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We demonstrate that the longitudinal single target-spin asymmetry in exclusive π0 production in ep
collisions can give access to the imaginary part of the gluon generalized transverse momentum distribution
(GTMD) F1;4. Such a longitudinal spin asymmetry that results from the Coulomb-nuclear interference
effect, leads to a characteristic azimuthal angular correlation of sin 2ϕ, where ϕ is the azimuthal angle
between the scattered lepton transverse momentum and the recoil proton’s transverse momentum. We also
present a numerical estimate of the asymmetry for the kinematics accessible at EIC and EicC.
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I. INTRODUCTION

The study of nucleon spin structure triggered by the spin
crisis [1] has grown into a fascinating research area during
the past three decades. One of the main focus of the field is
to address the spin decomposition of nucleon. According to
the Jaffe-Manohar decomposition [2], the proton spin
receives contributions from four different sources,

1

2
¼ 1

2
ΔΣþ ΔGþ Lq þ Lg ð1Þ

where the quark spin contribution ΔΣ ∼ 0.3 obtained from
the integral of the quark helicity distribution is relatively
well constrained. The gluon spin contribution is likely to be
sizable as well [3–6], though the uncertainties about the
gluon helicity distribution at small x are huge. The gluon
spin contribution is expected to be precisely determined
with the experimental data from the future Electron-Ion
Collider (EIC) [7,8].
Apart from the gluon helicity distribution at small x, the

current major focus is the orbital angular momentum
(OAM) from quarks and gluons, which could help deepen
our understanding of the partonic structure of nucleon and
the associated QCD dynamics [9–12]. However, so far very
little is known about the orbital angular momentum of
partons. From both theoretical and experimental point of
view, it remains very challenging to extract Jaffe-Manohar

type (or canonical) parton OAM from high energy scatter-
ing experiment. All the previous proposals for probing
gluon OAM rely on its connection with the Wigner
distribution [13], or equivalently, the generalized transverse
momentum distribution function (GTMD) [14–16],

xLgðx; ξÞ ¼ −
Z

d2k⊥
k2⊥
M2

Fg
1;4ðx; k⊥; ξ;Δ⊥ ¼ 0Þ ð2Þ

where the relevant kinematic variables will be specified
below. The parton OAM can be reconstructed with
the integral of the x dependent OAM distribution:
Lg ¼

R
1
0 dxLgðx; ξ ¼ 0Þ. A considerable amount of theo-

retical efforts have been made to explore the experimental
signals of the GTMD F1;4 in the recent years. The single
and the double longitudinal spin asymmetry in exclusive
dijet production in ep collisions was shown to give access
to the “Compton form factor” that involves F1;4 [17–19]. It
is also feasible to directly measure F1;4 among many other
GTMDs in the exclusive double Drell-Yan or quarkonium
production in hadron collisions [20–22]. Note that the
kinetic OAM by Ji [23] cannot be reconstructed from F1;4

measured in high energy scatterings as it always involves a
light cone gauge link. Another attempt to find an observ-
able for probing OAM can be found in Ref. [24].
In this work we propose a new observable to extract

gluon GTMD F1;4. We consider single spin asymmetry in
the exclusive π0 production in proton-electron collisions
ep → e0p0π0 where the proton is longitudinally polarized
and the electron is unpolarized. π0 can be exclusively
produced off a longitudinally polarized proton either
through two gluon exchange described by F1;4 or through
a quasireal photon exchange. The latter is commonly
referred to as the Primakoff process. We show that an
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azimuthal angular correlation: λðΔ⊥ · l0⊥ÞðΔ⊥ × l0⊥Þ arises
from the interference amplitudes of the mentioned two
processes, whereΔ⊥, l0⊥ are the nucleon recoiled transverse
momentum and the outgoing lepton transverse momentum
respectively, and λ denotes proton helicity. F1;4 thus can be
extracted from this characteristic azimuthal angular corre-
lation of sin 2ϕ.
The paper is organized as follows. In Sec. II, we present a

detailed analytic derivation of the spin dependent cross
section following a brief review of the unpolarized cross
section calculation. It actually came as a big surprise that,
apart from the Primakoff process, the dominant contribution
to the unpolarized exclusive π0 production in the forward
limit was found to be the spin dependent odderon (or the
gluon Sivers function) [25]. We perform the numerical
estimations of the spin asymmetry with some toy model
inputs. Finally, the paper is summarized in Sec. III.

II. PROBING THE GLUON GTMD F1;4

IN EXCLUSIVE π0 PRODUCTION

In this section, we compute the gluon GTMD F1;4
contribution to the longitudinal target-spin asymmetry in
exclusive π0 production in ep collisions. The kinematics of
the process under consideration is specified as follows,

eðlÞ þ pðp; λÞ ⟶ π0ðlπÞ þ eðl0Þ þ pðp0; λ0Þ: ð3Þ

It is convenient to define kinematic variables Q ¼
−q2 ¼ −ðl − l0Þ2, t ¼ ðp0 − pÞ2, y ¼ p · q=p · l, and the

squared photon-nucleon center of mass energy W2 ¼
ðpþ qÞ2. We neglect pion mass in our calculation l2π ¼ 0.
The skewness variable is given by, ξ ¼ ðpþ − p0þÞ=ðpþ þ
p0þÞ ¼ −Δþ=ð2PþÞ ¼ xB

2−xB
with xB ¼ Q2=2p · q. Here

‘þ’ indicates the light-cone plus component which as
commonly defined in the literature. The momentum trans-
fer squared can be further approximated as t ¼ −Δ2⊥ where
Δ⊥ is the nucleon recoiled transverse momentum.
The exclusive π0 production in ep collisions is conven-

tionally used to get a handle on the leading twist helicity
flip quark GPDs when the proton target is transversely
polarized [26]. If proton target is unpolarized, the cross
section of the exclusive π0 production in the forward limit
has long been thought to vanish. However, it has been
found in Ref. [25] that the gluon Sivers function plays a
surprising role in unpolarized processes, and was shown to
give the dominant contribution to the unpolarized exclusive
pion production in the forward limit. This might be one of
the most promising channels to search for the elusive
Odderon as the gluon Sivers function is related to
the k⊥ moment of the spin dependent Odderon [27,28].
In this work, we consider the longitudinally polarized target
case which allows us to probe the k⊥ moment of the
GTMD F1;4.
Before presenting the calculation details, let us first

recall the operator definition of the GTMDs. We start with
introducing the matrix element definition of the GTMD
F1;4 spin-1

2
target [29,30],

1

Pþ

Z
dz−d2z⃗⊥
ð2πÞ3 eik·zhp0; λ0jTr

�
Fþμ
a

�
−
z
2

�
U†

�
−
z
2
;
z
2

�
Fþμ
b

�
z
2

�
U

�
−
z
2
;
z
2

��
jp; λijzþ¼0

¼ 1

2M
ūðp0; λ0Þ

�
Fg
1;1 þ

iσiþki⊥
Pþ Fg

1;2 þ
iσiþΔi⊥
Pþ Fg

1;3 þ
iσijki⊥Δ

j
⊥

M2
Fg
1;4

�
uðp; λÞ

≈
1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p
�
δλ;λ0F

g
1;1 þ

iεij⊥ki⊥Δ
j
⊥

M2
λδλ;λ0F

g
1;4 þ � � �

�
; ð4Þ

where the gluons are represented by components of the
field strength tensor Fμν

a , where a is a color index. Note
that we have limited ourselves to the case of leading twist
—i, j are transverse indices. The Wilson line U and U† in
the fundamental representation form a closed loop gauge
link. The average longitudinal and transverse gluon
momenta are denoted by x and k⊥, respectively. In the
third line we have explicitly worked out spinor products
and only kept the leading power terms in the near forward
region Δ⊥ → 0. The contributions associated with
GTMDs F1;2 and F1;3 are suppressed as well. A number

of model calculations of GTMDs is available by now
[14,29,31–41].
The longitudinal single spin asymmetry arises from the

interference amplitudes between two gluon exchange diagram
and the single photon exchange diagram know as the
Primakoff process, as depicted in Fig. 1. It is easy to verify
that the single spin asymmetry in exclusive π0 production
vanishes at the leading power. The spin asymmetry has to be
evaluated following the usual collinear expansion at the next to
leading power. Schematically, the spin dependent amplitude
illustrated on the left side of the cut in Fig. 1 takes the form,
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ML ∝
Z

d2k⊥
�
Hðx; ξ; k⊥Þjk⊥¼0 þ

∂Hðx; ξ; k⊥Þ
∂kμ⊥

jk⊥¼0k
μ
⊥ þ � � �

�
k⊥ × Δ⊥λδλ;λ0Fg

1;4 ð5Þ

where Hðx; ξ; k⊥Þ stands for the hard part. The leading
power term drops out for the spin dependent contribution.
k⊥ is the relative transverse momentum of the gluons
entering the hard partonic part. Both k⊥ and Δ⊥ will be set
to zero in the hard part after performing the collinear
expansion. Therefore, one may expect the vector product
ϵγ

�
⊥ × k⊥ which respects the parity conservation shows up in
the next to leading power hard part ∂H

∂kμ⊥
kμ⊥. Carrying out k⊥

integration in Eq. (5), the spin dependent amplitude would
be proportional to the vector structure,

ML ∝
Z

d2k⊥ðϵγ
�
⊥ × k⊥Þðk⊥ × Δ⊥Þλδλ;λ0Fg

1;4

∝ ðϵγ�⊥ · Δ⊥Þλδλ;λ0
Z

d2k⊥
1

2
k2⊥F

g
1;4 ð6Þ

where the nonperturbative part is directly related to the
gluon OAM [14–16,42] in the forward limit Δ⊥ ¼ 0.
On the other hand, π0 can be exclusively produced in the

Primakoff process [43–46] as shown on the right side of
the cut in Fig. 1. It has been recently discovered that in the
small x limit (or in the forward limit), the exchanged photon
polarization is linearly polarized, with its polarization
vector being parallel to its transverse momentum
Δν⊥ [47–52], in analogy to the QCD case [53]. Apart from
Δν⊥, another transverse vector available in the hard part is
virtual photon’s transverse polarization vector. Therefore,
to construct a scalar with these two transverse vectors, the
amplitude of the Primakoff process must be proportional to,

M�
R ∝ ϵγ

�
⊥ × Δ⊥: ð7Þ

Combining the amplitudes M�
R and ML, one gets,

MLM�
R∝ ðϵγ�⊥ ×Δ⊥Þðϵγ

�
⊥ ·Δ⊥Þλδλ;λ0

Z
d2k⊥

1

2
k2⊥F

g
1;4: ð8Þ

The virtual photon’s polarization is determined by the
direction of the scattered electron’s momentum l0. The
above angular correlation can be converted to a sin 2ϕ
correlation at the full cross section level, where ϕ is the
azimuthal angle between final state electron’s transverse
momentum l0⊥ and Δ⊥. Two remarks now are in order. The
same sin 2ϕ asymmetry could show up in the SIDIS
process, that can give access to the specific TMDs [54].
Second, it often offers a novel way to study nucleon
structure by making use of the Coulomb nuclear interfer-
ence effects (see, for example [55]).
We now present the main analytical results in details. Let

us start by reviewing the calculation of the spin averaged
cross section. The unpolarized amplitude involves the
t-channel exchange of the spin dependent odderon, which
is related to the dipole type gluon Sivers distribution. The
unpolarized cross section can be expressed in terms of the
Sivers function f⊥g

1T [25],

dσodderon

dtdQ2dxB
≈

π5α2emα
2
sf2π

8xBN2
cM2Q6

�
1− yþ y2

2

�

×

�Z
1

0

dz
ϕπðzÞ
zð1− zÞ

Z
d2k⊥

k2⊥xf
⊥g
1T ðx; k2⊥Þ

k2⊥ þ zð1− zÞQ2

�2

ð9Þ
where ϕπ is the pion’s leading twist distribution amplitude
(DA) and fπ ¼ 131 MeV is the decay constant. z is the
longitudinal momentum fraction of the virtual photon
carried by quark.
In the region where Δ⊥ is extremely small, exclusive π0

production through the Primakoff process becomes impor-
tant. The calculation of the Primakoff process was well
formulated in terms of the pion distribution amplitude. The
amplitude of the Primakoff reads [56,57],1

MR¼δλλ0e3
ffiffiffi
2

p
fπ

ffiffiffiffiffiffiffiffiffiffiffi
1−ξ2

p
1þξ

ðϵγ�⊥ ×Δ⊥Þ
xBΔ2⊥

F ðtÞ
Z

1

0

dz
ϕπðzÞ

6zð1−zÞ
ð10Þ

where F ðtÞ ¼ 1=ð1þ −t
Q2

0

Þ2 with Q2
0 ¼ 0.71 GeV2, is the

proton charge form factor. Correspondingly, the cross
section of the Primakoff process is given by,

FIG. 1. Coulomb-nuclear interference contribution to the ex-
clusive π0 production in ep collisions. The imaginary phase of
F1;4 could be generated through the multiple gluon exchange
encoded in the gauge link.

1Strictly speaking, in addition to the charge form factor (or the
Dirac form factor, F ) the Pauli form factor (F2) contributes as
well. Specifically, F2 enters alongside F as ∼F − ξ2

1−ξ2 F2. Since
there is a relative suppression of ξ2 between the two for the
kinematics of our interest, we will refrain from explicitly writing
this contribution from F2. We are very grateful to Yoshitaka Hatta
for bringing this point to our attention.
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dσPri

dtdQ2dxB
≈
α4emð2πÞ½1þ ð1 − yÞ2�f2π

xBQ6Δ2⊥
1 − ξ

1þ ξ
F 2ðtÞ

×

�Z
1

0

dz
6zð1 − zÞϕπðzÞ

�
2

: ð11Þ

Due to its 1=Δ2⊥ behavior, the Primakoff process is the
dominant channel of the exclusive π0 production at low
transverse momentum. Note that, as pointed in Ref. [25],
there is no interference between the spin dependent odd-
eron and the Primakoff amplitude because the proton
helicity flips with the odderon exchange while the proton
helicity is conserved with one photon exchange.
We now report the results of the amplitude that involves

F1;4. The calculation closely follows that outlined in
Refs. [17,19]. There are a total of six diagrams contributing
to the spin dependent amplitude, all of which vanish at the
leading power. Two of them with the exchanged gluons
attached to quark and antiquark lines simultaneously
survive at the next to leading power, whereas contributions
from the other four diagrams drop out at the next to leading
power after making k⊥ expansion. We thus explicitly verify
that the single longitudinal spin asymmetry in exclusive π0

production is a twist-3 observable. The spin dependent
amplitude is written as,

ML ¼ i
g2sefπ
Nc

ffiffiffi
2

p λδλλ0
ϵ⊥ · Δ⊥
M2Q2

ξ2ð1þ ξÞffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p
Z

1

−1
dx

×
Fð1Þ
1;4ðx; ξ;Δ⊥Þ

ðxþ ξ − iϵÞ2ðx − ξþ iϵÞ2
Z

1

0

dz
ϕπðzÞ

zð1 − zÞ ð12Þ

with Fð1Þ
1;4ðx; ξ;Δ⊥Þ ¼

R
d2k⊥k2⊥F1;4ðx; ξ;Δ⊥; k⊥Þ. One

notices that the third pole which could potentially break
the factorization is absent in this amplitude, in contrast to
the case of the diffractive dijet production [17–19]. Another
possible source of twist-3 contribution is from Δ⊥ expan-
sion. We have carried out an explicit calculation and found
that the twist-3 contributions from Δ⊥ expansion drop out
for both unpolarized cross section and polarization depen-
dent cross section. Combining the amplitudesML andM�

R
with the leptonic tensor, we derive the full spin dependent
cross section,

dΔσ
dtdQ2dxBdϕ

¼ − sinð2ϕÞ α
3
emαsf2πð1 − yÞξxBF ðtÞ

3Q8Nc

×
�Z

1

0

dz
ϕπðzÞ

zð1 − zÞ
�
2

× Im

�Z
1

−1
dx

Fð1Þ
1;4ðx; ξ;Δ⊥Þ=M2

ðxþ ξ − iϵÞ2ðx − ξþ iϵÞ2
�

ð13Þ
where Δσ ¼ σðλ ¼ 1Þ − σðλ ¼ −1Þ. The azimuthal angle
ϕ is defined as the angle between the final state electron’s

transverse momentum and nucleon recoiled transverse
momentum Δ⊥. This is the main result of our paper.
One notices that the real part of the gluon GTMD

ReF1;4 is an odd function of x: ReFð1Þ
1;4ðx; ξ;Δ⊥Þ ¼

−ReFð1Þ
1;4ð−x; ξ;Δ⊥Þ simply because gluons are their own

antiparticles. The integral involving the real part of Fð1Þ
1;4

thus vanishes,

Im
Z

1

−1
dx

ReFð1Þ
1;4ðx; ξ;Δ⊥Þ

ðxþ ξ − iϵÞ2ðx − ξþ iϵÞ2 ¼ 0: ð14Þ

This is also in accordance with the fact that exclusive π0

production selects charge parity odd exchange as the C
parity of virtual photon and π0 are −1 and þ1 respectively.
Two gluon exchange is ruled out by the C parity conserva-
tion. However, the imaginary part of F1;4 is not necessarily
an odd function of x, and thus could survive under x
integration. One possible mechanism for generating an
imaginary phase is through an additional gluon exchange
which is encoded in the gauge link, in close analogy to the
Sivers function case. The k⊥ moment of the imaginary part
of the gluon GTMD F1;4 is thus related to a tri-gluon
correlation function which represents a C-odd exchange.
However, the Δ⊥ expansion contribution is ruled out by the
C parity conservation as there is no such mechanism for
generating the imaginary phase. Equation (13) clearly
demonstrates that one can extract the imaginary part of
the characteristic azimuthal angular correlation sin 2ϕwhen
the target is longitudinal polarized. Let us close this section
with one final remark: the spin dependent cross section
smoothly approaches a constant value when Δ⊥ → 0,
whereas both the single and double spin asymmetries in
the diffractive dijet production scale as jΔ⊥j in the near
forward limit.
We now numerically estimate the asymmetry with inputs

from some toy model results. The azimuthal asymmetries,
i.e., the average value of sinð2ϕÞ that we are going to
estimate numerically are defined as,

hsinð2ϕÞi ¼
R

dΔσ
dP:S: sinð2ϕÞdP:S:R ½ dσPridP:S: þ dσodderon

dP:S: �dP:S:
: ð15Þ

We start with calculating the unpolarized cross section. The
only input we need to compute is the cross section of the
Primakoff process is the pion’s distribution amplitude. As a
first exploratory study, we neglect the scale dependence of
the pion DA. For simplicity, we consider the asymptotic
form for the pion’s DA ϕπ ¼ 6zð1 − zÞ. As for the dipole
type gluon Sivers function i.e. the spin dependent Odderon,
there is currently no experimental constraint on it at all.
Several models for the gluon Sivers function are available
in the literature [28,58]. Here we simply parametrize the
gluon Sivers function in terms of the unpolarized gluon
distribution,
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f⊥g
1T ðx; k2⊥Þ ¼ C

x0.3

x0

M
jk⊥j þ ΛQCD

δ2⊥
2π

e−k
2⊥=δ2⊥GðxÞ ð16Þ

with x0 ¼ 0.01. GðxÞ the unpolarized gluon PDF. The
width is fixed to be δ2⊥ ¼ 0.53 GeV2. The coefficient
C ¼ 0.01 is chosen such that the QCD contribution to
the cross section starts to dominate over the EM contribu-
tion when Δ⊥ > 150 MeV. Note that this parametrization
does not satisfy the relation

R
d2k⊥f⊥g

1T ðx; k2⊥Þ ¼ 0 that
holds at the tree level. As a matter of fact, such a relation
quickly breaks down after performing the TMD evolution
as shown in Ref. [59].
To compute the spin dependent cross section, one has to

model the Compton form factor that involves Fð1Þ
1;4.

Unfortunately, to the best of our knowledge, there is no

model result available for the imaginary part of Fð1Þ
1;4.

However, the imaginary part of Fð1Þ
1;4 is very unlikely to

be larger than its real part. So we conjecture the following
relation,

Im
Z

1

0

dx

ImFð1Þ
1;4ðx;ξ;Δ⊥Þ
M2

ðxþ ξÞ2ðx − ξþ iϵÞ2

< Im
Z

1

0

dx

ReFð1Þ
1;4ðx;ξ;Δ⊥Þ
M2

ðxþ ξÞ2ðx − ξþ iϵÞ2 ≈
π

2ξ

∂

∂x
Lðx; ξÞjx¼ξ:

ð17Þ

In our numerical estimation, we replace the Compton form
factor with π

2ξ
∂

∂x Lðx; ξÞjx¼ξ to get a rough estimation of the
upper limit of the asymmetry. Here we reconstruct the ξ-
dependence for xLgðx; ξÞ from it’s PDF counterpart xLgðxÞ
in accordance with the method of double distributions
[60,61]. To model the x-dependence for the OAM, we
employ the Wandzura-Wilczek(WW) approximation [42],

LgðxÞ≈x
Z

1

x

dx0

x02
½Hgðx0ÞþEgðx0Þ�−2x

Z
1

x

dx0

x02
ΔGðx0Þþ���

ð18Þ

In the forward limit, the gluon GPD Hg is related to the
normal gluon PDF HgðxÞ ¼ xGðxÞ. We use the JAM
[62,63] gluon PDFs xGðxÞ and xΔGðxÞ as inputs. The
experimental studies of the gluon GPD Eg is rather sparse at
the moment. One has to model it only with some theoretical
guidance. A recent work has shown that Eg grows very
rapidly, and the ratio of EgðxÞ=HgðxÞ approaches a constant
in the limit x → 0 [64]. In our numerical estimates,
we simply assume EgðxÞ ¼ cHgðxÞ where the coefficient
c ¼ −0.15 is extracted from a light-cone spectator model
calculation [39].
The relevant kinematics are fixed to be y ¼ 0.02,

Q2 ¼ 10 GeV2,
ffiffiffiffiffiffiffi
Sep

p ¼ 100 GeV for the EIC case and
y ¼ 0.5, Q2 ¼ 3 GeV2,

ffiffiffiffiffiffiffi
Sep

p ¼ 16 GeV for the EicC
case. The asymmetry is displayed in Fig. 2 as the function
of Δ⊥. The uncertainty bands were derived by propagating
the upper and lower limits of the 1σ uncertainty relative to
the mean central curve of the unpolarized and polarized
PDF results to the asymmetries. One can see that the
asymmetries peak around Δ⊥ ¼ 300 MeV. We also found
that the asymmetry roughly scales as ξ. It is thus more
promising to constrain the F1;4 at relatively large ξ region.
Since there are huge uncertainties for the various gluon
distributions involved in the calculation, our numerical
estimates can only be considered as an exploratory study.

III. SUMMARY

We propose extracting the imaginary part of the gluon
GTMD F1;4 by measuring azimuthal angular correlation of
sin 2ϕ in exclusive π0 production in polarized ep collisions.
Such a single target longitudinal spin asymmetry arises
from the interference effect between the QCD interaction
and the Primakoff process. All the previous proposals
of probing the gluon OAM from the single/double

FIG. 2. The averaged sin 2ϕ azimuthal asymmetry computed at EIC and EicC energies is plotted as the function of Δ⊥.
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longitudinal spin dependent dijet production rely on
disentangling the gluon OAM distribution from the com-
plicated compton form factor that may receive the con-
tributions from both the imaginary part and real part of F1;4.
It is thus helpful for pinning down the gluon OAM by first
having an experimental constraint on the imaginary part of
F1;4 using the observable that we have studied. It would be
interesting to carry out the measurement at the future EIC
and EicC.
There are a number of directions along which the current

work can be refined or extended. First, the single longi-
tudinal spin asymmetry in exclusive π0 may also receive the
contributions from the different sources at the twist-3 level,
for instance, the trigluon correlation functions which could
play an important role. Second, it would be interesting to
explore the feasibility of extracting F1;4 through the similar
observable in the ultraperipheral polarized proton-heavy
ion collisions. Moreover, the similar calculation can be

performed for the quark channel that should be more
relevant for the JLab experiment. Since quark distributions
are in general neither even nor odd in x, the same sin 2ϕ
azimuthal asymmetry allows us to access the real and
imaginary parts of F1;4 simultaneously. Wewill address this
issue in a future publication [65].
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