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In many well-motivated models of the electroweak scale, cascade decays of new particles can result in
highly boosted hadronic resonances (e.g., Z=W=h). This can make these models rich and promising targets
for recently developed resonant anomaly detection methods powered by modern machine learning.
We demonstrate this using the state-of-the-art classifying anomalies through outer density estimation
(CATHODE) method applied to supersymmetry scenarios with gluino pair production. We show that
CATHODE, despite being model agnostic, is nevertheless competitive with dedicated cut-based searches,
while simultaneously covering a much wider region of parameter space. The gluino events also populate
the tails of the missing energy and HT distributions, making this a novel combination of resonant and tail-
based anomaly detection.
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I. INTRODUCTION

The absence of new physics at the LHC is an enduring
mystery. Many well-motivated theoretical frameworks such
as supersymmetry, extra dimensions, and composite Higgs
have predicted signatures of new particles at the weak scale,
yet countless searches for these new particles have not
found any significant evidence for them to date.
Nearly all of these searches for physics beyond the

Standard Model (BSM) are model specific to some degree,
optimized for specific signal scenarios, often using simu-
lations. It is highly likely that these searches have not
thoroughly covered the full phase space at the LHC, leaving
a real possibility of new physics simply hiding in the data at
the LHC, undiscovered because we have not searched for it.
Recently there has been considerable interest in devel-

oping more model-agnostic search strategies for the
LHC [1–3]. In particular, a lot of activity has focused on
“resonant anomaly detection” methods [4–22]. In these
approaches, one singles out a specific kinematic feature
(e.g., the invariant mass of something in the event) in which
new physics is postulated to be localized (resonant) to a
window. This window serves as the signal region (SR) of

the anomaly search. Then one uses the sidebands and
modern machine learning techniques to learn a multivari-
ate, data-driven background template in additional features
x. Finally, one employs further techniques (such as a
classifier) to learn the difference between the background
template and the data itself in the SR, in the form of an
anomaly score

RðxÞ ¼ pdataðxÞ
pbgðxÞ

: ð1Þ

If pbgðxÞ is the true background density and the classifier is
optimal, this is the Neyman-Pearson optimal (idealized)
anomaly detector in the SR. By cutting on RðxÞ, one can
greatly enhance the significance of any resonant new
physics in the SR.
So far this activity has almost exclusively focused on

new physics that is fully localized—both in the SR and in
the features x—and using a global resonant feature such
as the invariant mass of a dijet system. Here we point out
that the resonant anomaly detection technique is more
general and both assumptions can be easily relaxed.
First, resonant anomaly detection methods can be

applied to any resonant feature in the event, as long as
the background satisfies the assumption of smoothness in
that feature. One strong motivation for considering this
broader perspective is that in many well-motivated models,
such as those for the electroweak hierarchy, highly boosted
resonances (either Z=W=h from the SM or additional BSM
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particles such as a heavier Higgs boson) can be quite
common in the decays of heavier particles.
Additionally, we seek to broaden the scope of resonant

anomaly detection in this work by pointing out that the
signal need not be localized in all (or any) of the features x;
it can also appear on the tails of the x distribution (although
of course the signal needs to be distinguishable in some of
the features). This is a feature of resonant anomaly detec-
tion that has not been utilized so far. Anomalies on the
tails of distributions such as pmiss

T , HT , and Meff are quite
common and plausible in models of TeV-scale new physics.
In this work, we illustrate this broader application of

resonant anomaly detection using a supersymmetric (SUSY)
scenario as a well-motivated example. This SUSY sce-
nario consists of gluino pair production, with the gluinos
decaying to neutralinos plus a pair of (light quark) jets, and
the neutralino decaying to another neutralino (LSP) through
an on-shell Z boson, as shown in Fig. 1. The LSP neutralino
is much lighter than the second neutralino, meaning the Zs
are highly boosted. Therefore every event has two boosted
Zs, jets, and missing energy. CMS previously searched for
this signal with a cut-based analysis [23]. It defined a series
of SRs requiring leading and subleading AK8 jets within
m∈ ½70; 100� GeV and considering pmiss

T in different exclu-
sive bins. The background was estimated in two steps. First,
the total number of events Bnorm in the SR was determined
using sidebands in the leading AK8 jet mass (the sublead-
ing AK8 jet was required to be in the SR). Then the
distribution in pmiss

T bins (shape) is determined using the
pmiss
T distribution in control regions defined by requiring

both AK8 jets to be outside the SR, renormalized to Bnorm.
Here we point out that we can use one of the Zs to define

a SR for resonant anomaly detection, and then we can use
the rest of the kinematic variables (mjet of the subleading
AK8 jet, pmiss

T , HT , etc.) to play the role of x in resonant
anomaly detection. We show that this allows for a poten-
tially more expansive and model-agnostic search, while not

sacrificing much in sensitivity to the original SUSY signal.
We illustrate this with additional SUSY-motivated scenar-
ios (different decay branching ratios to h and Z), as well as
hypothetical nonminimal scenarios involving non-SM
resonances.
Notably, all of these scenarios have pmiss

T , and in fact the
pmiss
T is essential to suppress the resonant backgrounds from

SM Z=W þ jets with hadronically decaying Z=W. This
leads to a novel combination of a resonant and nonresonant
anomaly detection strategy.1 This is also the first applica-
tion of model-agnostic strategies to the SUSY domain and
opens up the potential for many more new avenues in the
search for SUSY and other well-motivated top-down
scenarios. Our method should be contrasted with existing
machine learning-based approaches to SUSY in the liter-
ature which are fully supervised (see, e.g., [25–29]).
The outline of our paper is as follows: Section II describes

how the signal and background processes are simulated.
In Sec. III we summarize the steps involved in classifying
anomalies through outer density estimation (CATHODE). We
show the results of applying CATHODE to different signal
processes in Sec. IV. We conclude in Sec. V. Finally, in two
Appendices we describe our recasting of the LHC analysis,
and the CATHODE receiver operating characteristic (ROC)
curves for various signal models.

II. DATA

Since all the methods described here (both the CMS
search and CATHODE) fully rely on data for estimating
backgrounds (aka are “fully data driven”), the simulation
data we generate here is meant to play the role of real
data, and all background estimates and significances etc.
we derive are meant to illustrate the result one would get
applying these methods to collider data. There will be no
events generated here that play the role of simulations at
the LHC.
For Standard Model (SM) background data, we take

into account the three largest contributions of background
events to the CMS search, arising from Z þ jets, W þ jets,
and tt̄þ jets. W and Z events were generated with one to
four additional final state partons while tt̄ were generated
with up to three additional partons.
For the benchmark signal (to be used to compare the

performance of the CMS search vs the CATHODE method),
we follow the CMS search and generate gluino pair
production (with zero to two additional partons), with
subsequent cascade decay pp → g̃ g̃; g̃ → qq̄χ̃02; χ̃

0
2 → Zχ̃01

FIG. 1. Diagram of the signal process pp → g̃ g̃ with
g̃ → qq̄χ̃02, χ̃

0
2 → Zχ̃01.

1See [24] for a different, fully nonresonant application of
weakly supervised anomaly detection to the jet constituents of the
monojet + pmiss

T final state. Motivated by (nonresonant) dark
showers, they did not obtain their background templates from
sidebands in the jet mass; instead they considered an idealized
(perfect) background template from simulated ZðννÞ þ jets
events.
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where the neutralino χ̃02 is the next to lightest supersym-
metric particle (NLSP) and χ̃01 is the lightest supersym-
metric particle (LSP). The mass splitting between the
gluinos and NLSP is set to 50 GeV while the LSP mass
is 1 GeV. This results in soft jets from the first step of the
decay and a highly boosted Z boson. The LSP escapes the
detector and contributes large amounts of missing energy.
Later we will also consider decays of χ̃02 to Xχ̃

0
1 where the

X is either a Standard Model Higgs boson or a new Higgs
boson with mass besides 125 GeV like the new Higgs
bosons in supersymmetric extensions of the Standard
Model. The Standard Model Higgs boson decays in ∼58%
of cases to bb̄ while for the latter case we set the branching
ratio to 100%.
All events are generated with MadGraph5_AMC@NLO 3.2.0

with
ffiffiffi
s

p ¼ 13 TeV. The NNPDF3.1LO PDF set [30] is
used throughout. At the generator level a minimum HT
cut of 250 GeV is imposed. Gluinos are decayed spin
uncorrelated with MADSPIN [31] to qq̄χ̃02 via an off-shell
squark and subsequently χ̃02 → Xχ̃01. Showering is done
using PYTHIA 8.306 [32] with MLM merging. PYTHIA-Tune
CP5 was used for background events while CP2 [33]
was used for the signal samples. The number of back-
ground events in each channel is scaled to match their
respective next-to-leading-order cross sections [34].
Detector effects are simulated using DELPHES 3.5.0 [35]
with the delphes_card_CMS.tcl detector card modi-
fied to account for the lepton isolation criterion. Particles
are clustered into jets using the anti-kT clustering algorithm
with cone-radius parameter R ¼ 0.4 for AK4 jets and
R ¼ 0.8 for AK8 jets. To be considered, jets have to have
pT > 30 and jηj < 2.4.
The following selection criteria are imposed for both the

classical CMS-recast and the dataset for CATHODE:
(1) NAK4 jet ≥ 2
(2) pmiss

T > 300 GeV
(3) HT > 400 GeV, where HT ¼ P

AK4 jets jp⃗T j
(4) jΔϕj; H⃗

miss
T j > 0.5ð0.3Þ for the first two (up to next

two) AK4 jets, where H⃗miss
T ¼ −

P
AK4 jets p⃗T

(5) no isolated photon, electron, or muon candidate with
pT > 10 GeV with isolation variables I < 0.1, 0.2,
and 1.3 GeV=pT þ 0.005 for isolated electron,
muon, and photon, respectively

(6) no isolated track with mT ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ptrack

T pmiss
T ð1 − cosðϕmiss − ϕtrackÞ

p
< 100 GeV

and pT > 5 GeV for tracks identified as an electron/
muon or else 10 GeV

(7) at least two AK8 jets with pT > 200 GeV.
The number of background events that pass this baseline
selection is shown in the first line of Table I. In total, the
dataset is composed of 107,421 background events corre-
sponding to Lint ¼ 300 fb−1 after cuts 1–7. Signal events
are injected according to the gluino-pair production cross
section.

Figure 2 shows that the feature mJ1 is smooth for the
background while it is resonant for the signal. (Hadronically
decaying Ws and Zs are eliminated by the requirements on
pmiss
T .) This is a necessary feature for the application of the

CATHODE method employed in Sec. III. Figure 3 shows that
the signal of new physics is found on the tail of the pmiss

T
distribution, while the background peaks at lower pmiss

T .
We will show that the powerful discriminator pmiss

T can be
leveraged by CATHODE even though the signal is found on
the tail of the distribution.

III. CATHODE

Here we recap the main points of the inner workings of
classifying anomalies through outer density estimation
(CATHODE) (for more details, see [14]). In very broad
strokes, CATHODE aims to learn the density of background
events in a signal-depleted region and estimates the density
inside the signal enriched region by interpolation. Then,
artificial samples are generated in that region, which should
follow a signal-depleted distribution. Using a classifier,
which is trained to distinguish between the artificial and
real events, we can approximate the likelihood ratio (1).
This would be the ideal (optimal) model-agnostic anomaly
detector, as it is monotonic with psignalðxÞ=pbgðxÞ for any
signal [since pdataðxÞ is an admixture of psignalðxÞ and
pbgðxÞ] [36]. This allows CATHODE to classify data events
as background-like or signal-like. The whole method works

TABLE I. Number of events passing each selection requirement
for Lint ¼ 300 fb−1.

Selection W Z tt̄

Baseline selection 73790 25725 7906
mJ1 ∈ ½70 GeV; 100 GeV� 5936 2401 1320
CMS-SUS-19-013 [23] signal region 420 237 153

FIG. 2. Distribution of the resonant feature mJ1 for background
and signal events in the sideband (SB) and the signal region (SR).
The signal corresponds to mg̃ ¼ 1700 GeV. The distributions are
scaled to Lint ¼ 300 fb−1.
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by learning directly from data. The training and model
selection of both the density estimation and classification is
completely agnostic of any signal truth label.
In this study, the events are represented as the tuple mJ1

and x with

x ¼
�
mJ2 ; p

miss
T ; HT; τ

J1
21; τ

J2
21

�
; ð2Þ

where J1, J2 are the leading/subleading AK8 jets and τ21 ¼
τ2=τ1 is the ratio of n-subjettiness variables [37]. To

compare the technique to the classical search more directly,
we also consider the reduced set of features

x ¼ �
mJ2 ; p

miss
T ; HT

� ð3Þ

so that CATHODE only gets to use the same information. We
use a slightly modified version of the original repository2 to
allow for any dimension for x.

FIG. 3. Comparison of the signal and background distribution inside the signal region and the artificial samples. The artificial samples
will be discussed in the next section. The signal corresponds to mg̃ ¼ 1700 GeV. The distributions are scaled to Lint ¼ 300 fb−1.

2https://github.com/HEPML-AnomalyDetection/CATHODE.
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A. Data preparation and density estimation

First, one defines the signal region (SR) as an interval in
mJ1 where the signal is expected to be concentrated similar
to a classical bump hunt. The complement of the SR defines
the sideband (SB). As in any bump hunt, the SR window
has to account for the position and the width of the signal
bump. Because the reconstructed jet mass is not distributed
symmetrically around the mass m of the mother particle
(which is the Z, the Higgs, or a BSM Higgs in this paper),
we chose parametrization

mJ1 ∈
�
m

�
1 −

4

3
σm

	
; m

�
1þ 2

3
σm

	

: ð4Þ

We estimate the mass resolution to σm ¼ 15% and round
the window to the closest GeV. The lower sideband extends
to mJ1 ¼ 0 while the upper sideband is only bound by the
phase space.
Events in the SB are partitioned into a training set (75%)

used for the actual training and in a validation set (25%),
used to select the models used in the next steps. To address
the finite number of real SB events we use leave-one-out
cross validation such that we get four datasets with non-
overlapping validation sets. The data is transformed (pre-
processed) for easier learning by shifting and scaling the
observables in x to fit the interval (0,1), then applying a
logit tranformation,3 and again shifting and scaling to unit
standard deviation and zero mean.
For density estimation, a masked autoregressive flow

(MAF) is used with affine transformations [38]. The MAF
constructs invertible transformations with tractable Jacobians
that map a simple multidimensional distribution (e.g., multi-
ple Gaussians as is considered here) to the target density, in
this case the conditional probability pdataðxjmJ1 ∈SBÞ. The
MAF uses 15 blocks of masked autoencoder for distribution
estimation (MADE) [39] to learn the transformations. The
number of events it is trained on depends on the signal
region but is typically of the order of 105.4 Training is done
with the hyperparameters listed in Table II.
After training the ten epochs with the lowest validation

loss are selected for the sampling step.

B. Sampling SR events

The next step aims to sample synthetic events inside the
SR using the four density estimates of the last step. Kernel
density estimation with Gaussian kernel and bandwidth of
0.01 is used to model the mJ1 distribution inside the SR.
This is then used to sample N ¼ 1, 000 events from each of
the ten density estimator models which are combined,

shuffled, and split between the training set (60%) and
validation set (40%) for the next step. The training and
validation sets of all four density estimators are combined
respectively to form the synthetic dataset with a total of
40,000 events. Compared to the roughly 10,000 real events
in the SR (see Table I second line) this is intentionally over-
sampled to improve the classification performance [14].
Setting N even higher did not improve results systemati-
cally. The synthetic background events and the real SR
events are then standardized in the SR without the logit
transformation.
The distributions of the synthetic events are shown in

orange in Fig. 3. In all of our models the signal is located in
a resonance in mJ2 and in the tail of the pmiss

T distribution.
The density estimation has to model the shape reasonably
well so this powerful classification feature can be lever-
aged. This is accomplished successfully as shown in Fig. 3.

C. Classifier and anomaly detection

Now a classifier is trained on both the synthetic and real
SR dataset to distinguish the sampled events, which should
follow the background distribution, from the real events,
which additionally might contain events following the
signal distribution.
The classifier consists of three hidden layers with 64

nodes and ReLU activation each and it is optimized using
the hyperparameters given in Table III. Because the datasets
are imbalanced, a weight is assigned such that both classes
contribute equally to the loss.
Since in a realistic example the number of events to train

and validate on is limited, we employ an additional step of
leave-one-out cross validation. The real SR data is parti-
tioned into four subsets of equal size. In each subset, one
quarter of the real events are held back as a test set for the
anomaly detection while the remaining 75% are split

TABLE II. Parameters of the density estimator.

Hyperparameter Value

optimizer Adam
epochs 100
learning_rate 10−4

batch_norm true
batch_norm_momentum 1
batch_size 256

TABLE III. Parameters of the classifier.

Hyperparameter Value

optimizer Adam
epochs 100
learning_rate 10−3

batch_size 128

3logitðxÞ ¼ ln x
1−x.4We emphasize that the number of events we are using for

training was carefully tuned to match the actual number of events
in data expected in L ¼ 300=fb.
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between the training set (60%) and the validation set (40%).
(The synthetic background events are also split into train/
val sets with the same proportions.) After training, the ten
model states with the lowest validation loss are selected and
evaluated on the test set. The predicted labels are then
averaged over the models and assigned as anomaly scores
to the events. This is repeated for the next quarter of the SR
data, and so on, until every event in the SR is assigned an
anomaly score.
To reduce the statistical effects of severely overperform-

ing and underperforming models, each dataset is shuffled
5 times to allow different selections. Then the entire process
of the preceding paragraph is repeated to produce five
different anomaly scores. All five anomaly score assign-
ments are averaged to produce a final, more robust score.
Finally, to even out the influence of signal-event selec-

tion, everything is repeated 10 times with differing inde-
pendent sets of signal events. In all the results we report
below, we will report the mean and standard deviation of
these ten different trials.
The signal to background ratio is improved by cutting on

the anomaly score above a critical value Rc. Figure 4 shows
the distributions of the anomaly score R for the signal and
background. No additional selections are performed. In a
real application, one would perform statistical inference by
means of a bump hunt on the R distribution which is
beyond the scope of this work. Instead the performance is
evaluated using the nominal significance Z ¼ S=

ffiffiffiffi
B

p
with

S (B) the number of signal (background) events after
imposing this cut. This makes use of the truth labels which
an experiment would have to replace by other means of
background estimation. One still has to choose a strategy to
set Rc. In the following wewill show the signal significance
with Rc set to maximize Z with at least five background
events left to show the best performance one could hope for.
Since a real application does not have access to the truth
labels, this is not immediately applicable. To show a more
realistic method we also show the performance where Rc is

set so that 1% of SR events pass the cut while also con-
taining at least five background events.

IV. RESULTS

A. Nominal signal model

We first turn our attention to the nominal signal model
where χ̃02 → Zχ̃01. This is the signal model the dedicated
CMS search [23] was aimed at.

1. Three features

We start by using the limited feature set x ¼
ðmJ2 ; p

miss
T ; HTÞ so CATHODE does not have access to more

information than the classical search. To compare with
CMS, we calculate the signal significance for events inside
the signal region mJ1=J2 ∈ ½70 GeV; 100 GeV� with the
b-veto mentioned in Sec. A 1 applied. Since the search
gets most of its sensitivity from the highest pmiss

T bins, we
apply an additional cut pmiss

T > 800 GeV.5 This leads to
roughly the same number of events as when only the top
1% of events are kept for CATHODE. For a gluino mass with
sizable cross section like 1700 GeV, the classical search
yields on average for ten independent signal injections
Z ¼ 20. Using CATHODE with three features the signifi-
cance is on average Z ¼ 34� 2.
Evidently, CATHODE outperforms the classical approach,

even though CATHODE is more model agnostic. The reason
is that the classical approach, being cut based, misses
correlations between the features that the multivariate
classifier of CATHODE can pick up.
To confirm this, we also investigated the sensitivity of a

fully supervised approach, using the same classifier archi-
tecture and hyperparameters as that of CATHODE. The
training data for the fully supervised classifier consists
of an additional 300 fb−1 background events and 10,000
signal events. 60% of this dataset is used in training while
the remaining 40% is used as a validation set to select the
best performing model. Evaluating this classifier again with
selecting only the top 1% of anomaly scores results in a
significance of on average Z ¼ 33� 4. We conclude that
CATHODE is saturating the performance of the fully super-
vised classifier for this amount of signal (unsurprisingly,
since this is a lot of signal), and that the deep neural
networks of both CATHODE’s classifier and the supervised
classifier can leverage correlations to improve the signal
significance significantly over the classical approach.

FIG. 4. Normalized distributions of the anomaly score R of
the signal and background processes. The signal corresponds to
the average distribution of ten independent injections with
mg̃ ¼ 1900 GeV.

5Technically, the original CMS search uses pmiss
T bins, and

most of the sensitivity comes from the three highest bins,
800–1000 GeV, 1000–1200 GeV, and larger than 1200 GeV,
where the background is comparable or subdominant to the signal
hypothesis. To get a fair comparison with CATHODE we replace
this with a single cut.
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2. Five features

From now on, we will use the five features ðmJ2 ; p
miss
T ;

HT; τ
J1
21; τ

J2
21Þ because the subjettiness variables τ21 are

useful discriminants. Figure 5 shows CATHODE’s perfor-
mance compared to the classical strategy. We see that in the
relevant region at high gluino masses the conservative cut
on R (allowing only the top 1% to pass) reaches only
slightly weaker results. We identify the mass where the
signal significance is Z ¼ 1.645 with the expected 95%
limit on the mass in a real application [40]. The conser-
vative cut on R alone excludes gluino masses up to
mg̃ ¼ 2066 GeV. This is only slightly weaker than the
expected excluded mass ofmg̃ < 2145 GeV for a dedicated
search at this integrated luminosity. This is expected
because a model specific search will be fine-tuned to the
specific process while CATHODE is intentionally kept more
general. CATHODE’s strength lies in this generalization as it
is able to detect different models without the need to tweak
the approach as we will show in the following sections.

B. Alternate signal model: Decays to SM Higgs

Now we turn our attention to another model, where the
neutralinos decay via χ̃02 → hχ̃01 where h is the 125 GeV
Standard Model Higgs boson. All that has to be done for
CATHODE is select a new signal window around 125 GeV.
A scan over the gluino mass is shown in Fig. 6. A b-jet
selection criterion would be beneficial in this case, but we
omit this to keep CATHODE as general as possible. Even

without the b-tag CATHODE still generates a sizable signal
significance for gluino masses comparable to the expected
excluded value. While the dedicated search is expected
to exclude gluino masses below 2355 GeV, CATHODE with
the 1% cut reaches Z > 1.645 for all masses up to
2233 GeV. With the best possible cut on R this can be
pushed to 2300 GeV. As expected CATHODE results in
slightly weaker bounds. The opportunity cost of this is
significantly lower than a specialized search. The only
change in the approach is the choice of the signal region.
The intended use of CATHODE scans the signal region over
the entire mass range, such that both the decay to Z and
Higgs bosons would be included automatically in this
strategy without any extra considerations.

C. Alternate signal model: Mixed Z=h decays

Setting the branching ratio of the χ̃02 → hχ̃01 or χ̃
0
2 → Zχ̃01

decays to 100% is a rather unnatural choice. Therefore
we also show CATHODE’s performance for a model where
both branching ratios are 50%. This time the anomaly
detection has to find two bumps simultaneously. For this we
chose the signal window to contain both resonances:
mJ1 ∈ ½70 GeV; 140 GeV�. The results of a scan over the
gluino masses is shown in Fig. 7. This time CATHODE seems
to outperform the extrapolated bound from the dedicated
search [42]. The extrapolation from 35.9/fb to 300/fb
integrated luminosity is quite far and should be taken with
a grain of salt. The dedicated search classifies events in 0, 1,

FIG. 5. Sensitivity of CATHODE and the classical strategy.
The signal window is set as mJ1 ∈ ½70 GeV; 100 GeV�. For the
blue line Rc is set to allow 1% of events to pass this cut while the
orange line omits the cut completely. The shaded region shows
one standard deviation around the mean S=

ffiffiffiffi
B

p
obtained from ten

different signal injections. The dot-dashed part of the blue line
represents parameter points where Rc has to be lowered to allow
five background events. The vertical black line at 2145 GeV
indicates gluino mass that is excluded at 95% confidence level
by our 300/fb recreation of the dedicated search [23]. The red
dot-dashed line is calculated using the classical strategy with
mJ1=J2 ∈ ½70 GeV; 100 GeV�, pmiss

T > 800 GeV and the b-veto.

FIG. 6. CATHODE’s performance for χ̃02 → hχ̃01. The signal
window is set as mJ1 ∈ ½100 GeV; 140 GeV�. For the blue line
Rc is set to allow 1% of events to pass this cut while the orange
line omits the cut completely. The dot-dashed part of the blue line
represents parameter points where Rc has to be lowered to allow
5 background events. The shaded region shows one standard
deviation around the mean S=

ffiffiffiffi
B

p
obtained from 10 different

signal injections. The vertical black line at 2355 GeV indicates
gluino-mass that is expected to be excluded by rescaling the
(expected) limit from a dedicated CMS search for this decay [41]
from 137/fb to 300/fb integrated luminosity. There is no red line
corresponding to the classical search (as in Fig. 5) because we did
not perform a detailed recast of [41].
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and 2 Higgs categories using b-tags. The signal model
populates all categories simultaneously. The approach
using CATHODE only uses the single signal region without
further thought to generate these results.
In Fig. 8 we show that CATHODE is indeed capable of

recovering both bumps corresponding to the decay into Z
and Higgs bosons, respectively.
Figure 9 shows that CATHODE is very robust against

changes in branching ratios. We vary the branching ratio
Brðχ̃02 → Zχ̃01Þ with Brðχ̃02 → hχ̃01Þ ¼ 1 − Brðχ̃02 → Zχ̃01Þ
and calculate the significance. Regardless of branching

ratio, the multiplicative gain of significance by applying
the technique is always between 5 and 6. This shows
the real strength of the CATHODE approach over the
dedicated searches [23,41,42]. With the enlarged SR that
covers both decay modes, CATHODE only needs to be
trained once, independent of the assumption on the BRs,
compared to performing a dedicated analysis for each BR
assumption.

D. Alternate signal model: Decays to BSM Higgs

Until now we applied CATHODE only to models where the
position of the bump is known beforehand. But one
strength of the technique is that we do not even need to
know that. To discuss this further, we now focus on another
model that induces the neutralino decay χ̃02 → Hχ̃01, where
H is one of the additional Higgs bosons introduced by
the (next to) minimal supersymmetric standard model
[(N)MSSM] that has a mass different from 125 GeV.
Because the decay of H depends on the specific imple-
mentation of SUSY-breaking parameters we set the branch-
ing ratio BRðH → bb̄Þ ¼ 100%. To find the signal,
CATHODE is applied to different signal regions given by
varying mass hypotheses m in Eq. (4), scanning the entire
mass range in discrete steps and the signal significance is
determined. To demonstrate this we chose mH ¼ 100 GeV
and mg̃ ¼ 2000 GeV and show the result in Fig. 10. Once
the signal window has significant overlap with the signal
bump, the signal significance gets sufficiently improved to
show the presence of anomalous events. In a real applica-
tion, this would then warrant further investigation with a
dedicated search.
Finally, we show how wide the possible choice of mH is

that CATHODE can still help to find in our dataset with the
given choice of features. For this we perform a parameter
scan over mH from 35 to 515 GeV in 10 GeV steps shown
in Fig. 11. The method reaches reliably signal significances

FIG. 7. Sensitivity of CATHODE and the classical strategy. The
signal window is set as mJ1 ∈ ½70 GeV; 140 GeV�. For the blue
line Rc is set to allow 1% of events to pass this cut while the
orange line omits the cut completely. The dot-dashed part of the
blue line represents parameter points where Rc has to be lowered
to allow five background events. The shaded region shows one
standard deviation around the mean S=

ffiffiffiffi
B

p
obtained from ten

different signal injections. The vertical black line at 2060 GeV
indicates gluino mass that is expected to be excluded by rescaling
the expected excluded cross section obtained by the dedicated
CMS search for this decay [42] from 35.9/fb to 300/fb integrated
luminosity.

FIG. 8. The distribution of the data inside the signal region
before the anomaly score cut is shown in gray. After selecting the
top 1% of events in the SR the remaining signal events are shown
in orange while the remaining background events are shown in
blue. The signal corresponds to mg̃ ¼ 1700 GeV.

FIG. 9. Sensitivity of CATHODE for varying branching ratios to
Z bosons for mg̃ ¼ 2000 GeV. The shaded region shows one
standard deviation around the mean S=

ffiffiffiffi
B

p
obtained from ten

different signal injections.
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of order 10 up to mH ∼ 350 GeV without using b-tags as
otherwise powerful discriminators.

V. CONCLUSIONS

In this paper, we have shown how recently developed
techniques for weakly supervised resonant anomaly detec-
tion can be easily extended to cover anomalies that also live
on tails of distributions. This situation commonly arises in
well-motivated weak-scale scenarios such as SUSY, where
the cascade decays of heavier BSM particles can produce
resonances such as Zs and Higgs bosons, while simulta-
neously populating the tails of features such as pmiss

T and
HT . As long as the signal is localized in one feature where
the background is smooth, resonant anomaly detection can
be brought to bear on these additional features in order to
enhance the sensitivity to signal.

As a proof-of-concept demonstration, we applied the
state-of-the-art anomaly detection method CATHODE [14] to
the SUSY scenario pp → g̃ g̃; g̃ → qq̄χ̃02; χ̃

0
2 → Xχ̃01 where

X is either a Z boson, Standard Model Higgs, or an
additional (N)MSSM Higgs boson. Despite being
model agnostic, we showed that the CATHODE method is
competitive with existing, dedicated, cut-based searches
[23,41,42], because—being inherently multivariate—it
takes advantage of correlations between features. More-
over, whereas each decay scenario required a separate,
optimized analysis, CATHODE—being model agnostic—is
able to simultaneously target them all.
In this work we considered two different feature sets for

the CATHODE algorithm, as shown in Eqs. (2) and (3). These
were motivated by the SUSY scenarios we considered, and
it would be interesting to generalize our study beyond these
feature sets, both to increase the degree of model agnostic-
ness of the method, and possibly to enhance the sensitivity
to the SUSY signals considered here. For example, our
benchmark signals all come with ∼4 additional jets from
the gluino decay, and their detailed kinematic distributions
(instead of just the aggregate feature HT) may offer
additional discriminating power versus the QCD back-
ground. Adding features related to additional jets in the
event may also give us more sensitivity to spectra not
explicitly considered here, for example where the NLSP
mass is not so close to the gluino mass. As long as
mLSP þmZ ≪ mg̃, the Z will still be boosted, but the extra
jets will get harder as mLSP moves away from mg̃.
All in all, using modern methods for resonant anomaly

detection such as CATHODE allows for a broader and more
efficient coverage of the parameter space of physics beyond
the Standard Model. With much more data on the way,
methods like these should prove indispensable for maxi-
mizing the discovery potential of the LHC.
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APPENDIX A: RECASTING CMS

We describe how the background samples were simulated
as closely as possible to an existing search and verified. We
recreate the CMS SUSY search CMS-SUS-19-013 [23].

1. Recreating CMS-SUS-19-013

The recreation of CMS-SUS-19-013 [23] follows the
most important analysis steps of the original publication.

FIG. 11. Parameter scan of mH with mg̃ ¼ 2000 GeV to show
which signals CATHODE can help find in the dataset. The shaded
region shows 1 standard deviation around the mean S=

ffiffiffiffi
B

p
obtained from ten different signal injections.

FIG. 10. Significance for a parameter scan over the mass
hypothesis in 5 GeV steps, when the mass is not known a priori.
The shaded region shows one standard deviation around the mean
S=

ffiffiffiffi
B

p
obtained from ten different signal injections. Masses are

chosen as mg̃ ¼ 2000 GeV and mH ¼ 100 GeV.
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The number of events is set to the integrated luminosity of
Lint ¼ 137 fb−1. First, a set of remaining cuts are applied to
select Z candidates, then the background estimation is
recreated before the statistical analysis is performed. The
following cuts are applied to select hadronically decaying Z
bosons:
(8) Softdropped mjet ∈ ½40 GeV; 140 GeV� of the two

highest pT AK8 jets
(9) ΔRZ;b > 0.8 for the second highest pT AK8 jet Z

and any b-tagged jet where the angular separation is
defined as ΔR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δϕ2 þ Δη2

p
.

The resulting pmiss
T spectrum is shown in Fig. 12 which

agrees with the spectrum shown in the original publication
within uncertainties.
The background estimation consists of the normalization

and the shape estimation. The signal region (SR) is defined as
mjet ∈ ½70 GeV; 100 GeV�. First, one demands the sublead-
ing AK8-jet to be in the SR. Then a linear function is fitted to
the mjet spectrum of the leading AK8 jet outside its SR. The
nominal yield Bnorm is obtained by integrating the linear
function in the SR. The statistical error of the yield is obtained
from the spread of pseudo-experiments sampled from the fit.
Additionally to the linear function Chebychev functions
up to the fourth order are fitted. The largest deviation of the
nominal yield is then assigned as an additional uncertainty.
The background pmiss

T shape is obtained by the sideband
(SB) with both AK8 jets outside the SR. The content of the
ith pmiss

T bin is denoted as NSB
i . The transfer factor from the

SB to the SR is then calculated as

T ≡ BnormP
iN

SB
i

¼ 0.206� 0.023; ðA1Þ

which agrees with the original publication within uncer-
tainties. The expected background in bin i is then

Bi ¼ T NSB
i : ðA2Þ

ROOSTATS [43] is used for statistical modeling. It takes
NSB

i with statistical errors, T and ΔT to model the
background in the SR with uncertainties. The signal model
contains signal events that pass all cuts and is rescaled to
the approximate next-to-next-to leading order þ next-to-
next-to-leading logarithmic accuracy cross section [44].
The overall uncertainty of the cross section is applied to all
signal bins. The resulting statistical model is then evaluated
with the CLs approach and the asymptotic form of the
onesided profile likelihood test statistic. This is used to
obtain the 95% C.L. cross sections. The limits are shown in
Fig. 13 for the integrated luminosity Lint ¼ 137 fb−1 and in
Fig. 14 for Lint ¼ 300 fb−1. We use the latter dataset for the
application of the machine learning technique since the
accuracy is greatly improved with more data points to learn
on while in reach for the collider in the near future.

FIG. 12. pmiss
T spectrum of the three leading background

processes. The background of the same three processes from
the CMS publication is shown in red. The variation of cross
section due to changing the energy scale by a factor of 1=2 and 2
as computed by MadGraph is assigned as a systematic uncertainty
and added to the statistic errors in quadrature and shown as the
error bars.

FIG. 13. Recreation of CMS-SUS-19-013 [23]. The red dashed
line denotes the expected limits of original CMS search. The
black dashed line shows the expected limits of the recreation.

FIG. 14. Results of the classical search for 300/fb integrated
luminosity.
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APPENDIX B: ROC CURVES

In Fig. 15 we show ROC curves, i.e., background
suppression as a function of signal efficiency of our
benchmark models. We also observe a common feature
of anomaly detection techniques. With rising signal cross
section the classifier learns to better separate background
from signal-like events. At the same time, larger signal
cross sections correspond to smaller gluino masses, which
in turn leads to less expressive features. Both effects
combined lead to intermediate gluino masses having the

largest background suppression at the same signal effi-
ciency compared to small masses with large cross sections
or large masses with very obvious signatures, especially in
the decay to Z and Standard Model Higgs bosons. We also
observe in the bottom right figure that for low and high
Higgs masses the background rejection is noticeably
weaker than for intermediate masses. For light Higgs
masses, the jets are too similar to background jets while
high Higgs masses lead to wide jets that get reconstructed
incorrectly.
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Latorre, Emanuele R. Nocera, Juan Rojo, Luca Rottoli,
Emma Slade, and Maria Ubiali, Parton distributions from
high-precision collider data, Eur. Phys. J. C 77, 663 (2017).

[31] Pierre Artoisenet, Rikkert Frederix, Olivier Mattelaer, and
Robbert Rietkerk, Automatic spin-entangled decays of
heavy resonances in Monte Carlo simulations, J. High
Energy Phys. 03 (2013) 015.

[32] Christian Bierlich, Smita Chakraborty, Nishita Desai, Leif
Gellersen, Ilkka Helenius, Philip Ilten, Leif Lönnblad,
Stephen Mrenna, Stefan Prestel, Christian T. Preuss,
Torbjörn Sjöstrand, Peter Skands, Marius Utheim, and
Rob Verheyen, A comprehensive guide to the physics
and usage of PYTHIA 8.3, SciPost Phys. Codebases 2022,
8 (2022).

[33] Albert M Sirunyan et al., Extraction and validation of a new
set of CMS PYTHIA8 tunes from underlying-event mea-
surements, Eur. Phys. J. C 80, 4 (2020).

[34] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O.
Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro,
The automated computation of tree-level and next-to-
leading order differential cross sections, and their matching
to parton shower simulations, J. High Energy Phys. 07
(2014) 079.

GERRIT BICKENDORF et al. PHYS. REV. D 109, 096031 (2024)

096031-12

https://doi.org/10.1103/PhysRevD.99.014038
https://doi.org/10.1103/PhysRevD.101.075042
https://doi.org/10.1103/PhysRevD.101.095004
https://doi.org/10.1007/JHEP01(2021)153
https://doi.org/10.1103/PhysRevLett.125.131801
https://doi.org/10.1103/PhysRevD.104.035003
https://arXiv.org/abs/2012.11638
https://doi.org/10.1140/epjc/s10052-021-09389-x
https://doi.org/10.1140/epjc/s10052-021-09389-x
https://doi.org/10.1103/PhysRevD.106.055006
https://doi.org/10.1103/PhysRevD.106.055006
https://doi.org/10.1016/j.physletb.2023.137836
https://doi.org/10.1016/j.physletb.2023.137836
https://doi.org/10.3389/fdata.2023.899345
https://doi.org/10.1103/PhysRevD.107.015009
https://doi.org/10.1103/PhysRevD.107.015009
https://doi.org/10.1103/PhysRevD.107.114012
https://doi.org/10.1103/PhysRevD.107.114012
https://doi.org/10.1007/JHEP07(2023)188
https://doi.org/10.1103/PhysRevD.107.096025
https://doi.org/10.1140/epjc/s10052-024-12607-x
https://doi.org/10.1140/epjc/s10052-024-12607-x
https://arXiv.org/abs/2305.04646
https://doi.org/10.1007/JHEP09(2020)149
https://doi.org/10.1007/JHEP08(2022)015
https://doi.org/10.1007/JHEP08(2022)015
https://doi.org/10.1007/JHEP02(2021)160
https://doi.org/10.1007/JHEP02(2021)160
http://cds.cern.ch/record/2859611
http://cds.cern.ch/record/2859611
http://cds.cern.ch/record/2859611
https://doi.org/10.1140/epjc/s10052-023-11543-6
https://doi.org/10.1007/JHEP06(2023)060
https://doi.org/10.1007/JHEP06(2023)060
https://doi.org/10.1103/PhysRevD.109.035001
https://doi.org/10.1140/epjc/s10052-017-5199-5
https://doi.org/10.1007/JHEP03(2013)015
https://doi.org/10.1007/JHEP03(2013)015
https://doi.org/10.21468/SciPostPhysCodeb.8
https://doi.org/10.21468/SciPostPhysCodeb.8
https://doi.org/10.1140/epjc/s10052-019-7499-4
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1007/JHEP07(2014)079


[35] J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V.
Lemaître, A. Mertens, and M. Selvaggi, DELPHES 3, A
modular framework for fast simulation of a generic collider
experiment, J. High Energy Phys. 02 (2014) 057.

[36] Eric M. Metodiev, Benjamin Nachman, and Jesse Thaler,
Classification without labels: Learning from mixed samples
in high energy physics, J. High Energy Phys. 10 (2017) 174.

[37] Jesse Thaler and Ken Van Tilburg, Identifying boosted objects
with N-subjettiness, J. High Energy Phys. 03 (2011) 015.

[38] George Papamakarios, Theo Pavlakou, and Iain Murray,
Masked autoregressive flow for density estimation, arXiv:
1705.07057.

[39] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo
Larochelle, Made: Masked autoencoder for distribution
estimation, arXiv:1502.03509.

[40] Prudhvi N. Bhattiprolu, Stephen P. Martin, and James D.
Wells, Criteria for projected discovery and exclusion

sensitivities of counting experiments, Eur. Phys. J. C 81,
123 (2021).

[41] Armen Tumasyan et al., Search for Higgsinos decaying to
two Higgs bosons and missing transverse momentum in
proton-proton collisions at

ffiffiffi
s

p ¼ 13 TeV, J. High Energy
Phys. 05 (2022) 014.

[42] Albert M Sirunyan et al., Search for physics beyond the
standard model in events with high-momentum Higgs
bosons and missing transverse momentum in proton-proton
collisions at 13 TeV, Phys. Rev. Lett. 120, 241801 (2018).

[43] Rene Brun et al., root-project/root: v6.18/02, 10.5281/
zenodo.3895860 (2019).

[44] Christoph Borschensky, Michael Krämer, Anna Kulesza,
Michelangelo Mangano, Sanjay Padhi, Tilman Plehn, and
Xavier Portell, Squark and gluino production cross sections
in pp collisions at

ffiffiffi
s

p ¼ 13, 14, 33 and 100 TeV, Eur. Phys.
J. C 74, 3174 (2014).

COMBINING RESONANT AND TAIL-BASED ANOMALY … PHYS. REV. D 109, 096031 (2024)

096031-13

https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1007/JHEP10(2017)174
https://doi.org/10.1007/JHEP03(2011)015
https://arXiv.org/abs/1705.07057
https://arXiv.org/abs/1705.07057
https://arXiv.org/abs/1502.03509
https://doi.org/10.1140/epjc/s10052-020-08819-6
https://doi.org/10.1140/epjc/s10052-020-08819-6
https://doi.org/10.1007/JHEP05(2022)014
https://doi.org/10.1007/JHEP05(2022)014
https://doi.org/10.1103/PhysRevLett.120.241801
https://doi.org/10.5281/zenodo.3895860
https://doi.org/10.5281/zenodo.3895860
https://doi.org/10.1140/epjc/s10052-014-3174-y
https://doi.org/10.1140/epjc/s10052-014-3174-y

