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As the study of three-hadron physics from lattice QCD matures, it is necessary to develop proper
analysis tools in order to reliably study a variety of phenomena, including resonance spectroscopy and
nuclear structure. Reconstructing the three-particle scattering amplitude requires solving integral equations,
which can be written in terms of data-constrained dynamical functions and physical on shell quantities.
The driving term in these equations is the so-called one-particle exchange, which leads to a kinematic
divergence for particles on mass shell. Avital component in defining three-particle amplitudes with definite
parity and total angular momentum, which are used in spectroscopic studies, is to project the one-particle
exchange into definite partial waves. We present a general procedure to construct exact analytic partial-
wave projections of the one-particle exchange contribution for any system composed of three spinless
hadrons. Our result allows one full control over the analytic structure of the projection, which we explore
for some low-lying partial waves with applications to three pions.
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I. INTRODUCTION

Applications of reaction theory to three-body systems
have seen a resurgence due to modern theoretical hadronic
spectroscopy. The success of two-hadron resonance studies
from Quantum Chromodynamics (QCD) using numerical
lattice QCD [1–32] in conjunction with nonperturbative
mappings between finite-volume spectra and reaction
amplitudes has allowed the community to pursue imple-
menting such an analysis strategy for excited hadrons
which have coupling to three-hadron decay modes.
The framework to compute nonperturbative reaction

amplitudes from QCD relies on a methodology first pre-
sented byLüscher [33–35] for two-particle systems [36–44],
with extensions to three-body systems developed in the last
decade [45–48,48–53,53,54,54–63,63,64,64–69]. The pro-
cedure for three-hadrons is given as follows. Finite-volume
correlation functions of operators with nonzero overlap to
the desired quantum numbers are computed via numerical

Monte Carlo methods, and the subsequent spectrum is
determined by novel techniques within lattice QCD. The
finite-volume energy spectrum is then used in conjunction
with formalisms known as quantization conditions which
relate short-distance dynamical objects known asKmatrices
to the spectrum through geometric functions characterizing
the distortions due to the periodic, finite volume. Practically,
one uses this avenue to constrain theK matrices which seed
into a set of integral equations which describe the on shell
scattering of the three hadrons. Examples of this computa-
tional procedure are given in [49,70–74].
A major challenge in the study of three-particle reactions

via lattice QCD is the last stage of the analysis, where
physical amplitudes are reconstructed from the data-
constrained K matrices. For spectroscopy, one usually
desires the resulting scattering amplitudes to be of definite
spin-parity JP so that one may search for the spectral
content by means of analytic continuation. Although there
has been substantial progress on this end [49,70–76], most
studies have focused on the restricted scenario where all the
particles are identical spinless bosons in which all angular
momenta are projected to S wave.1
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1An exception is the exploratory study of an isovector a1
meson [77,78], which numerically projected the scattering
equations into JP ¼ 1þ and neglected all other partial-wave
channels except a1 → ρπð3S1Þ.
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In this work, we focus on lifting this technical restriction
by presenting the operations needed to project the 3 → 32

scattering amplitude into any definite JP partial wave. We
consider the partial-wave expansion of the scattering
amplitude of three arbitrary spinless particles, that is, the
particles can be identical or distinguishable. The exact
details of the relativistic 3 → 3 scattering amplitude can be
found in Sec. II, as well as the introduction of relevant
kinematic variables. In Sec. III, we review key concepts
used for partial wave projecting the scattering amplitude.
As is emphasized there, the procedure followed is to define
amplitudes within the helicity basis that are then projected
to definite JP.
At the center of our analysis is the one-particle exchange

(OPE) process, a known kinematic function central to the
integral equations [65,79–81]. The OPE has a complicated
angular dependence which arises when two of the particles
couple to some definite spin before recoiling against the
third, making it the most challenging amplitude to project
to definite partial waves. Schematically, the exchange
propagator of the OPE, denoted by G, takes the form

G ¼ H
u −m2

e
; ð1Þ

whereH is a dense matrix in the angular momentum of the
incoming and outgoing pairs which we call the spin-helicity
matrix, and u is the momentum squared of the exchange
particle which has mass me. The functionsH and u depend
on the kinematics of the exchanged spectator particles,
including the scattering angle. The main goal of this work
is to provide a generic procedure to obtain an analytic
representation of the partial-wave projection of G. Since
our focus is primarily for lattice QCD applications,
although this procedure can also be used in phenomeno-
logical studies, we use the definition of H as presented in
Ref. [45,46,65].
Details of the analytic partial-wave projection of the OPE

are given in Sec. IV, which makes use of the procedure
outlined in Sec. III to derive a generic result for the partial-
wave OPE for any target JP quantum number. Our result
can be expressed in terms of entirely known functions,
taking the form

GJP ¼ KJP
G þ T JPQ0ðζpkÞ; ð2Þ

where GJP is the exchange propagator projected to definite
spin-parity JP, and KJP

G and T JP are functions of external
kinematics and include Clebsch-Gordan coefficients which
couple the system to JP. The functions KJP

G and T JP are
matrices in space of partial waves which contribute to a

particular JP, and are completely determined by the spin-
helicity matrix H, as shown in Sec. IV. The GJP amplitude
contains a branch cut in the complex energy plane which is
due to on shell particle exchange. This nonanalytic behav-
ior of the OPE is encoded entirely in Q0, the zero-degree
Legendre functions of the second kind, which depends on
external kinematic variables through the function ζpk,
which is defined in the main body of the text. Our result
allows one to control the entire analytic behavior of the
amplitude which is vital in the analytic continuation of
three-body amplitudes to complex energy planes [75,76].
In Sec. V, we use our main equation (2) to provide

explicit expressions for the OPE amplitude for key low-
lying partial waves. Applications of these results are given
in Sec. VI, where we show numerical results for relevant
channels in 3π systems to illustrate some of the analytic
properties of these functions as discussed in the main text.
Our procedure is summarized in Sec. VII. To aid the reader,
we provide three technical Appendices, Appendix A, B,
and C, that include details of various special functions that
are used throughout this work, a derivation of a key integral
used in the analytic partial-wave projection, and an alter-
native version of our approach using arbitrary reference
frames. For the reader who wishes to use our explicit partial
wave projected OPE amplitudes directly in their analyses, a
fourth Appendix, Appendix D, collects the cases presented
in Sec. V along with brief explanations of the required
kinematic variables.

II. AMPLITUDES AND KINEMATICS

In the following, we consider the scattering of three
spinless particles. In this work, we do not restrict the
particles to be degenerate or identical; however, we do
not consider any additional internal symmetries. e.g. had-
ronic flavor quantumnumbers.3 Since our focus is ultimately
on the on shell exchange mechanism, we find this gener-
alization benefits future applications as we provide a generic
result to accommodate not only cases such as elastic πππ
scattering, but also those such as KK̄π → KK̄π where
KK̄ → ηπ allows for ηmeson exchanges betweenKK̄ pairs.
Therefore, we consider a three-body reaction of the form

φkðkÞ þ φaðaÞ þ φa0 ða0Þ → φpðpÞ þ φbðbÞ þ φb0 ðb0Þ;

where φkðkÞ represents a single spinless particle carrying a
four-momentum k ¼ ðωk;kÞ with its energy ωk fixed by its
mass mk and momentum k through the usual relativistic on
shell dispersion relation ω2

k ¼ m2
k þ k2. Similar definitions

hold for the other particles. Here we adopt the notation that

2We use the notation n → m to indicate a reaction involving n
incoming and m outgoing stable hadrons.

3It is straightforward to include restrictions due to additional
symmetries, e.g. by including the appropriate SU(2) Clebsch-
Gordan coefficients for three hadrons with isospin symmetry;
cf. Refs. [53,63,64].
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the mass of the particle will be labeled by its momentum.
We normalize the single particle state by the usual Lorentz
invariant measure

hk0jki ¼ ð2πÞ32ωkδ
ð3Þðk0 − kÞ; ð3Þ

where δð3Þ is the three-dimensional Dirac delta distribution.
The initial system carries a total four-momentum P ¼
ðE;PÞ, where E is the total energy and P is the total
momentum, which in terms of the constituent momenta is
P ¼ kþ aþ a0. Similarly, P0 ¼ pþ bþ b0 ¼ ðE0;P0Þ for
the final state four-momentum. A three-particle state is
constructed by the usual tensor product of single-particle
states, which we denote as jP;k; ai. Here we trade the
momentum a0 for the total momentum as it is conserved in
reactions and a0 ¼ P − k − a.
The 3 → 3 scattering amplitudeM, depicted in Fig. 1, is

defined as the fully connected S matrix element

hP0;p;b; outjP;k; a; iniconn
¼ ð2πÞ4δð4ÞðP0 − PÞiMðp;b;k; aÞ; ð4Þ

where “conn.” indicates only the fully connected contribu-
tion is to be taken, and “in/out” refer to the asymptotically far
past/future. We have also factored out a Dirac delta from the
amplitude which ensures total momentum is conserved,
P ¼ P0. The amplitude depends on the total three-body
center-of-momentum (CM) frame energy E ¼ ffiffiffi

s
p

, where
s≡ P2 ¼ PμPμ ¼ E2 − P2 is the Mandelstam invariant.
The physical scattering threshold is given by EðthrÞ ¼
maxðmk þma þma0 ; mp þmb þmb0 Þ. In this work, we
suppress the dependence of s for all amplitudes to simplify
the notation. The amplitude depends on seven more kin-
ematic variables which are formed from the set of initial and
final state momenta.
In order to construct useful kinematic variables, it is

convenient to consider the kinematic configuration of the
three-body system as one consisting of two particles in a
pair with an associated spectator being the third particle.
In most of this work, we choose to label the initial state
spectator with momentum k, while the associated pair is
composed of the particles with momenta a and a0.
Likewise, for the final state, the spectator has momentum
p and the pair consists of the particles with momenta b
and b0.

Each pair has a four-momentum given by Pk ¼
ðEk;PkÞ≡ P − k and Pp ¼ ðEp;PpÞ≡ P − p for the ini-
tial and final state, respectively, where the subscripts k and
p indicate which spectator is associated with the pair. The
invariant mass squared of the pairs is given by

σk ≡ P2
k ¼ ðP − kÞ2; σp ≡ P2

p ¼ ðP − pÞ2: ð5Þ

Focusing first on the initial state, for a fixed s the physical

region of the pair invariant mass is limited to σðthrÞk ≤ σk ≤
ð ffiffiffi

s
p

−mkÞ2, where σðthrÞk is the physical scattering threshold

for that pair, σðthrÞk ¼ ðma þma0 Þ2. Momentum conserva-
tion constrains the pair invariant masses through the usual
Mandelstam condition,

σk þ σa þ σa0 ¼ sþm2
k þm2

a þm2
a0 ; ð6Þ

where σa and σa0 are the pair invariant masses considering a
and a0 as spectators, respectively. The physical scattering
region of the three particles is therefore bounded by the
condition Φðk; aÞ ≥ 0, where Φðk; aÞ is the Kibble boun-
dary function defined as [82–84]

Φðk; aÞ ¼ σkσaσa0 − σkðs −m2
aÞðm2

k −m2
a0 Þ

− σaðs −m2
kÞðm2

a −m2
a0 Þ

− ðsm2
a0 −m2

am2
kÞðsþm2

a0 −m2
a −m2

kÞ: ð7Þ

Similar restrictions hold for the final state particles,
with expressions given by the substitution fk; a; a0g →
fp; b; b0g in the above conditions.
In Sec. II A, we specify three reference frames which

we use to define additional kinematic variables used in the
partial-wave projection.

A. Reference frames

Three reference frames are required in our analysis of the
partial-wave projection of the 3 → 3 amplitude. Here we
define the essential characteristics of these frames, and will
refer to these in our constructions of partial waves in
Sec. III and give additional kinematic relations when we
discuss the application to the exchange propagator in
Sec. IV. These reference frames are illustrated in Fig. 2,
and are designated the “initial pair CM frame,” the “final
pair CM frame,” and the “total CM frame.”We define these
frames as follows:
(1) Initial pair CM frame—The initial pair CM frame is

defined by Pk ¼ P − k ¼ 0. It is common to in-
troduce a notation to indicate that a given kinematic
variable is evaluated in some specific reference
frame. Commonly in the literature one uses the ⋆
superscript to indicate such a situation for the CM
frame. In our case, however, we need to be careful
as there are three CM frames of interest. Therefore,

FIG. 1. The fully connected 3 → 3 amplitude iM with mo-
mentum assignments. All external legs represent incoming and
outgoing on shell particles constrained by total momentum
conservation.
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we adopt a notation for the initial pair rest frame that
a ⋆ superscript along with a k subscript indicates
that the kinematic variable is evaluated in this frame.
While this results in slightly cumbersome notation,
we feel this will alleviate future confusion for
implementing the results of this work. As an
example, the defining relation for this frame can
be written as P⋆

k;k ¼ P⋆
k − k⋆

k ¼ 0, where P⋆
k;k in-

dicates that the initial state pair momentum is
evaluated in its rest frame.4

In this frame, the pair has back-to-back momen-
tum a⋆k ¼ −a0⋆k , with its magnitude fixed by the pair
invariant mass5

a⋆k ≡ ja⋆k j ¼
1

2
ffiffiffiffiffi
σk

p λ1=2ðσk; m2
a; m2

a0 Þ; ð8Þ

where λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2ðxyþ yzþ zxÞ
is the Källén triangle function. Note that λðx; y; zÞ
is symmetric under interchange of the variables x, y,
z. Note also that in the case where ma ¼ ma0 ¼ m,
then a⋆k reduces to a⋆k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σk=4 −m2

p
.

As illustrated in Fig. 2, we define a coordinate
system with a zk axis for the initial state defined to
be antiparallel to the spectator momentum, i.e.
ẑk ≡ −k̂.6 Thus, the first particle in the pair (taken
to by φa) has its momentum oriented at a polar angle
ϑ⋆k with respect to this zk axis. Furthermore, the three

momenta form a plane (the initial state plane)
defined by the normal vector k × ak, oriented with
respect to the reaction plane (with a coordinate
system XYZ which is defined later) by an azimuthal
angle ψ⋆

k . This angle is preserved upon Lorentz
boosts along zk, i.e. ψk ¼ ψ⋆

k from the total CM
frame to the initial pair CM frame. The boost
velocity from the initial pair CM frame to the total
CM frame is given by βk ¼ Pk=Ek.

(2) Final pair CM frame—The final pair CM frame,
defined by P⋆

p;p ¼ 0, is constructed analogously to
the initial pair CM frame. The notation of a ⋆
superscript with a p subscript indicates that kin-
ematic variables are in this frame. Another body-
fixed coordinate system is assigned to this frame,
with its zp axis is defined by ẑp ≡ −p̂ and the “final
state plane” defined with a normal vector p × bp,
which is depicted in Fig. 2. The pair’s polar and
azimuthal angles are ϑ⋆p and ψ⋆

p , respectively. The
azimuthal angle is again invariant under boost along
ẑp, ψ⋆

p ¼ ψp. The final pair momenta are defined
back to back, b⋆

p ¼ −b0⋆
p , with a magnitude fixed

by σp

b⋆p ≡ jb⋆
p j ¼

1

2
ffiffiffiffiffi
σp

p λ1=2ðσp;m2
b; m

2
b0 Þ: ð9Þ

(3) Total CM frame—The final reference frame in our
analysis is the total CM frame, defined by P ¼ 0.
Unlike the initial and pair CM frames, we do not
include a special notation to indicate a kinematic
variable is evaluated in the total CM frame. This
frame proves convenient to define the reaction
plane, which connects the initial three-particle state
to the final state. Both the initial and final state
momenta are equally evaluated in this frame. Spe-
cifically, the magnitudes of the initial and final

FIG. 2. Reference frames for the 3 → 3 amplitude as described in the text. Shown in blue is the initial three-body state plane, in red the
final three-body state, and in gray the reaction plane. Kinematics in the reaction plane are shown in the total CM frame (P ¼ 0), while
the initial state planes are shown for both the initial pair CM frame (P⋆

k;k ¼ 0) and the total CM frame. The final state planes are shown in
the total CM frame and the final pair CM frame (P⋆

p;p ¼ 0).

4An example where this notation is vital is for P⋆
p;k, which is

the final state pair momentum evaluated in the initial pair rest
frame. Such evaluations become necessary as detailed in Sec. IV.

5The difference between the four-momentum a ¼ ðωa; aÞ and
the magnitude of its three-momentum a ¼ jaj is clear from
context.

6We use the notation r̂, the unit vector of r, to indicate the polar
and azimuthal angles, ðθr;φrÞ. Note that we use the standard
convention for the domain of the polar and azimuthal angles,
θr ∈ ½0; π�, and φr ∈ ½0; 2πÞ.
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spectator momenta are fixed by their pair invariant
masses,

p≡ jpj ¼ 1

2
ffiffiffi
s

p λ1=2ðs; σp;m2
pÞ;

k≡ jkj ¼ 1

2
ffiffiffi
s

p λ1=2ðs; σk; m2
kÞ: ð10Þ

These relations follow from Eq. (5), where the
inverse relations are readily given:

σk ¼ sþm2
k − 2

ffiffiffi
s

p
ωk;

σp ¼ sþm2
p − 2

ffiffiffi
s

p
ωp; ð11Þ

where we recall that ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
and ωp ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
p þ p2

q
. The angular degrees of freedom are

not fixed. Instead of specifying the angles of the
spectators, it proves more convenient to consider the
angles of the pair momenta Pk and Pp. To define
the momentum orientations, we introduce a space-
fixed coordinate system denoted by XYZ. This
coordinate system allows us to define our reaction
plane, and allows us to think about the pair-spectator
scattering system as a quasi-two-body reaction.
This quasi-two-body reaction is depicted in Fig. 3,
which for some fixed invariant masses

ffiffiffiffiffi
σk

p
and ffiffiffiffiffi

σp
p

is specified by the total CM frame energy
ffiffiffi
s

p
and

scattering angle between the spectators.
Without loss of generality,7 we define the initial

pair momentum Pk to be aligned with the þZ axis
of some space-fixed coordinate system (with axes
XYZ), that is Ẑ≡ P̂k. Since P ¼ 0, the initial
spectator momentum is then aligned with the −Z
axis. We then choose the final pair momentum Pp to
lie in the XZ plane, i.e. the quasi-two-body reaction
lies in the reaction plane. This plane is defined with
the þY axis proportional to k × p ¼ Pk × Pp. We
denote the total CM frame scattering angle by θpk,
which is defined in the usual way

cos θpk ≡ P̂p · P̂k ¼ p̂ · k̂: ð12Þ

Notice that θpk is simply the angle of Pp with respect
to the Z axis, cos θpk ¼ Pp · Ẑ, with respect to our
space-fixed coordinate system. Since we use the
standard convention that θpk ∈ ½0; π�, this means that
we can specify θpk completely with just cos θpk.

Additionally, as mentioned in the previous refer-
ence frame definitions, the reaction plane serves as
a convenient reference for the azimuthal angles of
the initial and final three-body planes, ψk and ψp,
respectively.

To conclude this section, we summarize the eight neces-
sary kinematic variables relevant to project the 3 → 3 system
to definite partial waves. For energy variables, we choose the
total CMenergy s, aswell as the initial and final pair invariant
mass squares σk and σp, respectively.An alternative to σk and
σp is the magnitudes of the associated spectator momenta k
and p. Through Eq. (10) at a fixed s, these are completely
interchangeable. We freely use either the set σk, σp or k, p
where convenient, either for ease of notation or exploiting
some physical relation. The final five variables orient our
system, four of which are the initial and final pair polar and
azimuthal angles defined in their respective rest frames, â⋆k
and b̂⋆

p , respectively. The last variable is the total CM frame
scattering angle θpk. In the following section, we construct
partial wave 3 → 3 amplitudes by integrating over the
angular degrees of freedom with appropriate angular
momentum weight functions.

III. PARTIAL-WAVE PROJECTION

Our first task is to define the generic partial-wave
projection for 3 → 3 scattering amplitudes. The scheme
we follow is similar to that of Ref. [85], where we first
couple the three-particle system to a definite total angular
momentum J through the helicity framework. Then, we
recouple the helicity partial wave to ones of definite parity
using spin-orbit or LS coefficients. The reason for going
through this two-step process is that helicity transforms
simply under Lorentz transformations compared to spin-
projections against some space-fixed z axis. Doing so

FIG. 3. Orientations of the initial and final state pair momenta
defined with respect to the external space-fixed coordinate system
(denoted by XYZ). The angle between the initial and final
momentum Pk and Pp, respectively, is the effective CM frame
scattering angle θpk.

7In Appendix C we lift this choice of coordinates and illustrate
the partial-wave expansion with respect to a generic externally
fixed coordinate system. Although important in future analyses,
as discussed in Appendix C, we find that working in a generic
coordinate system is not vital to reach our results in this work.
Therefore, we invite the interested reader to view Appendix C.
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makes the projection of the exchange amplitude simpler, as
the angles in the total CM frame are simply related to those
in either pair rest frame.

A. Helicity projection

The starting point is to project the amplitude in helicity
partial waves, that is partial waves of definite total angular
momentum where the pairs have their spin projected
quantized along their momentum direction. Following
the decomposition used in Refs. [45,46,65], we proceed
by first partial wave projecting the pair into a definite
angular momentum state

jP;k; ai ∝
ffiffiffiffiffiffi
4π

p X
l;λ

jP;k;lλiY�
lλðâ⋆k Þ; ð13Þ

where l is the angular momentum of the pair, λ is its
projection along the zk axis defined by the opposite sense of
the spectator momentum k (see Fig. 4.), and Ylλðâ⋆k Þ ¼
Ylλðχ⋆k ;ψ⋆

k Þ≡ hâ⋆k jlλi are the usual spherical harmonics.
Since the spin-quantization axis is along the direction of the
pair, we interpret λ as the pair helicity.8

The normalization of the state is not relevant for our
discussion, as we freely absorb this factor into the defi-
nition of the amplitude. As we work with scattering states

of three scalars, only l∈N0 is allowed, with λ∈Z which
spans −l ≤ λ ≤ l for a given l. For the scattering
amplitude, we arrive at the expansion

Mðp;b;k; aÞ
¼ 4π

X
l0;λ0

X
l;λ

Yl0λ0 ðb̂⋆
pÞMl0λ0;lλðp;kÞY�

lλðâ⋆k Þ; ð14Þ

where the factor of 4π is convention. Given the full
amplitude, the projection is found by using the orthonor-
mality of the spherical harmonics9

Ml0λ0;lλðp;kÞ ¼
1

4π

Z
db̂⋆

p

Z
dâ⋆k Y

�
l0λ0 ðb̂⋆

pÞ

×Mðp;b;k; aÞYlλðâ⋆k Þ; ð15Þ

where the integration measure is dâ⋆k ≡ dψ⋆
k d cosϑ

⋆
k

with the integration domain being over ϑ⋆k ∈ ½0; π� and
ψ⋆
k ∈ ½0; 2π�.
It is useful to consider the amplitude Ml0λ0;lλ as one

describing the reaction of a spinless particle of massmk and
a quasiparticle of mass

ffiffiffiffiffi
σk

p
, spin l, and helicity λ, which

transitions to a spinless particle of mass mp recoiling
against another quasiparticle of mass ffiffiffiffiffi

σp
p , spin l0, and

helicity λ0. We represent the quasi-two-body reaction as

ξðlÞk ðPk; λÞ þ φkðkÞ → ξðl
0Þ

p ðPp; λ0Þ þ φpðpÞ;

where ξðlÞk represents the quasiparticle of spin l. Note that
this effective 2 → 2 process only knows about particles φa,
φa0 and φb, φb0 through formation and decay, thereby only
restricting the threshold of the invariant mass. Thus the
details of the kinematic configurations for these particles
are not relevant in the rest of this construction. However,
since the amplitude depends on the pair invariant masses, it
contains an angular momentum barrier suppression as the
energies of the pairs approach their threshold. For example,

as the initial state pair invariant mass squared σk → σðthrÞk ,
then

Ml0λ0;lλðp;kÞ ∼ ða⋆k Þl; ð16Þ

with a similar behavior for the final state,Ml0λ0;lλ ∼ ðb⋆pÞl0
as σp → σðthrÞp .
Once we have the effective helicity amplitude Ml0λ0;lλ,

we can now couple the initial and final state to those of
definite total angular momentum J and projection mJ
defined with respect to the space-fixed Z axis. The quasi-
two-body state has the helicity partial-wave expansion

FIG. 4. Kinematic configuration and spin-projection definitions
for the initial (blue) and final (red) state pairs in their associated
rest frame. Each pair has its spin-projection along the opposite
direction of their associated spectators, giving λ and λ0 a helicity
interpretation.

8In the recent three-particle finite-volume frameworks for
lattice QCD analyses, the pair angular momentum projection
m usually has a quantization axis taken to be some fixed z axis of
a volume. If one starts with this definition, then converting to a
helicity quantization with λ amounts to a unitary rotation of the
pair state jPk;lλi,

jPk;lλi ¼
X
m

DðlÞ
mλ ðP̂kÞjPk;lmi;

where DðlÞ
mλ are the Wigner D matrix elements which are

discussed in Appendix A.

9In this work we make frequent use of identities of math-
ematical special functions. For convenience, we collected a set of
useful properties and appropriate references in Appendix A.
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jP;k;lλi ∝
X
J;mJ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

p jP; k; JmJ;lλiDðJÞ
mJλ

ðP̂kÞ; ð17Þ

where DðJÞ
mJλ

are Wigner D matrix elements
(cf. Appendix A). Again, we do not specify a normalization
as we absorb this kinematic factor into the definition of the
amplitude. Since we chose the pair momentum Pk to have
its momentum along the þzk axis, the angles we consider
are those of this momentum, and not the spectator. We
choose the phase convention of the Wigner D matrix
elements such that

DðJÞ
mJλ

ðP̂kÞ ¼ DðJÞ
mJλ

ðϕk; θk; 0Þ;
¼ e−imJϕkdðJÞmJλ

ðθkÞ; ð18Þ

where θk, and ϕk are the polar and azimuthal angles of the

momentum Pk, respectively, and dðJÞmJλ
ðθkÞ are the d matrix

elements which are real for physical θk, i.e. −1 ≤ cos θk ≤
þ1; see Eq. (A22). Applying this basis expansion on both
the initial and final states of Eq. (15) yields

Ml0λ0;lλðp;kÞ¼
X
J0;mJ0

X
J;mJ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J0 þ1

p
DðJ0Þ

mJ0 λ
0 ðP̂pÞ

×MJ0mJ0 ;JmJ

l0λ0;lλ ðp;kÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jþ1

p
DðJÞ

mJλ
ðP̂kÞ: ð19Þ

The normalization of Eq. (19) is chosen such that for
spinless pairs, l0 ¼ l ¼ 0, then (19) simplifies, and the
resulting expression has same normalization as Eq. (14).10

Rotational invariance of the entire three-body system
imposes that total angular momentum J is conserved, and
the amplitude is independent of the projection mJ,

MJ0mJ0 ;JmJ

l0λ0;lλ ¼ δJ0JδmJ0mJ
MJ

l0λ0;lλ: ð20Þ

Since the helicity partial-wave amplitude is block diagonal
in each J sector, we can reduce the sums in the expansion to

Ml0λ0;lλðp;kÞ ¼
X∞
J¼Jmin

ð2J þ 1ÞMJ
l0λ0;lλðp; kÞ

×
XJ

mJ¼−J
DðJÞ

mJλ
0 ðP̂pÞDðJÞ

mJλ
ðP̂kÞ; ð21Þ

where Jmin ¼ maxðjλ0j; jλjÞ is the minimum J value for the
sum given λ0 and λ [86]. The helicity partial-wave ampli-
tudes MJ

l0λ0;lλ depend on the three kinematic variables,
total CM energy

ffiffiffi
s

p
, and the initial and final spectator

momenta k and p, respectively (or alternatively the pair
invariant masses

ffiffiffiffiffi
σk

p
and ffiffiffiffiffi

σp
p ).

Recall from Sec. II A that with respect to our chosen
coordinate system, P̂k ¼ Ẑ. Thus, for all J the initial
Wigner D matrix element simplifies to

DðJÞ
mJλ

ðẐÞ ¼ δmJλ; ð22Þ

allowing us to trivially perform the sum to find

XJ
mJ¼−J

DðJÞ
mJλ

0 ðP̂pÞDðJÞ
mJλ

ðP̂kÞ ¼ dðJÞλλ0 ðθpkÞ; ð23Þ

where we recall from Eq. (12) that the CM frame scattering
angle is defined by cos θpk ≡ P̂p · P̂k, and since the pair
momenta lie in the XZ plane, there is no azimuthal angular
dependence. Therefore, the helicity partial-wave expansion
is given by

Ml0λ0;lλðp;kÞ¼
X
J

ð2Jþ1ÞMJ
l0λ0;lλðp;kÞdðJÞλλ0 ðθpkÞ; ð24Þ

with the projection given by

MJ
l0λ0;lλðp; kÞ

¼ 1

2

Z þ1

−1
d cos θpkd

ðJÞ
λλ0 ðθpkÞMl0λ0;lλðp;kÞ: ð25Þ

The helicity partial-wave amplitudes do not possess
definite parity [86], and we must take appropriate linear
combinations to recover definite parity amplitudes. In the
following section, we construct definite parity amplitudes
by connecting to the spin-orbit basis.11

B. Spin-orbit projection

Spin-orbit amplitudes are those of definite spatial parity.
These amplitudes are important to construct for the
spectroscopy as hadrons appear as resonant states of
amplitudes, and hadrons have definite spin-parity JP.
Given the helicity partial-wave projections for the 3 → 3
amplitude in Sec. III A, we can easily construct amplitudes
of definite parity by taking appropriate linear combinations.
We use the fact that the amplitudes Ml0λ0;lλ can be
interpreted as a quasi-two-body amplitude where one

10See Eq. (A33) in Appendix A for the relations between the
spherical harmonics and Wigner D matrix elements.

11One could of course define a partial-wave projection directly
into the spin-orbit basis without going through the helicity basis
first. However, since our goal is to construct the partial-wave
projection of the OPE contribution to the three-body amplitude,
we find it more convenient to first project it into the helicity basis,
and then form linear combinations of definite parity states. The
reasoning is due to the complicated angular dependence of the
OPE function, and the helicity basis allows us to easily define
relations between the different reference frames which impact
the OPE definition, which will be detailed in Sec. IV.
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particle has a helicity. We can therefore use standard
techniques [86] from the partial-wave projection of a
two-body helicity state to spin-orbit state to obtain

jP; k;2Sþ1 LJ;mJ;li
∝
X
λ

jP; k; JmJ;lλiPðlÞ
λ ð2Sþ1LJÞ; ð26Þ

which when applied to our helicity amplitude yields

Mðl0lÞ;J
L0S0;LSðp; kÞ
¼

X
λ0;λ

Pðl0Þ
λ0 ð2S0þ1L0

JÞMJ
l0λ0;lλðp; kÞPðlÞ

λ ð2Sþ1LJÞ: ð27Þ

Here S is the total intrinsic spin of the pair-spectator
system, L is the orbital angular momentum between
an initial state pair and its spectator in their total CM
frame, and S0 and L0 are similarly defined for the final
state. The total angular momentum J of the three-body
system therefore has values jL − Sj ≤ J ≤ Lþ S and
jL0 − S0j ≤ J ≤ L0 þ S0. The parity of the three-particle
state with a total angular momentum J is

P ¼ ηð−1ÞSþL ¼ ηð−1ÞS0þL0
; ð28Þ

where η is the product of the intrinsic parities of the three
particles, e.g. for three pseudoscalar pions the product of
intrinsic parities is η ¼ ð−1Þ3 ¼ −1. Since the strong
interaction conserves parity, only transitions where Sþ L
and S0 þ L0 are both even or both odd are allowed.
To couple the helicity basis to the spin-orbit basis, we

have introduced the spin-orbit coupling coefficients PðlÞ
λ ,

which are defined in terms of Clebsch-Gordan coeffi-
cients as

PðlÞ
λ ð2Sþ1LJÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1

2J þ 1

r
hJλjL0; SλiδlS: ð29Þ

The Kronecker delta enforces that the total spin is equal to
that of the pair, S ¼ l, as expected for our three spinless
particles.12 From the completeness relation of the Clebsch-
Gordan coefficients, one immediately sees that the spin-
orbit couplings satisfyX

λ

PðlÞ
λ ð2Sþ1L0

JÞPðlÞ
λ ð2Sþ1LJÞ ¼ δL0L: ð30Þ

The spin-orbit amplitudes describe the transition
2Sþ1LJ → 2S0þ1L0

J for the quasi-two-body reaction

ξðlÞk þ φk → ξðl
0Þ

p þ φp. Therefore, for fixed σk and σp,
the amplitudes have the usual threshold behavior from
orbital angular momentum barrier suppression,

Mðl0lÞ;J
L0S0;LSðp; kÞ ∼ pL0

kL; ð31Þ

as p; k → 0 for fixed σk, σp.
As an example of the form of spin-orbit coupling

coefficients, let us consider a system of three pions. For
a pair of pions in relative S wave, then l ¼ 0 and the only
allowed L is L ¼ J. So, the spin-orbit coefficient is simply

Pð0Þ
λ ð1JJÞ ¼ δλ0: ð32Þ

If the pair of pions is in an angular momentum state l ¼ 1,
i.e. the resonant P wave channel, then the pair-spectator
system is then a triple state with S ¼ 1. For some target
total angular momentum J, the allowed orbital angular
momenta are L ¼ J − 1; J; J þ 1. Therefore, the spin-orbit
coefficients can be simplified to the form

Pð1Þ
λ ð3LJÞ¼

8>>>>><
>>>>>:

ffiffiffiffiffiffiffiffiffiffiffiffi
Jþ1

2ð2Jþ1Þ
q

jλjþ
ffiffiffiffiffiffiffiffi
J

2Jþ1

q
δλ;0; L¼ J−1;

− λffiffi
2

p ; L¼ J;ffiffiffiffiffiffiffiffiffiffiffiffi
J

2ð2Jþ1Þ
q

jλj−
ffiffiffiffiffiffiffiffi
Jþ1
2Jþ1

q
δλ;0; L¼ Jþ1:

ð33Þ

Since the pion is a pseudoscalar, the product of the intrinsic
parities is η ¼ −1, and therefore the total parity of the
system is P ¼ ð−1ÞL. For a target JP ¼ 1þ and the initial
and final pairs both being vectors l ¼ l0 ¼ 1, then only S
and D waves contribute giving a two-dimensional ampli-
tude with 3S1 and 3D1.

IV. ONE-PARTICLE EXCHANGE AMPLITUDE

We construct analytic representations of the 3 → 3
scattering amplitude by enforcing S matrix unitarity on
Eq. (4). One can show that a driving kinematic singularity
of the amplitude is due to the exchange of an on shell
particle with mass me and momentum P − k − p between
two-body subprocesses [65]. The imaginary part of the
3 → 3 amplitude at this kinematic point, specifically for the
k and p spectators, is13

ImMðp;b;k; aÞ ⊃ M�
2ðσp; b̂⋆

p; k̂
⋆
pÞπδðupk −m2

eÞ
×M2ðσk; p̂⋆

k ; â
⋆
k Þ; ð34Þ

where the angles k̂⋆
p and p̂⋆

k correspond to the orientations
of the spectator in the rest frame of the opposite pair12In anticipation of extensions for external particles with spin

we define the spin-orbit coupling coefficients with the redundant
l ¼ S, which in the case for particles with spin the Kronecker
delta will be replaced with an additional Clebsch-Gordan
coefficient which couples the pair and spectator spins to total S.

13Scattering amplitudes can be thought of as a sum of an
infinite set of contributions. With this in mind, we use ⊃ to
identify one term in this set.
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indicated, e.g. k̂⋆
p is the unit vector of the initial specta-

tor defined in the final pair rest frame defined by its
spectator p.14 We also defined

upk ≡ ðP − k − pÞ2; ð35Þ

as the momentum squared of the exchanged particle. We
focus only on the k and p spectators here, but note that
other spectator combinations will result in similar contri-
butions to the imaginary part.
The aforementioned pole singularity of the 3 → 3

amplitude is encoded in the OPE. Defining the momenta
of the initial and final spectators respectively to be k and p,
the OPE, depicted diagrammatically in Fig. 5, can in
general be written as15

iMðp;b;k; aÞ

⊃ iM2ðσp; b̂⋆
p; k̂

⋆
pÞ

i
upk −m2

e þ iϵ
iM2ðσk; p̂⋆

k ; â
⋆
k Þ

≡ iMOPEðp;b;k; aÞ: ð36Þ

On either side of the exchange propagator is a modified
2 → 2 amplitude, M2. The modification chosen, which is
not unique, assures that M2 agrees with M2 in the limit
that the exchanged particle goes on shell, while assuring
that no unphysical kinematic singularities are introduced.
Explicitly, these amplitudes are defined through the follow-
ing angular momentum expansion,

M2ðσk; p̂⋆
k ; â

⋆
k Þ ¼ 4π

X
l0;λ0

X
l;λ

�
p⋆
k

q⋆k

�
l0

Yl0λ0 ðp̂⋆
k Þ

×M2;l0λ0;lλðσkÞY�
lλðâ⋆k Þ; ð37aÞ

M2ðσp; b̂⋆
k ; k̂

⋆
pÞ ¼ 4π

X
l0;λ0

X
l;λ

Yl0λ0 ðb̂⋆
pÞM2;l0λ0;lλðσpÞ

×

�
k⋆p
q⋆p

�
l

Y�
lλðk̂⋆

pÞ: ð37bÞ

Angular momentum barrier factors are included to suppress
the kinematic divergence induced by the spherical har-
monics as p⋆

k and k⋆p go to zero in their respective
amplitudes. These momenta are defined in the CM frame
of the pair of the opposite spectator; specifically one can
show

p⋆
k ¼ 1

2
ffiffiffiffiffi
σk

p λ1=2ðσk; m2
p; upkÞ;

k⋆p ¼ 1

2
ffiffiffiffiffi
σp

p λ1=2ðσp;m2
k; upkÞ: ð38Þ

The barrier factors are chosen to be unity at the on shell
point upk ¼ m2

e, where we define the momenta

q⋆k ≡ p⋆
k jupk¼m2

e
¼ 1

2
ffiffiffiffiffi
σk

p λ1=2ðσk; m2
p;m2

eÞ;

q⋆p ≡ k⋆p jupk¼m2
e
¼ 1

2
ffiffiffiffiffi
σp

p λ1=2ðσp;m2
k; m

2
eÞ; ð39Þ

Finally note that rotational invariance of the two-body
subsystems diagonalize their respective 2 → 2 partial-wave
amplitude M2;l0λ0;lλðσÞ ¼ δl0lδλ0λM2;lðσÞ.

A. Exchange propagator

Given the OPE amplitude defined in Eq. (36), we
manipulate it to be amenable for an analytic partial-wave
projection to total angular momentum J. This means isolat-
ing the dependence on the total scattering angle θpk. Using
the on shell representation defined inEq. (36)withEqs. (37a)
and (37b), we write the OPE amplitude as

iMOPE ¼ 4π
X
l0;λ0

X
l;λ

Yl0λ0 ðb̂⋆
pÞiMl0 ðσpÞiGl0λ0;lλðp;kÞ

× iMlðσkÞY�
lλðâ⋆k Þ; ð40Þ

FIG. 5. The OPE contribution to the on shell 3 → 3 amplitude
iM with momentum assignments. The dashed line indicates that
we have removed short-distance contributions of the exchange
propagator. The 2 → 2 subprocesses iM2 are denoted by the
gray-filled circles on either side of the exchange propagator.

14Since the OPE involves pair-spectator systems in both its
external and intermediate states, the thresholds for the pair invariant
masses extend to the cases σðthrÞk ¼ maxðma þma0 ; mp þmeÞ and
σðthrÞp ¼ maxðmb þmb0 ; mk þmeÞ for the initial and final pair,
respectively.

15Equation (36) can be argued by constructing on shell
representations through either S matrix unitarity [65–67] or
summing Feynman graphs to all orders within some generalized
effective field theory and projecting intermediate states on their
mass shell [45,46]. As with all on shell representations, the OPE
is defined up to some real part in the physical region which is
absorbed into the global K matrix which describes short-distance
three-body dynamics. For example, in the resulting integral
equations of the aforementioned references, one usually includes
a cutoff function to render the momentum integrals UV finite.
Since our focus here is on the partial-wave projection of the
function, we omit the cutoff function for convenience.
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which in effect performs the first partial-wave expansion on
the initial and final state pairs as given in Eq. (14). Here we
define the kinematic exchange propagator G as

Gl0λ0;lλðp;kÞ≡ Hðl0lÞ
λ0λ ðp;kÞ

upk −m2
e þ iϵ

; ð41Þ

where the ϵ → 0þ limit is understood, and H is the spin-
dependent numerator16 which we define as the spin-helicity
matrix,

Hðl0lÞ
λ0λ ðp;kÞ≡

�
k⋆p
q⋆p

�
l0

4πY�
l0λ0 ðk̂⋆

pÞYlλðp̂⋆
k Þ
�
p⋆
k

q⋆k

�
l
: ð42Þ

From the properties of the spherical harmonics, the spin-
helicity matrix obeys the reflection property

Hðl0lÞ
λ0λ ðp;kÞ ¼ ð−1Þλ0þλHðl0lÞ�

−λ0−λ ðp;kÞ: ð43Þ

In order to analytically perform the partial-wave projec-
tion, we manipulate the exchange propagator (41) into a
form to make explicit the dependence of the angular
variable θpk. We therefore need to express Eqs. (41)
and (42) with respect to our reaction plane defined in
the space-fixed coordinate system illustrated in Fig. 3. For
convenience we define zpk as the cosine of the scattering
angle,

zpk ≡ cos θpk; ð44Þ

and work with zpk. Upon inspection of the propagator of
Eq. (41), we find that the zpk dependence will reside in the
pole term through upk ¼ ðP − k − pÞ2, and through the
arguments of the spherical harmonics which are related
to the scattering angle by Lorentz transformations. The
dependence on zpk leads to singular behavior both when the
propagator goes on the mass shell and through kinematic
factors associated with the spin of the pairs. In the
following, we derive a generic form for the OPE which
identifies the angular dependence including the isolation of
the singular behavior of the function on zpk.
The OPE is a u-channel process in the effective

ξðlÞk ðPk; λÞ þ φkðkÞ → ξðl
0Þ

p ðPp; λ0Þ þ φpðpÞ reaction. The
invariant momentum transfer is related to the cosine of the
scattering angle in the usual way,

upk ¼ ðP − k − pÞ2;
¼ σk þm2

p − 2Ekωp − 2pkzpk;

≡ uð0Þpk − 2pkð1þ zpkÞ; ð45Þ

where Ek ¼
ffiffiffi
s

p
− ωk, and u

ð0Þ
pk ≡ σk þm2

p − 2Ekωp þ 2pk
is the backward limit (zpk ¼ −1) of upk. The value of zpk at
the on shell point, upk ¼ m2

e, is given a special notation,

ζpk ≡ zpkjupk¼m2
e
;

¼ −1 −
m2

e − uð0Þpk

2pk

¼ 2sðσk þm2
p −m2

eÞ − ðsþ σk −m2
kÞðsþm2

p − σpÞ
λ1=2ðs; σk; m2

kÞλ1=2ðs; σp;m2
pÞ

;

ð46Þ

where we have used, along with k and p defined in
Eq. (10), the relations

Ek ¼
ffiffiffi
s

p
− ωk ¼

1

2
ffiffiffi
s

p ðsþ σk −m2
kÞ;

ωp ¼ 1

2
ffiffiffi
s

p ðsþm2
p − σpÞ; ð47Þ

which follow from the definition of s in the total CM frame.
Note that we have not explicitly written the þiϵ shift
which avoids the pole. However, one can include this shift
by either substituting m2

e → m2
e − iϵ or ζpk → ζpk þ iϵ.

The OPE pole of Eq. (41) in terms of zpk is then
upk −m2

e ¼ 2pkðζpk − zpkÞ.
For the zpk dependence in the spin-helicity matrix,

Eq. (42), we make use of the Lorentz transformations
between the total CM frame (P ¼ 0) where θpk is defined,
and the pair CM frames where the orientations of k⋆

p and
p⋆
k are defined. These Lorentz transformations are illus-

trated in Figs. 6 and 7 for the initial pair and final pair rest
frames, respectively. Recall that in the reaction plane, i.e.
the XZ plane, the pair momenta have zero azimuthal angle
in the CM frame.
Focusing first on the initial pair rest frame where

P⋆
k;k ¼ ðP − kÞ⋆k ¼ 0, as illustrated in Fig. 6(a), we define

χ⋆k as the polar angle of p⋆
k in the initial pair rest frame,

cos χ⋆k ¼ p⋆
k · ẑk ¼ −p⋆

k · k⋆
k . With respect to the external

coordinate system, the azimuthal angle of p⋆
k is π since the

vector is oriented with respect to the negative xk axis.
Therefore, the orientation of p⋆

k is given by the angles
ðχ⋆k ; πÞ. In the final pair rest frame P⋆

p;p ¼ ðP − pÞ⋆p ¼ 0 as
shown in Fig. 7(a), the polar angle of k⋆

p is χ⋆p which is
defined as cos χ⋆p ¼ k⋆

p · ẑp ¼ −k⋆
p · p⋆

p . With respect to
our coordinate system, the azimuthal angle is zero; thus the
polar and azimuthal angles of k⋆

p in this frame are ðχ⋆p; 0Þ.

16We emphasize that we use the regular spherical harmonics as
opposed to the real harmonics originally used in the original
derivation using the finite-volume framework [45,46], which are
simply unitary transformations of the regular spherical harmon-
ics, Yl ¼ Ul · Sl with Sl denoting the real spherical harmonics
of degree l.
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Therefore, the angular dependence of the spin-helicity
matrix is of the form

Hðl0lÞ
λ0λ ðp;kÞ ∝ Y�

l0λ0 ðχ⋆p; 0ÞYlλðχ⋆k ; πÞ;
¼ ð−1ÞλYl0λ0 ðχ⋆p; 0ÞYlλðχ⋆k ; 0Þ: ð48Þ

The relation between the χ⋆k and χ⋆p and zpk is found by
Lorentz boosting between the frames in which these angles
are defined and the total CM frame. The Lorentz boost
along the zk axis from the initial pair rest frame to the total
CM frame, cf. Fig. 6(b), yields the relation

p⋆
k cos χ

⋆
k ¼ γk½p cosðπ − θpkÞ − ωpβk�; ð49aÞ

p⋆
k sin χ

⋆
k ¼ p sinðπ − θpkÞ; ð49bÞ

where βk ¼ jPkj=Ek ¼ k=ð ffiffiffi
s

p
− ωkÞ is the magnitude of

the boost velocity and γk¼ð1−β2kÞ−1=2¼ð ffiffiffi
s

p
−ωkÞ= ffiffiffiffiffi

σk
p

.
Note that cosðπ−θpkÞ¼−cosθpk¼−zpk and sinðπ−θpkÞ¼
sinθpk¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−z2pk

q
. A similar analysis for the initial state

spectator momentum in the final state pair rest frame, k⋆
p ,

yields the transformation (cf. Fig. 7)

k⋆p cos χ⋆p ¼ γp½k cosðπ − θpkÞ − ωkβp�; ð50aÞ

k⋆p sin χ⋆p ¼ k sinðπ − θpkÞ; ð50bÞ

where βp¼jPpj=Ep¼p=ð ffiffiffi
s

p
−ωpÞ, γp ¼ ð1 − β2pÞ−1=2 ¼

ð ffiffiffi
s

p
− ωpÞ= ffiffiffiffiffi

σp
p . From Eqs. (49) and (50), we see that the

spherical harmonics contain dependencies on s, p, k, as
well as zpk.
The analytic structure of the zpk dependence of H can

be understood by its partial-wave expansion. Since the
helicity dependence of the OPE is entirely contained
in H, it admits a partial-wave expansion similar to the
full helicity amplitude as given in Eq (24). We write its

expansion as17

Hðl0lÞ
λ0λ ðp;kÞ ¼

X
J

ð2J þ 1ÞHðl0lÞ;J
λ0λ ðp; kÞdðJÞλλ0 ðzpkÞ: ð51Þ

In the complex zpk plane, the spin-helicity function con-
tains singularities associated with the Wigner d functions
as seen by Eq. (51). By definition, cf. Appendix A and
references therein, the zpk dependence in the Wigner d
matrix elements is of the form

dðJÞλλ0 ðzpkÞ ∝ ξλλ0 ðzpkÞPðμ;νÞ
ρ ðzpkÞ; ð52Þ

where ξλλ0 is called the half-angle factor and Pðμ;νÞ
ρ are the

Jacobi polynomials with μ ¼ jλ − λ0j, ν ¼ jλþ λ0j, and
ρ ¼ J − ðμþ νÞ=2 ¼ J − Jmin. The Jacobi polynomials

Pðμ;νÞ
ρ ðzpkÞ are regular functions of zpk for all indices μ,

ν, and ρ, while the half-angle factor, defined by

ξλλ0 ðzpkÞ ¼
�
1 − zpk

2

�jλ−λ0 j
2

�
1þ zpk

2

�jλþλ0 j
2

; ð53Þ

contains potentially square-root singularities depending on
the system of helicities. In order to obtain an analytic
representation for the OPE, we isolate the singular depend-
encies in zpk as they will impact the partial-wave projec-
tion. Therefore, we conclude that the spin-helicity function
for any l0;l has the generic structure18

Hðl0lÞ
λ0λ ðp;kÞ≡ ξλλ0 ðzpkÞAðl0lÞ

λ0λ ðp; k; zpkÞ; ð54Þ

FIG. 6. Kinematics of the OPE in (a) the initial state pair rest frame (P⋆
k;k ¼ 0) and (b) the total CM frame (P ¼ 0). The boost velocity

from the P⋆
k;k ¼ 0 frame to the P ¼ 0 frame is βk ¼ Pk=Ek ¼ ðP − kÞ=ð ffiffiffi

s
p

− ωkÞ.

17In a slight abuse of notation, we express dðJÞλλ0 ðθpkÞ as a
function of zpk ¼ cos θpk, d

ðJÞ
λλ0 ðzpkÞ, so that we can write every-

thing as a function of zpk.
18This behavior has been known from the scattering of two

spinning particles; see for example Ref. [87] and references
therein.
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where Aðl0lÞ
λ0λ is defined to be a regular function in zpk for

the physical kinematics. For example, consider the scatter-
ing with l0 ¼ l ¼ 1, with the helicities λ0 ¼ þ1, λ ¼ 1.
Then, as detailed in Sec. V, the spin-helicity function

behaves like Hð11Þ
þ10 ¼ sin χ⋆p cos χ⋆k . This function is non-

analytic in zpk since sin χ⋆p ∝ sin θpk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2pk

q
from the

Lorentz transformations Eq. (50). However, ξ01ðzpkÞ ∝ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2pk

q
, thus the spin-helicity function factorizes into

the nonanalytic half-angle factor and a regular function
in zpk.
It is further useful to define the A coefficient at the on

shell point zpk ¼ ζpk,

Aðl0lÞ
λ0λ ðp; kÞ≡Aðl0lÞ

λ0λ ðp; k; zpkÞjzpk¼ζpk
; ð55Þ

which allows us to express the function as a term at the
propagator pole and a term which is the difference of the
pole and nonpole term,

Aðl0lÞ
λ0λ ðp;k;zpkÞ¼Aðl0lÞ

λ0λ ðp;kÞ
þ
h
Aðl0lÞ

λ0λ ðp;k;zpkÞ−Aðl0lÞ
λ0λ ðp;kÞ

i
: ð56Þ

Near the pole, the difference vanishes as ðζpk − zpkÞ; thus it
is convenient to define a new function which is regular near
this pole:

Bðl0lÞ
λ0λ ðp;k;zpkÞ≡ 1

ζpk−zpk

h
Aðl0lÞ

λ0λ ðp;k;zpkÞ−Aðl0lÞ
λ0λ ðp;kÞ

i
:

ð57Þ

The introduction of the B coefficient allows us to
completely isolate the analytic behavior of the OPE in
zpk into the generic form,

Gl0λ0;lλðp;kÞ

¼ 1

2pk
ξλ0λðzpkÞ

�
Aðl0lÞ

λ0λ ðp;kÞ
ζpk− zpk

þBðl0lÞ
λ0λ ðp;k;zpkÞ

�
: ð58Þ

As discussed in the beginning of this section, the singular
behavior of G in the variable zpk ¼ cos θpk comes from two
locations. First there is the overall half-angle factor, hidden
in the spin-helicity function, which exhibits kinematic
singularities due to the spin of the initial and final state
pairs. Second, the OPE is singular where the exchange
particle goes on its mass shell, which is encoded in the pole.
The remaining zpk behavior is analytic in the physical
region we consider.
The B coefficients are constructed to be regular functions

of zpk on the interval −1 ≤ zpk ≤ þ1; thus for a fixed λ0 and
λ we can freely expand it into Legendre polynomials as

Bðl0lÞ
λ0λ ðp; k; zpkÞ ¼

X∞
j¼0

ð2jþ 1ÞBðl0lÞ
j;λ0λ ðp; kÞPjðzpkÞ; ð59Þ

where by the orthogonality of the Legendre polynomials
we can obtain the projected coefficients

Bðl0lÞ
j;λ0λ ðp; kÞ ¼

1

2

Z þ1

−1
dzpkPjðzpkÞBðl0lÞ

λ0λ ðp; k; zpkÞ: ð60Þ

We stress here that although Eq. (59) is an expansion
involving an infinite number of terms, for a fixed l0 and l
only a finite number of projected coefficients Eq. (60) will
exist for some target total angular momentum J. In Sec. V,
we give explicit examples of these coefficients for
l0;l ¼ f0; 1g.
Since the OPE is a known function, we can easily

tabulate the A and B coefficients for the particular
scattering channels of interest by the procedure outlined
above. While at first, this may seem like extra computa-
tional steps given that G has a known form, we find that this
decomposition allows us to write down a generic analytic

FIG. 7. Similar to Fig. 6 but for the (a) final state pair frame (P⋆
p;p ¼ 0) where the boost to the (b) total CM frame is given by

βp ¼ Pp=Ep ¼ ðP − pÞ=ð ffiffiffi
s

p
− ωpÞ.
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representation for the definite-parity partial-wave ampli-
tudes of the OPE. In doing so, we arrive at an exact result
that isolates all the known singular structures of the OPE in
the ðσp; s; σkÞ variables, and a set of coefficients which are
determined from the identified A and B coefficients.

B. Partial wave projected exchange
propagator

The OPE as given in Eq. (58) allows for explicit analytic
partial-wave projection. First we project Eq. (58) into the
helicity basis using Eq. (25),

GJ
l0λ0;lλðp; kÞ≡

1

2

Z þ1

−1
d cos θpkd

ðJÞ
λλ0 ðθpkÞGl0λ0;lλðp;kÞ;

¼ 1

4pk
Aðl0lÞ

λ0λ ðp; kÞ
Z þ1

−1
dzpk

ξλλ0 ðzpkÞ
ζpk − zpk

dðJÞλλ0 ðzpkÞ þ
1

4pk

Z þ1

−1
dzpkξλλ0 ðzpkÞdðJÞλλ0 ðzpkÞBðl0lÞ

λ0λ ðp; k; zpkÞ: ð61Þ

The integral in the first term is entirely in terms of known
functions independent of spectator momenta, whereas the
second integral involves the B coefficient which depends
on the momenta chosen pairs. By using the expansion (59),
we can remove the momentum dependence leaving an
integral over functions which depend solely on zpk for the
second term of Eq. (61),

ð2nd termÞ ¼ 1

4pk

X
j

ð2jþ 1ÞBðl0lÞ
j;λ0λ ðp; kÞ

×
Z þ1

−1
dzpkξλλ0 ðzpkÞdðJÞλλ0 ðzpkÞPjðzpkÞ: ð62Þ

Both of the resulting integrals can be computed analyti-

cally by recognizing that the product ξλλ0 ðzpkÞdðJÞλλ0 ðzpkÞ is a
regular function of zpk for any J, λ0, and λ since d

ðJÞ
λλ0 ðzpkÞ ∝

ξλλ0 ðzpkÞPjλ−λ0j;jλþλ0j
J−Jmin

ðzpkÞ and the singular behavior of the
half-angle factor is removed since it is squared.19 This
allows us to perform the following expansion:

ξλλ0 ðzpkÞdðJÞλλ0 ðzpkÞ ¼
X∞
j¼0

ð2jþ 1ÞCJj;λ0λPjðzpkÞ; ð63Þ

where the expansion coefficients CðJÞj;λ0λ are determined by

CJj;λ0λ ¼
1

2

Z þ1

−1
dzpkξλλ0 ðzpkÞdðJÞλλ0 ðzpkÞPjðzpkÞ: ð64Þ

We note here that this integral is precisely what appears in
Eq. (62). So, both the first and second terms of Eq. (61) are
related to the C coefficient [Eq. (64)]. Equation (64) can be
evaluated in closed form, with the result being

CJj;λ0λ ¼
ð−1Þη

2Jmin þ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jλ − λ0j!jλþ λ0j!

ð2JminÞ!

s

× hJminλ
0jJλ0; j0ihJminλjJλ; j0i; ð65Þ

where η ¼ 0 if λ0 ≥ λ and η ¼ λ0 − λ if λ0 < λ, and we recall
that Jmin ¼ maxðjλj; jλ0jÞ. For convenience, we provide a
derivation of this result in Appendix B.
Using Eq. (64), we write the helicity partial-wave

projection of the OPE as

GJ
l0λ0;lλðp; kÞ ¼

1

4pk
Aðl0lÞ

λ0λ ðp; kÞ
X
j

ð2jþ 1ÞCJj;λ0λ
Z þ1

−1
dzpk

PjðzpkÞ
ζpk − zpk

þ 1

2pk

X
j

ð2jþ 1ÞCJj;λ0λBðl0lÞ
j;λ0λ ðp; kÞ: ð66Þ

The final integral can be expressed in terms of the well-
known Legendre functions of the second kind,

QjðζpkÞ ¼
1

2

Z þ1

−1
dzpk

PjðzpkÞ
ζpk − zpk

; ð67Þ

where the analytic structure is fixed by ζpk → ζpk þ iϵ.
Properties and examples of the Legendre functions are
given in Appendix A. The Legendre Q functions contain
branch cuts when ζpk ¼ �1, which originate from the on

shell exchange upk ¼ m2
e. Since the A and B coefficients

are regular in the energy variables, the Q functions contain
the entire nonanalytic structure of the partial-wave
projected OPE, which results in a branch cut in the complex

19An alternative approach to evaluating the first integral is to
use the rotational eðJÞλ0λ functions as described in Ref. [88].
However, we find the approach presented in this manuscript is
“easier” on the reader as we use the more commonly known
Legendre function QJ .
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s plane for fixed σk and σp. The on shell constraint
ζpk ¼ �1 leads to an expression for the physical boundary
region of real-particle exchanges [83], given by
Φðp; kÞ ≥ 1 where

Φðp;kÞ ¼ σkσpðsþm2
k þm2

p þm2
e − σk − σpÞ

− σkðs−m2
pÞðm2

k −m2
eÞ− σpðs−m2

kÞðm2
p −m2

eÞ
− ðsm2

e −m2
pm2

kÞðsþm2
e −m2

p −m2
kÞ: ð68Þ

Combining Eqs. (66), (64), and (67), we find a compact
expression for the helicity partial-wave projection of the
OPE as

GJ
l0λ0;lλðp; kÞ ¼

1

2pk

X
j

ð2jþ 1ÞCJj;λ0λ

×
h
Aðl0lÞ

λ0λ ðp; kÞQjðζpkÞ þ Bðl0lÞ
j;λ0λ ðp; kÞ

i
;

ð69Þ

where ζpk ¼ ζpkðp; kÞ is defined in Eq. (46). Note that the
sum is finite since the C coefficients are zero for j outside
the range jJ − Jminj ≤ j ≤ J þ Jmin. The pole term multi-
plying the A coefficients results in singular behavior in
the energy variables, while the B coefficients are regular

functions of energies, thereby giving additional short-
distance physics to the ones already contained in the
three-body K matrix of the on shell representations as
discussed in Ref. [65].
Having this analytic representation for the helicity

partial-wave projection of G, we form the appropriate
linear combinations to arrive at an expression in the
spin-orbit basis using Eqs. (27) and (29):

Gðl0lÞ;J
L0S0;LSðp;kÞ¼

X
λ0;λ

Pðl0Þ
λ0 ð2S0þ1L0

JÞGJ
l0λ0;lλðp;kÞPðlÞ

λ ð2Sþ1LJÞ:

ð70Þ

Inserting Eq. (69), we find the definite parity partial-wave
projections of the OPE for the 3 → 3 scattering of external
spinless particles takes the form, as a matrix in LS-space,

Gðl0lÞ;J
L0S0;LSðp; kÞ ¼ K̃ðl0lÞ;J

G;L0S0;LSðp; kÞ
þ
X
j

T̃ ðl0lÞ;J
j;L0S0;LSðp; kÞQjðζpkÞ; ð71Þ

where K̃G is a known short-distance contribution given in
terms of the B coefficients, whereas T̃ j are computed from
a given set ofA coefficients. The matrix elements of K̃G are

K̃ðl0lÞ;J
G;L0S0;LSðp; kÞ≡

1

2pk

X
j

ð2jþ 1Þ
X
λ0;λ

Pðl0Þ
λ0 ð2S0þ1L0

JÞCJj;λ0λBðl0lÞ
j;λ0λ ðp; kÞPðlÞ

λ ð2Sþ1LJÞ; ð72Þ

while the matrix elements of T̃ j are

T̃ ðl0lÞ;J
j;L0S0;LSðp; kÞ≡

1

2pk
ð2jþ 1Þ

X
λ0;λ

Pðl0Þ
λ0 ð2S0þ1L0

JÞCJj;λ0λAðl0lÞ
λ0λ ðp; kÞPðlÞ

λ ð2Sþ1LJÞ: ð73Þ

We stress here that Eq. (71) is a generic result for an
exchange of a spinless particle between pairs with any
angular momentum that couple to some total JP. The
matrices K̃G and T̃ j are regular functions of the energies in
the physical region.
It is important to note that Eq. (71) is not a unique

decomposition, as the Legendre functions of the second
kind can be written, cf. Eqs. (A9) and (A10) in
Appendix A, as

QjðzÞ ¼ PjðzÞQ0ðzÞ −Wj−1ðzÞ; ð74Þ

where Pj are the Legendre polynomials and Wj−1ðzÞ is a
polynomial in z, defined for j > 0 by

Wj−1ðzÞ ¼
Xj

n¼1

1

n
Pn−1ðzÞPj−nðzÞ; ð75Þ

whereas for j ¼ 0, W−1 ¼ 0. This relation allows one to
shift the definitions of K̃G and T̃ j to absorb/remove terms
regular in the kinematic variables, which can further
simplify expressions for the partial-wave projected OPE.
Exploiting this relation, we reduce our result for the partial-
wave OPE to one involving only Q0ðζpkÞ:

Gðl0lÞ;J
L0S0;LSðp; kÞ ¼ Kðl0lÞ;J

G;L0S0;LSðp; kÞ
þ T ðl0lÞ;J

L0S0;LSðp; kÞQ0ðζpkÞ; ð76Þ
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which is the expression claimed in Eq. (2) as our primary result. The matrix elements of KG are given by

Kðl0lÞ;J
G;L0S0;LSðp; kÞ ¼ K̃ðl0lÞ;J

G;L0S0;LSðp; kÞ −
X
j

T̃ ðl0lÞ;J
j;L0S0;LSðp; kÞWj−1ðζpkÞ;

¼ 1

2pk

X
j

ð2jþ 1Þ
X
λ0;λ

Pðl0Þ
λ0 ð2S0þ1L0

JÞCJj;λ0λ½Bðl0lÞ
j;λ0λ ðp; kÞ −Wj−1A

ðl0lÞ
j;λ0λ ðp; kÞ�PðlÞ

λ ð2Sþ1LJÞ; ð77Þ

and the T coefficient is the sum over the T̃ j coefficients weighted by Legendre polynomials,

T ðl0lÞ;J
L0S0;LSðp; kÞ≡

X
j

T̃ ðl0lÞ;J
j;L0S0;LSðp; kÞPjðζpkÞ;

¼ 1

2pk

X
j

ð2jþ 1ÞPjðζpkÞ
X
λ0;λ

Pðl0Þ
λ0 ð2S0þ1L0

JÞCJj;λ0λAðl0lÞ
λ0λ ðp; kÞPðlÞ

λ ð2Sþ1LJÞ: ð78Þ

Equations (76), (77), and (78), are the main result of this
work. The only remaining task for the user is to construct
the KG and T matrices by identifying the appropriate A
and B coefficients. In the next section, we illustrate the
procedure for some low-spin cases.

V. CASE STUDIES

In this section we examine the consequence of our main
result, Eq. (71), for three cases of low-spin systems: pairs
with l0 ¼ l ¼ 0, l0 ¼ l ¼ 1, and the transition process
l0 ¼ 1;l ¼ 0. Any higher spin system can be found by
following the procedure outlined in this section. This
procedure is easily amenable to symbolic computation
with software such as Mathematica, and such a note-
book with examples is supplied in the Supplemental
Material [89].
The main tasks are to identify theA and B coefficients as

defined in Eqs. (55) and (57), respectively, given for each
case. Once these coefficients are determined, we compute
the K̃G and T̃ j functions, Eqs. (72) and (73), respectively.
These matrices are then fed into Eqs. (77) and (78) for KG
and T , respectively, giving the analytic projection shown
in Eq. (76).
Throughout this section, we denote η ¼ ηkηpηe as the

product of intrinsic parities of the initial and final specta-
tors, and the exchange particle. As our focus is on hadronic
processes, we also assume parity-conserving reactions with
P ¼ ηð−1ÞLþS ¼ ηð−1ÞL0þS0 . Additionally, since S0 ¼ l0
and S ¼ l always in this work, we introduce a convenient
notation for the partial-wave OPE,

Gð2S0þ1L0
Jj2Sþ1LJÞ≡ GðS0SÞ;J

L0S0;LSðp; kÞ; ð79Þ

where the dependencies on kinematic variables are left
implicit.

A. Pairs with l0 =l = 0

The simplest case is when both the incoming and outgoing
pairs are in relative S waves, so that l0 ¼ l ¼ 0. The
complications with the spin-helicity function are eliminated

since λ0 ¼ λ ¼ 0, i.e. Hð00Þ
λ0λ ¼ δλ00δλ0. This in turn indicates

that the coefficients are Að00Þ
λ0λ ¼ δλ00δλ0 and Bð00Þ

λ0λ ¼ 0.
Therefore, the exchange propagator (58) reduces to the
simple form

G0λ0;0λ ¼
1

2pk
δλ00δλ0

ζpk − zpk
: ð80Þ

Recoupling to spin-orbit amplitudes is also trivial as only
S ¼ l ¼ 0 and S0 ¼ l0 ¼ 0, restricting the allowed orbital
angular momentum to be J ¼ L ¼ L0. The parity of the
system is then P ¼ ηð−1ÞJ.
From Eq. (72), we see that K̃Gð1JJj1JJÞ ¼ 0 because

Bð00Þ
λ0λ ¼ 0 for this case. Using Eq. (73) and the identities

for Pð0Þ
λ ð1JJÞ ¼ δλ0 and CJj;λ0λ ¼ δJjδλ00δλ0=ð2J þ 1Þ found

from Eqs. (29) and (65), respectively, one finds that the
partial-wave OPE for a target JP simplifies to

Gð1JJj1JJÞ ¼
1

2pk
QJðζpkÞ: ð81Þ

As detailed in Eqs. (76), (77), and (78), we can express this
amplitude in terms of only Q0. Explicitly, the J ¼ 0, and 1
partial-wave OPE amplitudes are given by

Gð1S0j1S0Þ ¼
1

2pk
Q0ðζpkÞ; ð82Þ

Gð1P1j1P1Þ ¼ −
1

2pk
þ ζpk
2pk

Q0ðζpkÞ: ð83Þ

PARTIAL-WAVE PROJECTION OF THE ONE-PARTICLE … PHYS. REV. D 109, 096030 (2024)

096030-15



The J ¼ 0 OPE agrees with the well-known result found
in many works on three-body scattering processes, e.g.
Refs. [67,69,73,75].
We perform a simple check of Eq. (81) by verifying it

satisfies the expected behavior near threshold. As discussed
in Sec. III A, we can recognize that G can be thought of as
an effective two-body amplitude by interpreting

ffiffiffiffiffi
σk

p
andffiffiffiffiffi

σp
p as effective masses of the external states. As a result,
one would expect that such amplitude Gð1JJj1JJÞ scales as
ðpkÞJ in the vicinity of the nearest pair-spectator thresholdffiffiffi
s

p
∼ ffiffiffiffiffi

σp
p þmp ∼

ffiffiffiffiffi
σk

p þmk, cf. Sec. III B.
To reproduce this behavior, we note that near this

threshold both p and k are small, p; k → 0. Fixing σk >

σðthrÞk and σp > σðthrÞp , we see from the definition of ζpk,
Eq. (46), that near threshold ζpk diverges as 1=pk,

ζpk ¼
N
2pk

þOðpk−1; p−1kÞ; ð84Þ

where N ¼ ð ffiffiffiffiffi
σk

p −mpÞ2 −m2
e is a positive constant.

From the behavior of the Legendre function for large
arguments, Eq. (A12), we see that near threshold
QJðζpkÞ → ðpkÞJþ1. Therefore, near threshold Eq. (81)
satisfies the expected behavior of Gð1JJj1JJÞ ∼ ðpkÞJ.
Explicitly, we write the threshold expansions of
Eqs. (82) and (83) by using the asymptotic expansion of
Q0ðζpkÞ for ζpk → ∞ as given in Eq. (A13),

Q0ðζpkÞ ¼
1

ζpk
þ 1

3ζ3pk
þOðζ−5pkÞ: ð85Þ

Since ζpk appears as a reciprocal in this expansion, we can
write the Taylor series for 1=ζpk for small p and k as

1

ζpk
¼ 2pk

N
þOðp2k; pk2Þ: ð86Þ

Then, the explicit threshold behavior for the 1S0 → 1S0 and
1P1 → 1P1 amplitudes is

Gð1S0j1S0Þ ¼
1

N
þOðp; kÞ; ð87aÞ

Gð1P1j1P1Þ ¼
2

3N 2
pkþOðp2k; pk2Þ; ð87bÞ

which is consistent with the expected behavior.

B. Pairs with l0 =l= 1

We turn to the case where the pairs carry nonzero angular
momenta l0 ¼ l ¼ 1. In this case, the spin-helicity matrix
has a nontrivial structure, and we must work out the A
and B coefficients. Recall that given the elements of the
spin-helicity matrix H, we can solve for the A and B

coefficients using Eqs. (55) and (57), respectively. Most
readily, the A coefficient is given by first isolating AðzpkÞ
from Eq. (54),

Āð11Þ
λ0λ ðp; k; zpkÞ ¼

1

ξλλ0 ðzpkÞ
H̄ð11Þ

λ0λ ðp;kÞ; ð88Þ

and then setting zpk ¼ ζpk. For convenience, we introduced
the l0 ¼ l ¼ 1 spin-helicity function H̄ and Ā coefficient
which has a common factor removed,

H̄ð11Þ
λ0λ ≡ q⋆pq⋆k

3pk
Hð11Þ

λ0λ ; ð89aÞ

Āð11Þ
λ0λ ≡ q⋆pq⋆k

3pk
Að11Þ

λ0λ : ð89bÞ

When both initial and final state pairs are in relative P
wave, the spin structure is such that there are only five
independent functions which results from the reflection
property Eq. (43). There is an accidental symmetry relating
the λ0; λ ¼ þ1;þ1 and þ1;−1 components, yielding only
four independent functions. In terms of the polar angles
previously defined, we obtain for the spin-helicity function

H̄ð11Þ
�1�1 ¼ −H̄ð11Þ

�1∓1 ¼ −
1

2

k⋆pp⋆
k

pk
sin χ⋆p sin χ⋆k ; ð90aÞ

H̄ð11Þ
�10 ¼ ∓ 1ffiffiffi

2
p k⋆pp⋆

k

pk
sin χ⋆p cos χ⋆k ; ð90bÞ

H̄ð11Þ
0�1 ¼ � 1ffiffiffi

2
p k⋆pp⋆

k

pk
cos χ⋆p sin χ⋆k ; ð90cÞ

H̄ð11Þ
00 ¼ k⋆pp⋆

k

pk
cos χ⋆p cos χ⋆k : ð90dÞ

The Lorentz transformations, Eqs. (49) and (50), relate
the polar angles χ⋆k and χ⋆p to the total CM frame polar
angle θpk. Note that if we compare Eq. (90) to expressions
in Ref. [81], we find disagreement with respect to overall
phase factors. This is due to the azimuthal angle of π for
one of the momenta as detailed in Eq. (48), which was
neglected by the author of Ref. [81]. One can convince
themselves that this phase factor is necessary and consistent
with an alternative model for the OPE which replaces
the spin-helicity matrix as given in Eq. (42) with polari-
zation Lorentz tensors contracted with momenta, e.g.

Hð11Þ
λ0λ ∝ ðε�ðPp; λ0Þ · kÞðεðPk; λÞ · pÞ, which can be seen

by considering an effective Lagrangian of vector field
Vμ coupling to two scalars, e.g. L ⊃ −igpV

μ
pφe∂μφk −

igkV
μ
kφe∂μφp where gp, gk are effective couplings to the

scalar φ fields.
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Recalling that zpk ≡ cos θpk and sin θpk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2pk

q
,

the half-angle factor for each helicity combination is
given by

ξ�1�1ðzpkÞ ¼
1þ zpk

2
; ð91aÞ

ξ�1∓1ðzpkÞ ¼
1 − zpk

2
; ð91bÞ

ξ�10ðzpkÞ ¼ ξ0�1ðzpkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2pk

q
2

; ð91cÞ

ξ00ðzpkÞ ¼ 1: ð91dÞ

Combining Eqs. (88) and (90) and using the boost
relations Eqs. (50) and (49) give for the Āðp; k; zpkÞ
coefficients

Āð11Þ
�1�1 ¼ −1þ zpk; ð92aÞ

Āð11Þ
�1∓1 ¼ 1þ zpk; ð92bÞ

Āð11Þ
�10 ¼ �

ffiffiffi
2

p
γk

�
βkωp

p
þ zpk

�
; ð92cÞ

Āð11Þ
0�1 ¼ ∓ ffiffiffi

2
p

γp

�
βpωk

k
þ zpk

�
; ð92dÞ

Āð11Þ
00 ¼ γpγk

�
βpωk

k
þ zpk

��
βkωp

p
þ zpk

�
: ð92eÞ

The on shell coefficients Āðp; kÞ≡ Āðp; k; ζpkÞ are
given by Eq. (92) with the substitution zpk → ζpk. We
again define the B̄ coefficients in terms of B coefficients as

B̄ð11Þ
λ0λ ≡ q⋆pq⋆k

3pk
Bð11Þ
λ0λ ; ð93Þ

which are related to Ā through Eq. (57),

B̄ð11Þ
λ0λ ðp; k; zpkÞ

¼ 1

ζpk − zpk
½Āð11Þ

λ0λ ðp; k; zpkÞ − Āð11Þ
λ0λ ðp; kÞ�: ð94Þ

Evaluating the difference and dividing by the pole gives
B̄ðp; k; zpkÞ

B̄ð11Þ
�1�1 ¼ −1; ð95aÞ

B̄ð11Þ
�1∓1 ¼ −1; ð95bÞ

B̄ð11Þ
�10 ¼ ∓ ffiffiffi

2
p

γk; ð95cÞ

B̄ð11Þ
0�1 ¼ �

ffiffiffi
2

p
γp; ð95dÞ

B̄ð11Þ
00 ¼ −γpγk

�
βpωk

k
þ βkωp

p
þ zpk þ ζpk

�
: ð95eÞ

Finally, we require the projected B coefficients defined by
Eq. (60), repeated here for convenience,

B̄ð11Þ
j;λ0λðp; kÞ ¼

1

2

Z þ1

−1
dzpkPjðzpkÞB̄ð11Þ

λ0λ ðp; k; zpkÞ:

Upon substituting Eq. (95) we find only two nonzero terms
in the expansion

B̄ð11Þ
0;λ0λ ¼ −jλλ0j −

ffiffiffi
2

p
γkλ

0δλ;0 þ
ffiffiffi
2

p
γpλδλ0;0

− γpγk

�
βpωk

k
þ βkωp

p
þ ζpk

�
δλ0;0δλ;0; ð96aÞ

B̄ð11Þ
1;λ0λ ¼ −

1

3
γpγkδλ0;0δλ;0; ð96bÞ

B̄ð11Þ
j;λ0λ ¼ 0; for j > 1: ð96cÞ

Having found the A and B coefficients for l0 ¼ l ¼ 1,
we now construct KG and T matrices for some target JP.
Trivially S0 ¼ S ¼ 1; therefore if J ¼ 0 only L0 ¼ L ¼ 1
contributes, while for J > 0 the allowed orbital angular
momenta are L ¼ J − 1; J; J þ 1 and L0 ¼ J − 1; J; J þ 1
for the initial and final states, respectively.

1. Total J = 0

Let us first consider a target J ¼ 0, where only L0 ¼
L ¼ 1 is allowed and the corresponding parity is η. Thus,
we need only compute a single 3P0 amplitude with the spin-

orbit recoupling from Eq. (29) being Pð1Þ
λ ð3P0Þ ¼ −δλ;0.

Evaluating the expression for K̃G and T̃ j using Eqs. (72)
and (73) respectively, we find

K̃Gð3P0j3P0Þ ¼ −
3γkγp
2q⋆k q

⋆
p

�
βpωk

k
þ βkωp

p
þ ζpk

�
; ð97Þ

T̃ jð3P0j3P0Þ ¼ δj0
3γkγp
2q⋆k q

⋆
p

�
βpωk

k
þ ζpk

��
βkωp

p
þ ζpk

�
:

ð98Þ

Since only j ¼ 0 contributes for this case, feeding these
matrices into Eqs. (77) and (78) gives trivially KG ¼ K̃G

and T ¼ T̃ 0. Adding these contributions together as
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dictated by Eq. (76), one finds

Gð3P0j3P0Þ ¼ −
3γkγp
2q⋆k q

⋆
p

�
βpωk

k
þ βkωp

p
þ ζpk

�

þ 3γkγp
2q⋆k q

⋆
p

�
βpωk

k
þ ζpk

��
βkωp

p
þ ζpk

�

×Q0ðζpkÞ: ð99Þ

As before, we check the threshold behavior of this
amplitude by fixing σk and σp and expanding for small
p and k. Just as in Sec. VA, ζpk diverges as ζpk ¼ N =2pk
as p; k → 0; thus Q0ðζpkÞ admits an expansion as Eq. (85).
Moreover, γp ¼ 1þOðp2Þ, ωp ¼ mp þOðp2Þ, and Ep ¼ffiffiffiffiffi
σp

p þOðp2Þ as p → 0, with similar expansions for
variables of the k spectator as k → 0. Near the pair-
spectator thresholds, one finds that the expansion of
Eq. (99) for p; k → 0 is given by

Gð3P0j3P0Þ ¼
1

N q⋆pq⋆k

�
1þ 3mpmkffiffiffiffiffi

σp
p ffiffiffiffiffi

σk
p

�
pk

þOðp2k; pk2Þ; ð100Þ

where the relative momenta q⋆p and q⋆k are finite positive
constants since σp and σk are fixed above their respective
thresholds. Therefore, as expected Gð3P0j3P0Þ ∼ pk near
threshold.

2. Total J = 1, parity η

Next let us consider a target J ¼ 1 with a parity η, which
enforces L0 ¼ L ¼ 1, i.e. 3P1 → 3P1. From Eq. (29) the

spin-orbit coupling is Pð1Þ
λ ð3P1Þ ¼ −λ=

ffiffiffi
2

p
. From Eq. (72)

we find that K̃Gð3P1j3P1Þ ¼ 0, while from Eq. (73) the T̃ j

factors are

T̃ jð3P1j3P1Þ ¼ −
1

2q⋆pq⋆k
ð2δj0 − 3ζpkδj1 þ δj2Þ; ð101Þ

with all coefficients j > 2 being zero. Thus, the partial-
wave OPE [Eq. (71)] is

Gð3P1j3P1Þ ¼ −
1

q⋆pq⋆k
Q0ðζpkÞ þ

3ζpk
2q⋆pq⋆k

Q1ðζpkÞ

−
1

2q⋆pq⋆k
Q2ðζpkÞ: ð102Þ

Before applying the simplifications of Eqs. (77) and (78),
we first perform an intermediary manipulation of Eq. (102)

by using the Bonnet recursion relation for the Legendre
function Q1 [see Eq. (A8)] to simplify the expression to

Gð3P1j3P1Þ ¼ −
1

2q⋆pq⋆k
½Q0ðζpkÞ −Q2ðζpkÞ�: ð103Þ

We note that this expression agrees up to an overall sign
with the result of Ref. [81], in the context of studying the
binding of the ω meson via π exchange between the π
and the resonating ππ → ρ subsystems. The difference in
overall sign is due to the error in Ref. [81] from not
considering the correct azimuthal angle of one of the
momenta as discussed in the beginning of Sec. V B.
Finally, we use Q2ðζpkÞ ¼ P2ðζpkÞQ0ðζpkÞ − 3ζpk=2 to
express Eq. (103) in the form of Eq. (76):

Gð3P1j3P1Þ ¼ −
3

4q⋆pq⋆k
ζpk þ

3

4q⋆pq⋆k
ðζ2pk − 1ÞQ0ðζpkÞ:

ð104Þ

Near threshold we expect Gð3P1j3P1Þ ∼ pk, which is
verified by following the same procedure as in the previous
cases, and finding

Gð3P1j3P1Þ ¼ −
1

N q⋆pq⋆k
pkþOðp2k; pk2Þ; ð105Þ

which agrees with the expected behavior.

3. Total J = 1, parity − η

Our final example for this case is J ¼ 1 with parity −η.
Here we encounter a coupled channel system in S and D
waves since L0; L ¼ J � 1. The spin-orbit factors are
given by

Pð1Þ
λ ð3S1Þ ¼

ffiffiffi
1

3

r
; ð106aÞ

Pð1Þ
λ ð3D1Þ ¼

ffiffiffi
1

6

r
jλj −

ffiffiffi
2

3

r
δλ;0: ð106bÞ

Feeding this, the A and B coefficients, and other
building blocks into Eqs. (72) and (73), then through
Eqs. (77) and (78), give the following expressions for
the 3S1 → 3S1, 3S1 → 3D1, 3D1 → 3S1, and 3D1 → 3D1 OPE
amplitudes:

Gð3L0
1j3L1Þ ¼ KGð3L0

1j3L1Þ þ T ð3L0
1j3L1ÞQ0ðζpkÞ; ð107Þ
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with the following KG and T matrices:

KGð3S1j3S1Þ ¼
1

2q⋆pq⋆k

�
γp

�
ζpk

�
βpωk

k
þ ζpk

�
−
2

3

�
þ γk

�
ζpk

�
βkωp

p
þ ζpk

�
−
2

3

�

− γpγk

�
ζpk

�
βkωp

p
þ βpωk

k
þ ζpk

�
þ βpβkωpωk

pk
þ 1

3

�
− ζ2pk þ

2

3

�
; ð108aÞ

KGð3D1j3S1Þ ¼
1

2
ffiffiffi
2

p
q⋆pq⋆k

�
−2γp

�
ζpk

�
βpωk

k
þ ζpk

�
−
2

3

�
þ γk

�
ζpk

�
βkωp

p
þ ζpk

�
−
2

3

�

þ 2γpγk

�
ζpk

�
βkωp

p
þ βpωk

k
þ ζpk

�
þ βpβkωpωk

pk
þ 1

3

�
− ζ2pk þ

2

3

�
; ð108bÞ

KGð3D1j3D1Þ ¼
1

4q⋆pq⋆k

�
−2γp

�
ζpk

�
βpωk

k
þ ζpk

�
−
2

3

�
− 2γk

�
ζpk

�
βkωp

p
þ ζpk

�
−
2

3

�

− 4γpγk

�
ζpk

�
βkωp

p
þ βpωk

k
þ ζpk

�
þ βpβkωpωk

pk
þ 1

3

�
− ζ2pk þ

2

3

�
; ð108cÞ

for KG, and

T ð3S1j3S1Þ ¼
1

2q⋆pq⋆k

�
γpð1 − ζ2pkÞ

�
βpωk

k
þ ζpk

�
þ γkð1 − ζ2pkÞ

�
βkωp

p
þ ζpk

�

þ γpγkζpk

�
ζpk

�
βkωp

p
þ βpωk

k
þ ζpk

�
þ βpβkωpωk

pk

�
þ ζ3pk − ζpk

�
; ð109aÞ

T ð3D1j3S1Þ ¼
1

2
ffiffiffi
2

p
q⋆pq⋆k

�
−2γpð1 − ζ2pkÞ

�
βpωk

k
þ ζpk

�
þ γkð1 − ζ2pkÞ

�
βkωp

p
þ ζpk

�

− 2γpγkζpk

�
ζpk

�
βkωp

p
þ βpωk

k
þ ζpk

�
þ βpβkωpωk

pk

�
þ ζ3pk − ζpk

�
; ð109bÞ

T ð3D1j3D1Þ ¼
1

4q⋆pq⋆k

�
−2γpð1 − ζ2pkÞ

�
βpωk

k
þ ζpk

�
− 2γkð1 − ζ2pkÞ

�
βkωp

p
þ ζpk

�

þ 4γpγkζpk

�
ζpk

�
βkωp

p
þ βpωk

k
þ ζpk

�
þ βpβkωpωk

pk

�
þ ζ3pk − ζpk

�
ð109cÞ

for the T matrices. The KG and T coefficients for the
3D1 → 3S1 process are found by interchanging k ↔ p in
the 3S1 → 3D1 coefficients, noting the symmetry ζpk ¼ ζkp
which can be seen from Eq. (46).
Examining the threshold behavior as in previous cases,

we find that the 3S1 → 3S1 OPE has the following expan-
sion near threshold:

Gð3S1j3S1Þ ¼
1

N q⋆pq⋆k

�
mpffiffiffiffiffi
σk

p k2 þ mkffiffiffiffiffi
σp

p p2

�

þOðp3; k3; p2k; pk2Þ: ð110Þ
If we fix σp < σk, then the threshold we approach first isffiffiffi
s

p
∼ ffiffiffiffiffi

σk
p þmk. As we approach this threshold, then the

amplitude does approach a constant, as p will be finite at
this threshold. However, if both k and p approach threshold
simultaneous, e.g. in the case wheremp ¼ mk and σp ¼ σk,
then the amplitude scales as k2, which is faster than the
requisite constant scaling we expect for S waves. Although
this behavior may be surprising, it is not inconsistent with
the requirement that the amplitude is equal to a finite
constant at threshold.
Repeating this exercise for 3S1 → 3D1 and 3D1 → 3D1

waves, we find the following expansions:

Gð3D1j3S1Þ ¼ −
ffiffiffi
2

p
mk

N q⋆pq⋆k
ffiffiffiffiffi
σp

p p2 þOðp3; p2kÞ; ð111aÞ
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Gð3D1j3D1Þ ¼
2

15N 2q⋆pq⋆k

�
1þ 10mpmkffiffiffiffiffi

σp
p ffiffiffiffiffi

σk
p

�
p2k2

þOðp3k2; p2k3Þ; ð111bÞ

where the threshold expansion of the 3D1 → 3S1 amplitude
is found by interchanging k ↔ p on Gð3D1j3S1Þ. Both of
these follow the expected threshold behavior. This com-
pletes our set of examples for l0 ¼ l ¼ 1. Next, we will
look at examples for transitions between l ¼ 0 and l0 ¼ 1.

C. Pairs with l0 = 1 and l= 0

Here we consider an initial pair with spin l ¼ 0, and a
final pair with spin l0 ¼ 1. Such transitions are allowed in
general, and observed in nature, e.g. in σπ → ρπ in the
IðJPÞ ¼ 1ð1þÞ channel of 3π scattering. Repeating the
same strategy as in the previous cases, the spin-helicity
matrix is given by

Hð10Þ
λ0λ ¼ δλ0

ffiffiffiffiffiffi
4π

p �
k⋆p
q⋆p

�
Y�
1λ0 ðk̂⋆

pÞ; ð112Þ

which corresponds to an A coefficient

Að10Þ
�10 ¼ ∓

ffiffiffi
6

p
k

q⋆p
; ð113aÞ

Að10Þ
00 ¼ −

ffiffiffi
3

p
γpk

q⋆p

�
βpωk

k
þ ζpk

�
; ð113bÞ

and a B coefficient

Bð10Þ
λ0λ ¼ δλ00δλ0

ffiffiffi
3

p
γpk

q⋆p
: ð114Þ

Therefore, there is only one contribution to the Bj ampli-

tudes, Bð10Þ
j;λ0λ ¼ δj0B

ð10Þ
λ0λ . The coefficients are then fed into

the expressions for the KG and T matrices. Since total
angular momentum and parity are conserved, an initial state
with S ¼ 0, L ¼ J, and P ¼ ηð−1ÞJ restricts the final state,
with S0 ¼ 1, to have an L0 quantum number be L0 ¼ 1 for
J ¼ 0, and L0 ¼ J � 1 for J > 0.

1. Total J = 0

Following the same procedure as in the previous cases,
we have that for J ¼ 0, in which the system parity is η, the
1S0 → 3P0 OPE is given by

Gð3P0j1S0Þ ¼ −
ffiffiffi
3

p
γp

2pq⋆p
þ

ffiffiffi
3

p
γp

2pq⋆p

�
βpωk

k
þ ζpk

�
Q0ðζpkÞ;

ð115Þ

which has a threshold expansion

Gð3P0j1S0Þ ¼
ffiffiffi
3

p
mk

N q⋆p
ffiffiffiffiffi
σp

p pþOðp2; pkÞ; ð116Þ

which agrees with the expected behavior.

2. Total J = 1

Our final example is for J ¼ 1, which must be in a −η
parity state due to the initial 1P1 state. There are two options
for the transition, either 1P1 → 3S1 or 1P1 → 3D1. The
partial-wave OPE amplitudes for these transitions are

Gð3S1j1P1Þ ¼
1

2pq⋆p

�
γp

�
βpωk

k
þ ζpk

�
− ζpk

�

−
1

2pq⋆p

�
γpζpk

�
βpωk

k
þ ζpk

�
− ζ2pk þ 1

�

×Q0ðζpkÞ; ð117Þ

Gð3D1j1P1Þ ¼−
1

2
ffiffiffi
2

p
pq⋆p

�
2γp

�
βpωk

k
þ ζpk

�
þ ζpk

�

þ 1

2
ffiffiffi
2

p
pq⋆p

�
2γpζpk

�
βpωk

k
þ ζpk

�
þ ζ2pk− 1

�

×Q0ðζpkÞ: ð118Þ

We note that the threshold behavior for fixed σk, σp is

Gð3S1j1P1Þ ¼ −
1

Nq⋆p
kþOðk2; pkÞ; ð119aÞ

Gð3D1j1P1Þ ¼
2

ffiffiffi
2

p
mk

3N 2q⋆p
ffiffiffiffiffi
σp

p p2kþOðp3k; p2k2Þ; ð119bÞ

as expected.
Transitions from l ¼ 1 and l0 ¼ 0 states can be obtained

by interchanging the initial and final state, k ↔ p in the
above expressions. Any higher angular momentum state
can be found by the same procedure outlined here. In the
next section, we examine some applications of the above
results for the scattering of three pions.

VI. APPLICATION–3π → 3π

As a final illustration, we apply the results in Sec. V for
3π → 3π scattering, and plot the partial-wave OPEs for
some selected allowed quantum numbers of three pions in
various kinematic regions. We limit the total energy of the
three-pion system such that inelastic processes are for-
bidden, i.e. 3mπ ≤

ffiffiffi
s

p
< 5mπ where mπ is the pion mass.

Therefore, the exchange amplitude consists only of pion
interactions, mk ¼ mp ¼ me ¼ mπ. Furthermore, we will
only consider physical scattering kinematics, so that the
physical boundary is set by Eq. (68) where all masses are
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set to the pion mass, i.e. Φðp; kÞ ≥ 0 with Φðp; kÞ ¼
σkσpðsþ 3m2

π − σk − σpÞ −m2
πðs −m2

πÞ2.
We also assume the isospin limit for pions, that is the

pions have a flavor symmetry characterized by their isospin
Iπ ¼ 1 and G parity Gπ ¼ −1. Isospin symmetry restricts
the allowed partial-wave contributions for the three-pion
system. Two pions are in either I ¼ 0, 1, or 2 states with
positive G parity. Bose symmetry restricts even partial
waves, e.g. S and D waves, to be in either an I ¼ 0 or 2
state, whereas odd waves, e.g. P waves, can only be in the
I ¼ 1 state. For three-pion systems, which have negative
G parity, the allowed total isospin representations are
I3π ¼ 0; 1; 2; 3. There are multiple contributing three-pion
partial waves per target JP, we summarize the lowest
allowed three-pion waves in Table I for each total isospin
I3π , total angular momentum J ≤ 1, and up through two
pions in relative Pwave. We label a three-pion partial wave
with ð½ππ�IlπÞL, where the two-pion system is in a relative l
wave and isospin I, and the pair-spectator pion is in an
orbital angular momentum L, e.g. ð½ππ�1PπÞS describes a
three-pion system where two of the pions are in an
isovector P wave and the recoiling pion is in a relative
S wave with the pair.
Our results in Sec. V can be applied immediately to these

partial waves, with the exception of the inclusion of
appropriate isospin recoupling coefficients. These can be
included in a straightforward manner as detailed in
Refs. [53,90]. The result is that the OPE in Eq. (76)
contains three additional quantum numbers,

½Gðl0lÞ;J
L0S0;LS�

I3π
I0;I ¼ Gðl0lÞ;J

L0S0;LShI0; I3πjI; I3πi; ð120Þ
where I is the initial pair isospin, I0 is the final pair isospin,
and I3π is the total isospin of the three-pion system.

The multiplicative factor hI0; I3πjI; I3πi is the three-pion
isospin recoupling coefficient, which is defined in terms of
the Wigner 6-j symbol as [91]

hI0; I3πjI;I3πi¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2I0 þ1Þð2Iþ1Þ

p �
1 1 I

1 I3π I0

�
: ð121Þ

Explicit values can be found in Refs. [53,90], or by direct
computation via Eq. (121). The isospin recoupling coef-
ficients introduce a weight factor for the particular isospin
channel.
We plot a representative partial-wave OPE of each

isospin channel to show the generic behavior. For each
channel, we plot the OPE as a function of s in the range
9 ≤ s=m2

π ≤ 14 at fixed
ffiffiffiffiffi
σk

p
=mπ ¼ 2.1 and for three values

of σp,
ffiffiffiffiffi
σp

p =mπ ¼ f2.1; 2.2; 2.3g. In each plot, we high-
light the 3π threshold at s ¼ ð3mπÞ2, the initial pair-
spectator threshold which we indicate by ξkπ at
s ¼ ð ffiffiffiffiffi

σk
p þmπÞ2, where we remind the reader that ξk

represents a quasiparticle of mass
ffiffiffiffiffi
σk

p
, and the final pair-

spectator threshold ξpπ at s ¼ ð ffiffiffiffiffi
σp

p þmπÞ2. Note that
when both σk ¼ σp, then the initial and final pair-spectator
thresholds overlap.
In our numerical evaluation of the partial-wave OPE, we

ensure that we approach the real energy axes by introducing
an artificial imaginary shift. To control the limit, we
introduce for σk, and σp a shift σ → σ þ iϵσ, and for s
we introduce a shift s → sþ iϵs, with the restriction that
ϵs > ϵσ , meaning we assume that we approach the real σ
axes first before approach the real s axis. This limiting
procedure then gives a positive imaginary part to the
spectator momentum for unphysical energies. To ensure
the correct behavior required by S matrix unitarity, we
set ζpk → ζpk þ iϵ appearing in the argument of the Q
functions as discussed with Eq. (67). To ensure the proper
behavior for the imaginary part of G required by S matrix
unitarity, we restrict ϵ > ϵs > ϵσ.
First, we consider the I3π ¼ 3 channel, which from

Table I the lowest waves include JP ¼ 0− and 1þ. The
real and imaginary parts of both the Gð1S0j1S0Þ and
Gð1P1j1P1Þ amplitudes are shown in Fig. 8. There is a
clear movable singularity in both amplitudes which arises
from when the exchanged pion goes on mass shell, that is
when ζpk ¼ �1. The analytic structure of the OPE has been
well studied in the literature [see for example Ref. [67]], so
we only highlight a few important features. In the physical
kinematic region, the imaginary part of each partial-wave
OPE is constrained by S matrix unitarity, through the
imaginary part of Q0, giving

ImGJP ¼ −
π

2
T JPΘðΦðp; kÞÞΘðpÞΘðkÞ; ð122Þ

where Θ is the Heaviside step function. Including isospin,
we multiply Eq. (122) by the recoupling coefficient (121).

TABLE I. Contributions of ð½ππ�IlπÞL partial waves to πππ in
total isospin I3π and for total angular momentum J ≤ 1. Lowest
angular momenta are considered, where the two pion pairs are in
l ≤ P wave, and the orbital angular momentum between the pair
and the spectators is L ≤ D wave.

IG3π JPC ð½ππ�IlπÞL
3− 0−þ ð½ππ�2SπÞS

1−þ None
1þþ ð½ππ�2SπÞP

2− 0−− ð½ππ�2SπÞS, ð½ππ�1PπÞP
1−− ð½ππ�1PπÞP
1þ− ð½ππ�2SπÞP, ð½ππ�1PπÞS, ð½ππ�1PπÞD

1− 0−þ ð½ππ�0;2S πÞS, ð½ππ�1PπÞP
1−þ ð½ππ�1PπÞP
1þþ ð½ππ�0;2S πÞP, ð½ππ�1PπÞS, ð½ππ�1PπÞD

0− 0−− ð½ππ�1PπÞP
1−− ð½ππ�1PπÞP
1þ− ð½ππ�1PπÞS, ð½ππ�1PπÞD
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For fixed σp and σk, we can solve ζpk ¼ �1 for the branch
points in s which are given by

sð�Þ ¼ 1

2m2
π
½ðσk −m2

πÞðσp −m2
πÞ þm2

πðσp þ σk þm2
πÞ

� λ1=2ðm2
π; m2

π; σkÞλ1=2ðm2
π; m2

π; σpÞ�: ð123Þ

These movable branch points correspond to the nonzero
imaginary part of the OPE above the highest pair-spectator
threshold in Fig. 8. The existence of these branch points is
independent of the partial wave of the OPE, as seen in the
1S0 and 1P1 amplitudes of Fig. 8.
Next we examine three pions in I3π ¼ 2 in the JP ¼ 0−

channel, which is shown in Fig. 9. According to Table I,

FIG. 8. Real and imaginary parts of the OPE for I3π ¼ 3 and total spin-parity JP ¼ 0− and 1þ for ππ subchannels in an isotensor S
wave state. Each panel is plotted for a fixed initial

ffiffiffiffiffi
σk

p ¼ 2.1mπ . Each row is plotted at a different σp:
ffiffiffiffiffi
σp

p ¼ 2.1mπ for the top row,ffiffiffiffiffi
σp

p ¼ 2.2mπ for the middle row, and ffiffiffiffiffi
σp

p ¼ 2.3mπ for the bottom row. The spectroscopic label 2Sþ1LJ indicates the partial-wave OPE
contribution to the ð½ππ�2SπÞL amplitude. Thresholds are indicated for the 3π production at s ¼ ð3mπÞ2, the effective initial pair spectator
ξkπ at s ¼ ð ffiffiffiffiffi

σk
p þmπÞ2 ¼ ð3.1mπÞ2, and the effective initial pair spectator ξpπ at s ¼ ð ffiffiffiffiffi

σp
p þmπÞ2, which is located at s ¼ ð3.1mπÞ2,

ð3.2mπÞ2, and ð3.3mπÞ2 for each σp shown.

FIG. 9. Same as Fig. 8 for I3π ¼ 2 and JP ¼ 0−. Here there are two kinds of ππ pairs, one which is in an isotensor S wave, with a pair-
spectator system in 1S0, and another pair in an isovector P wave in which the pair-spectator system is 3P0. These waves are allowed to
mix through total angular momentum and isospin conservation, leading to a nonzero 1S0 → 3P0 amplitude.
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two types of pairs contribute to this partial wave, ð½ππ�2SπÞS
and ð½ππ�1PπÞP. Therefore, we have three contributing OPE
amplitudes, 1S0 for isotensor pairs, 3P0 for isovector pairs,
and a mixing amplitude between isotensor and isovector
pairs in 1S0 → 3P0. As in the I3π ¼ 3 case, each amplitude
has a nonanalytic structure arising from on shell pion
exchange with branch points given by Eq. (123).
Figures 10 and 11 show partial-wave OPE amplitudes

which contribute to the JP ¼ 1þ channel of I3π ¼ 1.
Figure 10 shows the contributions coming from isovector
P wave ππ pairs, while Fig. 11 shows contributions from

the isoscalar S wave pairs and its mixing with isovector P
wave pion pairs. Note that we do not plot contributions
from isotensor pion pairs which are also part of this wave as
shown in Table I. Physically, this case is most relevant for
3π scattering in the isovector a1 channel, which allows for
dynamical mixing between resonating ρπ ↔ σπ systems;
cf. the a1 listing in Ref. [92] and references therein. Notice
that for the 3S1 amplitude in Fig. 10 in the top panel with
σk ¼ σp, the scaling behavior at the pair-spectator thresh-
old does grow from zero as p2 as indicated in our threshold
expansion discussed in Sec. V B 3. However, when σp ≠ σk

FIG. 10. Same as Fig. 8 for I3π ¼ 1 and JP ¼ 1þ. Shown are the contributions from isovector P wave ππ pairs.

FIG. 11. Same as Fig. 8 for I3π ¼ 1 and JP ¼ 1þ, where now the contributions from isoscalar S wave ππ pairs as well as the mixing to
isovector P wave pairs are shown.
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as in the middle and bottom panel, then the threshold
behavior does approach a constant at the ξpπ threshold.
Finally, we show in Fig. 12 the I3π ¼ 0, JP ¼ 1− channel.

Table I lists one entry for this channel, ð½ππ�1PÞP; therefore
only the 3P1 partial-wave OPE contributes. A physical
application for this amplitude is in the isoscalar ω meson,
which couples strongly to the ρπ channel in P wave.

VII. SUMMARY

We have shown a generic procedure to project relativistic
scattering amplitudes of three spinless particles to definite
JP partial waves, with a focus on its application to the
kinematic singularity arising from on shell particle
exchanges between two-body subchannel scattering proc-
esses. The procedure as presented in Sec. IV, specifically in
the final projection results shown in Eqs. (76), (77), and
(78), allows one to systematically compute the contribution
from the one-particle exchange, which was illustrated in
Sec. V for some low-lying spins of immediate interest, e.g.
in the scattering of three pions as discussed in Sec. VI.
These results can then be supplied into the corresponding
integral equations [46,65], along with some parametrized
and constrained three-body K matrix, e.g. ones constrained
from lattice QCD calculations with finite-volume quanti-
zation conditions, to reconstruct the complete on shell
3 → 3 hadronic scattering amplitude.
Our resulting analytic representation for the one-particle

exchange of definite JP allows one to avoid performing a
numerical integration over a singular function, which is
generally slowly convergent, and allows the practitioner to

have full control over the analytic behavior in the complex
s-, σp-, and σk planes. Controlling the analytic structure
of aspects of three-body amplitudes has been shown to be
important for the analytic continuation of the 3 → 3
amplitude, e.g. for searching for resonant structures in
hadron spectroscopy [75,76]. Looking forward, our results
can be immediately used in the community in further
theoretical and phenomenological studies of three-hadron
resonance production. Furthermore, they can be extended
to accommodate a more general class of reactions, such as
those with external particles with arbitrary spin.
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APPENDIX A: RECAPITULATION OF ANGULAR
MOMENTUM FUNCTIONS

This Appendix is devoted to collecting useful identities
and properties of the Legendre functions and Wigner
rotation matrix elements which we use throughout this
work. While these relations can be found in the literature
(which we refer to as appropriate), we feel that this
summary serves to assist the reader in understanding the
technical aspects of our work.

1. Legendre functions of the first kind

The Legendre functions of the first kind, PlðzÞ, are the
regular solutions of Legendre’s differential equation [93],
which can be expressed explicitly for l∈N0 and −1 ≤
z ≤ þ1 by Rodrigues’s formula,

PlðzÞ ¼
1

2ll!
dl

dzl
ðz2 − 1Þl: ðA1Þ

We consider only l∈N0; therefore the functions are
analytic in z∈C for each l. The Legendre functions
form an orthogonal set of functions over the interval
−1 ≤ z ≤ þ1,

Z þ1

−1
dzPl0 ðzÞPlðzÞ ¼

2

2lþ 1
δl0l: ðA2Þ

The first few Legendre functions are

FIG. 12. Same as Fig. 8 for I3π ¼ 0 and JP ¼ 1−. Only
isovector Pwave ππ pairs are allowed to couple to 3P1 amplitudes
in this channel.
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P0ðzÞ ¼ 1; P1ðzÞ ¼ z; P2ðzÞ ¼
1

2
ð3z2 − 1Þ:

Given P0 and P1, all remaining Pl can be generated
through the Bonnet recursion relation for l > 1,

lPlðzÞ ¼ zð2l − 1ÞPl−1ðzÞ − ðl − 1ÞPl−2ðzÞ: ðA3Þ

There are many additional properties and identities which
can be found in Ref. [93]. Here we state one integral
relation,

Z þ1

−1
dzzlPlðzÞ ¼

2lþ1ðl!Þ2
ð2lþ 1Þ! ; ðA4Þ

which is useful in the asymptotic expansion of the
Legendre functions of the second kind as discussed next
in the section.

2. Legendre functions of the second kind

A second class of solutions of Legendre’s differential
equation are the Legendre functions of the second kind,
QlðzÞ. For every l∈N0, the Ql functions are related to the
Pl functions through the Neumann relation [93],

QlðzÞ ¼
1

2

Z þ1

−1
dz0

Plðz0Þ
z − z0

: ðA5Þ

The integral has endpoint singularities, leading to branch
points in Ql in the complex z plane at z ¼ �1 for each l.
We choose to orient the branch cut such that the function is
analytic on z∈C=fzj − 1 ≤ z ≤ þ1g, which is equivalent
to choosing z → zþ iϵ in Eq. (A5) and taking the limit
ϵ → 0þ after integration. The Neumann relation (A5)
allows us to easily identify the discontinuity of Ql across
the branch cut,

DiscQlðzÞ ¼ −iπPlðzÞΘð1 − jzj2Þ; ðA6Þ

where Θ is the Heaviside step function.
The first few Legendre functions of the second kind are

given by

Q0ðzÞ ¼
1

2
log

�
zþ 1

z − 1

�
; Q1ðzÞ ¼ P1ðzÞQ0ðzÞ − 1;

Q2ðzÞ ¼ P2ðzÞQ0ðzÞ −
3z
2
: ðA7Þ

Combining the Neumann relation (A5) with the Bonnet
recursion relation for the Pl functions, Eq. (A3), yields a
recursion relation for integer l > 1 given Q0 and Q1,

lQlðzÞ ¼ zð2l − 1ÞQl−1ðzÞ − ðl − 1ÞQl−2ðzÞ: ðA8Þ

One can then construct an explicit expression for Ql for
any l∈N0 and z on the cut plane,

QlðzÞ ¼ PlðzÞQ0ðzÞ −Wl−1ðzÞ; ðA9Þ

where Wl−1 is defined for l > 0 as

Wl−1ðzÞ ¼
Xl
n¼1

1

n
Pn−1ðzÞPl−nðzÞ; ðA10Þ

with the l ¼ 0 case defined as W−1 ¼ 0 [93].
The behavior of QlðzÞ as z → ∞ can be found by

expanding the Neumann relation, Eq. (A5), for large z,

QlðzÞ ¼
1

2

X∞
n¼0

1

znþ1

Z þ1

−1
dz0ðz0ÞnPlðz0Þ: ðA11Þ

The integral is identically zero for n < l; thus the leading
asymptotic behavior is given when n ¼ l, which from
Eq. (A4) gives

QlðzÞ !
z→∞

2lðl!Þ2
ð2lþ 1Þ!

1

zlþ1
: ðA12Þ

By direct evaluation of Eq. (A11), the explicit asymptotic
expansion for the l ¼ 0 function is given by

Q0ðzÞ ¼
X∞
n¼0

z−2n−1

2nþ 1
¼ 1

z
þ 1

3z3
þO

�
1

z5

�
: ðA13Þ

3. Spherical harmonics

For spinless particles, orbital angular momentum states
are represented by the spherical harmonics [91] (with the
Condon-Shortley phase convention)

Ylmðθ;φÞ ¼ hθ;φjlmi;

¼ ð−1Þl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þðl −mÞ!

4πðlþmÞ!

s
Pm
l ðcos θÞeimφ;

ðA14Þ

where Pm
l are the associated Legendre functions,

Pm
l ðzÞ ¼ ð1 − z2Þm=2 dm

dzm
PlðzÞ: ðA15Þ

See Ref. [93] for properties of Pm
l . The spherical harmonics

for m ≥ 0 and l ≤ 2 are explicitly
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Y00¼
ffiffiffiffiffiffi
1

4π

r
;

Y10¼
ffiffiffiffiffiffi
3

4π

r
cosθ; Y11¼−

ffiffiffiffiffiffi
3

8π

r
eiφ sinθ;

Y20¼
ffiffiffiffiffiffiffiffi
5

16π

r
ð3cos2θ−1Þ; Y21¼−

ffiffiffiffiffiffi
15

8π

r
eiφ sinθcosθ;

Y22¼
ffiffiffiffiffiffiffiffi
15

32π

r
e2iφsin2θ;

where m < 0 components are given by the reflection
property

Y�
lmðθ;φÞ ¼ ð−1ÞmYl−mðθ;φÞ: ðA16Þ

The spherical harmonics are orthonormal over the entire
solid angle,

Z
2π

0

dφ
Z þ1

−1
d cos θY�

l0m0 ðθ;φÞYlmðθ;φÞ

¼ δl0lδm0m; ðA17Þ

and satisfy the spherical addition theorem

PlðzÞ ¼
4π

2lþ 1

Xl
m¼−l

Y�
lmðθ0;φ0ÞYlmðθ;φÞ; ðA18Þ

where z ¼ cos θ cos θ0 þ sin θ sin θ0 cosðφ0 − φÞ and Pl are
the Legendre functions of the first kind. Note that if m ¼ 0
for all l∈N0, then the spherical harmonics are related to
the Legendre functions as

Yl0ðθ;φÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
PlðzÞ: ðA19Þ

4. Wigner rotation matrix elements

Here we summarize some useful properties of Wigner
rotation matrix elements. A detailed review can be found in
Ref. [91]. A rotation of θ about an axis n̂ is given by the
unitary operator Rn̂ðθÞ ¼ e−iθJ·n̂ where J is the angular
momentum operator. For a generic rotation about the Euler
angles α, β, γ defined by

Rðα; β; γÞ≡RẑðαÞ ·RŷðβÞ ·RẑðγÞ: ðA20Þ

Wigner D matrix elements of R in a basis jjmi, with
representation j and projection m spanning −j ≤ m ≤ j,
are defined as

DðjÞ
mm0 ðα; β; γÞ≡ hjmjRðα; β; γÞjjm0i;

¼ e−imαdðjÞmm0 ðβÞe−im0γ; ðA21Þ

where dðjÞmm0 are the Wigner “little” dmatrix elements. The d
matrix elements can be expressed in terms of the Jacobi
polynomials [91]

dðjÞmm0 ðβÞ¼ð−1Þη
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ!ðσþμþνÞ!
ðσþμÞ!ðσþνÞ!

s
ξmm0 ðcosβÞPðμ;νÞ

σ ðcosβÞ;

ðA22Þ

where μ ¼ jm −m0j, ν ¼ jmþm0j, σ ¼ j − ðμþ νÞ=2,
and the phase power η ¼ 0 if m0 ≥ m and η ¼ m0 −m if
m0 < m. The function ξmm0 is known as the half-angle
factor [84] and is defined as

ξmm0 ðzÞ ¼
�
1 − z
2

�jm−m0j=2�1þ z
2

�jmþm0j=2
; ðA23Þ

which is singular at z ¼ �1 and symmetric under the
interchange m ↔ m0,

ξmm0 ðzÞ ¼ ξm0mðzÞ: ðA24Þ

The Jacobi polynomials Pðμ;νÞ
σ ðzÞ are regular functions of

real z,

Pðμ;νÞ
σ ðzÞ ¼

Xσ
n¼0

ðσ þ μÞ!ðσ þ νÞ!
n!ðσ þ μ − nÞ!ðνþ nÞ!ðσ − nÞ!

×

�
z − 1

2

�
σ−n

�
zþ 1

2

�
n
; ðA25Þ

where we require that σ, σ þ μ, σ þ ν, and σ þ μþ ν be
non-negative integers [93].
The Wigner d matrix elements themselves have numer-

ous symmetry relations, most importantly for this work,

dðjÞmm0 ¼ ð−1Þm0−mdðjÞm0m ¼ dðjÞ−m0−m; ðA26Þ

and

dðjÞmm0 ðβÞ ¼ dðjÞm0mð−βÞ; ðA27Þ

which are discussed in Ref. [91].
Like the spherical harmonics, the Wigner d matrix

elements respect an orthogonality condition over the
interval −1 ≤ cos β ≤ þ1,

Z þ1

−1
dcosβdðjÞmm0 ðβÞdðj̄Þm̄m̄0 ðβÞ¼ 2

2jþ1
δjj̄δmm̄δm0m̄0 ; ðA28Þ
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which can be seen by the definition (A22) and using the
orthogonality condition of the Jacobi polynomials over the
same domain,

Z þ1

−1
dzð1 − zÞμð1þ zÞνPðμ;νÞ

σ ðzÞPðμ;νÞ
ρ ðzÞ

¼ 2μþνþ1

2σ þ μþ νþ 1

ðσ þ μÞ!ðσ þ νÞ!
σ!ðσ þ μþ νÞ! δσρ; ðA29Þ

for μ; ν > −1 [93]. The addition theorem for Wigner d
matrix elements [91] is given by

X
m00

dðjÞmm00 ðβ1ÞdðjÞm00m0 ðβ2Þe−im00φ ¼ DðjÞ
mm0 ðα; β; γÞ; ðA30Þ

where the Euler angles α, β, and γ are given by the
following relations [91]:

cot α ¼ cos β1 cotφþ cot β2
sin β1
sinφ

; ðA31aÞ

cos β ¼ cos β1 cos β2 − sin β1 sin β2 cosφ; ðA31bÞ

cot γ ¼ cos β2 cotφþ cot β1
sin β2
sinφ

: ðA31cÞ

The sign of α and γ can be fixed by the relation

sin α
sin β1

¼ sin γ
sin β2

¼ sinφ
sin β

: ðA32Þ

Finally, the Wigner D matrix elements are related to the
spherical harmonics as

Ylmðθ;φÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
DðlÞ�

m0 ðφ; θ; 0Þ: ðA33Þ

APPENDIX B: EVALUATION
OF THE C INTEGRAL EQ. (64)

Here we provide a derivation of the closed-form solution
of the C integral Eq. (64), repeated here for convenience:

CJj;λ0λ ¼
1

2

Z þ1

−1
dzξλλ0 ðzÞdðJÞλλ0 ðzÞPjðzÞ:

To evaluate this integral, we first recognize that PjðzÞ ¼
dðjÞ00 ðzÞ for any j and z. Therefore, we can use the Clebsch-
Gordan expansion [91] to reduce the product of Wigner d
functions to a single element,

dðJÞλλ0 ðzÞPjðzÞ ¼ dðJÞλλ0 ðzÞdðjÞ00 ðzÞ;

¼
XJþj

n¼jJ−jj
hnλ0jJλ0; j0ihnλjJλ; j0idðnÞλλ0 ðzÞ; ðB1Þ

which reduces the coefficient to

CJj;λ0λ ¼
1

2

XJþj

n¼jJ−jj
hnλ0jJλ0; j0ihnλjJλ; j0i

×
Z þ1

−1
dzξλλ0 ðzÞdðnÞλλ0 ðzÞ: ðB2Þ

Next we write the Wigner dðnÞλλ0 matrix element in terms of

the Jacobi polynomials Pðμ;νÞ
σ , as given in Appendix A.

Using the expression Eq. (A22), the integral takes
the form

CJj;λ0λ ¼
1

2

XJþj

n¼jJ−jj
hnλ0jJλ0; j0ihnλjJλ; j0i

× ð−1Þη
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ!ðσ þ μþ νÞ!
ðσ þ μÞ!ðσ þ νÞ!

s Z þ1

−1
dzξ2λλ0 ðzÞPðμ;νÞ

σ ðzÞ;

ðB3Þ

where μ ¼ jλ − λ0j, ν ¼ jλþ λ0j, and σ ¼ n − ðμþ νÞ=2.
The phase is such that η ¼ 0 if λ0 ≥ λ and η ¼ λ0 − λ if
λ0 < λ. The advantage here is that the Jacobi polynomials

Pðμ;νÞ
σ ðzÞ are orthogonal over the interval z∈ ½−1; 1� with

the weight ð1 − zÞμð1þ zÞν. This is precisely the form of
the integral in Eq. (B3) since ξ2λλ0 ðzÞ ∝ ð1 − zÞμð1þ zÞν
which removes the square root singular behavior, and for
any μ, ν. We also note that for any μ and ν with σ ¼ 0 [93],

Pðμ;νÞ
0 ðzÞ ¼ 1: ðB4Þ

Therefore, applying the orthogonality condition Eq. (A29)
yields the relation

Z þ1

−1
dzξ2λλ0 ðzÞPðμ;νÞ

σ ðzÞ

¼ 1

2μþν

Z þ1

−1
dzð1 − zÞμð1þ zÞνPðμ;νÞ

σ ðzÞPðμ;νÞ
0 ðzÞ;

¼ 2

2σ þ μþ νþ 1

ðσ þ μÞ!ðσ þ νÞ!
σ!ðσ þ μþ νÞ! δσ0: ðB5Þ

Inserting this result into Eq. (B3) gives
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CJj;λ0λ ¼
XJþj

n¼jJ−jj
hnλ0jJλ0; j0ihnλjJλ; j0i

×
ð−1Þη

2σ þ μþ νþ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ þ μÞ!ðσ þ νÞ!
σ!ðσ þ μþ νÞ!

s
δσ0: ðB6Þ

The Kronecker delta enforces σ ¼ 0, which fixes
n ¼ ðμþ νÞ=2. Thus the sum in Eq. (B3) has only a single
nonzero term, giving

CJj;λ0λ ¼ hJminλ
0jJλ0; j0ihJminλjJλ; j0i

ð−1Þη
μþ νþ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ!ν!

ðμþ νÞ!

s
:

ðB7Þ

Finally, we note the relation between Jmin and μ, ν,

Jmin¼maxðjλ0j; jλjÞ ¼ 1

2
ðjλ0−λjþ jλ0 þλjÞ ¼ μþν

2
; ðB8Þ

giving our final result for the C coefficient, Eq. (65),
repeated here for convenience:

CJj;λ0λ ¼
ð−1Þη

2Jmin þ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jλ0 − λj!jλ0 þ λj!

ð2JminÞ!

s
hJminλ

0jJλ0; j0i

× hJminλjJλ; j0i:

APPENDIX C: PARTIAL-WAVE PROJECTION
IN GENERIC REFERENCE FRAMES

In the main body of our work, Sec. II A and III A, we
stated that without loss of generality, we can orient a
coordinate systemXYZ so that the initial pair momentum in
the CM frame was aligned with the Z axis, Pk ¼ Ẑ, and the
final pair momentum lies in the XZ plane at a polar angle θp
from the Z axis, so that the CM frame scattering angle
θp ¼ θpk. In this Appendix, we show that one can construct
a partial-wave expansion with respect to a generic space-
fixed coordinate system. One practical reason for consid-
ering expansions in a generic coordinate system is in
implementing the results of this work to 3 → 3 amplitudes
which are constructed by summing over all pair-spectator
combinations, which is what is proposed in the formulation
of the scattering formalism [46,65]. As different pair-
spectator systems require their own coordinate system to
define momenta and angles, imposing a global external
coordinate system with which all pair-spectator systems
can be related allows one to define an expansion for the
complete amplitude. This application is outside the scope
of this work; thus we did not discuss details, but point the
reader to Refs. [68,85,90] which discuss aspects of this
procedure. However, we intend that this Appendix be

useful for future study on that application as well as
extensions to analyses of higher few-body systems.
Let Pk and Pp be the initial and final pair momenta in the

total CM frame defined with respect to some generic space-
fixed coordinate system XYZ. Then, the polar and azimu-
thal angles of Pk are θk and φk, respectively, while the polar
and azimuthal angles of Pp are θp and φp, respectively.
These orientations are depicted in Fig. 13, where we also
introduce the CM frame effective scattering angle θpk
defined with the usual addition of spherical angles

cosθpk ¼ P̂p · P̂k;

¼ cosθp cosθkþ sinθp sinθk cosðφk−φpÞ; ðC1Þ

which follows from decomposing P̂p and P̂k into Cartesian
components with respect to the space-fixed coordinate
system. The reaction plane in the CM frame is now defined
with a unit normal vector

n̂ ¼ Pk × Pp

jPk × Ppj
; ðC2Þ

and is still used to define the azimuthal angles of the initial
and final state pair rest frames as discussed in Sec. II A.
Note that when we orient P̂k ¼ Ẑ, we recover that θp ¼ θpk
and n̂ ¼ Ŷ, as is chosen in the main text.
The partial-wave expansion proceeds as in Sec. III A, up

through Eq. (21), which we repeat here for convenience:

Ml0λ0;lλðp;kÞ ¼
X∞
J¼Jmin

ð2J þ 1ÞMJ
l0λ0;lλðp; kÞ

×
XJ

mJ¼−J
DðJÞ

mJλ
0 ðP̂pÞDðJÞ

mJλ
ðP̂kÞ:

The task now is to simplify the sum on mJ. Similar to
spherical harmonics, theWignerDmatrix elements have an

FIG. 13. Orientations of the momenta Pk and Pp with respect to
the generic space-fixed coordinate system ðX; Y; ZÞ. The Zk and
Zp axes are associated with body-fixed coordinate systems which
are defined fixed to the momenta Pk and Pp, respectively.
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addition theorem which allows us to reduce the composi-
tion of two rotation functions to a single rotation,
cf. Appendix A. For the rotation functions in Eq. (21),
we find the following [94]:

X
mJ

DðJÞ
mJλ

0 ðP̂pÞDðJÞ
mJλ

ðP̂kÞ

¼
X
mJ

DðJÞ
mJλ

0 ðφp; θp; 0ÞDðJÞ
mJλ

ðφk; θk; 0Þ;

¼
X
mJ

dðJÞmJλ
0 ðθpÞdðJÞmJλ

ðθkÞe−imJðφk−φpÞ;

¼
X
mJ

dðJÞλmJ
ð−θkÞdðJÞmJλ

0 ðθpÞe−imJðφk−φpÞ; ðC3Þ

where in the last line we used the symmetry identity,
Eq. (A27). From the addition theorem, we find that we can
express this sum as a single Wigner D matrix element,

X
mJ

DðJÞ
mJλ

0 ðP̂pÞDðJÞ
mJλ

ðP̂kÞ

¼
X
mJ

dðJÞλmJ
ð−θkÞdðJÞmJλ

0 ðθpÞe−imJðφk−φpÞ

¼ eiλφpkdðJÞλλ0 ðθpkÞeiλ
0ψpk ;

¼ DðJÞ�
λλ0 ðφpk; θpk;ψpkÞ; ðC4Þ

where the resulting Euler angles are given by the usual
addition of rotation matrices as summarized in Appendix A.
Explicitly, the total CM frame scattering angle θpk is given
by cos θpk ≡ P̂p · P̂k as is defined in Eq. (C1), while the
azimuthal angles φpk and ψpk are fully specified by the
following relations:

cotφpk ¼ − cos θk cotðφk − φpÞ þ cot θp
sin θk

sinðφk − φpÞ
;

cotψpk ¼ − cos θp cotðφk − φpÞ þ cot θk
sin θp

sinðφk − φpÞ
;

−
sinφpk

sin θp
¼ sinψpk

sin θk
¼ sinðφk − φpÞ

sin θpk
: ðC5Þ

After using the addition theorem on the Wigner d matrix
elements, Eq. (C4), we find that the helicity partial-wave
expansion Eq. (C3) reduces to

Ml0λ0;lλðp;kÞ ¼
X
J

ð2J þ 1ÞMJ
l0λ0;lλðp; kÞ

×DðJÞ�
λλ0 ðφpk; θpk;ψpkÞ; ðC6Þ

which can be inverted to project a helicity amplitude into its
partial waves,

MJ
l0λ0;lλðp; kÞ ¼

1

8π2

Z
2π

0

dψpk

Z
2π

0

dφpk

×
Z þ1

−1
d cos θpkD

ðJÞ
λλ0 ðφpk; θpk;ψpkÞ

×Ml0λ0;lλðp;kÞ: ðC7Þ

Compared to the kinematics outlined in Sec. II, it seems
that there are additional independent variables in the form
of the azimuthal dependencies φpk and ψpk. However, these
azimuthal angles are nondynamical in the sense that they
orient the reaction plane with respect to our arbitrary
external coordinate system. To see this, first consider the
simple limit where P̂k ¼ Ẑ. Therefore, θk ¼ φk ¼ 0. From
Eq. (C5) we find that as θk → 0 and φk → 0, the Euler
angles φpk → φp, θpk → θp, and ψpk → 0. Thus, we have
removed one of the azimuthal angles, and the angular
momentum composition rule, Eq. (C4), gives

X
mJ

DðJÞ
mJλ

0 ðP̂pÞDðJÞ
mJλ

ðP̂kÞ ¼ DðJÞ�
λλ0 ðφp; θp; 0Þ: ðC8Þ

The remaining angle φpk ¼ φp is not dynamical, as it only
orients the reaction plane with respect to the external
coordinate system, cosφp ¼ P̂p · X̂. Therefore, we can
rotate the system about the helicity quantization axis by an
angle of −φp, which preserves the helicity [86], to eliminate
this redundant angle and arrive at our result in Eq. (23).
In a similar manner, we can simultaneously rotate away

both azimuthal angles in Eq. (C6),X
λ0;λ

DðJÞ
λ̄0λ0 ð0; 0;φpkÞMl0λ0;lλðp;kÞDðJÞ

λλ̄
ðψpk; 0; 0Þ

¼ Ml0 λ̄0;lλ̄ðp;kÞjφpk¼ψpk¼0: ðC9Þ
This transformation leaves the magnitude of the pair
momenta invariant as they are aligned with their respective
quantization axes. We conclude that the angles ψpk and
φpk are nondynamical variables and are arbitrary rotations
which arise from the definitions of the three-particle states
with respect to the spatial coordinate system. Therefore, if
one rotates the system as in Eq. (C9) to remove the φpk and
ψpk angles, we arrive exactly at the expansion as originally
presented in Eq. (24) of Sec. III A.
Finally, we consider in detail the consequence of a

generic reference frame to the OPE. In particular, we show
that the dependence on the nondynamical angles explicitly
cancels in performing the partial-wave projection of the
OPE. We begin by rewriting Eq. (42) here for convenience:

Hðl0lÞ
λ0λ ðp;kÞ≡

�
k⋆p
q⋆p

�
l0

4πY�
l0λ0 ðk̂⋆

pÞYlλðp̂⋆
k Þ
�
p⋆
k

q⋆k

�
l
:

We need to decompose the vectors k⋆
p and p⋆

k with respect
to the general coordinate system, as well as describe their

PARTIAL-WAVE PROJECTION OF THE ONE-PARTICLE … PHYS. REV. D 109, 096030 (2024)

096030-29



Lorentz transformations. In the total CM frame, the spectator
momenta are antiparallel to the pair momenta, e.g. for the
final spectator p ¼ −Pp; thus its polar and azimuthal angles
with respect to the space-fixed coordinate system are π − θp
and φp þ π, respectively. Let us focus on obtaining the
angles p⋆

k in terms of the various coordinate system. First, let
us define the Lorentz transformations between the total CM
frame and the pair rest frame for spectator k,

ðp⋆
k Þk ¼ γkðpk − βkωpÞ;

¼ γk

�
p · βk
β2k

− ωp

�
βk; ðC10aÞ

ðp⋆
k Þ⊥ ¼ p⊥ ≡ p − pk;

¼ p −
�
p · βk
β2k

�
βk; ðC10bÞ

where we recall that βk ¼ Pk=Ek and γk ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2k

q
.

Let us first define the coordinates ðxk; yk; zkÞ which
are fixed to the reaction plane for this system. Similar to
Sec. II A, the zk axis is defined as ẑk ¼ Pk=jPkj, and the yk
axis is given by ŷk ¼ Pk × Pp=jPk × Ppj, which is the unit
normal to the reaction plane. Therefore, the xk axis is defined
by the unit vector x̂k ¼ ŷk × ẑk. Note that jPk × Ppj ¼
pk sin θpk ¼ pk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2 θpk

q
. Thus we find that the

Lorentz transformation, Eq. (C10a), is given by

ðp⋆
k Þk · ẑk ¼ p⋆

k cosðχ⋆k Þ;
¼ γkð−p cos θpk − ωpβkÞ; ðC11Þ

where ẑk ¼ β̂k, and from the perpendicular component,
Eq. (C10b),

ðp⋆
k Þ⊥ · x̂k ¼ −p⋆

k sin χ
⋆
k ;

¼ −p sin θpk: ðC12Þ

Note that we have recovered the Lorentz transformations as
detailed in Sec. IVA.
Next we define body-fixed coordinates ðXk; Yk; ZkÞ

which are defined fixed to the pair momentum Pk.
Specifically, the Zk axis is defined as Ẑk ¼ P̂k, and the
Yk axis is perpendicular to the plane formed by the vector
Zk and the space-fixed Z axis as Ŷk ¼ Ẑ × Ẑk=jẐ × Ẑkj,
where we note that jẐ × Ẑkj ¼ sin θk. Then, the Xk axis is
given by X̂k ¼ Ŷk × Ẑk. Note that if we align Pk with the Z
axis, then the body-fixed coordinate system is identical to
the space-fixed coordinate system ðX; Y; ZÞ.
To compute the angles of the momentum p⋆

k with respect
to this coordinate system, we notice that Ẑk ¼ ẑk; thus the
parallel component of p⋆

k has the same form as the Lorentz

transformations with respect to the reaction plane coordinate
system, Eq. (C11). Therefore, we only need towork with the
perpendicular component to determine the azimuthal angles,
i.e. X̂k · p⋆

k ¼ X̂k · ðp⋆
k Þ⊥ and Ŷk · p⋆

k ¼ Ŷk · ðp⋆
k Þ⊥.

Moreover, since the perpendicular component is unchanged
under Lorentz transformations, Eq. (C10b), and β̂k ¼ Ẑk

with X̂k · Ẑk ¼ Ŷk · Ẑk ¼ 0, the azimuthal angles of ðp⋆
k Þ⊥

are completely determined by p. Thus, we evaluate the
following scalar products: X̂k · p⋆

k ¼ X̂k · p and Ŷk · p⋆
k ¼

Ŷk · p. Finally, recall thatp ¼ −Pp, so decomposingPpwith
respect to the ðXk; Yk; ZkÞ body fixed coordinates immedi-
ately yields the angles of p.
In what follows, we prove that the azimuthal angle of p is

φpk þ π. We do this by first assuming this relation, which
can be qualitatively argued from the addition of Wigner D
matrices shown in Eq. (C4). Then, we relate the angles in
the space-fixed to those in body-fixed coordinates, illus-
trated in Fig. 14 and defined below. Finally, we show that
the resulting relations are equivalent to Eq. (C5). Once we
establish this relation, we turn our attention to prove that
the azimuthal angle of k is −ψpk, following the same
procedure.
We begin by first relating the vector Pp to the body-fixed

coordinate system ðXk; Yk; ZkÞ, as illustrated in Fig. 14(a).
Resolving Pp into a Cartesian coordinate system reveals
that geometrically, Ŷk ·Pp¼psinθpksinφpk and X̂k · Pp ¼
p sin θpk cosφpk. This is further depicted in Figs. 15(a) and
16(a), which shows the decomposition in the XkZk and
XkYk planes, respectively. Here θpk is the angle of Pp with
respect to the Zk axis (which is the definition of the
effective CM frame scattering angle), and we have defined
φpk as the azimuthal angle of Pp with respect to the Xk axis.
Therefore, the polar and azimuthal angles of p in this frame
are π − θpk and π þ φpk, respectively.
To verify that φpk is identical to the results from the

addition theorem in Eq. (C5), we compute the scalar
products with the relations between the unit vectors of
the body-fixed coordinate system to those of the space-
fixed system. By direct evaluation, we find

Ŷk · p⋆
k ¼ Ŷk · ðp⋆

k Þ⊥ ¼ Ŷk · p;

¼ −p sin θpk sinφpk;

¼ p sin θp sinðφk − φpÞ; ðC13aÞ

X̂k · p⋆
k ¼ X̂k · ðp⋆

k Þ⊥ ¼ X̂k · p;

¼ −p sin θpk cosφpk;

¼ pðcos θp sin θk − cos θk sin θp cosðφk − φpÞÞ;
ðC13bÞ

where the second line in each of these equalities comes
from the geometric decomposition shown in Figs. 15(a) and
16(a), while the third line is the result where we use the
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definitions of the unit vectors of the ðXk; Yk; ZkÞ system
with respect to the ðX; Y; ZÞ system. We emphasize that the
negative signs on the second line of each equation are
because p ¼ −Pp.
The cotangent of the azimuthal angle of p⋆

k is given by
taking the ratio of the Xk component, Eq. (C13b), to the Yk
component, Eq. (C13a),

X̂k · p⋆
k

Ŷk · p⋆
k

¼ cotφpk;

¼ − cos θk cotðφk − φpÞ

þ cot θp
sin θk

sinðφk − φpÞ
; ðC14Þ

which is identical to the one found in Eq. (C5). The sign is
fixed from the relationship between sin θpk and sin θp from
the Yk component in Eq. (C13a),

sinφpk ¼ −
sin θp
sin θpk

sinðφk − φpÞ; ðC15Þ

where the negative sign fixes the relative orientation to the
coordinate system. Therefore, we conclude that the azimu-
thal angle of p⋆

k is φpk þ π, where φpk is given by Eq. (C5).
Since Ylλðθ;φÞ ∝ Pλ

lðcos θÞeiλφ, we find that the angular
dependence is given by

Ylλðp̂⋆
k Þ ∝ Pλ

lðcos χ⋆k Þeiλπeiλφpk : ðC16Þ

FIG. 14. (a) Polar and azimuthal angles of Pp with respect to the body-fixed ðXk; Yk; ZkÞ frame. The polar angle is θpk which is
defined with respect to the Zk axis. The perpendicular component p⊥ lies in the XkYk plane, which is shaded blue, with an azimuthal
angle defined about the Zk axis with respect to Xk. (b) Polar and azimuthal angles of Pk with respect to the body-fixed ðXp; Yp; ZpÞ
system. The polar angle is defined as θpk, while the azimuthal angle is defined in the XpYp plane, shaded red, with respect to the Xp axis
to be π − ψpk.

FIG. 15. Projection of the perpendicular components of (a) Pp and p to the XkYk plane, and (b) Pk and k to the XpYp plane.
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Note that if we align Pk with the Z axis, then φpk ¼ 0, and
we recover the p⋆

k piece contributing to Eq. (48), namely
that there is a phase eiλπ ¼ ð−1Þλ.
We now show that the azimuthal angle of k is −ψpk. We

follow the same procedure as before, first assuming that
−ψpk is the azimuth of k, then relating the angles of k in
the space-fixed system to the body-fixed coordinates,
cf. Fig. 14. We then recover the expressions shown from
the addition theorem in Eq. (C5). We repeat the above
analysis for the vector k⋆

p with respect to a body-fixed
coordinate system ðXp; Yp; ZpÞ, where the Zp axis is
Ẑp ¼ P̂p, Ŷp ¼ Ẑ × Ẑp=jẐ × Ẑpj, and X̂p ¼ Ŷp × Ẑp.
These coordinates are fixed to the momentum Pp. The
Lorentz transformations are along the Zp axis,

ðk⋆
pÞk ¼ γpðkk − βpωkÞ;

¼ γp

�
k · βp
β2p

− ωk

�
βp; ðC17aÞ

ðk⋆
pÞ⊥ ¼ k⊥ ≡ k − kk;

¼ k −
�
k · βp
β2p

�
βp; ðC17bÞ

with βp ¼ Pp=Ep and γp ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2p

q
. Along the Zp

axis, the Lorentz transformations give the known relation,
Eq. (50), between χ⋆p and θpk, similar to the previous case:

ðk⋆
pÞk · Ẑp ¼ k⋆p cosðχ⋆pÞ;

¼ γpð−k cos θpk − ωkβpÞ; ðC18Þ

The azimuthal angles of k⋆
p are again found by considering

its perpendicular component with respect to the Zp axis.
For this case, we show that the azimuthal angle of k⋆

p is
−ψpk, which is illustrated in Fig. 14(b). As with the
previous case, the angles of k⋆

p in the ðXp; Yp; ZpÞ
body-fixed system are related to those of k ¼ −Pk.

Figures 15(b) and 16(b) show the decomposition of Pk
with respect to the ðXp; Yp; ZpÞ coordinate system. We find
that X̂p · Pk ¼ k sin θpk cosðπ − ψpkÞ ¼ −k sin θpk cosψpk

and Ŷp · Pk ¼ k sin θpk sinðπ − ψpkÞ ¼ k sin θpk sinψpk,
where θpk and π − ψpk are the polar azimuthal angles
of Pk, respectively. The polar and azimuthal angles of
k ¼ −Pk in this frame are therefore π − θpk and −ψpk,
respectively, as shown in Figs. 15(b) and 16(b).
As before, we connect ψpk to Eq. (C5) by resolving k⋆

p
into Xk and Yk components and using the definitions of the
body-fixed frame unit vectors in terms of the external
coordinate system. We find

Ŷp · k⋆
p ¼ Ŷp · ðk⋆

pÞ⊥ ¼ Ŷp · k;

¼ −k sin θpk sinψpk

¼ −k sin θk sinðφk − φpÞ; ðC19aÞ

X̂p · k⋆
p ¼ X̂p · ðk⋆

pÞ⊥ ¼ X̂p · k;

¼ k sin θpk cosψpk;

¼ kðcos θk sin θp − cos θp sin θk cosðφk − φpÞÞ;
ðC19bÞ

where the second line of each equality is due to the geometric
decomposition of k, noting that sinðπ − θpkÞ ¼ sin θpk,
sinð−ψpkÞ ¼ − sinψpk, and cosð−ψpkÞ. The third line is
due to the relation of the body-fixed unit vectors to the space-
fixed coordinate system.
We find that the cotangent of the azimuthal angle of k⋆

p is

X̂p ·k⋆
p

Ŷp ·k⋆
p

¼−cotψpk;

¼ cosθpcotðφk−φpÞ−cotθk
sinθp

sinðφk−φpÞ
; ðC20Þ

exactly as found by the addition theorem in Eq. (C5). The
sign of the angle is fixed from Eq. (C19a), from which

FIG. 16. (a) Azimuthal angles of Pp and p defined in the XkYk plane. (b) Azimuthal angles of Pk and k defined in the XpYp plane.
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sinψpk ¼
sin θk
sin θpk

sinðφk − φpÞ: ðC21Þ

We conclude that the azimuthal angle of k⋆
p is −ψpk with

ψpk defined in Eq. (C5). Therefore, the spherical harmonic
Y�
l0λ0 ðk̂⋆

pÞ is

Y�
l0λ0 ðk̂⋆

pÞ ∝ Pλ0
l0 ðcos χ⋆pÞeiλ0ψpk ; ðC22Þ

where we note that because of the complex conjugation,
the argument of the exponential is −iλ0ð−ψpkÞ ¼ iλ0ψpk.
We conclude that the spin-helicity matrix in a general
coordinate system has the form

Hðl0lÞ
λ0λ ðp;kÞ ∝ eiλ

0ψpkeiλφpk ; ðC23Þ

which is the exact structure we found by the generic partial-
wave expansion Eq. (C6), and therefore from the projection
Eq. (C7) we find that the azimuthal dependence completely
disappears, leaving what we found in Sec. IV.

APPENDIX D: FORMULARY FOR LOW-LYING
PARTIAL-WAVE OPE AMPLITUDES

The purpose of this Appendix is for those interested in
using the results presented for the low-spin cases in their
analysis. We collect the primary results for the 2Sþ1LJ →
2S0þ1L0

J partial-wave OPE amplitudes presented in Sec. V,
as well as a minimal set of kinematics needed. The OPE is a
function of the total three-body CM energy

ffiffiffi
s

p
, as well as

either the initial and final spectator momenta k and p,
respectively, or the initial and final state pair invariant mass
squares σk and σp, respectively. Equation (10) relates these
two sets of variables.
The initial and final spectators have masses mk and mp,

respectively, the exchange particle has mass me, and the
product of their intrinsic parities is η, e.g. if considering
three pions, then η ¼ −1. The initial and final pairs have
spins S and S0, respectively. The initial pair is coupled with
its spectator into an orbital state L. Similarly, the final state
pair is coupled to its spectator into an L0 orbital state.
Finally, both the initial and final state spin and orbital
angular momenta are, respectively, coupled to a total
angular momentum J. These couplings are illustrated in
Fig. 17. The parity of a particular state J is given by
P ¼ ηð−1ÞLþS ¼ ηð−1ÞL0þS0 .

From Eq. (76), the partial-wave OPE is then given by

Gð2S0þ1L0
Jj2Sþ1LJÞ≡ GðS0SÞ;J

L0S0;LSðp; kÞ;
¼ KGð2S0þ1L0

Jj2Sþ1LJÞ
þ T ð2S0þ1L0

Jj2Sþ1LJÞQ0ðζpkÞ; ðD1Þ
where expressions for KG and T are given below for JP ¼
f0η; 1η; 1−ηg and S0; S ¼ f0; 1g. The function Q0 is known
and given by Eq. (A7), where the argument ζpk is defined in
terms of energies and momenta in Eq. (46). For notational
convenience, we introduce the three quantities which
appear frequently:

fpk ¼ γp

�
βpωk

k
þ ζpk

�
; ðD2aÞ

gpk ¼ γpγk

�
βpωk

k
þ βkωp

p
þ ζpk

�
; ðD2bÞ

hpk ¼
γpγkβpβkωpωk

pk
; ðD2cÞ

where ωk¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

kþk2
q

, ωp¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

pþp2
q

, γp ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2p

q
,

γk ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2k

q
with βp and βk being the boost velocities

as discussed in Eqs. (49) and (50). Note that gpk and hpk are
symmetric under the interchange of p ↔ k since ζpk is
symmetric. However, fpk ≠ fkp. Finally, the expressions
below contain q⋆p and q⋆k , which are the relative momenta
of the pairs in their respective CM frames as defined
in Eq. (39).

1. JP = 0η amplitudes

There are two possible partial waves, a singlet 1S0 and
triplet 3P0, resulting in a 2 × 2 matrix.

(i) 1S0 → 1S0

KGð1S0j1S0Þ ¼ 0; ðD3aÞ

T ð1S0j1S0Þ ¼
1

2pk
: ðD3bÞ

(ii) 1S0 → 3P0

KGð3P0j1S0Þ ¼ −
ffiffiffi
3

p

2pq⋆p
γp; ðD4aÞ

T ð3P0j1S0Þ ¼
ffiffiffi
3

p

2pq⋆p
fpk: ðD4bÞ

(iii) 3P0 → 1S0
Given by Eqs. (D4a) and (D4b) with p ↔ k

interchange.
FIG. 17. Angular momentum couplings of the OPE, as de-
scribed in the text.
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(iv) 3P0 → 3P0

KGð3P0j3P0Þ ¼ −
3

2q⋆k q
⋆
p
gpk; ðD5aÞ

T ð3P0j3P0Þ ¼
3

2q⋆k q
⋆
p
fpkfkp: ðD5bÞ

2. JP = 1η amplitudes

There is a single 3P1 partial wave in this channel.
(i) 3P1 → 3P1

KGð3P1j3P1Þ ¼ −
3

4q⋆pq⋆k
ζpk; ðD6aÞ

T ð3P1j3P1Þ ¼
3

4q⋆pq⋆k
ðζ2pk − 1Þ: ðD6bÞ

3. JP = 1− η amplitudes

There are three possible partial waves, one singlet 1P1

and two triplets 3S1 and 3D1, resulting in a 3 × 3 matrix.

(i) 1P1 → 1P1

KGð1P1j1P1Þ ¼ −
1

2pk
; ðD7aÞ

T ð1P1j1P1Þ ¼
1

2pk
ζpk: ðD7bÞ

(ii) 1P1 → 3S1

KGð3S1j1P1Þ ¼
1

2pq⋆p
ðfpk − ζpkÞ ðD8aÞ

T ð3S1j1P1Þ ¼ −
1

2pq⋆p
½ζpkfpk − ζ2pk þ 1�; ðD8bÞ

(iii) 1P1 → 3D1

KGð3D1j1P1Þ ¼ −
1

2
ffiffiffi
2

p
pq⋆p

ð2fpk þ ζpkÞ ðD9aÞ

T ð3D1j1P1Þ ¼
1

2
ffiffiffi
2

p
pq⋆p

½2ζpkfpk þ ζ2pk − 1�:

ðD9bÞ
(iv) 3S1 → 1P1

Given by Eqs. (D8a) and (D8b) with p ↔ k
interchange.

(v) 3S1 → 3S1

KGð3S1j3S1Þ ¼
1

2q⋆pq⋆k

�
2

3
ð1 − γpÞð1 − γkÞ − γpγk þ ζpkðfpk þ fkp − ζpkÞ − ðζpkgpk þ hpkÞ

�
; ðD10aÞ

T ð3S1j3S1Þ ¼
1

2q⋆pq⋆k
½ð1 − ζ2pkÞðfpk þ fkp − ζpkÞ þ ζpkðζpkgpk þ hpkÞ�: ðD10bÞ

(vi) 3S1 → 3D1

KGð3D1j3S1Þ ¼
1

2
ffiffiffi
2

p
q⋆pq⋆k

�
2

3
ð1þ 2γpÞð1 − γkÞ þ 2γpγk þ ζpkð−2fpk þ fkp − ζpkÞ þ 2ðζpkgpk þ hpkÞ

�
; ðD11aÞ

T ð3D1j3S1Þ ¼
1

2
ffiffiffi
2

p
q⋆pq⋆k

½ð1 − ζ2pkÞð−2fpk þ fkp − ζpkÞ − 2ζpkðζpkgpk þ hpkÞ�: ðD11bÞ

(vii) 3D1 → 1P1

Given by Eqs. (D9a) and (D9b) with p ↔ k interchange.
(viii) 3D1 → 3S1

Given by Eqs. (D11a) and (D11b) with p ↔ k interchange.
(ix) 3D1 → 3D1

KGð3D1j3D1Þ ¼
1

4q⋆pq⋆k

�
2

3
ð1þ 2γpÞð1þ 2γkÞ − 4γpγk − ζpkð2fpk þ 2fkp þ ζpkÞ − 4ðζpkgpk þ hpkÞ

�
; ðD12aÞ

T ð3D1j3D1Þ ¼
1

4q⋆pq⋆k
½−ð1 − ζ2pkÞð2fpk þ 2fkp þ ζpkÞ þ 4ζpkðζpkgpk þ hpkÞ�: ðD12bÞ
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