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As the study of three-hadron physics from lattice QCD matures, it is necessary to develop proper
analysis tools in order to reliably study a variety of phenomena, including resonance spectroscopy and
nuclear structure. Reconstructing the three-particle scattering amplitude requires solving integral equations,
which can be written in terms of data-constrained dynamical functions and physical on shell quantities.
The driving term in these equations is the so-called one-particle exchange, which leads to a kinematic
divergence for particles on mass shell. A vital component in defining three-particle amplitudes with definite
parity and total angular momentum, which are used in spectroscopic studies, is to project the one-particle
exchange into definite partial waves. We present a general procedure to construct exact analytic partial-
wave projections of the one-particle exchange contribution for any system composed of three spinless
hadrons. Our result allows one full control over the analytic structure of the projection, which we explore

for some low-lying partial waves with applications to three pions.
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I. INTRODUCTION

Applications of reaction theory to three-body systems
have seen a resurgence due to modern theoretical hadronic
spectroscopy. The success of two-hadron resonance studies
from Quantum Chromodynamics (QCD) using numerical
lattice QCD [1-32] in conjunction with nonperturbative
mappings between finite-volume spectra and reaction
amplitudes has allowed the community to pursue imple-
menting such an analysis strategy for excited hadrons
which have coupling to three-hadron decay modes.

The framework to compute nonperturbative reaction
amplitudes from QCD relies on a methodology first pre-
sented by Liischer [33—35] for two-particle systems [36—44],
with extensions to three-body systems developed in the last
decade [45-48,48-53,53,54,54-63,63,64,64—69]. The pro-
cedure for three-hadrons is given as follows. Finite-volume
correlation functions of operators with nonzero overlap to
the desired quantum numbers are computed via numerical
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Monte Carlo methods, and the subsequent spectrum is
determined by novel techniques within lattice QCD. The
finite-volume energy spectrum is then used in conjunction
with formalisms known as quantization conditions which
relate short-distance dynamical objects known as K matrices
to the spectrum through geometric functions characterizing
the distortions due to the periodic, finite volume. Practically,
one uses this avenue to constrain the K matrices which seed
into a set of integral equations which describe the on shell
scattering of the three hadrons. Examples of this computa-
tional procedure are given in [49,70-74].

A major challenge in the study of three-particle reactions
via lattice QCD is the last stage of the analysis, where
physical amplitudes are reconstructed from the data-
constrained K matrices. For spectroscopy, one usually
desires the resulting scattering amplitudes to be of definite
spin-parity J* so that one may search for the spectral
content by means of analytic continuation. Although there
has been substantial progress on this end [49,70-76], most
studies have focused on the restricted scenario where all the
particles are identical spinless bosons in which all angular
momenta are projected to § wave.'

'An exception is the exploratory study of an isovector a,
meson [77,78], which numerically projected the scattering
equations into J¥ = 17 and neglected all other partial-wave
channels except a; — pr(3S)).

Published by the American Physical Society
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In this work, we focus on lifting this technical restriction
by presenting the operations needed to project the 3 — 3
scattering amplitude into any definite J” partial wave. We
consider the partial-wave expansion of the scattering
amplitude of three arbitrary spinless particles, that is, the
particles can be identical or distinguishable. The exact
details of the relativistic 3 — 3 scattering amplitude can be
found in Sec. II, as well as the introduction of relevant
kinematic variables. In Sec. III, we review key concepts
used for partial wave projecting the scattering amplitude.
As is emphasized there, the procedure followed is to define
amplitudes within the helicity basis that are then projected
to definite J*.

At the center of our analysis is the one-particle exchange
(OPE) process, a known kinematic function central to the
integral equations [65,79-81]. The OPE has a complicated
angular dependence which arises when two of the particles
couple to some definite spin before recoiling against the
third, making it the most challenging amplitude to project
to definite partial waves. Schematically, the exchange
propagator of the OPE, denoted by G, takes the form

g= 55 (1)

where H is a dense matrix in the angular momentum of the
incoming and outgoing pairs which we call the spin-helicity
matrix, and u is the momentum squared of the exchange
particle which has mass m,. The functions H and u depend
on the kinematics of the exchanged spectator particles,
including the scattering angle. The main goal of this work
is to provide a generic procedure to obtain an analytic
representation of the partial-wave projection of G. Since
our focus is primarily for lattice QCD applications,
although this procedure can also be used in phenomeno-
logical studies, we use the definition of H as presented in
Ref. [45,46,65].

Details of the analytic partial-wave projection of the OPE
are given in Sec. IV, which makes use of the procedure
outlined in Sec. III to derive a generic result for the partial-
wave OPE for any target J© quantum number. Our result
can be expressed in terms of entirely known functions,
taking the form

G =KL +T" 00 0). (2)

where G/ is the exchange propagator projected to definite
spin-parity J*, and IC{JP and 77" are functions of external
kinematics and include Clebsch-Gordan coefficients which
couple the system to J”. The functions ICg and 77" are
matrices in space of partial waves which contribute to a

*We use the notation n — m to indicate a reaction involving n
incoming and m outgoing stable hadrons.

particular J”, and are completely determined by the spin-

helicity matrix , as shown in Sec. IV. The G’ amplitude
contains a branch cut in the complex energy plane which is
due to on shell particle exchange. This nonanalytic behav-
ior of the OPE is encoded entirely in Q,, the zero-degree
Legendre functions of the second kind, which depends on
external kinematic variables through the function .,
which is defined in the main body of the text. Our result
allows one to control the entire analytic behavior of the
amplitude which is vital in the analytic continuation of
three-body amplitudes to complex energy planes [75,76].

In Sec. V, we use our main equation (2) to provide
explicit expressions for the OPE amplitude for key low-
lying partial waves. Applications of these results are given
in Sec. VI, where we show numerical results for relevant
channels in 3z systems to illustrate some of the analytic
properties of these functions as discussed in the main text.
Our procedure is summarized in Sec. VII. To aid the reader,
we provide three technical Appendices, Appendix A, B,
and C, that include details of various special functions that
are used throughout this work, a derivation of a key integral
used in the analytic partial-wave projection, and an alter-
native version of our approach using arbitrary reference
frames. For the reader who wishes to use our explicit partial
wave projected OPE amplitudes directly in their analyses, a
fourth Appendix, Appendix D, collects the cases presented
in Sec. V along with brief explanations of the required
kinematic variables.

II. AMPLITUDES AND KINEMATICS

In the following, we consider the scattering of three
spinless particles. In this work, we do not restrict the
particles to be degenerate or identical; however, we do
not consider any additional internal symmetries. e.g. had-
ronic flavor quantum numbers.” Since our focus is ultimately
on the on shell exchange mechanism, we find this gener-
alization benefits future applications as we provide a generic
result to accommodate not only cases such as elastic zzz
scattering, but also those such as KKz — KKz where
KK — nr allows for 7 meson exchanges between KK pairs.

Therefore, we consider a three-body reaction of the form

(k) + @.(a) + @ (d') = @,(p) + @p(D) + @ (b'),

where ¢ (k) represents a single spinless particle carrying a
four-momentum k = (wy, k) with its energy w;, fixed by its

mass m,; and momentum Kk through the usual relativistic on

shell dispersion relation w? = m? + k2. Similar definitions

hold for the other particles. Here we adopt the notation that

It is straightforward to include restrictions due to additional
symmetries, e.g. by including the appropriate SU(2) Clebsch-
Gordan coefficients for three hadrons with isospin symmetry;
cf. Refs. [53,63,64].

096030-2



PARTIAL-WAVE PROJECTION OF THE ONE-PARTICLE ...

PHYS. REV. D 109, 096030 (2024)

the mass of the particle will be labeled by its momentum.
We normalize the single particle state by the usual Lorentz
invariant measure

(K[k) = (27) 20,50 (K’ — k), 3)

where 50 is the three-dimensional Dirac delta distribution.
The initial system carries a total four-momentum P =
(E,P), where E is the total energy and P is the total
momentum, which in terms of the constituent momenta is
P=k+a+d. Similarly, P = p+b+b' = (E',P') for
the final state four-momentum. A three-particle state is
constructed by the usual tensor product of single-particle
states, which we denote as |P,k,a). Here we trade the
momentum a’ for the total momentum as it is conserved in
reactions and a’ = P — k — a.

The 3 — 3 scattering amplitude M, depicted in Fig. 1, is
defined as the fully connected S matrix element

<P/7 p.b; OUt|Pv k,a; in>conn

= (27)*W (P — P)iM(p,b;k,a), (4)
where “conn.” indicates only the fully connected contribu-
tion is to be taken, and “in/out” refer to the asymptotically far
past/future. We have also factored out a Dirac delta from the
amplitude which ensures total momentum is conserved,
P = P'. The amplitude depends on the total three-body
center-of-momentum (CM) frame energy E = /s, where
s=P?= PP, = E* —P? is the Mandelstam invariant.
The physical scattering threshold is given by E() =
max (my +m, +my,m, +m, +my). In this work, we
suppress the dependence of s for all amplitudes to simplify
the notation. The amplitude depends on seven more kin-
ematic variables which are formed from the set of initial and
final state momenta.

In order to construct useful kinematic variables, it is
convenient to consider the kinematic configuration of the
three-body system as one consisting of two particles in a
pair with an associated spectator being the third particle.
In most of this work, we choose to label the initial state
spectator with momentum k, while the associated pair is
composed of the particles with momenta a and d'.
Likewise, for the final state, the spectator has momentum
p and the pair consists of the particles with momenta b
and b'.

b/ al
iM(p,b;k,a) — b*a
P k

FIG. 1. The fully connected 3 — 3 amplitude iM with mo-
mentum assignments. All external legs represent incoming and
outgoing on shell particles constrained by total momentum
conservation.

Each pair has a four-momentum given by P, =
(Ex.Py)=P—kand P, = (E,,P,) =P — p for the ini-
tial and final state, respectively, where the subscripts k and
p indicate which spectator is associated with the pair. The
invariant mass squared of the pairs is given by

o =Pi=(P-K%  o,=Pi=(P-pP (5)

Focusing first on the initial state, for a fixed s the physical

region of the pair invariant mass is limited to 0,(: U< o <

(/s — my)?, where o,(:hr) is the physical scattering threshold

for that pair, a,(:hr) = (m, + my)?>. Momentum conserva-

tion constrains the pair invariant masses through the usual
Mandelstam condition,

Oy + 04+ 0y =5+ mi+ m}+m?, (6)

where 6, and ¢, are the pair invariant masses considering a
and @' as spectators, respectively. The physical scattering
region of the three particles is therefore bounded by the
condition ®(k, a) > 0, where ®(k, a) is the Kibble boun-
dary function defined as [82—84]

2

@ (k,a) = 6;6,0, — o1(s —mk)(mi —m?)

—0,(s —mp)(mi —m?)

— (sm2 = m2m)(s + 2, — 2 = i), (7)
Similar restrictions hold for the final state particles,
with expressions given by the substitution {k,a,d’'} —
{p,b,b'} in the above conditions.

In Sec. IT A, we specify three reference frames which
we use to define additional kinematic variables used in the
partial-wave projection.

A. Reference frames

Three reference frames are required in our analysis of the
partial-wave projection of the 3 — 3 amplitude. Here we
define the essential characteristics of these frames, and will
refer to these in our constructions of partial waves in
Sec. III and give additional kinematic relations when we
discuss the application to the exchange propagator in
Sec. IV. These reference frames are illustrated in Fig. 2,
and are designated the “initial pair CM frame,” the “final
pair CM frame,” and the “total CM frame.” We define these
frames as follows:

(1) Initial pair CM frame—The initial pair CM frame is
defined by P, =P -k =0. It is common to in-
troduce a notation to indicate that a given kinematic
variable is evaluated in some specific reference
frame. Commonly in the literature one uses the *
superscript to indicate such a situation for the CM
frame. In our case, however, we need to be careful
as there are three CM frames of interest. Therefore,

096030-3
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Initial state plane

Reaction plane

Zk \ZA

FIG.2. Reference frames for the 3 — 3 amplitude as described in the text. Shown in blue is the initial three-body state plane, in red the
final three-body state, and in gray the reaction plane. Kinematics in the reaction plane are shown in the total CM frame (P = 0), while
the initial state planes are shown for both the initial pair CM frame (P}, = 0) and the total CM frame. The final state planes are shown in

the total CM frame and the final pair CM frame (P} , = 0).

we adopt a notation for the initial pair rest frame that
a % superscript along with a k subscript indicates
that the kinematic variable is evaluated in this frame.
While this results in slightly cumbersome notation,
we feel this will alleviate future confusion for
implementing the results of this work. As an
example, the defining relation for this frame can
be written as Py, = Py —kj; =0, where P}, in-
dicates that the initial state pair momentum is

.. 4
evaluated in its rest frame.

In this frame, the pair has back-to-back momen-

tum a;
invariant mass

1
—— A2 (o, m2, m2),

NG

|at |

—a}*, with its magnitude fixed by the pair

(8)

where A(x,y,z) = x> + y*> + 22 = 2(xy + yz + zx)
is the Killén triangle function. Note that A(x,y, z)
is symmetric under interchange of the variables x, y,
z. Note also that in the case where m, = m, = m,

\V O'k/4 - mz.

then aj reduces to aj

As illustrated in Fig. 2, we define a coordinate
system with a z; axis for the initial state defined to
be antiparallel to the spectator momentum, i.e.
7, = —K.° Thus, the first particle in the pair (taken
to by ¢,) has its momentum oriented at a polar angle
95 with respect to this z; axis. Furthermore, the three

*An example where this notation is vital is for P;_k, which is
the final state pair momentum evaluated in the initial pair rest
frame. Such evaluations become necessary as detailed in Sec. I'V.

5 .

The difference between the four-momentum a = (w,, a) and
the magnitude of its three-momentum a = |a| is clear from

context.

'We use the notation t, the unit vector of r, to indicate the polar
and azimuthal angles, (6,,¢,). Note that we use the standard
convention for the domain of the polar and azimuthal angles,

0,€10,7], and ¢, €[0,27).

096030-4
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momenta form a plane (the initial state plane)
defined by the normal vector k x a;, oriented with
respect to the reaction plane (with a coordinate
system XYZ which is defined later) by an azimuthal
angle wj. This angle is preserved upon Lorentz
boosts along z;, i.e. y;, =y from the total CM
frame to the initial pair CM frame. The boost
velocity from the initial pair CM frame to the total
CM frame is given by f, = P/E;.

Final pair CM frame—The final pair CM frame,
defined by P} , = 0, is constructed analogously to
the initial pair CM frame. The notation of a *
superscript with a p subscript indicates that kin-
ematic variables are in this frame. Another body-
fixed coordinate system is assigned to this frame,
with its z,, axis is defined by Z, = —p and the “final
state plane” defined with a normal vector p x b,
which is depicted in Fig. 2. The pair’s polar and
azimuthal angles are 97 and v, respectively. The
azimuthal angle is again invariant under boost along
2,, w, = w,. The final pair momenta are defined
back to back, by = —b’*, with a magnitude fixed
by o,

1
25,

by =|by| = W26, m}, m2).

©)

Total CM frame—The final reference frame in our
analysis is the total CM frame, defined by P = 0.
Unlike the initial and pair CM frames, we do not
include a special notation to indicate a kinematic
variable is evaluated in the total CM frame. This
frame proves convenient to define the reaction
plane, which connects the initial three-particle state
to the final state. Both the initial and final state
momenta are equally evaluated in this frame. Spe-
cifically, the magnitudes of the initial and final
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spectator momenta are fixed by their pair invariant

masses,
_ 1 1/2 2
p=Ip|= 2\/3'1 (5,0, mp),
1
k=|k| = =—=AY2(s, 0, m?). (10)

NG

These relations follow from Eq. (5), where the
inverse relations are readily given:

or =S+ m% - 2\/swy,
o, =5+ m;—2sw,, (11)

where we recall that w; = Vm? +k* and w, =

\/m% + p>. The angular degrees of freedom are

not fixed. Instead of specifying the angles of the
spectators, it proves more convenient to consider the
angles of the pair momenta P; and P,. To define
the momentum orientations, we introduce a space-
fixed coordinate system denoted by XYZ. This
coordinate system allows us to define our reaction
plane, and allows us to think about the pair-spectator
scattering system as a quasi-two-body reaction.
This quasi-two-body reaction is depicted in Fig. 3,
which for some fixed invariant masses /6 and /5,
is specified by the total CM frame energy +/s and
scattering angle between the spectators.

Without loss of generality,7 we define the initial
pair momentum P;, to be aligned with the +Z axis
of some space-fixed coordinate system (with axes
XYZ), that is Z=P,. Since P =0, the initial
spectator momentum is then aligned with the —Z
axis. We then choose the final pair momentum P, to
lie in the XZ plane, i.e. the quasi-two-body reaction
lies in the reaction plane. This plane is defined with
the +Y axis proportional to k x p =P, x P,. We
denote the total CM frame scattering angle by 0
which is defined in the usual way

Pk

A

cosf,, =P, P, =p-k. (12)

Notice that 8, is simply the angle of P, with respect

to the Z axis, cos @, =P, - 7, with respect to our
space-fixed coordinate system. Since we use the
standard convention that 6, € [0, z], this means that
we can specify 6,, completely with just cos ;.

"In Appendix C we lift this choice of coordinates and illustrate
the partial-wave expansion with respect to a generic externally
fixed coordinate system. Although important in future analyses,
as discussed in Appendix C, we find that working in a generic
coordinate system is not vital to reach our results in this work.
Therefore, we invite the interested reader to view Appendix C.

1
Pp
Opic
P, \
)0: >

p

FIG. 3. Orientations of the initial and final state pair momenta
defined with respect to the external space-fixed coordinate system
(denoted by XYZ). The angle between the initial and final
momentum P, and P, respectively, is the effective CM frame
scattering angle 0.

Additionally, as mentioned in the previous refer-
ence frame definitions, the reaction plane serves as
a convenient reference for the azimuthal angles of
the initial and final three-body planes, y; and v,
respectively.

To conclude this section, we summarize the eight neces-
sary kinematic variables relevant to project the 3 — 3 system
to definite partial waves. For energy variables, we choose the
total CM energy s, as well as the initial and final pair invariant
mass squares o and o ,, respectively. An alternative to 6; and
o, is the magnitudes of the associated spectator momenta k
and p. Through Eq. (10) at a fixed s, these are completely
interchangeable. We freely use either the set oy, o) Or k, p
where convenient, either for ease of notation or exploiting
some physical relation. The final five variables orient our
system, four of which are the initial and final pair polar and
azimuthal angles defined in their respective rest frames, aj
and f);, respectively. The last variable is the total CM frame
scattering angle 6,,;. In the following section, we construct
partial wave 3 — 3 amplitudes by integrating over the
angular degrees of freedom with appropriate angular
momentum weight functions.

ITI. PARTIAL-WAVE PROJECTION

Our first task is to define the generic partial-wave
projection for 3 — 3 scattering amplitudes. The scheme
we follow is similar to that of Ref. [85], where we first
couple the three-particle system to a definite total angular
momentum J through the helicity framework. Then, we
recouple the helicity partial wave to ones of definite parity
using spin-orbit or LS coefficients. The reason for going
through this two-step process is that helicity transforms
simply under Lorentz transformations compared to spin-
projections against some space-fixed z axis. Doing so

096030-5
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Zk Zp

FIG. 4. Kinematic configuration and spin-projection definitions
for the initial (blue) and final (red) state pairs in their associated
rest frame. Each pair has its spin-projection along the opposite
direction of their associated spectators, giving 4 and A’ a helicity
interpretation.

makes the projection of the exchange amplitude simpler, as
the angles in the total CM frame are simply related to those
in either pair rest frame.

A. Helicity projection

The starting point is to project the amplitude in helicity
partial waves, that is partial waves of definite total angular
momentum where the pairs have their spin projected
quantized along their momentum direction. Following
the decomposition used in Refs. [45,46,65], we proceed
by first partial wave projecting the pair into a definite
angular momentum state

P.k,a) o« Vaz Y |P.k.£A)YE,(4F), (13)
()

where 7 is the angular momentum of the pair, 1 is its
projection along the z;, axis defined by the opposite sense of
the spectator momentum k (see Fig. 4.), and Y, (a}) =
Yo(xx. wi) = (a5|£A) are the usual spherical harmonics.
Since the spin-quantization axis is along the direction of the
pair, we interpret 4 as the pair helicity.8

The normalization of the state is not relevant for our
discussion, as we freely absorb this factor into the defi-
nition of the amplitude. As we work with scattering states

*In the recent three-particle finite-volume frameworks for
lattice QCD analyses, the pair angular momentum projection
m usually has a quantization axis taken to be some fixed z axis of
a volume. If one starts with this definition, then converting to a
helicity quantization with 4 amounts to a unitary rotation of the
pair state |Py, Z4),

f A
P 22) = > DY) (P)|Py. £m),
m

where Dini) are the Wigner D matrix elements which are

discussed in Appendix A.

of three scalars, only Z €N is allowed, with A € Z which
spans —¢ <A< ¢ for a given ¢. For the scattering
amplitude, we arrive at the expansion

M(p,b;k,a)

= 47[2 Z Yfl/l/

v

DMy (P K)Y(8F),  (14)

where the factor of 4z is convention. Given the full
amplitude, the projection is found by using the orthonor-
mality of the spherical harmonics’

/ db* / dayys,, (b

M(p,bsk,a)Y,(aF), (15)

My 22(p.K)

where the integration measure is day
with the integration domain being over J; €

F€[0,2x].

It is useful to consider the amplitude M »; as one
describing the reaction of a spinless particle of mass m; and
a quasiparticle of mass \/0_ , spin Z, and helicity 4, which
transitions to a spinless particle of mass m, recoiling
against another quasiparticle of mass /G, spin ¢', and
helicity A'. We represent the quasi-two-body reaction as

= dy;dcos 9f
[0, 7] and

ED(PLA) + (k) = &7 (P, ) + 9, (p),

where él(f) represents the quasiparticle of spin . Note that
this effective 2 — 2 process only knows about particles ¢,,
@, and @;, @ through formation and decay, thereby only
restricting the threshold of the invariant mass. Thus the
details of the kinematic configurations for these particles
are not relevant in the rest of this construction. However,
since the amplitude depends on the pair invariant masses, it
contains an angular momentum barrier suppression as the

energies of the pairs approach their threshold. For example,

th
as the initial state pair invariant mass squared o, — a,(( D,

then
M/w,ﬁ(P,k) ~ (a,’:)f, (16)

with a similar behavior for the final state, My -, ~ (b%)” /

(thr)
as 6, = o, .

Once we have the effective helicity amplitude My ¢,
we can now couple the initial and final state to those of
definite total angular momentum J and projection m;
defined with respect to the space-fixed Z axis. The quasi-
two-body state has the helicity partial-wave expansion

’In this work we make frequent use of identities of math-
ematical special functions. For convenience, we collected a set of
useful properties and appropriate references in Appendix A.

096030-6
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Pk, £2) & > V2T 1|P k. Jmy, 2D, (By).  (17)

J.my

Df}{l)/1 are
(cf. Appendix A). Again, we do not specify a normalization
as we absorb this kinematic factor into the definition of the
amplitude. Since we chose the pair momentum P, to have
its momentum along the +z; axis, the angles we consider
are those of this momentum, and not the spectator. We
choose the phase convention of the Wigner D matrix
elements such that

where Wigner D matrix elements

DY), (B,) =

ny

Dg,)ﬂ(qsk’ eka 0)’
= emiedl)), (6,), (18)

where 6,, and ¢, are the polar and azimuthal angles of the
momentum Py, respectively, and df,fj)l(ﬁk) are the d matrix

elements which are real for physical 6, i.e. —1 < cos ) <
+1; see Eq. (A22). Applying this basis expansion on both
the initial and final states of Eq. (15) yields

Mf’ﬂ’fipk)*zzvz-]/ Dm,,v( »)

J'my Jmy

J'myJm N
< My (p k)V2T+ 1D, (Py). (19)

The normalization of Eq. (19) is chosen such that for
spinless pairs, £/ = ¢ = 0, then (19) simplifies, and the
resulting expression has same normalization as Eq. (14)."

Rotational invariance of the entire three-body system
imposes that total angular momentum J is conserved, and
the amplitude is independent of the projection m;,

JmyJmy; 7
Mf’ﬂ’,fﬂ — 5J’J5mj’mJMf’ﬂ/,fﬂ' (20)

Since the helicity partial-wave amplitude is block diagonal
in each J sector, we can reduce the sums in the expansion to

i2]+

J= mm

Z m/V p)DfS{,)/I(pk)’ (21)

Mf’/l’ 17 p k f’j’f/l(p’ k)

where J;, = max(|4'|, |4]) is the minimum J value for the
sum given A’ and A [86]. The helicity partial-wave ampli-
tudes M} Ve depend on the three kinematic variables,

total CM energy /s, and the initial and final spectator

See Eq. (A33) in Appendix A for the relations between the
spherical harmonics and Wigner D matrix elements.

momenta k and p, respectively (or alternatively the pair
invariant masses /oy and \/a_p).

Recall from Sec. II A that with respect to our chosen
coordinate system, f’k = 7. Thus, for all J the initial
Wigner D matrix element simplifies to

DY) (Z) =5, (22)

allowing us to trivially perform the sum to find

Z DY,(P,)D)) (B) =d)(0,0).  (23)

my=—

where we recall from Eq. (12) that the CM frame scattering
angle is defined by cos @, = f’p . f’k, and since the pair
momenta lie in the XZ plane, there is no azimuthal angular
dependence. Therefore, the helicity partial-wave expansion
is given by

Mf/ﬂ./ 2 p k 2(2.]"_1 MJ//I/ If’j(p k) ¥V (epk) (24)

with the projection given by

Méw,ﬁ (p. k)
1

+1
—5/1 dcosd, d,u’< )Moy (. K).  (25)

The helicity partial-wave amplitudes do not possess
definite parity [86], and we must take appropriate linear
combinations to recover definite parity amplitudes. In the
following section, we construct definite parity amplitudes
by connecting to the spin-orbit basis."!

B. Spin-orbit projection

Spin-orbit amplitudes are those of definite spatial parity.
These amplitudes are important to construct for the
spectroscopy as hadrons appear as resonant states of
amplitudes, and hadrons have definite spin-parity J”.
Given the helicity partial-wave projections for the 3 — 3
amplitude in Sec. III A, we can easily construct amplitudes
of definite parity by taking appropriate linear combinations.
We use the fact that the amplitudes My z; can be
interpreted as a quasi-two-body amplitude where one

"One could of course define a partial-wave projection directly
into the spin-orbit basis without going through the helicity basis
first. However, since our goal is to construct the partial-wave
projection of the OPE contribution to the three-body amplitude,
we find it more convenient to first project it into the helicity basis,
and then form linear combinations of definite parity states. The
reasoning is due to the complicated angular dependence of the
OPE function, and the helicity basis allows us to easily define
relations between the different reference frames which impact
the OPE definition, which will be detailed in Sec. IV.
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particle has a helicity. We can therefore use standard
techniques [86] from the partial-wave projection of a
two-body helicity state to spin-orbit state to obtain

\P kT Ly my. £)
&« Y|Pk my PO CSHL).(26)
A

which when applied to our helicity amplitude yields
£'6)d
M (k)

_Zp

Here S is the total intrinsic spin of the pair-spectator
system, L is the orbital angular momentum between
an initial state pair and its spectator in their total CM
frame, and §' and L’ are similarly defined for the final
state. The total angular momentum J of the three-body
system therefore has values |[L—S|<J<L+S and
L' —S8'|<J <L+ The parity of the three-particle
state with a total angular momentum J is

(S+1L) Mjwm(p,kﬂ) @Sy, (27)

)

where 7 is the product of the intrinsic parities of the three
particles, e.g. for three pseudoscalar pions the product of
intrinsic parities is n = (—1)* = —1. Since the strong
interaction conserves parity, only transitions where S + L
and S’ + L’ are both even or both odd are allowed.

To couple the helicity basis to the spin-orbit basis, we
have introduced the spin-orbit coupling coefficients Plf ,
which are defined in terms of Clebsch-Gordan coeffi-
cients as

2L +1

¢
7;/(1 )(2S+1Lj> _ s

ST ALO. 5255, (29)

The Kronecker delta enforces that the total spin is equal to
that of the pair, S = 7, as expected for our three spinless
particles.12 From the completeness relation of the Clebsch-
Gordan coefficients, one immediately sees that the spin-
orbit couplings satisfy

£
ZPE{ )(25+1Llj)
A

The spin-orbit amplitudes
2S+1LJ N 25’+1L‘ll for the

Pflf) (2S+1LJ) =0rL- (30)

transition
reaction

describe the
quasi-two-body

2In anticipation of extensions for external particles with spin
we define the spin-orbit coupling coefficients with the redundant
¢ = S, which in the case for particles with spin the Kronecker
delta will be replaced with an additional Clebsch-Gordan
coefficient which couples the pair and spectator spins to total S.

5,@ + @ > 55,5)/) + @,,. Therefore, for fixed o, and o),
the amplitudes have the usual threshold behavior from
orbital angular momentum barrier suppression,

MU (p k) ~ pH KL, (31)

as p,k — 0 for fixed oy, o

As an example of the form of spin-orbit coupling
coefficients, let us consider a system of three pions. For
a pair of pions in relative S wave, then £ = 0 and the only
allowed L is L = J. So, the spin-orbit coefficient is simply

POI,) = 8. (32)

If the pair of pions is in an angular momentum state £ = 1,
i.e. the resonant P wave channel, then the pair-spectator
system is then a triple state with S = 1. For some target
total angular momentum J, the allowed orbital angular
momenta are L = J — 1,J,J + 1. Therefore, the spin-orbit
coefficients can be simplified to the form

21+1 |’1|+ 21+15/10’ L=J-1,

L=J. (33

2/+1 |’1| 2]+15/10’ L=J+1

Since the pion is a pseudoscalar, the product of the intrinsic
parities is 7 = —1, and therefore the total parity of the
system is P = (—1)&. For a target J* = 17 and the initial
and final pairs both being vectors £ = ¢’ = 1, then only §
and D waves contribute giving a two-dimensional ampli-
tude with 3$, and °D,.

IV. ONE-PARTICLE EXCHANGE AMPLITUDE

We construct analytic representations of the 3 — 3
scattering amplitude by enforcing S matrix unitarity on
Eq. (4). One can show that a driving kinematic singularity
of the amplitude is due to the exchange of an on shell
particle with mass m, and momentum P — k — p between
two-body subprocesses [65]. The imaginary part of the
3 — 3 amplitude at this kinematic point, specifically for the
k and p spectators, is"?

ImM(p,b;k,a) D M;(ap;f);, ﬁ;)ﬂé(upk - m2)
X MZ(O-k;f)]:(vﬁ/:)v (34)

where the angles ﬁ; and p; correspond to the orientations
of the spectator in the rest frame of the opposite pair

13Scattelring amplitudes can be thought of as a sum of an
infinite set of contributions. With this in mind, we use D to
identify one term in this set.

096030-8



PARTIAL-WAVE PROJECTION OF THE ONE-PARTICLE ...

PHYS. REV. D 109, 096030 (2024)

indicated, e.g. ﬁ; is the unit vector of the initial specta-
tor defined in the final pair rest frame defined by its
spectator p.14 We also defined

Up = (P—k-p)>, (35)

as the momentum squared of the exchanged particle. We
focus only on the k and p spectators here, but note that
other spectator combinations will result in similar contri-
butions to the imaginary part.

The aforementioned pole singularity of the 3 — 3
amplitude is encoded in the OPE. Defining the momenta
of the initial and final spectators respectively to be k and p,
the OPE, depicted diagrammatically in Fig. 5, can in
general be written as'

iM(p,b;k,a)

i _
— My (o P} A}
Mpk—m%+i€l Z(O-k pk k)

= iMops(p. b: k. a). (36)

D) iMQ(O'p; f);, R;)

On either side of the exchange propagator is a modified
2 — 2 amplitude, Mz. The modification chosen, which is
not unique, assures that M, agrees with M, in the limit
that the exchanged particle goes on shell, while assuring
that no unphysical kinematic singularities are introduced.
Explicitly, these amplitudes are defined through the follow-
ing angular momentum expansion,

M (O'k,pk,ak —471'22 <pk> Yf%/ p;)

oA CA
X M2,f’/1’;ﬁ(6k)Y;A<ﬁlt>’ (37a)

"Since the OPE involves pair-spectator systems in both its
external and intermediate states, the thresholds for the pair invariant
masses extend to the cases 0,<{thr) = max(m, + my,m, +m,) and

aghr) = max(my, + my, m; + m,) for the initial and final pair,

respectively.

PEquation (36) can be argued by constructing on shell
representations through either S matrix unitarity [65-67] or
summing Feynman graphs to all orders within some generalized
effective field theory and projecting intermediate states on their
mass shell [45,46]. As with all on shell representations, the OPE
is defined up to some real part in the physical region which is
absorbed into the global K matrix which describes short-distance
three-body dynamics. For example, in the resulting integral
equations of the aforementioned references, one usually includes
a cutoff function to render the momentum integrals UV finite.
Since our focus here is on the partial-wave projection of the
function, we omit the cutoff function for convenience.

b’ a’
p k
FIG. 5. The OPE contribution to the on shell 3 — 3 amplitude

iM with momentum assignments. The dashed line indicates that
we have removed short-distance contributions of the exchange

propagator. The 2 — 2 subprocesses iM, are denoted by the
gray-filled circles on either side of the exchange propagator.

Mo, b7 K5) =42 > Yy(B)) Mo pyiea(o))
[V
ky\ ¢ -
x <—*> Y5, (K}). (37b)
dp

Angular momentum barrier factors are included to suppress
the kinematic divergence induced by the spherical har-
monics as py and kj go to zero in their respective
amplitudes. These momenta are defined in the CM frame
of the pair of the opposite spectator; specifically one can
show

1
P = 5 Ao ),
1
kX (0. mi., up). (38)

SN

The barrier factors are chosen to be unity at the on shell
point u,; = m2, where we define the momenta

1
q; EPI?'M,,k:mE :2\/0-_]( (O-]Um?’?m%)’
1
G5 = kil i = (opom2.m?),  (39)

2 /G,

Finally note that rotational invariance of the two-body
subsystems diagonalize their respective 2 — 2 partial-wave
amplitude My g1y (0) = 870, M3 ¢(0).

A. Exchange propagator

Given the OPE amplitude defined in Eq. (36), we
manipulate it to be amenable for an analytic partial-wave
projection to total angular momentum J. This means isolat-
ing the dependence on the total scattering angle 0. Using
the on shell representation defined in Eq. (36) with Egs. (37a)
and (37b), we write the OPE amplitude as

iMope =47y Z Yeu(b
¥

X iM (o) Y7, (85). (40)

5)iMp(6,)iGry 2:(p. K)
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which in effect performs the first partial-wave expansion on
the initial and final state pairs as given in Eq. (14). Here we
define the kinematic exchange propagator G as

't
o (p.k)

191 ,k = s 41
Geiei(p.K) “mZ +ie (41)

Mpk

where the ¢ — 0 limit is understood, and H is the spin-
dependent numerator'® which we define as the spin-helicity
matrix,

(v'e) 7 T Pt
Hﬂ//l (P, k) = q_* 4ﬂY{’l(kp)Yfl(p ) q . (42)
P

k

From the properties of the spherical harmonics, the spin-
helicity matrix obeys the reflection property
He (k) = (DM HHED ek (43)
In order to analytically perform the partial-wave projec-
tion, we manipulate the exchange propagator (41) into a
form to make explicit the dependence of the angular
variable 0,,. We therefore need to express Egs. (41)
and (42) with respect to our reaction plane defined in
the space-fixed coordinate system illustrated in Fig. 3. For
convenience we define z,; as the cosine of the scattering
angle,

Zpk = €080 (44)
and work with z,,. Upon inspection of the propagator of
Eg. (41), we find that the z,;, dependence will reside in the
pole term through u,, = (P —k — p)?, and through the
arguments of the spherical harmonics which are related
to the scattering angle by Lorentz transformations. The
dependence on z,,; leads to singular behavior both when the
propagator goes on the mass shell and through kinematic
factors associated with the spin of the pairs. In the
following, we derive a generic form for the OPE which
identifies the angular dependence including the isolation of
the singular behavior of the function on z,;.

The OPE is a wu-channel process in the effective

ejk (Pk, A) + @i(k) — fi,ﬂ)(P,,,/l’) + ¢,(p) reaction. The
invariant momentum transfer is related to the cosine of the
scattering angle in the usual way,

oWe emphasize that we use the regular spherical harmonics as
opposed to the real harmonics originally used in the original
derivation using the finite-volume framework [45,46], which are
simply unitary transformations of the regular spherical harmon-
ics, Y, = U, - S, with S, denoting the real spherical harmonics
of degree 7.

Upk = (P_k_p)z’
=o; + mf, - 2Ew,

= ug? = 2pk(1 + z,1)s

- 2kapk,
(45)

Vs — wy, and uE)O,? =0, + m} —2Ew, + 2pk
is the backward limit (z,,; = —1) of . The value of z, at

where E;, =
the on shell point, u,; = m2, is given a special notation,

Cﬂk = Zpk |upk=m§ ’

0
e
2pk
_ 2s(o +m3 —mZ) — (s + o —mg)(s +my, —0,)
M2 (s, 00, m2)A V2 (s, 6,,m3) ’

(46)

where we have used, along with k and p defined in
Eq. (10), the relations

=Vs—w, =

(s + op —m3),

1
25

1) (s—i—mp c,), (47)

p = 2 \/_
which follow from the definition of s in the total CM frame.
Note that we have not explicitly written the -+ie shift
which avoids the pole. However, one can include this shift
by either substituting m2 — m2 —ie or ¢, — { i + ic.
The OPE pole of Eq. (41) in terms of z,. is then
Upk — mg = 2pk(épk - Zpk)'

For the z,, dependence in the spin-helicity matrix,
Eq. (42), we make use of the Lorentz transformations
between the total CM frame (P = 0) where 0, is defined,
and the pair CM frames where the orientations of k}; and
p; are defined. These Lorentz transformations are illus-
trated in Figs. 6 and 7 for the initial pair and final pair rest
frames, respectively. Recall that in the reaction plane, i.e.
the XZ plane, the pair momenta have zero azimuthal angle
in the CM frame.

Focusing first on the initial pair rest frame where
Py, = (P—Kk); =0, as illustrated in Fig. 6(a), we define
% as the polar angle of p} in the initial pair rest frame,
cosyr =Py - 2, = —p} - k. With respect to the external
coordinate system, the azimuthal angle of p} is 7 since the
vector is oriented with respect to the negative x; axis.
Therefore, the orientation of p; is given by the angles
(x% ). In the final pair rest frame Py , = (P —p)7 = O as
shown in Fig. 7(a), the polar angle of K} is y}; which is
defined as cosy, =k} -2, = =k}, - p;. With respect to
our coordinate system, the azimuthal angle is zero; thus the
polar and azimuthal angles of k7 in this frame are (y};,0).
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p.k
Pir=0
*—————
L/ kz :
X
o

(a) P, = 0 frame

Opk

<
<€
s

Py
> ¢ S
— O
P

(b) P =0 frame

FIG. 6. Kinematics of the OPE in (a) the initial state pair rest frame (P,’: « = 0) and (b) the total CM frame (P = 0). The boost velocity
from the P}, = 0 frame to the P = 0 frame is f; = P/E, = (P —Kk)/(\/s — @y).

Therefore, the angular dependence of the spin-helicity
matrix is of the form

HE (0K) o Vi (03, 0)Y 1y (2 ),
= (=Y oy (15, 0)Y 1 (xF,0).  (48)

The relation between the y; and y} and z,, is found by
Lorentz boosting between the frames in which these angles
are defined and the total CM frame. The Lorentz boost
along the z; axis from the initial pair rest frame to the total
CM frame, cf. Fig. 6(b), yields the relation

prcosyy = yilpcos(mt = 0,) —w,pi],  (49a)

py sinyg = psin(z —0,;), (49b)
where B, = |Py|/E;, = k/(\/s — w;) is the magnitude of

the boost velocity and y;, = (1-52)"12=(\/s—wy)/\/0%.
Note that cos(z—6 ;) =—c0s6 ., =2, and sin(7—0 ;) =

SHEES /l—z?)k. A similar analysis for the initial state

spectator momentum in the final state pair rest frame, k7,
yields the transformation (cf. Fig. 7)

ky cosyy =yplkcos(z —0,,) —wipp,].  (50a)

ky sinyy = ksin(z — 6,). (50b)

where §,=[Py|/E,=p/(\s=w,), v, = (1= ;)7 =
(Vs - a)p)/\/a_p. From Egs. (49) and (50), we see that the
spherical harmonics contain dependencies on s, p, k, as
well as z,.

The analytic structure of the z,, dependence of H can
be understood by its partial-wave expansion. Since the
helicity dependence of the OPE is entirely contained
in H, it admits a partial-wave expansion similar to the
full helicity amplitude as given in Eq (24). We write its

. 17
eXpansion as

't 7't),
HO D (0.k) =37+ DR (pk)d) (z,0). (51)
J

In the complex z,, plane, the spin-helicity function con-
tains singularities associated with the Wigner d functions
as seen by Eq. (51). By definition, cf. Appendix A and
references therein, the z,, dependence in the Wigner d
matrix elements is of the form

49 (2p0) & Eir (2pi) PL) (2,0) (52)

where &, is called the half-angle factor and P,(,” ) are the
Jacobi polynomials with y = [1-24|, v= |1+ 7|, and
p=J—(u+v)/2=J—Jn, The Jacobi polynomials

Pf,” ) (zpx) are regular functions of z,, for all indices u,
v, and p, while the half-angle factor, defined by

1-z % 1+Zk Wz_ﬂl
et = (52) T (F52) T 6

contains potentially square-root singularities depending on
the system of helicities. In order to obtain an analytic
representation for the OPE, we isolate the singular depend-
encies in z,; as they will impact the partial-wave projec-
tion. Therefore, we conclude that the spin-helicity function
for any ¢, £ has the generic structure'®

't 't
Ho O (0.K) = (2 AL (pokizp), (54)

"In a slight abuse of notation, we express dﬁj,) (0p) as a

function of z,; = cos @, dg,) (zpx), so that we can write every-
thinég as a function of z;.

"®This behavior has been known from the scattering of two
spinning particles; see for example Ref. [87] and references
therein.
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Zp Pp
! X; ﬂ-_% \epk
P* =0 ﬁ ) @ <
) , <
k;/ % g Py ko
P, p

(a) Py, =0 frame

FIG. 7.
ﬁp :Pp/Ep = (P_p)/(\/g_wp)

where A(ﬁf) is defined to be a regular function in z,; for
the physical kinematics. For example, consider the scatter-
ing with £/ = ¢ = 1, with the helicities ' = +1, A = 1.
Then, as detailed in Sec. V, the spin-helicity function
behaves like Hilll()) = siny}; cos yj. This function is non-

analytic in z,, since siny} o sin@,, = /1 — zik from the

Lorentz transformations Eq. (50). However, & (z,x) «

/1 —zf,k, thus the spin-helicity function factorizes into

the nonanalytic half-angle factor and a regular function
in Z pke

It is further useful to define the A coefficient at the on
shell point z,; = ¢z,

[444 143
AV (pok) = AL (pok, )|zt (55)

which allows us to express the function as a term at the
propagator pole and a term which is the difference of the
pole and nonpole term,

A (pok ) = AL (p.K)
't 't
+ [ (ke z) = AL (p.K)] (56)

Near the pole, the difference vanishes as (£, — z,¢); thus it
is convenient to define a new function which is regular near
this pole:

’ 1
B(f”f) Pk =—
w4 ( Pk) Cpk—Zpk

(57)

The introduction of the B coefficient allows us to
completely isolate the analytic behavior of the OPE in
Zpi into the generic form,

(AL (ko) = AL (9.0

(b) P = 0 frame

Similar to Fig. 6 but for the (a) final state pair frame (P,*,‘ » = 0) where the boost to the (b) total CM frame is given by

Gor e2(p.K)
1 A%f) (p.k) e
=——¢&, Y 5}Y Lk, . 58
2pk§/1/1(zpk) é’pk_zpk 2 (P Zpk) ( )

As discussed in the beginning of this section, the singular
behavior of G in the variable z,;, = cos 6, comes from two
locations. First there is the overall half-angle factor, hidden
in the spin-helicity function, which exhibits kinematic
singularities due to the spin of the initial and final state
pairs. Second, the OPE is singular where the exchange
particle goes on its mass shell, which is encoded in the pole.
The remaining z,;, behavior is analytic in the physical
region we consider.

The B coefficients are constructed to be regular functions
of z,; on the interval —1 < z,,, < +1; thus for a fixed 2’ and
A we can freely expand it into Legendre polynomials as

't = . ¢
By (pk.zm) = D2+ DB (0. OPi(z0).  (59)
j=0

where by the orthogonality of the Legendre polynomials
we can obtain the projected coefficients

s 1 [+ o
Bﬁ;g/g)(p’ k) = 5/_1 dzkaj(Zpk)B;’,l )(P,k, Zpk)' (60)

We stress here that although Eq. (59) is an expansion
involving an infinite number of terms, for a fixed £’ and ¢
only a finite number of projected coefficients Eq. (60) will
exist for some target total angular momentum J. In Sec. V,
we give explicit examples of these coefficients for
¢, ¢ =10,1}.

Since the OPE is a known function, we can easily
tabulate the A and B coefficients for the particular
scattering channels of interest by the procedure outlined
above. While at first, this may seem like extra computa-
tional steps given that G has a known form, we find that this
decomposition allows us to write down a generic analytic
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representation for the definite-parity partial-wave ampli-
tudes of the OPE. In doing so, we arrive at an exact result
that isolates all the known singular structures of the OPE in
the (o P> S5 o) variables, and a set of coefficients which are
determined from the identified .A and B coefficients.

1 [+1
Ol ap-0) =5 [ 4080, )(0)G00s (0.1

L e / +1 S (Zp) )
=—MWU, Jk dz ——=d;,
4pk (p,k) ok Coi—2pp (zp

The integral in the first term is entirely in terms of known
functions independent of spectator momenta, whereas the
second integral involves the B coefficient which depends
on the momenta chosen pairs. By using the expansion (59),
we can remove the momentum dependence leaving an
integral over functions which depend solely on z,,; for the
second term of Eq. (61),

n 1 : £
(2" term) = mZ@, + 1BV (p. k)
7

41 n
X 1 Az (Zpr)d 5 (2p0) P (2 pk)-

(62)

Both of the resulting integrals can be computed analyti-
cally by recognizing that the product &, (z ,,k)a’%/) (zpr) isa
regular function of z,, for any J, /', and 4 since dg,) (Zp1)

f,w(zpk)P‘J'1 }1m|n\/1+i'\(z p«) and the singular behavior of the

half-angle factor is removed since it is squared ® This
allows us to perform the following expansion:
fu’(zpk /u’ Zpk (63)

2J+1 C]/l/l ](Zpk)’
j=0

L (o) . +1
Gl (P k) = i ppvEar (p,k)Z(2]+1)c~;M 3 dz

J

The final integral can be expressed in terms of the well-
known Legendre functions of the second kind,

1 1 P.
Q,(Epw) =3 / gy o)

, (67)

1 b Cpk — Zpk
where the analytic structure is fixed by {,x = p + i€
Properties and examples of the Legendre functions are
given in Appendix A. The Legendre Q functions contain
branch cuts when ¢, = £1, which originate from the on

B. Partial wave projected exchange
propagator

The OPE as given in Eq. (58) allows for explicit analytic
partial-wave projection. First we project Eq. (58) into the
helicity basis using Eq. (25),

1

)+4—k/+ dekéfM/(Zpk)dgy)(Zpk)B( (p k, Zpk) (61)

where the expansion coefficients C;Jl)/ , are determined by

ol - 1 [+1 d d(J) P 64
=5 . Zpké’,w(zpk) v (Zpk) j(zpk)' ( )

We note here that this integral is precisely what appears in
Eq. (62). So, both the first and second terms of Eq. (61) are
related to the C coefficient [Eq. (64)]. Equation (64) can be
evaluated in closed form, with the result being

Cj (_1)7’

L 2Jmin + 1

A= 2N+ 2!
(2‘]min)!
X <Jmin’1/|‘])/v .]0> <Jmin’”']l’ ]0>’

(65)

wheren = 0if X' > Aandy = A/ — 1if /' < A, and we recall
that J,;, = max( |). For convenience, we provide a
derivation of this result in Appendix B

Using Eq. (64), we write the helicity partial-wave
projection of the OPE as

Pj(zpk) L | (ZJ_I_ )CJA/IB]}/ ( ) (66)

k)
PPl —zp 2pk ;

shell exchange u,;, = m2. Since the A and B coefficients
are regular in the energy variables, the Q functions contain
the entire nonanalytic structure of the partial-wave
projected OPE, which results in a branch cut in the complex

"An alternative approach to evaluating the first integral is to
use the rotational e/%) functions as described in Ref. [88].
However, we find the approach presented in this manuscript is
“easier” on the reader as we use the more commonly known

Legendre function Q;.
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s plane for fixed o, and o,. The on shell constraint
{pr = £1 leads to an expression for the physical boundary
region of real-particle exchanges [83], given by
®(p, k) > 1 where

O(p. k) =o10,(s+mi+mi:+ml—o,—0,)

= op(s —mj)(mg = m3) — 0, (s — mp) (mj, — my)

= (smZ = mim?)(s +m2 —m? —m}). (68)

Combining Egs. (66), (64), and (67), we find a compact
expression for the helicity partial-wave projection of the
OPE as

1
J — J
gf//ll’m(p, k) —mzj:( ]+ l)le/

x [ AL (9,00, + B (0. K]
(69)

where ¢, = {,«(p. k) is defined in Eq. (46). Note that the
sum is finite since the C coefficients are zero for j outside
the range |J — Jyyin| < j < J 4 Jpin- The pole term multi-
plying the A coefficients results in singular behavior in
the energy variables, while the B coefficients are regular

|

Ke5us(pK) =

GL'S' LS

while the matrix elements of 7~’j are

(¢'¢).J _
T]LS’ LS( ) =

(2]—|— ZP

We stress here that Eq. (71) is a generic result for an
exchange of a spinless particle between pairs with any
angular momentum that couple to some total J”. The
matrices I~Cg and T ; are regular functions of the energies in
the physical region.

It is important to note that Eq. (71) is not a unique
decomposition, as the Legendre functions of the second
kind can be written, cf. Egs. (A9) and (A10) in
Appendix A, as

Qj(Z) = Pj(Z)QO(Z) - Wj—l(z)’ (74)

where P; are the Legendre polynomials and W;_
polynomial in z, defined for j > O by

1(z) is a

2 . 2]+1)ZP

functions of energies, thereby giving additional short-
distance physics to the ones already contained in the
three-body K matrix of the on shell representations as
discussed in Ref. [65].

Having this analytic representation for the helicity
partial-wave projection of G, we form the appropriate
linear combinations to arrive at an expression in the
spin-orbit basis using Egs. (27) and (29):

ZP

L S’ LS 25’+1LJ gj//l’ ﬁ(p k) >(2S+1LJ).

(70)

Inserting Eq. (69), we find the definite parity partial-wave
projections of the OPE for the 3 — 3 scattering of external
spinless particles takes the form, as a matrix in LS-space,

=R (k)

G.L'S' LS

+ZT/L’S'LS P k)Qi (k). (71)

7'0),J
Gy (p. k)

where Kg is a known short-distance contribution given in
terms of the B coefficients, whereas 7 j are computed from
a given set of A coefficients. The matrix elements of I~Cg are

S+ )Cj Bji’i) (p. k)Pf) (S+1L)), (72)
2S’+1LJ A%f)(p, k)’P;f>(2S+1LJ)' (73)

Pju(2), (75)

J 1
9=2 ;P

whereas for j = 0, W_; = 0. This relation allows one to
shift the definitions of g and T ; to absorb/remove terms
regular in the kinematic variables, which can further
simplify expressions for the partial-wave projected OPE.
Exploiting this relation, we reduce our result for the partial-
wave OPE to one involving only Q({,):

G (k) = KL (k)

L'S' LS G.L'S' LS

+ T s (P Q). (76)
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which is the expression claimed in Eq. (2) as our primary result. The matrix elements of g are given by

&'e)d &
’CQ.L’S’,LS(p’ k) = ’Cg L s’ Ls(P

ZT L' S’ LS

2k 2]—!—1273

2s/+IL/)CJ [ i >(p,k) —W.

i-1(& k)

A (p PO IL), (1)

and the 7 coefficient is the sum over the 7 ; coefficients weighted by Legendre polynomials,

T<LKSLT)LS( ) T]foS’ LS( ’k)Pj(gpk)ﬂ
J
=3, kZ 2j+ )P ) ZP, (BSHLNCL, AL (p P (SIL). (78)

Equations (76), (77), and (78), are the main result of this
work. The only remaining task for the user is to construct
the Kg and 7 matrices by identifying the appropriate A
and B coefficients. In the next section, we illustrate the
procedure for some low-spin cases.

V. CASE STUDIES

In this section we examine the consequence of our main
result, Eq. (71), for three cases of low-spin systems: pairs
with / =¢ =0, £’ = ¢ =1, and the transition process
¢ =1, =0. Any higher spin system can be found by
following the procedure outlined in this section. This
procedure is easily amenable to symbolic computation
with software such as Mathematica, and such a note-
book with examples is supplied in the Supplemental
Material [89].

The main tasks are to identify the .4 and B coefficients as
defined in Egs. (55) and (57), respectively, given for each
case. Once these coefficients are determined, we compute
the INCg and 7 ; functions, Eqgs. (72) and (73), respectively.
These matrices are then fed into Eqs. (77) and (78) for g
and 7, respectively, giving the analytic projection shown
in Eq. (76).

Throughout this section, we denote 1 = 1,1, as the
product of intrinsic parities of the initial and final specta-
tors, and the exchange particle. As our focus is on hadronic
processes, we also assume parity-conserving reactions with
P = (=1t = p(=1)Y'*+S. Additionally, since §' = ¢’
and S = ¢ always in this work, we introduce a convenient
notation for the partial-wave OPE,

) §'S).J
GRS PSHL) = Q(L/S',)LS(P’ k). (79)

where the dependencies on kinematic variables are left
implicit.

A. Pairs with £’ =¢=0

The simplest case is when both the incoming and outgoing
pairs are in relative S waves, so that £/ = ¢ = 0. The
complications with the spin-helicity function are eliminated
since A =1=0,i.e. Hfl?f ) = 000,0- This in turn indicates
that the coefficients are A(S]f =5 00,0 and B((,)/? ) =o.
Therefore, the exchange propagator (58) reduces to the
simple form

1 5/1’ 0510

— 80
2pké’pk — Zpk ( )

gOﬁ’ 04—

Recoupling to spin-orbit amplitudes is also trivial as only
S=¢=0and § = ¢ = 0, restricting the allowed orbital
angular momentum to be J = L = L’. The parity of the
system is then P = n(—1)". .

From Eq. (72), we see that Kg('J;]'J;) =0 because
BE(,)/? ) = 0 for this case. Using Eq. (73) and the identities
for P (1) = 89 and €7, = 8;;84080/(2J + 1) found
from Eqgs. (29) and (65), respectively, one finds that the
partial-wave OPE for a target J* simplifies to

1
G(",1vy) :mQJ(C,’k)- (81)
As detailed in Egs. (76), (77), and (78), we can express this
amplitude in terms of only Q. Explicitly, the J = 0, and 1
partial-wave OPE amplitudes are given by

1
G('So|'Sy) :on(Cpk), (82)
1
G('P|'Py) = —ﬂ‘f' ;:p];( Qo(&pi)- (83)
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The J = 0 OPE agrees with the well-known result found
in many works on three-body scattering processes, e.g.
Refs. [67,69,73,75].

We perform a simple check of Eq. (81) by verifying it
satisfies the expected behavior near threshold. As discussed
in Sec. III A, we can recognize that G can be thought of as
an effective two-body amplitude by interpreting /6, and
\/Op as effective masses of the external states. As a result,

one would expect that such amplitude G('J,|'J;) scales as
(pk)’ in the vicinity of the nearest pair-spectator threshold
VS~ fG, + my, ~ /6 +my, cf. Sec. TIIB.

To reproduce this behavior, we note that near this

threshold both p and k are small, p,k — 0. Fixing o, >

al(shr) and ¢, > O'gh ), we see from the definition of ¢,

Eq. (46), that near threshold ¢, diverges as 1/pk,

Cop =5—+ O(pk™', p~'k), (84)

2pk

where N = (\/6y —m,)?> —m2 is a positive constant.
From the behavior of the Legendre function for large
arguments, Eq. (Al2), we see that near threshold
Q;( k) = (pk)’™!. Therefore, near threshold Eq. (81)
satisfies the expected behavior of G(1J,|'J,) ~ (pk)’.
Explicitly, we write the threshold expansions of
Egs. (82) and (83) by using the asymptotic expansion of
Qo(&pi) for £ — o0 as given in Eq. (A13),

1 1

C 3C ——+ 0(5). (85)

pk

Qo(Cpk) =

Since ¢, appears as a reciprocal in this expansion, we can
write the Taylor series for 1/, for small p and k as

1 2pk

+ O(p*k, pk?). 86

=2 Ok ) 80

Then, the explicit threshold behavior for the 'S, — 'S, and
P, — 'P, amplitudes is

1o 1
G(*Sol'So) = v O(p. k). (87a)
G('P\|'P\) = 7 Pk + O(p*k, pk?),  (87b)

3N 3N?
which is consistent with the expected behavior.

B. Pairs with #'=¢=1

We turn to the case where the pairs carry nonzero angular
momenta £/ = £ = 1. In this case, the spin-helicity matrix
has a nontrivial structure, and we must work out the A
and B coefficients. Recall that given the elements of the
spin-helicity matrix H, we can solve for the 4 and B

coefficients using Egs. (55) and (57), respectively. Most
readily, the A coefficient is given by first isolating A(z ;)
from Eq. (54),

1 1 -m
Ay (pokzp) = 5 (k). (88)
5 /V(Zpk)
and then setting z,,; = {x. For convenience, we introduced

the #/ = £ = 1 spin-helicity function 7 and A coefficient
which has a common factor removed,

quk
3pk

— (11
A =22y, (89a)

<(11) _ q, P C]k (11)
Ay = 3pk A . (89b)
When both initial and final state pairs are in relative P
wave, the spin structure is such that there are only five
independent functions which results from the reflection
property Eq. (43). There is an accidental symmetry relating
the 2,4 = +1,+1 and +1,—1 components, yielding only
four independent functions. In terms of the polar angles
previously defined, we obtain for the spin-helicity function

A0 gy VKPR e g
111 T TaFEl T T, Pk Sinjy, sy, , (90a)
51 P PE
Hio B ok siny}; cos yj, (90Db)

1 kypr

H(()lilf ﬁ;—ik cos v}, sinyy, (90c)
_ k* *

Hébl) = ’; ik COS ¥} COS Y . (90d)

The Lorentz transformations, Eqs. (49) and (50), relate
the polar angles y; and y} to the total CM frame polar
angle 6. Note that if we compare Eq. (90) to expressions
in Ref. [81], we find disagreement with respect to overall
phase factors. This is due to the azimuthal angle of z for
one of the momenta as detailed in Eq. (48), which was
neglected by the author of Ref. [81]. One can convince
themselves that this phase factor is necessary and consistent
with an alternative model for the OPE which replaces
the spin-helicity matrix as given in Eq. (42) with polari-
zation Lorentz tensors contracted with momenta, e.g.
Hi,lil) x (e*(P,,A') - k)(e(Py.4) - p), which can be seen
by considering an effective Lagrangian of vector field
V, coupling to two scalars, e.g. £D —ig,,V’,‘,(peéﬂfpk -
ing’,z(pedﬂ(pp where g, g, are effective couplings to the
scalar ¢ fields.
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Recalling that z,; =cosf,; and sinf, = /1 — 1127,{,

the half-angle factor for each helicity combination is
given by

Eara(ops) =+ o2, o1

Eurmalem) =52, 1)
Ty

o) = Eosi () = (010)

fanlep) = 1. o1

Combining Egs. (88) and (90) and using the boost
relations Eqs. (50) and (49) give for the A(p,k, Zpk)
coefficients

Ailllil =1+ zZpx, (92a)
AL =1+ 2 (920)
¢10 = +V2y ( O + Zpk> (92¢)
\/— ﬂp k
Oil =F + Zpk | (924d)
A(ll) o pPrk ﬂka)p 92
00 = VpVi\ T T Zpk » + ). (92e)

The on shell coefficients A(p,k) = A(p.k. ;) are
given by Eq. (92) with the substitution z,; — . We
again define the B3 coefficients in terms of B coefficients as

(1) _ flk
B/l’/l 3pk ’/1 ’

(93)

which are related to A through Eq. (57),

B,(yl;)(p, k. z,)
1

274, — k[./zl;,l;)(p,k,zpk)—.,Zlg,l;)(p,k)]. (94)
p p

Evaluating the difference and dividing by the pole gives
B (p ’ kv Zpk)

Bgtlll)il = -1, (95a)

B, =1, (95b)

j:lO = V2, (95¢)

Oil = +V2,, (954)

= B pro
By = —mk< ATt ) (95¢)

Finally, we require the projected B coefficients defined by
Eq. (60), repeated here for convenience,

(11 1 [+ (11
Bﬁ',ﬁ’i(ﬂk) = E/—l dekPj<Zpk)B/(1’1)

(pa k9 Zpk)'

Upon substituting Eq. (95) we find only two nonzero terms
in the expansion

By, = =2 = V2rd 6,0 + V27,28,

broy  pro
—7p7k< L +Tp+f:pk 8y0000. (96a)

k
Bl s s 96b

1A= —g}’pJ’k 2,00),05 ( )
Bl =0, forj>1. (96¢)

Having found the A and B coefficients for ' = ¢ = 1,
we now construct Kg and 7 matrices for some target J”.
Trivially §' = S = 1; therefore if J =0 only L' =L =1
contributes, while for J > 0 the allowed orbital angular
momentaare L=J—-1,J,J+1land L' =J-1,J,J +1
for the initial and final states, respectively.

1. Total J=0

Let us first consider a target J = 0, where only L' =
L =1 is allowed and the corresponding parity is 5. Thus,
we need only compute a single *P, amplitude with the spin-
orbit recoupling from Eq. (29) being Pﬁl)@PO) =
Evaluating the expression for I~Cg and 7~'j using Eqgs. (72)
and (73) respectively, we find

3kap ﬁpwk /Bkwp
, 97
s\ ko o o7)

3kap ﬁpwk ﬁkwp
zqk qp k + Cpk ) + gpk .

(98)

_5/1.0-

Kg(PolPy) = —

T ;(3Po*Py) = 659

Since only j = 0 contributes for this case, feeding these
matrices into Eqs. (77) and (78) gives trivially Kg = Kg

and 7 =7,. Adding these contributions together as
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dictated by Eq. (76), one finds

3yk}/p <ﬁpwk+ﬁkwp+§ >
k
2q5qy \ K p

3y Brwi prw
+2q*qp*<pk on pp+C”k

kdp

% Qo (¢ p)- (99)

G(Pol’Py) = —

As before, we check the threshold behavior of this
amplitude by fixing o4 and o, and expanding for small
p and k. Just as in Sec. VA, {,, diverges as ¢, = N /2pk
as p,k — 0; thus Qy({ ) admits an expansion as Eq. (85).
Moreover, y, = 1+ O(p?), w, = m, + O(p?), and E,, =
Vo, +O(p?) as p -0, with similar expansions for
variables of the k spectator as k — 0. Near the pair-
spectator thresholds, one finds that the expansion of
Eq. (99) for p,k — 0 is given by

(1 +jﬁ\’7"_> k
2k pk2),

G(Py|*Py) = Ng 1*
+O(p (100)

where the relative momenta g and g; are finite positive
constants since ¢, and o, are fixed above their respective
thresholds. Therefore, as expected G(°Py|*Py) ~
threshold.

pk near

2. Total J =1, parity n
Next let us consider a target J/ = 1 with a parity #, which
enforces L' = L =1, i.e. 3Py = 3P,. From Eq. (29) the
spin-orbit coupling is ’Pl(ll)(3P1) = —1//2. From Eq. (72)
we find that £g(*P,|*P;) = 0, while from Eq. (73) the 7
factors are

7,CP,PP)) = - 28j0 — 3 101 +52),  (101)

(
29595

with all coefficients j > 2 being zero. Thus, the partial-
wave OPE [Eq. (71)] is

1 38 pk
3P 3P — _TPpk
G(°P,°’Py) ;q,’:Q 0(Cpk) + 20t O01(¢pk)
1
Tk O2(Epi)- (102)

Before applying the simplifications of Eqs. (77) and (78),
we first perform an intermediary manipulation of Eq. (102)

by using the Bonnet recursion relation for the Legendre
function Q [see Eq. (A8)] to simplify the expression to

G(P,PPPy) = 2 [00(Cpr) = Q2 (pi)]. (103)

1
Zq;

We note that this expression agrees up to an overall sign
with the result of Ref. [81], in the context of studying the
binding of the @ meson via z exchange between the z
and the resonating 7z — p subsystems. The difference in
overall sign is due to the error in Ref. [81] from not
considering the correct azimuthal angle of one of the
momenta as discussed in the beginning of Sec. V B.
Finally, we use Q1($,x) = P2(¢pi)Qo(Epi) — 38 pi/2 to
express Eq. (103) in the form of Eq. (76):

3 3
3p. 13p. ) — 2
G(P\[Py) = _WCM+W( 5k — 1Qo(Cpr)-
(104)
Near threshold we expect G(*°P,|*P,) ~ pk, which is

verified by following the same procedure as in the previous
cases, and finding

1
GCPPP)) = —ka +O(p*k, pk?),  (105)
p4k

which agrees with the expected behavior.

3. Total J =1, parity —n

Our final example for this case is J = 1 with parity —#.
Here we encounter a coupled channel system in S and D
waves since L',L =J 4 1. The spin-orbit factors are

given by
1
PUEs)) = \/5 (106a)
1 2
73511)(3D1) = \/:|/1| - \/:5/1,0- (106b)
6 3
Feeding this, the A and B coefficients, and other

building blocks into Egs. (72) and (73), then through
Egs. (77) and (78), give the following expressions for

the 3S1 = 351, 3S1 = 3D1, 3D1 = 351, and 3D1 - 3D1 OPE
amplitudes:
GCLIPLy) = KgCLIPLy) + TCLIPL ) Qo(E i), (107)
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with the following Kg and 7" matrices:

Kg(’S1PS1) =

1 p 2 prw 2
m{h[@k( L §,;k> ——} +}’k|:Cpk< L Cpk> 3]

prw,  Ppoy Bobrwpor 1 2
_yPyk|:Cpk< pp+ pk + Cpk +%+ %;k+3 ,

1 2 2
50010 = iz 20 o (5 ) =3 o (5 )
Pk

Pro
+ 2}/pyk |:z:pk< p 2 + k

1 2

o ﬁ an
- 4]/pyk |:Cpk< ) L + L=

k

for Kg, and
T(S,%8)) =

ﬁ{%(l pk)<

+ 7p7ké’pk |:z:pk (% +

ﬂkw /Bpa)k

- 27/pyk€pk |:Cpk < p +—

T(Dy’D) =

4q;qk{ 251 =5 )<

ﬂkwp ﬂpwk

+ 47/pyk€pk |:Cpk< p +

for the 7 matrices. The Kg and 7 coefficients for the
3D, — 38, process are found by interchanging k <> p in
the 3S; — D coefficients, noting the symmetry £, = &y,
which can be seen from Eq. (46).

Examining the threshold behavior as in previous cases,
we find that the 35, — 3S; OPE has the following expan-
sion near threshold:

1
Ges’s)) = (\r/n(:_k ;1(;172>
P

+ (’)(p" K3, p?k, pk?). (110)

If we fix ¢, < oy, then the threshold we approach first is
s~ /0 + my. As we approach this threshold, then the

ﬂpwk

ﬂp k

ﬂpwk
k

ﬂpk

3 (108a)
+C,,k> +ﬁ7”ﬁ;a;”wk+ﬂ -2, +§} (108b)
2
) <3|
+§pk) +ﬂpﬂ;a/zpwk+%:| _ ikJr%}’ (108c)
+ C,;k) +r(1=83) (ﬁk;)p + C,m)
+ g,,k> + %} +8, - g,,k}, (109a)
p p
P]:Uk + Cpk) + ]/k(l - ik)( k;op + gpk)
+ c,,k> +ﬁ"ﬁ’;flzpw"] +8 - g,,k}, (109b)
+ Cpk) =27 (1 - )(ﬁk L+ Cpk)
+ g,,k> + W} +8 - g,,k} (109¢)

amplitude does approach a constant, as p will be finite at
this threshold. However, if both k and p approach threshold
simultaneous, e.g. in the case where m, = m; and 6, = oy,

then the amplitude scales as k%, which is faster than the
requisite constant scaling we expect for S waves. Although
this behavior may be surprising, it is not inconsistent with
the requirement that the amplitude is equal to a finite
constant at threshold.

Repeating this exercise for 3S; — 3D and 3D, — D,
waves, we find the following expansions:

V2my,

GCD,|’S)) = — W
pdk

p*+0O(p.p*k),  (l1la)
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10m,m
GEDI D)) = )

2 ( 1
N a3a; \ /5 /o

+ O(p*k?, p*k?), (111b)
where the threshold expansion of the 3D; — 3§, amplitude
is found by interchanging k <> p on G(*D,|3S,). Both of
these follow the expected threshold behavior. This com-
pletes our set of examples for £/ = £ = 1. Next, we will
look at examples for transitions between £ = 0 and ¢/ = 1.

C. Pairs with # =1 and Z=0

Here we consider an initial pair with spin £ = 0, and a
final pair with spin ¢/ = 1. Such transitions are allowed in
general, and observed in nature, e.g. in oz — pzx in the
I1(JP) =1(1") channel of 3z scattering. Repeating the
same strategy as in the previous cases, the spin-helicity
matrix is given by

k*
0 S
H(lﬁ) = 10 4”( i) u/(k*) (112)
dp
which corresponds to an A coefficient
6k
ALY = 5 Y8, (113a)
p
\/§ k 10}
Al VT <ﬁp k +c:,,k>, (113b)
qp k
and a B coefficient
10 \/§Y k
BUY = 5080~ (114)

P

Therefore there is only one contribution to the 5; ampli-

tudes, B! . /1, =
the expressions for the Kg and 7 matrices. Since total
angular momentum and parity are conserved, an initial state
with S =0, L = J, and P = 5(—1) restricts the final state,
with §' = 1, to have an L’ quantum number be L' = 1 for

J=0,and L' =J 41 for J > 0.

1 jOBS,lf). The coefficients are then fed into

1. Total J=0

Following the same procedure as in the previous cases,
we have that for J = 0, in which the system parity is 7, the
1S, — 3P, OPE is given by

V3r, V3,
£+
2pqy  2pq;

GEP'Sy) = — (ﬁ" k+c,,k) 00 ).
(115)

which has a threshold expansion

\/;\/_p + O(p?. pk),

which agrees with the expected behavior.

G(Po['So) = (116)

2. Total J=1

Our final example is for J = 1, which must be in a —
parity state due to the initial ' P, state. There are two options
for the transition, either 'P; — 3S, or 'P; = 3D,. The
partial-wave OPE amplitudes for these transitions are

1 p,o
55

1 ﬂpa)k 5
2pq} [y,,ci,,k< k +C"k>_ P

% Qo(¢pi)s

o) )
l)_ 2\/§pq;(27< +§pk +Cpk

1 Bro
o oo () 16

G(s|'py)

0

(117)

G(’Dy|'P

p
% Qo(&pi)- (118)

We note that the threshold behavior for fixed oy, ), is

1
GS1|'Py) = =k O k) (119%)
2v2m

DI|'P)) = o P2k + O(PPk, p2K), (119D
G(°Dy['Py) Wy (p’k.p°k*),  (119b)

as expected.

Transitions from # = 1 and #' = 0 states can be obtained
by interchanging the initial and final state, k <> p in the
above expressions. Any higher angular momentum state
can be found by the same procedure outlined here. In the
next section, we examine some applications of the above
results for the scattering of three pions.

VI. APPLICATION-37 — 3z

As a final illustration, we apply the results in Sec. V for
37 — 3z scattering, and plot the partial-wave OPEs for
some selected allowed quantum numbers of three pions in
various kinematic regions. We limit the total energy of the
three-pion system such that inelastic processes are for-
bidden, i.e. 3m, < /s < 5m, where m,, is the pion mass.
Therefore, the exchange amplitude consists only of pion
interactions, my = m, = m, = m,. Furthermore, we will
only consider physical scattering kinematics, so that the
physical boundary is set by Eq. (68) where all masses are
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TABLE 1. Contributions of ([zz|Lz), partial waves to zzz in
total isospin /3, and for total angular momentum J < 1. Lowest
angular momenta are considered, where the two pion pairs are in
¢ < P wave, and the orbital angular momentum between the pair
and the spectators is L < D wave.

15, J"e ([zalpm).
37 0" ([zal3m)s
1= None
1 ([zal5m)p
27 U ([zal3m)s. ([amlpm)p

= ([zz]pr)p

e ([za]§7)p, ([za]pn)s, ([za]pm)p
1~ 0" ([wnls*n)s, ([wa]pm)p

1 ([ealbm)

e ([xals*x)p, ([walpm)s, ([a]pm)p
0" 0 ([na]b),

1= ([za]pm)p

1 ([””HJ” s ([77]pm)p

set to the pion mass, i.e. ®(p,k) >0 with ®(p,k) =
0x0,(s +3m3 — 03, — 6,) — mi(s — m2)>.

We also assume the isospin limit for pions, that is the
pions have a flavor symmetry characterized by their isospin
I, =1 and G parity G, = —1. Isospin symmetry restricts
the allowed partial-wave contributions for the three-pion
system. Two pions are in either / = 0, 1, or 2 states with
positive G parity. Bose symmetry restricts even partial
waves, e.g. S and D waves, to be in either an / = 0 or 2
state, whereas odd waves, e.g. P waves, can only be in the
I =1 state. For three-pion systems, which have negative
G parity, the allowed total isospin representations are
I3, = 0,1,2,3. There are multiple contributing three-pion
partial waves per target J¥, we summarize the lowest
allowed three-pion waves in Table I for each total isospin
I5,, total angular momentum J < 1, and up through two
pions in relative P wave. We label a three-pion partial wave
with ([zz]Lx),, where the two-pion system is in a relative ¢
wave and isospin /, and the pair-spectator pion is in an
orbital angular momentum L, e.g. ([zz]bx)s describes a
three-pion system where two of the pions are in an
isovector P wave and the recoiling pion is in a relative
S wave with the pair.

Our results in Sec. V can be applied immediately to these
partial waves, with the exception of the inclusion of
appropriate isospin recoupling coefficients. These can be
included in a straightforward manner as detailed in
Refs. [53,90]. The result is that the OPE in Eq. (76)
contains three additional quantum numbers,

£'6).J 113 £'¢).J
Gy sl = G gl L L), (120)
where [ is the initial pair isospin, I’ is the final pair isospin,

and 15, is the total isospin of the three-pion system.

The multiplicative factor (I’,I3,|1,I3,) is the three-pion
isospin recoupling coefficient, which is defined in terms of
the Wigner 6-j symbol as [91]

1 1 1
(I I, |1 1) = (21’+1)(21+1){1I 1’}' (121)
3z

Explicit values can be found in Refs. [53,90], or by direct
computation via Eq. (121). The isospin recoupling coef-
ficients introduce a weight factor for the particular isospin
channel.

We plot a representative partial-wave OPE of each
isospin channel to show the generic behavior. For each
channel, we plot the OPE as a function of s in the range
9 <s/m? < 14 atfixed /55 /m, = 2.1 and for three values
of 6, \/6,/m, ={2.1,2.2,2.3}. In each plot, we high-
light the 37 threshold at s = (3m,)?, the initial pair-
spectator threshold which we indicate by &,z at
s = (/o + m,)?, where we remind the reader that &
represents a quasiparticle of mass /6y, and the final pair-
spectator threshold £,z at s = (,/6, + m,)*. Note that
when both 6, = o, then the initial and final pair-spectator
thresholds overlap.

In our numerical evaluation of the partial-wave OPE, we
ensure that we approach the real energy axes by introducing
an artificial imaginary shift. To control the limit, we
introduce for oy, and o, a shift 6 — ¢ + ie,, and for s
we introduce a shift s — s + ic,, with the restriction that
€, > €5, meaning we assume that we approach the real o
axes first before approach the real s axis. This limiting
procedure then gives a positive imaginary part to the
spectator momentum for unphysical energies. To ensure
the correct behavior required by S matrix unitarity, we
set {,x = Cp + ie appearing in the argument of the Q
functions as discussed with Eq. (67). To ensure the proper
behavior for the imaginary part of G required by S matrix
unitarity, we restrict € > €, > €,,.

First, we consider the 75, = 3 channel, which from
Table I the lowest waves include J* =0~ and 17. The
real and imaginary parts of both the G('Sy|'S;) and
G('P,|'P,) amplitudes are shown in Fig. 8. There is a
clear movable singularity in both amplitudes which arises
from when the exchanged pion goes on mass shell, that is
when ¢, = *1. The analytic structure of the OPE has been
well studied in the literature [see for example Ref. [67]], so
we only highlight a few important features. In the physical
kinematic region, the imaginary part of each partial-wave
OPE is constrained by S matrix unitarity, through the
imaginary part of Q, giving

Img”" = —%TJPG(Q)([), K))0(p)ek), (122)
where O is the Heaviside step function. Including isospin,

we multiply Eq. (122) by the recoupling coefficient (121).
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he=3) =3
0

1
J Py = imag

2, “2, S/m 2,
%, %, /m v,

FIG. 8. Real and imaginary parts of the OPE for I3, = 3 and total spin-parity J© = 0~ and 1% for zz subchannels in an isotensor S
wave state. Each panel is plotted for a fixed initial /6, = 2.1m,. Each row is plotted at a different ¢,,: /G, = 2.1m, for the top row,

\/0, = 2.2m, for the middle row, and  /G,, = 2.3m, for the bottom row. The spectroscopic label 25411, indicates the partial-wave OPE
contribution to the ([zz]3x), amplitude. Thresholds are indicated for the 37 production at s = (3m,)?, the effective initial pair spectator
grats = (\/or + my)* = (3.1m,)?, and the effective initial pair spectator &,z at s = (, /G, + m,)?, which is located at s = (3.1m,)?,

(3.2m,)?, and (3.3m,)? for each &, shown.

1

137725% [V7o/me =21] 10 NSO*?’PO
0
-5

_105_01 1 1 1 , —10 1 1 1 1 J
|
< 10 10
’ﬁ — -
S ;
ak o
g 10 1 1 1 , —10
F E
=
0 0
-5 =5
—-10 —10
9 0 11 12 13 14
N R

FIG.9. Same as Fig. 8 for I;, = 2 and J* = 0. Here there are two kinds of 7z pairs, one which is in an isotensor S wave, with a pair-
spectator system in 'S, and another pair in an isovector P wave in which the pair-spectator system is *P,,. These waves are allowed to
mix through total angular momentum and isospin conservation, leading to a nonzero 'S, — 3P, amplitude.

For fixed ¢, and oy, we can solve {,, = &1 for the branch ~ These movable branch points correspond to the nonzero

points in s which are given by imaginary part of the OPE above the highest pair-spectator

threshold in Fig. 8. The existence of these branch points is

1 ) 5 ) ) independent of the partial wave of the OPE, as seen in the
o2 [(ox = mz)(0) = mz) + mz(o), + o) + my) 1Sy and 'P, amplitudes of Fig. 8.

Next we examine three pions in /3, = 2 in the J© = 0~

channel, which is shown in Fig. 9. According to Table I,

()

+ 22 (m2, m%, 0,) AV (m2, m2,0,)]. (123)
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FIG. 10. Same as Fig. 8 for I3, = 1 and J* = 17. Shown are the contributions from isovector P wave zz pairs.
I, =1
1 1 3
5 ‘ P P 5
0 .
-5 -5
6_0 Il Il Il Il J Il Il Il Il J
+
I VOp/Mmy =22
a, 5
& 0 .
NE -5 -5
E Il Il Il J Il Il Il J
5 T VM = 2.3
0 i
-5 E I -5
9 10 11 12 13 14 9 10 11 12 13 14 9
\19 > 2 \19 b N 2 \19 > N 2
AR A A %y, e
FIG. 11. Same as Fig. 8 for I5, = 1 and J© = 17, where now the contributions from isoscalar S wave zz pairs as well as the mixing to

isovector P wave pairs are shown.

two types of pairs contribute to this partial wave, ([zz]37)
and ([z7z]b7)p. Therefore, we have three contributing OPE
amplitudes, lSO for isotensor pairs, 3P0 for isovector pairs,
and a mixing amplitude between isotensor and isovector
pairs in 'S, — 3P,. As in the I;, = 3 case, each amplitude
has a nonanalytic structure arising from on shell pion
exchange with branch points given by Eq. (123).

Figures 10 and 11 show partial-wave OPE amplitudes
which contribute to the J¥ = 1% channel of I3, = 1.
Figure 10 shows the contributions coming from isovector
P wave zz pairs, while Fig. 11 shows contributions from

the isoscalar § wave pairs and its mixing with isovector P
wave pion pairs. Note that we do not plot contributions
from isotensor pion pairs which are also part of this wave as
shown in Table 1. Physically, this case is most relevant for
37 scattering in the isovector a; channel, which allows for
dynamical mixing between resonating pz <> oz systems;
cf. the a; listing in Ref. [92] and references therein. Notice
that for the 35, amplitude in Fig. 10 in the top panel with
or = 0, the scaling behavior at the pair-spectator thresh-
old does grow from zero as p” as indicated in our threshold
expansion discussed in Sec. V B 3. However, when o) #* 0y
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FIG. 12. Same as Fig. 8 for I;, =0 and J* =1-. Only
isovector P wave 7z pairs are allowed to couple to 3P; amplitudes
in this channel.

as in the middle and bottom panel, then the threshold
behavior does approach a constant at the &,z threshold.
Finally, we show in Fig. 12 the I3, = 0, J¥ = 1~ channel.
Table I lists one entry for this channel, ([zz]L)p; therefore
only the 3P, partial-wave OPE contributes. A physical
application for this amplitude is in the isoscalar @ meson,
which couples strongly to the pz channel in P wave.

VII. SUMMARY

We have shown a generic procedure to project relativistic
scattering amplitudes of three spinless particles to definite
JP partial waves, with a focus on its application to the
kinematic singularity arising from on shell particle
exchanges between two-body subchannel scattering proc-
esses. The procedure as presented in Sec. IV, specifically in
the final projection results shown in Egs. (76), (77), and
(78), allows one to systematically compute the contribution
from the one-particle exchange, which was illustrated in
Sec. V for some low-lying spins of immediate interest, e.g.
in the scattering of three pions as discussed in Sec. VI
These results can then be supplied into the corresponding
integral equations [46,65], along with some parametrized
and constrained three-body K matrix, e.g. ones constrained
from lattice QCD calculations with finite-volume quanti-
zation conditions, to reconstruct the complete on shell
3 — 3 hadronic scattering amplitude.

Our resulting analytic representation for the one-particle
exchange of definite J¥ allows one to avoid performing a
numerical integration over a singular function, which is
generally slowly convergent, and allows the practitioner to

have full control over the analytic behavior in the complex
s-, 6,-, and o} planes. Controlling the analytic structure
of aspects of three-body amplitudes has been shown to be
important for the analytic continuation of the 3 — 3
amplitude, e.g. for searching for resonant structures in
hadron spectroscopy [75,76]. Looking forward, our results
can be immediately used in the community in further
theoretical and phenomenological studies of three-hadron
resonance production. Furthermore, they can be extended
to accommodate a more general class of reactions, such as
those with external particles with arbitrary spin.
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APPENDIX A: RECAPITULATION OF ANGULAR
MOMENTUM FUNCTIONS

This Appendix is devoted to collecting useful identities
and properties of the Legendre functions and Wigner
rotation matrix elements which we use throughout this
work. While these relations can be found in the literature
(which we refer to as appropriate), we feel that this
summary serves to assist the reader in understanding the
technical aspects of our work.

1. Legendre functions of the first kind

The Legendre functions of the first kind, P,(z), are the
regular solutions of Legendre’s differential equation [93],
which can be expressed explicitly for €N, and —1 <
z < +1 by Rodrigues’s formula,

1 d&

G

Pe(2) (A1)

We consider only £ &Nj; therefore the functions are
analytic in z€C for each #. The Legendre functions
form an orthogonal set of functions over the interval
-1 <z<+1,

2

+1
dzPy(2)Ps(2) = =0z
[ awpe@pe) = 375

(A2)

The first few Legendre functions are
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1
Pi(z) =z Py(z) =532 -1).
Given P, and P;, all remaining P, can be generated
through the Bonnet recursion relation for £ > 1,

CPy(z) =220 = 1)Pp_y(2) = (€ = 1)Pra(z).  (A3)
There are many additional properties and identities which
can be found in Ref. [93]. Here we state one integral
relation,

/ " dzz’P,(z) 2 (e (A4)

. T e+

which is useful in the asymptotic expansion of the
Legendre functions of the second kind as discussed next
in the section.

2. Legendre functions of the second kind

A second class of solutions of Legendre’s differential
equation are the Legendre functions of the second kind,
0,(z). For every £ € N, the Q, functions are related to the
P, functions through the Neumann relation [93],

0(2) :;/_1

The integral has endpoint singularities, leading to branch
points in O, in the complex z plane at z = +1 for each 7.
We choose to orient the branch cut such that the function is
analytic on z€C/{z| = 1 <z < +1}, which is equivalent
to choosing z — z + ie in Eq. (A5) and taking the limit
e — 0% after integration. The Neumann relation (A5)
allows us to easily identify the discontinuity of Q, across
the branch cut,

Pe(@)
7
-7

(AS)

DiscQ,(z) = —inP,(z2)®(1 — |z[?), (A6)

where © is the Heaviside step function.

The first few Legendre functions of the second kind are
given by

1 1
0v(e) = ytoe (1),

0:2) = P22)0(2) 5.

0,(z) = P1(2)Q0(z) -

(A7)
Combining the Neumann relation (AS) with the Bonnet

recursion relation for the P, functions, Eq. (A3), yields a
recursion relation for integer £ > 1 given Q, and Q;,

£0,(2) =220 = 1)Qp_1(2) = (£ = 1)0p2(2). (AS8)

One can then construct an explicit expression for Q, for
any £ €Ny and z on the cut plane,

Qs(2) = Pp(2)Qo(z) = Weoi(2), (A9)
where W,_; is defined for £ > 0 as
1
Wei(z) = Z;Pn—l(Z)Pf—n(Z)» (A10)

n=1

with the £ = 0 case defined as W_; = 0 [93].
The behavior of Q,(z) as z — oo can be found by
expanding the Neumann relation, Eq. (AS), for large z,

ZnJrl/ dz'(2)"P(2).

(Al1)

The integral is identically zero for n < ¢; thus the leading
asymptotic behavior is given when n = ¢, which from
Eq. (A4) gives

2100212 1

Qf(Z)Z_,wm pal

(A12)

By direct evaluation of Eq. (A11), the explicit asymptotic
expansion for the £ = 0 function is given by

S Z—2n 1 1
ZZ 3z3+0( )

n=0

(A13)

3. Spherical harmonics

For spinless particles, orbital angular momentum states
are represented by the spherical harmonics [91] (with the
Condon-Shortley phase convention)

Yen(0,9) = (0, pl¢m),
204 1)(¢ — m)! .
= (—1 4 ( P img
(A14)
where P are the associated Legendre functions,
m/2 a
Py(z) = (1= 28" 255 Pe(2). (A15)

See Ref. [93] for properties of P'. The spherical harmonics
for m > 0 and Z < 2 are explicitly
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~Viex
/15 .
Y22 = Eez“ﬂsinze,

where m < 0 components are given by the reflection
property

Yon(0.0) = (=1)"Yr_(0, ). (A16)

The spherical harmonics are orthonormal over the entire
solid angle,

2n +1
/ do / dcosOY;, (0.9)Y s, (0. 9)
0 -1

= Op¢0m'm» (A17)

and satisfy the spherical addition theorem

Pf Z Z Yzf’m 9 (/7 Yfm(e (ﬂ) (Alg)

2f+1

where z = cos@cos @' + sinOsin @’ cos(¢’ — ¢) and P, are
the Legendre functions of the first kind. Note that if m = 0
for all £ €N, then the spherical harmonics are related to
the Legendre functions as

20+ 1
47

Y (0, ) = Py(2). (A19)

4. Wigner rotation matrix elements

Here we summarize some useful properties of Wigner
rotation matrix elements. A detailed review can be found in
Ref. [91]. A rotation of @ about an axis f is given by the
unitary operator R4 (6) = e~ where J is the angular
momentum operator. For a generic rotation about the Euler
angles «a, f, y defined by

R(a,p.y) =Ry(a) - Ry(B) - Ra(y).  (A20)

Wigner D matrix elements of R in a basis |jm), with
representation j and projection m spanning —j < m < j,
are defined as

DY) (a.B.7) = (jm|R(a. B.7)|jm'),

—zmad() (ﬂ) —1m’y,

mm’

(A21)
where d’(z’)n, are the Wigner “little” d matrix elements. The d

matrix elements can be expressed in terms of the Jacobi
polynomials [91]

ol(c+u+v)!

(oo i PP )

(A22)
where u=m—-m'|, v=m+m|, 6=j—-(u+v)/2,
and the phase power n =0 if m' > m and 5 = m' — m if

m' < m. The function ¢, is known as the half-angle
factor [84] and is defined as

1 — [m—m'|/2 /1 [m+m'|/2
e = (155)7 (5T e

which is singular at z = £1 and symmetric under the
interchange m <> m’,

gmm’ (Z) = ém’m (Z)

The Jacobi polynomials P

real z,

(A24)

)(Z) are regular functions of

o

(c+u)l(c+v)!

(nv)
Pa )=
(2) nz::()”!<0'+ﬂ —n)!(v+n)!(c—n)!
=1\ (z+ 1\"
X b
2 2
where we require that ¢, 6+, 6 +v, and 6 +u + v be
non-negative integers [93].

The Wigner d matrix elements themselves have numer-
ous symmetry relations, most importantly for this work,

(A25)

d(j>, _ (_l)m’—md’(i/)m _ d(j),

mim -m'—=m’

(A26)
and
dyn(B) = i), (=P).
which are discussed in Ref. [91].
Like the spherical harmonics, the Wigner d matrix

elements respect an orthogonality condition over the
interval —1 < cosf < +1,

(A27)

2
=——0:0mmOm'’

2 +1 jjYmmm'im' (A28)

/ . dcosﬂdf,fznr (ﬁ)d;gzh’ ()
-1
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which can be seen by the definition (A22) and using the
orthogonality condition of the Jacobi polynomials over the
same domain,

+1
/ dz(1 —2)*(1 + z)”Pf,”'”)(Z)p/()/av) (2)
-1

QH +v+1

_ (c+uwl(oc+v)! 5. (A29)
26+pu+v+1 ol(c+u+v)!

for pu,v > —1 [93]. The addition theorem for Wigner d

matrix elements [91] is given by

dem (B1)dS, (Br)e™? = DY) (a.B.y).  (A30)

where the Euler angles a, f, and y are given by the
following relations [91]:

cota = cos B cote + cot 5, Ssl,rlllﬁl , (A31a)
i
cos B = cos B cos B, — sin 3, sin 3, cos ¢, (A31Db)
sin f3,
coty = cos S, cotp + cot §; (A31c)

sing
The sign of @ and y can be fixed by the relation

sina

sin f3;

_ siny :singo (A32)
sinf, sinp’

Finally, the Wigner D matrix elements are related to the
spherical harmonics as

20+ 1
A

Y (0, 0) = DY) (0.0.0).  (A33)

APPENDIX B: EVALUATION
OF THE C INTEGRAL EQ. (64)

Here we provide a derivation of the closed-form solution
of the C integral Eq. (64), repeated here for convenience:

¢ = [T aeu(2d )P, e)
j’l%_z . e\ AIZ jZ

To evaluate this integral, we first recognize that P;(z) =

df)o)( ) for any j and z. Therefore, we can use the Clebsch-
Gordan expansion [91] to reduce the product of Wigner d
functions to a single element,

, .
d)(2)dy) (z).
J+j

S (n2|IA . jO)(nalda. j0)d') (). (B1)
n=—jl

d)(2)P;(z) =

which reduces the coefficient to

J+j

1
ey =3 > (n2|Jx. jO)(nAlJA. jO)
n=|-ji

1
X/+ de,u/(Z)dij/)(Z). (Bz)
-1

Next we write the Wigner dﬁ /1,) matrix element in terms of
(uv)

the Jacobi polynomials Py, as given in Appendix A.

Using the expression Eq. (A22), the integral takes
the form
|
Cl =3 > (nd|Jx. jO)(nAlJA, jO)
n=|J—-j|
+,u+u +1 V)
0+ﬂ dzé’M, P¥(2),
(B3)

where p=|A—=A|, v=|1+7%|, and 6 =n— (u+v)/2.
The phase is such that # =0 if /> 1 and n =4 — 1 if
A’ < A. The advantage here is that the Jacobi polynomials
PY“)(z) are orthogonal over the interval z € [~1, 1] with
the weight (1 — z)#(1 4 z)*. This is precisely the form of
the integral in Eq. (B3) since &,(z) o (1 —2)*(1 + z)*
which removes the square root singular behavior, and for
any u, v. We also note that for any ¢ and v with ¢ = 0 [93],

PY(z) =1 (B4)

Therefore, applying the orthogonality condition Eq. (A29)
yields the relation

/_ "4z (P e)

1 +1 b b
- / a2y + 2P ()P (),
2 ! !
(6 +u)l(c+v) P (BS)

T 2otutuv+1l ol(c+u+v)!

Inserting this result into Eq. (B3) gives
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J+j
CLy,= Y (nA|J2, jO)(nAlJA, jO)
n=|J-j|

(="

" (6 +u)l(c+v)!
2o+putul

ol(c+pu+v)!

5,0  (B6)

The Kronecker delta enforces o =0, which fixes
n = (u + v)/2. Thus the sum in Eq. (B3) has only a single
nonzero term, giving

O = Uind![J2 . JOY (T in Al 2, jO) (=) pv
JAA min ’ min ’ /,t—l-l/—l-l (,Ll—f—l/)!.
(B7)

Finally, we note the relation between J;, and u, v,

_1 , , _ptv
A= (2 =2l++a) =22,

Jmin:maX(M/ (BS)

9’

giving our final result for the C coefficient, Eq. (65),
repeated here for convenience:

A= AN+ A1

(=1)"
CJ (2Jmin)!

A - 2Jmin + 1
x <Jmin’”‘]’1’j0>'

<Jminj'/“,/1/’ .]0>

APPENDIX C: PARTIAL-WAVE PROJECTION
IN GENERIC REFERENCE FRAMES

In the main body of our work, Sec. Il A and III A, we
stated that without loss of generality, we can orient a
coordinate system XY Z so that the initial pair momentum in

the CM frame was aligned with the Z axis, P, = 7, and the
final pair momentum lies in the XZ plane at a polar angle 6,
from the Z axis, so that the CM frame scattering angle
0, = 0, In this Appendix, we show that one can construct
a partial-wave expansion with respect to a generic space-
fixed coordinate system. One practical reason for consid-
ering expansions in a generic coordinate system is in
implementing the results of this work to 3 — 3 amplitudes
which are constructed by summing over all pair-spectator
combinations, which is what is proposed in the formulation
of the scattering formalism [46,65]. As different pair-
spectator systems require their own coordinate system to
define momenta and angles, imposing a global external
coordinate system with which all pair-spectator systems
can be related allows one to define an expansion for the
complete amplitude. This application is outside the scope
of this work; thus we did not discuss details, but point the
reader to Refs. [68,85,90] which discuss aspects of this
procedure. However, we intend that this Appendix be

Zk

FIG. 13.  Orientations of the momenta P, and P, with respect to
the generic space-fixed coordinate system (X, Y, Z). The Z; and
Z, axes are associated with body-fixed coordinate systems which
are defined fixed to the momenta P, and P, respectively.

useful for future study on that application as well as
extensions to analyses of higher few-body systems.

Let P; and P, be the initial and final pair momenta in the
total CM frame defined with respect to some generic space-
fixed coordinate system XYZ. Then, the polar and azimu-
thal angles of P, are 8, and ¢, respectively, while the polar
and azimuthal angles of P, are 6, and ¢, respectively.
These orientations are depicted in Fig. 13, where we also
introduce the CM frame effective scattering angle 6,
defined with the usual addition of spherical angles

cosf, =P, Py,

=cosf,cosb) +sinb,sinf cos(pr—¢,),  (Cl)
which follows from decomposing f’p and f’k into Cartesian
components with respect to the space-fixed coordinate
system. The reaction plane in the CM frame is now defined
with a unit normal vector

PkXPp

Pl Sakad 3
|PkXPp

) (C2)

and is still used to define the azimuthal angles of the initial
and final state pair rest frames as discussed in Sec. Il A.

Note that when we orient 13k = 7., we recover that 0 = Ok
and fi = Y, as is chosen in the main text.

The partial-wave expansion proceeds as in Sec. III A, up
through Eq. (21), which we repeat here for convenience:

0

Mf’/l’f/l(p’k) = Z (2J+ 1>M§//1/f,1(p’k)

J=Jmin
J
J & J) B
x Z Din,),v (PP)Dgn_,)l(Pk)'
my=—

The task now is to simplify the sum on m,. Similar to
spherical harmonics, the Wigner D matrix elements have an
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addition theorem which allows us to reduce the composi-
tion of two rotation functions to a single rotation,
cf. Appendix A. For the rotation functions in Eq. (21),
we find the following [94]:

ZDm L (P,)D
= ZDm,}/ ((pﬁ’

nmy
= Zdﬁ,{;w»

my

mj,l(f) )
epy O)Di;l,j)l((pk3 ekv O)’
df(njj)/l(ek)e_im’((”"_(””)’

(C3)

where in the last line we used the symmetry identity,
Eq. (A27). From the addition theorem, we find that we can
express this sum as a single Wigner D matrix element,

ZDm p

my
- Zd m /1/(‘9 Ye~im(oi=ep)

mJA(Pk)

o ) 0150

DEM’) ((ppk’ lew l//pk)’ (C4)
where the resulting Euler angles are given by the usual
addition of rotation matrices as summarized in Appendix A.
Explicitly, the total CM frame scattering angle 6, is given
by cos @, = f’p : f’k as is defined in Eq. (C1), while the
azimuthal angles ¢, and y,, are fully specified by the
following relations:

sin
cot = —cosf, cot - cot, —————,
Pk k ((pk (pp) + p sin((pk _ (ﬂp)
t 6, cot( ) + cotd sinf,
co = —cosf, co - cotl —————,
l//pk P Pk wp k sin((pk — (pp)
_ sin (ppk _ Sinl//pk _ Sin((pk - wp) (CS)
sinf,  sinfy sin€,,

After using the addition theorem on the Wigner d matrix
elements, Eq. (C4), we find that the helicity partial-wave
expansion Eq. (C3) reduces to

My ea(p. k) = Z(zf + DM (P k)

J

X DEM/) (qopkv eplw l//pk)’ (C6)

which can be inverted to project a helicity amplitude into its
partial waves,

J
My (P k

2
8 2/ dl//pk/ d(ppk

></l dcosHPkDL/)((ppkﬁpk,ka)

X Mgy (P, K). (C7)
Compared to the kinematics outlined in Sec. II, it seems
that there are additional independent variables in the form
of the azimuthal dependencies ¢, and v .. However, these
azimuthal angles are nondynamical in the sense that they
orient the reaction plane with respect to our arbitrary
external coordinate system. To see this, first consider the
simple limit where f’k = 7.. Therefore, 0, = ¢ = 0. From
Eq. (C5) we find that as 8, — 0 and ¢, — 0, the Euler
angles @ ,x = @,, 0,x > 0, and y,; — 0. Thus, we have
removed one of the azimuthal angles, and the angular
momentum composition rule, Eq. (C4), gives

S o, (8,)DY),(B,) = DY) (¢,.6,.0).  (C8)

The remaining angle ¢, = ¢, is not dynamical, as it only
orients the reaction plane with respect to the external
coordinate system, cos Yy = 13p X, Therefore, we can
rotate the system about the helicity quantization axis by an
angle of —¢,,, which preserves the helicity [86], to eliminate
this redundant angle and arrive at our result in Eq. (23).

In a similar manner, we can simultaneously rotate away
both azimuthal angles in Eq. (C6),

ZDM’ (0,0, @) Mgy 22(p. K)D; DY 7 Wi 0.0)

= Mﬂ}vﬂ(P’ k)

This transformation leaves the magnitude of the pair
momenta invariant as they are aligned with their respective
quantization axes. We conclude that the angles y,; and
@y« are nondynamical variables and are arbitrary rotations
which arise from the definitions of the three-particle states
with respect to the spatial coordinate system. Therefore, if
one rotates the system as in Eq. (C9) to remove the ¢, and
w i angles, we arrive exactly at the expansion as originally
presented in Eq. (24) of Sec. IIT A.

Finally, we consider in detail the consequence of a
generic reference frame to the OPE. In particular, we show
that the dependence on the nondynamical angles explicitly
cancels in performing the partial-wave projection of the
OPE. We begin by rewriting Eq. (42) here for convenience:

(ee) L pk
M, (p.k) = r 4zY% (K3)Y (pF) o)

p k

(C9)

@pi=y p=0"

We need to decompose the vectors k; and pj with respect
to the general coordinate system, as well as describe their
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Lorentz transformations. In the total CM frame, the spectator
momenta are antiparallel to the pair momenta, e.g. for the
final spectator p = —P,,; thus its polar and azimuthal angles
with respect to the space-fixed coordinate system are 7 — 6,
and ¢, + m, respectively. Let us focus on obtaining the
angles p; in terms of the various coordinate system. First, let
us define the Lorentz transformations between the total CM
frame and the pair rest frame for spectator &,

P5)) = (P — o)),

=Yk (pﬂ—%ﬂk - wp)ﬂk? (C10a)
(Py)L =PL=P~— P
=p- (p—zﬂk> o (C10Db)
Pi
where we recall that §;, = P, /E; and y;, = 1/4/1 — 2.

Let us first define the coordinates (xj,yy,z;) which
are fixed to the reaction plane for this system. Similar to
Sec. IT A, the z; axis is defined as Z;, = P,/|P;|, and the y,
axis is given by §, = Py x P,,/|P; x P,|, which is the unit
normal to the reaction plane. Therefore, the x; axis is defined

by the unit vector X; = §; x Z;. Note that [P, x P,| =

pksin@, = pky/1 —cos?0,,. Thus we find that the

Lorentz transformation, Eq. (C10a), is given by

(PF)) - 2 = pr cos(x),

= 7k<_p Cos ka - a)pﬁk>’ (Cll)

where 7, Iﬁk, and from the perpendicular component,
Eq. (C10b),

(P¥) 1 - Re = —pf sing,
= —psing,. (C12)

Note that we have recovered the Lorentz transformations as
detailed in Sec. IVA.

Next we define body-fixed coordinates (Xy, Yy, Z;)
which are defined fixed to the pair momentum P;.
Specifically, the Z; axis is defined as Zk = l3k, and the
Y, axis is perpendicular to the plane formed by the vector
Z, and the space-fixed Z axis as Y, = Z x Z;/|Z x Z,],
where we note that |Z x Z,| = sin 6. Then, the X, axis is
given by X; = Y, x Z,. Note that if we align P, with the Z
axis, then the body-fixed coordinate system is identical to
the space-fixed coordinate system (X, Y, Z).

To compute the angles of the momentum p} with respect
to this coordinate system, we notice that Z, = ,; thus the
parallel component of p; has the same form as the Lorentz

transformations with respect to the reaction plane coordinate
system, Eq. (C11). Therefore, we only need to work with the
perpendicular component to determine the azimuthal angles,
ie. Xi-py=Xi-(py)r and Y py =Y, (py).-
Moreover, since the perpendicular component is unchanged
under Lorentz transformations, Eq. (C10b), and ﬁk = Zk
with X, - Z;, = Y, - Z; = 0, the azimuthal angles of Pr) .
are completely determined by p. Thus, we evaluate the
following scalar products: X - p; = X, -pand Y, - p; =
Yk - p. Finally, recall thatp = —P,,, so decomposing P, with
respect to the (X, Yy, Z,) body fixed coordinates immedi-
ately yields the angles of p.

In what follows, we prove that the azimuthal angle of p is
@k + 7. We do this by first assuming this relation, which
can be qualitatively argued from the addition of Wigner D
matrices shown in Eq. (C4). Then, we relate the angles in
the space-fixed to those in body-fixed coordinates, illus-
trated in Fig. 14 and defined below. Finally, we show that
the resulting relations are equivalent to Eq. (C5). Once we
establish this relation, we turn our attention to prove that
the azimuthal angle of k is —y ,;, following the same
procedure.

We begin by first relating the vector P, to the body-fixed
coordinate system (X, Yy, Z;), as illustrated in Fig. 14(a).
Resolving P, into a Cartesian coordinate system reveals
that geometrically, SA(k‘P], = psind;sing ;. and X, - P, =
p sin 8, cos @, This is further depicted in Figs. 15(a) and
16(a), which shows the decomposition in the X,Z; and
XY planes, respectively. Here 6, is the angle of P, with
respect to the Z; axis (which is the definition of the
effective CM frame scattering angle), and we have defined
@ px as the azimuthal angle of P, with respect to the X axis.
Therefore, the polar and azimuthal angles of p in this frame
are 7 — 0, and 7 + @, respectively.

To verify that ¢, is identical to the results from the
addition theorem in Eq. (C5), we compute the scalar
products with the relations between the unit vectors of
the body-fixed coordinate system to those of the space-
fixed system. By direct evaluation, we find

?k‘PZ :?k‘(pZ)L =Y, -p.
= —psind,; sing,;,

= psind, sin(p, — @), (C13a)

Xk'P;? :Xk'(P;f)L = X;-p.
= —psinf,; cos @y,
= p(cos 8, sinO; — cos O sinb,, cos(py — @),)),
(C13b)
where the second line in each of these equalities comes

from the geometric decomposition shown in Figs. 15(a) and
16(a), while the third line is the result where we use the
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Z

(a) (X, Yy, Z) frame

(b) (Xp,Yp, Zp) frame

FIG. 14. (a) Polar and azimuthal angles of P, with respect to the body-fixed (X, Yy, Z;) frame. The polar angle is 6,, which is
defined with respect to the Z; axis. The perpendicular component p | lies in the XY, plane, which is shaded blue, with an azimuthal
angle defined about the Z, axis with respect to X;. (b) Polar and azimuthal angles of P, with respect to the body-fixed (X,,Y,.Z,)
system. The polar angle is defined as 0,,;, while the azimuthal angle is defined in the X, Y, plane, shaded red, with respect to the X, axis

to be 7 — .

Zy,
0
—{ Pp
T — Opk;
XYy plane
)
P

(a) (Pp).L projection

FIG. 15.

definitions of the unit vectors of the (X, Yy, Z;) system
with respect to the (X, Y, Z) system. We emphasize that the
negative signs on the second line of each equation are
because p = —P,,.

The cotangent of the azimuthal angle of p} is given by
taking the ratio of the X component, Eq. (C13b), to the Y,
component, Eq. (C13a),

Xk . p*
- i = COt @,
Y- p;
= —cos O cot(px — ¢,)
in @
+cotd, L’ (C14)
Sln(§0k - ¢p)

(P) ) T — Opg,

ki

X,Y), plane

k w(u"’l

(b) (Pg)1 projection

Projection of the perpendicular components of (a) P, and p to the X, Y, plane, and (b) P, and k to the XY, plane.

which is identical to the one found in Eq. (C5). The sign is
fixed from the relationship between sin 6, and sin 8, from
the Y, component in Eq. (C13a),

sind,

sing , = — sin(g — @,). (C15)

sin 6,

where the negative sign fixes the relative orientation to the
coordinate system. Therefore, we conclude that the azimu-
thal angle of p is ¢, + 7, where ¢, is given by Eq. (C5).
Since Y (0, @) o PL(cos@)e™”, we find that the angular
dependence is given by

Y (BF) o Pi(cosyf)e* e, (C16)
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Yy

T+ ©pk

(a) Xk Yk—plane

FIG. 16.

Note that if we align P; with the Z axis, then ¢, = 0, and
we recover the p; piece contributing to Eq. (48), namely
that there is a phase " = (—1)*.

We now show that the azimuthal angle of k is —y ;. We
follow the same procedure as before, first assuming that
— ,« is the azimuth of K, then relating the angles of k in
the space-fixed system to the body-fixed coordinates,
cf. Fig. 14. We then recover the expressions shown from
the addition theorem in Eq. (C5). We repeat the above
analysis for the vector k7 with respect to a body-fixed
coordinate system (X,,Y,,Z,), where the Z, axis is
2, =P, Y, =2x2,/|ZxZ,). nd X, =Y, xZ,.
These coordinates are fixed to the momentum P,. The
Lorentz transformations are along the Z, axis,

(k;*a)u = ?’p(ku _ﬂpwk)’

k-
= yp< ﬁzﬂ” - a)k>ﬂ,,, (C17a)
P
(k}), =k, =k —k|.
—k- (kéf‘?ﬂp, (C17b)
P

with g, =P,/E, and y, =1/,/1—p%. Along the Z,

axis, the Lorentz transformations give the known relation,
Eq. (50), between y; and 6, similar to the previous case:

(k;)H -Zp =k}, cos()(;),

=7p(=kcosO, — o p,), (C18)

The azimuthal angles of k; are again found by considering
its perpendicular component with respect to the Z, axis.
For this case, we show that the azimuthal angle of k,’; is
—¥ x>, Which is illustrated in Fig. 14(b). As with the
previous case, the angles of kj in the (X,.Y,.Z,)
body-fixed system are related to those of k = —P,.

n

— Upk
r'pk S<
P
\' —Vpk

(b) X,Y,-plane

(a) Azimuthal angles of P, and p defined in the X; Y plane. (b) Azimuthal angles of P; and k defined in the XY, plane.

Figures 15(b) and 16(b) show the decomposition of P;
with respect to the (X, Y ,, Z,,) coordinate system. We find
that )A(,, Py = ksin®,; cos(m —yr i) = —ksin @, cosy
and Yp Py = ksin®,; sin(z — ;) = ksin@, siny ,,
where 60, and 7 —y,; are the polar azimuthal angles
of P, respectively. The polar and azimuthal angles of
k = —P; in this frame are therefore 7 — 60, and —y .,
respectively, as shown in Figs. 15(b) and 16(b).

As before, we connect v, to Eq. (C5) by resolving k;
into X, and Y; components and using the definitions of the
body-fixed frame unit vectors in terms of the external
coordinate system. We find

Y, ki=Y, (k}), =Y, k.
= —ksin@,; siny ,;

= —ksin 0y sin(¢ — @,,). (C19a)

X, ky=X,-(k}), =X,-Kk,
= ksin @, cosy .,

= k(cos 6y sinf, — cos @, sin G cos(p, — ¢,,)),
(C19b)

where the second line of each equality is due to the geometric
decomposition of k, noting that sin(z —6,;) = sin6,,,
sin(—y ;) = —siny ., and cos(—y ;). The third line is
due to the relation of the body-fixed unit vectors to the space-
fixed coordinate system.

We find that the cotangent of the azimuthal angle of k; is

w0

-k
-k

T %

P

= —COtl//pk,

>
ok

p
sin@),

=cosf,cot(py—,) —cotd;— . (C20)

sin(px =)

exactly as found by the addition theorem in Eq. (C5). The
sign of the angle is fixed from Eq. (C19a), from which
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sin gk

siny = sin(gg — @,). (C21)

sin 6,

We conclude that the azimuthal angle of k}; is —y,; with
¥ defined in Eq. (CS). Therefore, the spherical harmonic

Yy (k) is

i (K)o P4 (cos yf)e v, (C22)
where we note that because of the complex conjugation,
the argument of the exponential is —id'(—y i) = id'y .
We conclude that the spin-helicity matrix in a general
coordinate system has the form

HO (b, K) « etV eiton, (C23)
which is the exact structure we found by the generic partial-
wave expansion Eq. (C6), and therefore from the projection
Eq. (C7) we find that the azimuthal dependence completely
disappears, leaving what we found in Sec. I'V.

APPENDIX D: FORMULARY FOR LOW-LYING
PARTIAL-WAVE OPE AMPLITUDES

The purpose of this Appendix is for those interested in
using the results presented for the low-spin cases in their
analysis. We collect the primary results for the >*!1L, —
28411/ partial-wave OPE amplitudes presented in Sec. V,
as well as a minimal set of kinematics needed. The OPE is a
function of the total three-body CM energy +/s, as well as
either the initial and final spectator momenta k and p,
respectively, or the initial and final state pair invariant mass
squares oy and o, respectively. Equation (10) relates these
two sets of variables.

The initial and final spectators have masses m, and m,,,
respectively, the exchange particle has mass m,, and the
product of their intrinsic parities is #, e.g. if considering
three pions, then n = —1. The initial and final pairs have
spins S and ', respectively. The initial pair is coupled with
its spectator into an orbital state L. Similarly, the final state
pair is coupled to its spectator into an L’ orbital state.
Finally, both the initial and final state spin and orbital
angular momenta are, respectively, coupled to a total
angular momentum J. These couplings are illustrated in
Fig. 17. The parity of a particular state J is given by
P = (=1 = n(=1)V.

k J
S'(:{\}
28'41 1 12S+1] \
G(S L5 L) AL s
J
p

FIG. 17. Angular momentum couplings of the OPE, as de-
scribed in the text.

From Eq. (76), the partial-wave OPE is then given by
GESHILYS L)) = Gig (k).
_ Kg(2S’+1L/J|2S+1LJ)

+ T (S PHL)Q0(C ). (D)

where expressions for g and 7 are given below for J© =
{07, 17,17} and §', § = {0, 1}. The function Qy is known
and given by Eq. (A7), where the argument ¢ ;. is defined in
terms of energies and momenta in Eq. (46). For notational
convenience, we introduce the three quantities which
appear frequently:

fpk =7p (M + Cpk) > (D2a)

k

ﬂpwk ﬂkwp

9pk = yp?k( k +

+ C,,k> . (D2b)

_ 1olidpPrwy @i
pk ’

where o=\ mE +2, 0, =\ md 4 % 1, =1\ [T = 5,

re=1/
as discussed in Eqs. (49) and (50). Note that g, and &, are
symmetric under the interchange of p < k since ¢, is
symmetric. However, f . # f,. Finally, the expressions
below contain g} and g;, which are the relative momenta

of the pairs in their respective CM frames as defined
in Eq. (39).

h (D2c)

pk

\/1 =2 with » and S being the boost velocities

1. J? =0" amplitudes
There are two possible partial waves, a singlet 'S, and

triplet 2Py, resulting in a 2 x 2 matrix.
(i) 'S = 8o

K9(1S0|1S0) =0, (D3a)
1 1 1
T('Sol'So) = Ik (D3b)
(11) ISO e d 3P0
V3
Kg(PPol'Sy) = —WU (D4a)
P
V3
3p (o) _
T(°Po|'Sy) = 2w S pk- (D4b)

(iii) 3Py — 'S,
Given by Egs. (D4a) and (D4b) with p < k
interchange.
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(IV) 3P0 g 3P0

3
Kg(PPoPy) = —ngk, (D5a)
k

*
P

T(3P0|3P0) fpkfkp (DSb)

2q?

2. JP =1" amplitudes

There is a single 3P, partial wave in this channel.
(1) 3P1 g 3P1

K9(3P1|3P1) = =55k (D6a)

3
4q;

T(CPPPy) = ],:( = 1) (D6b)

3
4q%q

3. JP =1-" amplitudes

There are three possible partial waves, one singlet 'P,
and two triplets 3S; and °D;, resulting in a 3 x 3 matrix.

®

(i)

(iif)

@iv)

1P1 e d lPI
1
pllp)y=—-— D7
Kg('Py|'Py) 2k (D7a)
1
T('P,|'Py) = mek- (D7b)
lP] d 3S1
’Cg(351|1P1) 2p o x (fpk é};k) (D8a)
qp
1
708,|'Py) = [Cpkfpk + 1], (D8b)
P, - D,
1
KgCDy|'Py) = == 2f i +¢{m)  (D92)
g 14 Zﬂpq; pk pk
1
T(CDy|'P) =———2 +&2, - 1].
( l| 1) 2\/§pq; [ éﬂkfpk é:pk ]
(D9b)
351 N IP1

Given by Egs. (D8a) and (D8b) with p < k
interchange.

(v) 3Sl - 3Sl
1o 13 1 2
Kg(°S1°S1) = 2 gt g(l = 7o) (L =71) =7V + Cp(Fpr + Frp = Cpi) = (Cprpr + pi) | (D10a)
p 9k
ST 25 (1 =820 (F ok + Frp = Epi) + Cor(CprGpr + Ppid))- (D10b)
k
(Vl) 3S1 d 3D1
2
Kq(*DiS)) = 2\/— > { (1 42y,) (X =7) + 27,7k + Epie(=2F pic + frp — Cpie) + 2L picGpic + hpk):|’ (Dl1a)
1
(3D1 P ) 2\/_ * [(1 - C?)k)(_zfpk + fkp - - ngk(é’pkgpk + hpk)]' (Dllb)
(vii) D, = 'P,
Given by Egs. (D9a) and (D9b) with p < k interchange.
(viii) 3D, = 35,
Given by Egs. (D11a) and (D11b) with p < k interchange.
(ix) 3D, = 3D,
2
Kg(DiP’Dy) = it 3 (14 2y,) (1 +271) = 477k = Cpr (2 pic + 2f kp + Cpic) = 4(CpikGpk + hpi) |, (D12a)
p 9k
T(3D1 |3D1) = 4q*q* [_(1 - ?)k)(zfpk + kap + Cpk) + 4Cpk(€pkgpk + hpk)]' (Dlzb)
p4k
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