2ÞGΞDΣðk2; ðkþ q2Þ2Þ; ð27Þ

where MD, Mψ , and MΞ are the masses of the D-meson, ψð3770Þ-charmonium and Ξ-hyperon, respectively. Thus, we
use the following dependence of the form factor on the ψDD̄ vertex:

GψDD̄ðs;M2
D;M

2
DÞ ¼ gψDD̄

M2
ψ

s

logðM2
ψ=Λ2

DÞ
logðs=Λ2

DÞ
; ð28Þ

where the constant ΛD is fixed on the characteristic value of the reaction ΛD ¼ 2MD. Comparing this

expression with the general form of the amplitude from (15), we can determine the current Jψ→Σ0Σ̄0

ν ðqÞ in the
following form:

Jψ→Σ0Σ̄0

μ ðqÞ ¼ 1

16π2

Z
dk
iπ2

½ūðq1Þγ5ðk̂þMΞÞγ5vðq2Þ�ð2kþ q2 − q1Þμ
ðk2 −M2

ΞÞððk − q1Þ2 −M2
DÞððkþ q2Þ2 −M2

DÞ
×GψDD̄ðq2; ðkþ q2Þ2; ðk − q1Þ2ÞGΞDΣðk2; ðk − q1Þ2ÞGΞDΣðk2; ðkþ q2Þ2Þ; ð29Þ

and it is possible insert it into (25). In this case, for SD (25) we obtain the following expression:

SDðsÞ ¼
αgeβGðsÞ
48π2s

Z
dk
iπ2

SpDðs; k2Þ
ðk2 −M2

ΞÞððk − q1Þ2 −M2
DÞððkþ q2Þ2 −M2

DÞ
×GψDD̄ðq2; ðkþ q2Þ2; ðk − q1Þ2ÞGΞDΣðk2; ðk − q1Þ2ÞGΞDΣðk2; ðkþ q2Þ2

¼ αDðsÞZDðsÞ: ð30Þ

Here, αDðsÞ and ZDðsÞ has the following forms:

αDðsÞ ¼
αgeβGðsÞ
48π2

;

ZDðsÞ ¼
1

s

Z
dk
iπ2

SpDðs; k2Þ
ðk2 −M2

ΞÞððk − q1Þ2 −M2
DÞððkþ q2Þ2 −M2

DÞ
×GψDD̄ðq2; ðkþ q2Þ2; ðk − q1Þ2ÞGΞDΣðk2; ðk − q1Þ2ÞGΞDΣðk2; ðkþ q2Þ2; ð31Þ

where SpDðs; k2Þ is the trace of the Dirac matrices over the baryon line that can be written as follows:

SpDðs; k2Þ ¼ Sp½ð bq1 þMΣÞγ5ðk̂þMΞÞγ5ð bq2 −MΣÞðk̂ −MΣÞ�
¼ 2ððk2Þ2 þ k2ðs − 2ðM2

D þMΣMΞÞÞ − sMΣMΞ þ cDÞ; ð32Þ

where cD has the following form:

cD ¼ M4
D þ 2MΣMΞM2

D þ 2MΞM3
Σ −M4

Σ: ð33Þ

In (30), the quantities GψDD and GΞDΣ in [13,29] are the form factors for the vertices ψ → DD̄ and D → ΞΣ.
From (31) we can calculate the quantity of ZDðsÞ. By using the Cutkosky rule [49] the D-meson propagators are

equivalently replaced with the delta function,

1

ðk − q1Þ2 −M2
D
⟶ −2πi δððk − q1Þ2 −M2

DÞθð−ðk − q1Þ0Þ;
1

ðkþ q2Þ2 −M2
D
⟶ −2πi δððkþ q2Þ2 −M2

DÞθððkþ q2Þ0Þ; ð34Þ
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By using these two δ-functions (34) in (31), we obtain the imaginary part of this quantity from ZDðsÞ,

2i ImZDðsÞ ¼
ð−2πiÞ2

s

Z
dk
iπ2

SpDðs; k2Þ
k2 −M2

Ξ
GψDD̄ðs; ðkþ q2Þ2; ðk − q1Þ2Þ

×GΞDΣðk2; ðk − q1Þ2ÞGΞDΣðk2; ðkþ q2Þ2Þδððkþ q2Þ2 −M2
DÞδððk − q1Þ2 −M2

DÞ
× θððkþ q2Þ0Þθð−ðk − q1Þ0Þ: ð35Þ

After replacing these two δ-functions in (35) and performing loop integrations, we obtain the final expression for the
imaginary part of this quantity,

ImZDðsÞ ¼ −
2π

s3=2
GψDD̄ðs;M2

D;M
2
DÞ

Z1
Cð1Þ
k

dCkffiffiffiffiffiffi
D1

p
X
i¼1;2

k2ðiÞ
k2ðiÞ þM2

Ξ
SpDðs;−k2ðiÞÞG2

ΞDΣð−k2ðiÞ;M2
DÞ; s > 4M2

D; ð36Þ

where Ck ¼ cos θk is the polar angle. The definitions of the quantities kðiÞ, D1, and Cð1Þ
k we will be written in the

following form:

kð1;2Þ ¼
1

2
ð ffiffiffi

s
p

βCk �
ffiffiffiffiffiffi
D1

p
Þ; D1 ¼ sβ2C2

k − 4ðM2
D −M2

ΣÞ; Cð1;2Þ
k ¼ � 2

β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

D −M2
Σ

s

r
: ð37Þ

To evaluate ImZD from (36), we need to consider an
explicit form factor expression. Thus, for the ψ → DD̄
vertex, we need only the dependence over charmonium
virtuality q2 ¼ s. It is only in this region that we will
be interested in the dependence of the function
GψDD̄ðs;M2

D;M
2
DÞ. We need to note that when computing

the imaginary part of the ZD quantity using expression (36),
D-meson legs are on mass shell.
We need to note that the details of the calculation of the

quantity ZDðsÞ can be found in [46,48]. Here we techni-
cally calculate the imaginary part of this quantity and then
restore its real part by using the dispersion relation with one
subtraction at q2 ¼ 0. It must be noted that the Σ-hyperon
(which is the uds quark state) does not have open charm
and, therefore, the vertex ψ → Σ0Σ̄0 at q2 ¼ 0 is zero.
First, we fix the normalization of this vertex function

GψDD̄ðs;M2
D;M

2
DÞ in the decay ψð3770Þ into DD̄. For this,

it is convenient to use the quantity of the decay width of
ψ → DD̄, which fixes the functions,

gψDD̄ ≡ GψDD̄ðM2
ψ ;M2

D;M
2
DÞ: ð38Þ

Cutting the diagram by D-meson propagators, we get
the vertex ψ → DD̄ with the only dependence on the
charmonium virtuality q2 ¼ s, whose D-meson legs are
on mass shell.
To find the value of the constant gψDD̄, we need to

calculate the width of the ψ → DD̄ charmonium decay.
After calculating the decay width with the use of the
standard formula, we obtain an expression for the total
decay width in the following form:

ΓψDD̄ ¼
g2
ψDD̄Mψβ

3
D

48π
: ð39Þ

From here, knowing the experimental value for the width of
the decay of the charmonium ΓψDD̄ ¼ 25 MeV [20], we
can find the quantity of the constant gψDD̄ as

gψDD̄ ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3πΓψDD̄

Mψβ
3
D

s
≈ 18.4; ð40Þ

where βD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

D=M
2
ψ

q
is the D-meson velocity in

this decay.
Now we will consider the function GΞDΣðk2; p2Þ from

(31). Once again, the only dependence in the imaginary part
of ZD is the off mass shell of the Ξ baryon in the t-channel,
since k2 < 0.
In [46,48,50], we used the following form of the ΛDP-

vertex based on the results of [51,52]. However, in this
work we will use a form of the ΞDΣ-vertex that corre-
sponds to the results of [52,53].
The SUð4Þ symmetry leads us to the same result for

GΞDΣ,

GΞDΣðk2;M2
DÞ ¼

fDgΞDΣ

mu þmc
; k2 < 0; ð41Þ

where fD ≈ 180 MeV and

gΞDΣ ≈ gKΣΞ ¼ −7.02: ð42Þ
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For quark masses, the following values are used: mu ≈
280 MeV and mc ¼ 1.27 GeV [20].

V. THE THREE-GLUON MECHANISM

In this section, we will consider the contribution of the
intermediate charmonium with the transition to the final
Σ0Σ̄0-pair through the mechanism of three-gluon annihi-
lation. To calculate the contribution to the cross section, we
need to calculate the quantity of S3g from (25), which is
included in (26). The corresponding Feynman diagrams
for the three-gluon mechanism is presented in Fig. 5. We
would like to note that the three-gluon mechanism was
considered for the first time in [46,48]; it was refined and
some typos and minor errors were corrected. In this paper,

we simply apply this mechanism to the production of the
Σ0Σ̄0-hyperon pair through a three-gluon exchange.
According to the Feynman diagram (Fig. 5), we write

the following contribution to the quantity S3g from (26)
[which coincide with Eqs. (16) and (17) from [46] ] to the
interference of a charmonium state with the Born amplitude
[see (25)]:

S3gðsÞ ¼ α3gðsÞZ3gðsÞ; ð43Þ

where

α3gðsÞ ¼
αα3s
233

gegcolϕβGðsÞGψðsÞ; ð44Þ

Z3gðsÞ ¼
4

π5s

Z
dk1
k21

dk2
k22

dk3
k23

Sp3g δðq − k1 − k2 − k3Þ
ððq1 − k1Þ2 −M2

ΣÞððq2 − k3Þ2 −M2
ΣÞ

; ð45Þ

where gcol is the color factor, gcolð1=4Þ ¼ hΣjdijkTiTjTkjΣi ¼ 15=2. In (45), Sp3g is the product of traces over the
Σ-hyperon and the c-quark lines,

Sp3g ¼ Sp½Q̂αβγðk̂c þmcÞγμðk̂c̄ −mcÞ� · Sp½ðq̂1 þMΣÞγαðq̂1 − k̂1 þMΣÞγβð−q̂2 þ k̂3 þMΣÞγγðq̂2 −MΣÞγμ�;

where

Q̂αβγ ¼
γγð−k̂c̄ þ k̂3 þmcÞγβðk̂c − k̂1 þmcÞγα
ððkc̄ − k3Þ2 −m2

cÞððkc − k1Þ2 −m2
cÞ

þ γβð−k̂c̄ þ k̂2 þmcÞγγðk̂c − k̂1 þmcÞγα
ððkc̄ − k2Þ2 −m2

cÞððkc − k1Þ2 −m2
cÞ

þ γγð−k̂c̄ þ k̂3 þmcÞγαðk̂c − k̂2 þmcÞγβ
ððkc̄ − k3Þ2 −m2

cÞððkc − k2Þ2 −m2
cÞ

þ γαð−k̂c̄ þ k̂1 þmcÞγγðk̂c − k̂2 þmcÞγβ
ððkc̄ − k1Þ2 −m2

cÞððkc − k2Þ2 −m2
cÞ

þ γβð−k̂c̄ þ k̂2 þmcÞγαðk̂c − k̂3 þmcÞγγ
ððkc̄ − k2Þ2 −m2

cÞððkc − k3Þ2 −m2
cÞ

þ γαð−k̂c̄ þ k̂1 þmcÞγβðk̂c − k̂3 þmcÞγγ
ððkc̄ − k1Þ2 −m2

cÞððkc − k3Þ2 −m2
cÞ

: ð46Þ

In order to correctly normalize the color wave function, we
use Eq. (5) in [54]. The color wave function normalized to
unity should have the form,

1ffiffiffi
3

p q̄iqi ¼
1ffiffiffi
3

p ðq̄1q1 þ q̄2q2 þ q̄3q3Þ;

where the factor 1=
ffiffiffi
3

p
provides the correct normalization

of this state by 1.
We would like to note that the parameter of ϕ in (44)

is related to the charmonium wave function and can be
written as

ϕ ¼ jψðr ¼ 0Þj
M3=2

ψ

¼ α3=2s

3
ffiffiffiffiffiffi
3π

p ; ð47Þ

this quantity is obtained from ψ → 3g decay rate on
mass shell. From Eqs. (44) and (47) it can be seen that

the three-gluon mechanism is very sensitive to this value,
since at the charmonium scale (for s ∼M2

c) it depends to
a rather high degree on its value. We would like to note
that in the calculation we use the value αsðMcÞ ¼ 0.28,
which is expected by the evolution of αs in QCD from
the b-quark scale to the c-quark scale. We should like to
note that for the charmonium J=ψ , a much smaller value
αsðMcÞ ¼ 0.19 [54], was used which differs from
our case.
It is to be noted that one of the most important

corrections concerns the final Σ0Σ̄0 state. At the
ψð3770Þ decays, three gluons are obtained, which produce
three quark-antiquark pairs and further they form Σ0Σ̄0 in
the final state. In order to implement this mechanism, we
need to reproduce the absolute value of the cross section.
One of the purposes of this mechanism is the transition of
three gluons (with the total angular momentum equal to 1)
into the final Σ0Σ̄0 pair.
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Based on the work of [48,50], we assume that this
mechanism has much in common with the production of a
proton-antiproton and ΛΛ̄ pairs from a photon in a timelike
region. We accept that the factor Gψ ðsÞ in (44) is the
form factor which describes the mechanism of transition of
three gluons into the final Σ0Σ̄0 pair. Therefore, we can
insert into (44) an additional form factor similar to (12) but
with a different value of the Cψ parameter,

jGψðsÞj ¼
Cψ

s2 log2ðs=Λ2Þ : ð48Þ

In this work, when calculating the constant Cψ , we use the
same value as in the case of the production of the proton-
antiproton and the Σ0Σ̄0 pair [48,50], since gluons do not
feel the flavour of the quarks in the final baryons,

Cψ ¼ ð45� 9Þ GeV4: ð49Þ

Using the technique of the dispersion relation, we restore
the real part of ZD by (31) and Z3g by (45). All details of
these calculations are described in [46]. Thus, for the real
part of ZD and Z3g, we obtain the following expression:

ReZiðβÞ ¼
1

π

�
ImZiðβÞ log

���� 1 − β2

β2min − β2

����
þ

Z1
βmin

2β1dβ1
β21 − β2

½ImZiðβ1Þ − ImZiðβÞ�
�
: ð50Þ

Here, we want to note that the imaginary part ImZDðβÞ of
(36) for the D-meson loop contribution is nonzero above
the threshold (s > 4M2

D); in this case, the lower integration
limit in (50) is βmin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −M2

Σ=M
2
D

p
. However, the thresh-

old of the imaginary part ImZ3gðβÞ for the three-gluon
contribution coincides with the reaction threshold, i.e.,
smin ¼ 4M2

Σ, and therefore, the lower limit of integration
is βmin ¼ 0.

VI. THE NUMERICAL RESULTS

In this section, we present numerical results by explicitly
considering the distribution of the total cross-section from
the total energy in electron-positron collisions at the
BESIII [29] and BABAR [13] energies. The results obtained
by us are compared with the experimental data of the
BESIII and BABAR. We calculate the total cross section
using formula (11) for Σ0Σ̄0 pair production processes as a
function of the collider c.m. energy

ffiffiffi
s

p
in the range from

2.3864 GeV to 4.6 GeV.
In Fig. 3, we plot the dependence of the total cross

section on c.m. energy
ffiffiffi
s

p
for eþe− → Σ0Σ̄0 in the Born

approximation. It can be seen that with growth in energy,
the total cross section increases sharply and in the value of

energy
ffiffiffi
s

p ¼ 2.4806 GeV, the cross section reaches a
maximum, further, with increasing energy, the cross section
decreases. The obtained result on the total cross section in
the Born approximation is shown in Fig. 3. The obtained
theoretical result is compared with experimental data from
the BESIII and BABAR.
We want to note that the main parts for the general cross

section are the quantities ZDðsÞ from (31) and Z3gðsÞ
from (45), which give the corresponding (D-meson loop
and three-gluon) contributions. The dependence of ZDðsÞ
on the total energy of

ffiffiffi
s

p
in the range starting from the

reaction threshold
ffiffiffi
s

p ¼ 2M0
Σ to 4.6 GeV is shown in

Fig. 6. It is seen that in the real and imaginary parts of
ZDðsÞ the quantity remains the same as in the case of the
pp̄ [Fig. 7(a) in [48] ], and ΛΛ̄ [Fig. 6 in [50] ] final states.
In Fig. 7, we illustrated the dependence of the real and
imaginary parts of Z3gðsÞ from the total energy

ffiffiffi
s

p
. It can

be seen from this figure that the same general behavior of

FIG. 6. The quantity ZDðsÞ from (31) as a function of the c.m.
energy

ffiffiffi
s

p
starting from the threshold

ffiffiffi
s

p ¼ 2M0
Σ. In this figure

the vertical dashed line shows the position of ψð3770Þ.

FIG. 7. The quantity Z3gðsÞ from (45) as a function of the c.m.
energy

ffiffiffi
s

p
starting from the threshold

ffiffiffi
s

p ¼ 2M0
Σ. In this figure

the vertical dashed line shows the position of ψð3770Þ.
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the curves as in the case of the pp̄ [Fig. 7(b) in [48] ], and
ΛΛ̄ [Fig. 7 in [50] ] final states, but the difference in the
numerical results is much more noticeable. However, the
characteristic large negative values of the quantity Z3gðsÞ
remains, which gives a large relative phase with respect to
the Born contribution to the amplitude. Figures 6 and 7
show that the position of the ψð3770Þ resonance is marked
with a vertical dashed line.
In Fig. 8, we plot the dependence of the total cross

section in energy region around 2.6–4.5 GeV, including
the D-loop and three-gluon mechanisms into the Born
cross section, in comparison with the BESIII [29] and
BABAR [13] data. We made this graph, to show the peak
near of the ψð3770Þ charmonium resonance, which is now
clearly visible. It should be note that in our model, we
consider only the vicinity around ψð3770Þ. Thus, we have
only this charmonium in the intermediate state. If one
wants to see the plot over a wide interval, then he must
include additional charmonium states, such as ψð2SÞ or
ψð4040Þ, for example. At the moment, we do not want to
extend our calculation in such a complicated way.
Therefore, our prediction is valid only in a narrow interval,
say Mð2SÞ < ffiffiffi

s
p

< 4040 MeV. We want to note that our
models works in the vicinity of charmonium ψð3770Þ, so
we show only this region.
Since the bin width of the BABAR data is very large, to

make a comparison, one should calculate the following
convolution:

R
xmax
xmin

σðsÞdx
xmax − xmin

; ð51Þ

where x≡ ffiffiffi
s

p
, xmax;min are the limits of bin. Using the

formula (51), we calculated the total cross sections over a
wide range of 3.2–3.6 GeV (also in the range 2.8–3.0 GeV)
and compared our theoretical results with the experimental
BABAR data in the energy ranges of 2.8–3.0 GeV and
3.2–3.6 GeV. In Table I one can see the corresponding
comparison of our results with BABAR data.
In this work, we need to remind that we are not doing any

additional parameter fitting. All parameters of our model
are fixed by calculation for the eþe− → pp̄ process [48].
Figure 9 shows the dependence of the total relative phase

ϕψ as a function of the c.m. energy
ffiffiffi
s

p
, which is determined

by the charmonium contribution of Mψ to the amplitude
with respect to the Born contribution ofMB without taking
into account the Breit-Wigner factor, that is,

SDðsÞ þ S3gðsÞ ¼ jSðsÞjeiϕψ ; ð52Þ

where SDðsÞ is defined from (30) and S3gðsÞ from (43). It
also shows that the position of the ψð3770Þ resonance is
marked with a vertical dashed line. It should be noted that,
as is seen from Fig. 9 at the point of the ψð3770Þ
charmonium the relative phase, and the corresponding
total cross section (18) at the point of ψð3770Þ charmonium
are obtained,

σψ ¼ 1.102 pb; ϕψ ¼ 194°: ð53Þ

It can be assumed that such a feature is common for the
decay of charmonium of two baryons into the final state.
This was shown in the pp̄ and ΛΛ̄ final states for the

FIG. 8. The total cross section in energy region around
2.6–4.5 GeV including two mechanisms (D-meson loop and three
gluon) in comparison with the BESIII [29] and BABAR [13] data.

TABLE I. The numerical results of Bornþ DD-loop þ ggg
cross sections for the c.m. energy

ffiffiffi
s

p
a comparison BABAR data.ffiffiffi

s
p

;GeV σexpðpbÞ σBornþDDloopþggg
th ðpbÞ

2.800–3.000 3.4þ8.5
−7.8�0.4

14.14
3.200–3.600 <2.5 3.03

FIG. 9. The total relative phase of the charmonium ψð3770Þ
contribution as a function of the center-of-mass energy

ffiffiffi
s

p
.
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charmonium ψð3770Þ in [46,48,50] and for the charmo-
nium χc2ð1PÞð3556Þ in [47].

VII. CONCLUSION

In this paper, we have studied the process of electron-
positron annihilation into a Σ0Σ̄0 pair in the vicinity of the
charmonium ψð3770Þ resonance. In the eþe− → Σ0 þ Σ̄0

process, besides the Born mechanism, which represents
is the pure QED, we also investigated two more contribu-
tions associated with the intermediate state of the charmo-
nium ψð3770Þ. One of them represents the contributions of
the D-meson loop and the other is the contributions of the
three-gluon mechanism. Here we must remind that the
reaction eþe− → Σ0 þ Σ̄0 can also be initiated by a vector-
charmonium state such as the ψ . Since the photon and the ψ
are both vector mesons, the structures of the corresponding
cross section distributions are similar.
It has been shown that both mechanisms make a

significant contribution and give a large part of the final
result. It is also important to note that the curve we obtained

reproduces a minor (low) slope of the experimental
points on the left and right shoulders with respect to the
central point. Once again, we want to note that in this
calculation we do not use any fitting procedures. All
the parameters were fixed for the pp̄ production channel
in [48]. We wanted to perform an accurate scan of the
energy region around the ψð3770Þ charmonium resonance
with small steps. From this we can get a basis for
concluding that during the decay of charmonium the
phases of the vertices ψ → pp̄, ψ → ΛΛ; and ψ → Σ0Σ̄0

are large (ϕψ ∼ 200°) and can be accurately measured in
these channels. It should be noted that the large-
phase generation is also shown by us and in other series
of papers [46–48,50]. In the future, we plan to consider
other binary processes of formation of final states induced
by annihilation of charmonium.
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