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At leading order in the QCD coupling constant, we compute the energy loss per traveling distance of a
heavy quark dE=dz from elastic scattering off thermal quarks and gluons at a temperature T, including the
thermal perturbative description of soft scatterings (−t < −t�) and a perturbative QCD-based calculation
for hard collisions (−t > −t�). Within this soft-hard factorization model, we find that the full results of
dE=dz behaves a mild sensitivity to the intermediate cutoff t�, supporting the validity of the soft-hard
approach within the temperature region of interest. We rederive the analytic formula for dE=dz in the high-
energy approximation, E1 ≫ m2

1=T, where E1 is the injected heavy quark energy and m1 is its mass. It is
realized that the soft logarithmic contribution, dE=dz ∝ lnð−t�=m2

DÞ, arises from the t-channel scattering
off thermal partons, while the hard logarithmic term, dE=dz ∝ ln½E1T=ð−t�Þ�, stems from the t-channel
scattering off thermal partons, and the one dE=dz ∝ lnðE1T=m2

1Þ comes from the s- and u-channel
scattering off gluons. The sum of these contributions cancels the t�-dependence as observed in the full
result. The mass hierarchy is observed dE=dzðcharmÞ > dE=dzðbottomÞ. Our full results are crucial for a
better description of heavy quark transport in QCD medium, in particular at low and moderate energy. We
also calculate the energy loss by imposing the Einstein’s relationship. The related results appear to be
systematically larger than that without imposing the Einstein’s relationship.
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I. INTRODUCTION

The normal nuclear matter turns into a new state of
matter characterized by the deconfined partons known as
quark-gluon plasma (QGP), at extremely high temperature
and energy density as achieved in the microseconds after
the big bang [1,2]. In the past two decades, high energy
heavy-ion collisions carried at the Relativistic Heavy-Ion
Collider (RHIC) and the Large Hadron Collider (LHC)
provides a unique opportunity for shedding light on the
perturbative region of quantum chromodynamics (QCD),
the most understandable of the fundamental interactions in
the Standard Model [3–5].
Heavy quarks (charm and bottom) are of particular

interest probes of the QGP as they are produced in initial
hard scatterings in the early stage of the collision and

subsequently propagate through the QCD medium of
quarks, anti-quarks and gluons in thermal equilibrium at
a temperature T, resulting in the collisional and radiative
energy loss, dE=dz, via elastic and inelastic interactions,
respectively [6–9]. This medium-induced effect can be
studied using the experimental observables, such as the
relevant production cross-section, nuclear modification
factor, elliptic flow and azimuthal correlations. Thus, the
properties of heavy quark energy loss are of intense interest
in connection with the signatures of the formation of QGP
in ultrarelativistic heavy-ion collisions [10–15].
In 1982 Bjorken provided [16] a perturbative calculation

of the collisional energy loss of a massless parton due to the
elastic scattering off the thermal quarks and gluons in the
QGP. He estimated dE=dz at leading order in g, by making
several approximations, such as (1) assuming an energetic
parton, i.e., in the large energy limit; (2) keeping only the
logarithmically divergent integral over momentum transfer;
(3) imposing physically reasonable upper and lower limits
to regulate the infrared and ultraviolet divergences. Finally,
it was realized that the collisional energy loss was path-
independent and that it depended on the energy of the
parton only logarithmically, see Eq. (41) for details.
However, these results suffered from an ambiguity

associated with the choice of the upper and low limits
for the momentum transfer [17]. The improvements over
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the Bjorken approach have been achieved by the sub-
sequent studies, including more careful treatment of the
infrared divergences [18], ultraviolet divergences [19,20],
the inclusion of the running of the coupling [21,22] and
many more.
The aim of this paper is to obtain the heavy quark energy

loss dE=dz at low and moderate energy, by a complete
calculation at leading order QCD coupling constant for
the elastic scattering off thermal light quarks and gluons
in a QGP. To separate the contributions from the soft
(

ffiffiffiffiffi
−t

p
∼ gT) and hard regions (

ffiffiffiffiffi
−t

p ≳ T) of the momentum
transfer t, an arbitrary momentum scale t� is introduced
and, subsequently, adjusted according to the comprehen-
sive model-data comparisons. Concerning the soft compo-
nent, it is recalculated taking into account the contributions
from low-momentum transfer, and the resulting long-
wavelength gluon are screened by the dense mediums.
As a consequence, the propagator in the gluon-exchange
diagrams is replaced by the hard-thermal loop (HTL)
propagator [23,24]. For the hard component, the hard
gluon exchange is considered and the tree-level propagator
is used in our calculations [25].
The paper is organized as follows. In Sec. II. we focus on

the calculation of the collisional energy loss of a heavy quark
crossing a quark-gluon plasma. In Sec. II A we introduce
the general setup of the employed soft-hard factorization
approach, in particular, the relevant scattering rate, which is
crucial for the calculation of the energy loss. The results in
the soft and hard regions are obtained and discussed in
Sec. II B. Section II C is dedicated to the description of
the theoretical results in the high-energy limit. In Sec. II D
we argue that the collisional energy loss can be directly
related to the drag coefficient, which is one of the three key
parameters in the Fokker-Planck and Langevin dynamics.
In Sec. III we show the momentum and temperature
dependence of charm and bottom quarks, as well as the
systematic comparisons with other approaches. Section IV
contains the summary and discussion.

II. ENERGY LOSS IN THE SOFT-HARD
FACTORIZED APPROACH

The elastic scattering processes between heavy quark
and the quark-gluon plasma constituents can be regarded as

Qðp1Þ þ iðp2Þ → Qðp3Þ þ iðp4Þ; ð1Þ

where, p1 ¼ ðE1; p⃗1Þ and p2 denotes the four-momentum
of heavy quark (Q) and the medium partons (i ¼ q, g),
respectively. p3 and p4 are the ones after scattering.
The corresponding tree-level Feynman diagrams for
these processes are shown in Fig. 1. The quark-quark
scattering only has a t-channel momentum exchange, as
displayed in the panel-a of Fig. 1, while the quark-gluon
scattering contributes three diagrams corresponding to
t-, s- and u-channels, as presented in the panel-b, c, d

in Fig. 1. For each diagram in Fig. 1, the corresponding
matrix elements at leading order in g can be found in
Appendix A, and the four-momentum transfer is pμ

1 − pμ
3 ¼

ðω; q⃗Þ ¼ ðω; q⃗T ; qLÞ. The related Mandelstam invariants
can be expressed as

t≡ ðp1 − p3Þ2 ¼ ω2 − q2

s≡ ðp1 þ p2Þ2
u≡ ðp1 − p4Þ2; ð2Þ

where, the three-momentum transfer q≡ jq⃗j.
Since gluons are massless, the characteristic t-channel

gluon propagator diverges for small momentum transfers
t → 0, see Eq. (A21) and (A22), which causes a diverging
cross-section,

dσ
dt

∝ jM2j ∝ 1

t2
: ð3Þ

The divergence is usually regulated by a cutoff scale for the
momentum phase space, which is encoded in an additional
factor [26–28]

θðs ≥ 2m2
DÞθð−sþm2

D ≤ t ≤ −m2
DÞ; ð4Þ

or by a mass μDðTÞ to include the effects of Debye
screening [29],

1

t
→

1

t − μ2DðTÞ
: ð5Þ

Note that μDðTÞ is assumed to behave μDðTÞ ∝ T in
Ref. [30], and to follow μ2DðTÞ ¼ λm2

DðTÞ in the other
literatures, where, mD ∝ T is the Debye mass for gluons
with a fixed coupling constant, see Eq. (12) below. It is
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FIG. 1. Tree-level Feynman diagrams for the scattering proc-
esses Qq → Qq (panel-a) and Qg → Qg (panel-b, c, (d) in
vacuum.
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argued that, in Ref. [31], λ ¼ 1=3 when taking the thermal
gluon mass as the regulator, while in Ref. [32], λ ≈ 0.2 is
adjusted requiring that a pQCD Born calculation with this
gluon propagator gives the same energy loss as the hard-
thermal-loop approach. However, these infrared regulators
are not very well determined on first principles.
Alternatively, the divergence in Eq. (3) can be cured

by taking into account the contributions from the long-
wavelength gluons, which correspond to small momentum
transfer

ffiffiffiffiffi
−t

p
∼ gT, i.e., soft scattering, in a thermal

perturbation theory. The soft gluon exchange in t-channels
(see panel (a) and panel (b) in Fig. 1) features long-range
interactions, and they are therefore screened by the medium
partons. Formally, the associated gluon propagator must
be screened with its self-energy [24,33]. Concerning the
contributions from the large momentum transfer

ffiffiffiffiffi
−t

p ≳ T,
i.e., hard scattering, where the Born approximation is
valid, and it is straightforward to perform a pQCD
calculation in this regime. This is the soft-hard factorized
approach [19–21,34–38], which allows us to decompose
the soft HQ-medium interactions with −t < −t�, from
the hard ones with −t > −t�, as illustrated in Fig. 2. The
intermediate scale t� is formally chosen as

m2
D ≪ −t� ≪ T2; ð6Þ

implying that the coupling is very small αs ≪ 1, namely the
weak-coupling or high-temperature limit [24,32,35]. This
relation, strictly speaking, should be guaranteed if applied
to realistic situations where the temperature is not high
enough and the coupling is not terribly small. However, in
our calculations, we simply explore the weak-coupling
limit and see what they give in practice. In the previous
work [25], we calculated the transport coefficients in this
limit and especially studied how they change within the
temperature region accessed by the RHIC and LHC experi-
ments. By comparing the results based on a set of the
intermediate cutoff t�, it is found that, the momentum
diffusion coefficients behave a mild sensitivity [25], sup-
porting the validity of the soft-hard factorization approach
at RHIC and LHC energies. We will check further this

conclusion via the energy loss in this work. We note that
the divergence in Eq. (3) is usually regulated by the
sharp cutoff on the momentum transfer, such as t�, which
can also be cured by a dimensional regularization. See
Ref. [39] for details.

A. The interaction rate for two-body scattering

In this subsection, we need to evaluate the scattering
rate from the proceeding calculations. With the soft-hard
factorization model, the scattering rate arises from three
kinematic regimes:
(1) The scattering of heavy quarks and medium partons

in t-channel with small momentum transfer,
−t < −t�. This is the “soft” region. The interfer-
ences between t- and s=u-channel are not taken into
account in soft scattering.

(2) The scattering in t-channel with large momentum
transfer, −t > −t�. This is the “hard” region. The
interferences between t- and s=u-channel are taken
into account and attributed to the t-channel hard
scattering.

(3) The scattering of heavy quarks and gluons in s- and
u-channels with both small and large momentum
transfer. This is the “sþ u” region, whose contri-
bution is limited since the relevant interaction rate is
much smaller when compared with the one from
t-channel.

The total scattering rate is the sum of these three kinematic
regions

Γ ¼ Γsoft
ðtÞ þ Γhard

ðtÞ þ ΓðsþuÞ; ð7Þ

in which the expressions of each of these regions will be
summarized below. Here we just show the final results
obtained in our previous work, and the details are relegated
to Ref. [25] and the references therein.
In soft collisions, the scattering rate for two-body

scattering is expressed as

Γsoft
ðtÞ ðE1; TÞ ¼ CFg2

Z
q

Z
dωn̄BðωÞδðω − v⃗1 · q⃗Þ

fρLðω; qÞ þ v⃗21½1 − ðv̂1 · q̂Þ2�ρTðω; qÞg ð8Þ

where, CF ¼ ðN2
c − 1Þ=ð2NcÞ is the quark Casimir factor

for the fundamental representation and Nc is the color
factor; g is the strong coupling constant [40]

g−2ðμÞ ¼ 2β0 ln

�
μ

ΛQCD

�
þ β1
β0

ln

�
2 ln

�
μ

ΛQCD

��
ð9Þ

where, the factors β0 ¼ ð11 − 2
3
NfÞ=ð16π2Þ, β1 ¼ ð102 −

38
3
NfÞ=ð16π2Þ2 and the scales μ ¼ πT, ΛQCD ¼ 261 MeV;

Nf is the number of active flavors in the quark-gluon
plasma; v⃗1 ¼ p⃗1=E1 is the heavy-quark velocity;

FIG. 2. Illustration of the phase space decomposed for the soft
and hard interactions.
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nB=FðEÞ ¼ ðeE=T ∓ 1Þ−1 denotes the thermal distributions
for bosons/fermions and n̄B=F ≡ 1� nB=F accounts for the
Bose-enhancement or Pauli-blocking effect. Note that the

short notation
R
q ≡

R d3q⃗
ð2πÞ3 is adopted for momentum phase

space integrals. The transverse and longitudinal spectral
functions ρT=L in Eq. (8) reads

ρTðω; qÞ ¼
πωm2

D

2q3
ðq2 − ω2Þ

��
q2 − ω2 þ ω2m2

D

2q2

×

�
1þ q2 − ω2

2ωq
ln
qþ ω

q − ω

��
2

þ
�
πωm2

D

4q3
ðq2 − ω2Þ

�
2
�

−1
; ð10Þ

ρLðω; qÞ ¼
πωm2

D

q

��
q2 þm2

D

�
1 −

ω

2q
ln
qþ ω

q − ω

��
2

þ
�
πωm2

D

2q

�
2
�

−1
; ð11Þ

in whichm2
D is the Debye screening mass squared for gluon

m2
D ¼

�
Nc

3
þ Nf

6

�
g2T2; ð12Þ

where, Nc ¼ 3 is the color factor and Nf ¼ 3 is the
quark flavors.
In hard collisions of heavy quark (Q) and medium parton

(i ¼ q, g), the corresponding scattering rate in t-channel
reads

Γhard
QiðtÞðE1; TÞ ¼

1

2E1

Z
p2

nðE2Þ
2E2

Z
p3

1

2E3

Z
p4

n̄ðE4Þ
2E4

× jM2jQiðtÞð2πÞ4δð4Þðp1 þ p2 − p3 − p4Þ;
ð13Þ

which is obtained by neglecting the thermal effects on the
heavy quark after scattering. Similarly, the hard contribu-
tions from the scattering of heavy quarks and gluons in
s- and u-channels can be obtained by modifying Eq. (13) as

Γhard
QgðsþuÞðE1; TÞ

¼ 1

2E1

Z
p2

nðE2Þ
2E2

Z
p3

1

2E3

Z
p4

n̄ðE4Þ
2E4

× jM2jQgðsþuÞð2πÞ4δð4Þðp1 þ p2 − p3 − p4Þ: ð14Þ

We note that the vacuum matrix elements jM2jQi are
expressed in Eqs. (A21)–(A23), and the running coupling
constant gðμÞ are given in Eq. (9) with the scale μ ¼ ffiffiffiffiffi

−t
p

in
hard collisions.

B. The collisional energy loss for two-body scattering

The heavy quark energy loss per distance traveled is
written as

−
dE
dz

¼
Z

d3q⃗
dΓ
d3q⃗

ω

v1
ð15Þ

where, v1 is the velocity of the heavy quark, dΓ=d3q⃗ is
the differential scattering rate with respect to the three-
momentum transfer q⃗ and ω is the energy transfer. The total
energy loss in the soft-hard factorized approach is given by
inserting Eq. (7) into Eq. (15), yielding

−
dE
dz

¼
�
−
dE
dz

�
soft

ðtÞ
þ
�
−
dE
dz

�
hard

ðtÞ
þ
�
−
dE
dz

�
ðsþuÞ

; ð16Þ

in which the contributions from t-channel are shown as the
first (soft) and second (hard) terms on the right hand side,
together with the contributions from s- and u-channels are
expressed as the third term.
With Eq. (8) we can get the energy loss in soft collisions,

�
−
dE
dz

�
soft

ðtÞ
¼ CFg2

8π2v21

Z
0

t�
dtð−tÞ

Z
v1

0

dx
x

ð1 − x2Þ2
× ½ρLðt; xÞ þ ðv21 − x2ÞρTðt; xÞ�; ð17Þ

in which the integration variables (t ¼ ω2 − q2; x ¼ ω=q)
are changed comparing with the ones (q, ω) as shown in
Eq. (8). See Fig. 2 for details. Thus, the transverse and
longitudinal spectral functions [Eq. (10) and (11)] can be
rewritten as [25]

ρTðt; xÞ ¼
πm2

D

2
xð1 − x2Þ

��
−tþm2

D

2
x2
�
1þ 1 − x2

2x

× ln
1þ x
1 − x

��
2

þ
�
πm2

D

4
xð1 − x2Þ

�
2
�

−1
; ð18Þ

ρLðt; xÞ ¼ πm2
Dx

��
−t

1 − x2
þm2

D

�
1 −

x
2
ln
1þ x
1 − x

��
2

þ
�
πm2

D

2
x

�
2
�

−1
: ð19Þ

In analogy with the soft part, the energy loss in hard
collisions can be obtained with Eq. (13),
�
−
dE
dz

�
hard

ðtÞ
¼

X
i¼q;g

�
−
dE
dz

�
hard

QiðtÞ

¼ 1

256π3p⃗2
1

X
i¼q;g

Z
∞

jp⃗2jmin

djp⃗2jE2nðE2Þ

×
Z

cosψ jmax

−1
dðcosψÞ

Z
t�

tmin

dt
b
a3

jM2jQiðtÞ:

ð20Þ
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The boundaries of the integrals (jp⃗2jmin, cosψ jmax and tmin),
the parameters (a and b) and the matrix elements in vacuum

(jM2jQi) in Eq. (20), are expressed and summarized in
Appendix A. More detailed aspects of the calculations are
also shown in this appendix.
Due to the finite heavy quark mass (m1 in a few

times GeV), the contributions from s- and u-channels,
½dE=dz�ðsþuÞ in Eq. (16), are not divergent for small
momentum transfers. Thus, there is no need to introduce
the intermediate cutoff t� and the jp⃗2j integration in
Eq. (20) can be continued down to zero, as well as the
cosψ and t integrations can be continued up to unity and
zero, respectively, resulting in

�
−
dE
dz

�
ðsþuÞ

¼ 1

256π3p⃗2
1

Z
∞

0

djp⃗2jE2nðE2Þ

×
Z

1

−1
dðcosψÞ

Z
0

tmin

dt
b
a3

jM2jQgðsþuÞ: ð21Þ

C. The energy loss in the high-energy approximation

The integrals in Eqs. (17), (20), and (21) are difficult to
evaluate analytically for arbitrary heavy quark energy E1.
The physical interpretation of the results is challenging in
general. However, in the high-energy approximation (HEA,
i.e., E1 → ∞), the relevant results are surprisingly simple,
and they are certainly useful to discuss further the in-
medium energy loss mechanisms. Here, we simply sum-
marize the final results, and the detailed aspects are
relegated to Appendix B.
Concerning the soft contribution (−t < −t�) in the limit

E1 → ∞ we are interested in, the full result [Eq. (17)] can
be simplified as [Eq. (B7)]

�
−
dE
dz

�
soft−HEA

ðtÞ
¼ CF

16π

�
Nc

3
þ Nf

6

�
g4T2 ln

−2t�

m2
D

: ð22Þ

It appears that (1) dE=dz depends logarithmically on the
intermediate cutoff t�; (2) its temperature-dependency
behaves dE=dz ∝ T2 lnðT þ constÞ at fixed coupling;
(3) its energy-dependency vanishes.
For hard collisions (−t > −t�) with very hard momen-

tum exchange, the kinematics are constrained by −t ≈ s ≈
s̃ ∼OðE1TÞ or −ũ ≪ s̃ ∼OðE1TÞ with the abbreviations
s̃≡ s −m2

1 and ũ≡ u −m2
1. Accordingly, the energy

loss for Qq and Qg scatterings in different channels
[Eqs. (20) and (21)] can be simplified as [Eqs. (B19), (B26)
and (B29)]

�
−
dE
dz

�
hard−HEA

QqðtÞ
¼ NfNc

216π
g4T2

�
ln
8E1T
−t�

−
3

4
þ c

�
; ð23Þ

�
−
dE
dz

�
hard−HEA

QgðtÞ
¼N2

c−1

96π
g4T2

�
ln
4E1T
−t�

−
3

4
þc

�
; ð24Þ

�
−
dE
dz

�
hard−HEA

QgðsþuÞ
¼ N2

c − 1

432π
g4T2

�
ln
4E1T
m2

1

−
5

6
þ c

�
; ð25Þ

where, the strong coupling constant g2 ¼ 4παs and the
constant factor c ≈ −1.14718. It is found that (1) the
logarithmic terms ln½E1T=ð−t�Þ� and lnðE1T=m2

1Þ
arising from the integral

R
dt=t (t-channel) and

R
dũ=ũ

(u-channel), respectively, in the region −t ≈ s̃ ≫ m2
1 when

s ≈ s̃ ∼OðE1TÞ; (2) dE=dz depends on the intermediate
scale t� for the contribution from t-channel, while it is not
for the s- and u-channels; (3) its temperature-dependency
behaves dE=dz ∝ T2ðlnT þ const:Þ for a given energy;
(4) its energy-dependency behaves dE=dz ∝ lnE1 for a
given temperature at fixed coupling; (5) dE=dz for the
Qg scatterings in t-channel is much larger that in s- and
u-channels. The temperature and energy dependencies of
dE=dz are similar to the results for the scattering of a light
hard parton off a light soft parton [41,42].
Summing all these contributions up, we obtain the total

energy loss of heavy quark from scattering off quarks and
gluons in the high-energy approximation

�
−
dE
dz

�
HEA

QqþQg
¼ 4

3
πα2sT2

��
1þ Nf

6

�
ln
E1T
m2

D

þ 2

9
ln
E1T
m2

1

þ dðNfÞ
�
; ð26Þ

where, Nc ¼ 3 and dðNfÞ ≈ 0.145901Nf þ 0.050213. It is
realized that the dependence on the arbitrary scale t�
cancels, which is similar to the QED case [19,37]. Same
results can be found in Ref. [21].

D. The energy loss calculated
with the Einstein’s relationship

During the traversing through the QCD medium, the
heavy quark dynamics is usually described by the
Boltzmann model. For the Boltzmann approach, it is argued
[43] that the interactions between heavy quark and medium
partons can be conveniently encoded into the drag (ηD)
and momentum diffusion coefficients (κT and κL), which
describe, respectively, the average energy loss and the
momentum fluctuations in the direction that is parallel
and perpendicular to the propagation. All the transport
coefficients can be calculated independently. Assuming a
small momentum transfer in interactions, Boltzmann is
reduced to the Fokker-Plank dynamics, which can be
realized stochastically by a Langevin approach [7,15,30,44].
In the framework of the Fokker-Planck and Langevin

transport [45–50], the drag and momentum diffusion
coefficients are related to each other via the Einstien
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fluctuation-dissipation relation. Consequently, the heavy
quarks allow to reach the thermodynamic equilibrium
and follow a Maxwell-Boltzman distribution in the infinite
time limit [51]. The drag coefficient can be characterized
by the energy loss per length, −ηDjp⃗j ¼ djp⃗j=dt ¼
dE=ðvdtÞ ¼ dE=dz, yielding

−
dE
dz

¼ ηDjp⃗1j: ð27Þ

The drag coefficient ηD in Eq. (27) can be given via the
Einstein’s relationship [52]

ηD ¼ ηDðκT; κLÞ

¼ κL
2TE1

þ ðξ − 1Þ ∂κL
∂p⃗2

1

þ 1

p⃗2
1

½ξð ffiffiffiffiffi
κT

p þ ffiffiffiffiffi
κL

p Þ2

− ð3ξ − 1ÞκT − ðξþ 1ÞκL�; ð28Þ

in which the parameter ξ ¼ 0, 0.5, 1, corresponding to the
prepoint Ito, the midpoint Stratonovic and the postpoint
discretization schemes, respectively [7]. The postpoint Ito
scheme (ξ ¼ 1) is adopted in this work.
We can see that now all the associated components, such

as the drag coefficient and the energy loss, are quantified
by the transverse and longitudinal momentum diffusion
coefficients [25],

κT ¼ 1

2

Z
d3q⃗

dΓ
d3q⃗

�
ω2 − t −

ð2ωE1 − tÞ2
4p⃗2

1

�
ð29Þ

κL ¼ 1

4p⃗2
1

Z
d3q⃗

dΓ
d3q⃗

ð2ωE1 − tÞ2; ð30Þ

which can be formulated with the soft-hard factorization
approach,

κT ¼ ðκTÞsoftðtÞ þ ðκTÞhardðtÞ þ ðκTÞðsþuÞ; ð31Þ

κL ¼ ðκLÞsoftðtÞ þ ðκLÞhardðtÞ þ ðκLÞðsþuÞ: ð32Þ

The soft components read [25]

ðκTÞsoftðtÞ ¼ CFg2

16π2v31

Z
0

t�
dt

Z
v1

0

dxA · ðv21 − x2Þ; ð33Þ

ðκLÞsoftðtÞ ¼ CFg2

8π2v31

Z
0

t�
dt

Z
v1

0

dxA · x2; ð34Þ

where,

A≡ ð−tÞ32½ρLðt; xÞ þ ðv21 − x2ÞρTðt; xÞ�

× coth

�
x
2T

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−t

1 − x2

r �
=ð1 − x2Þ52: ð35Þ

The hard contributions from t-channel take the form [25]

ðκTÞhardðtÞ ¼
X
i¼q;g

ðκTÞhardQiðtÞ

¼ 1

256π3jp⃗1jE1

X
i¼q;g

Z
∞

jp⃗2jmin

djp⃗2jE2n2ðE2Þ

×
Z

cosψ jmax

−1
dðcosψÞ

Z
t�

tmin

dtB · jM2jQiðtÞ ð36Þ

ðκLÞhardðtÞ ¼
X
i¼q;g

ðκLÞhardQiðtÞ

¼ 1

256π3jp⃗1j3E1

X
i¼q;g

Z
∞

jp⃗2jmin

djp⃗2jE2n2ðE2Þ

×
Z

cosψ jmax

−1
dðcosψÞ

Z
t�

tmin

dtC · jM2jQiðtÞ; ð37Þ

where,

B≡ 1

a

�
−
m2

1ðDþ 2b2Þ
8p⃗2

1a
4

þ E1tb
2p⃗2

1a
2
− t

�
1þ t

4p⃗2
1

��
;

C≡ 1

a

�
E2
1ðDþ 2b2Þ

4a4
−
E1tb
a2

þ t2

2

�
: ð38Þ

Note that the boundaries of the integrals (jp⃗2jmin, cosψ jmax
and tmin) and the parameters (a, b and D) are given in
Appendix A. Similar with Eqs. (20) and (21), the hard
contributions from s- and u-channels can be obtained by
modifying the boundaries of the integrals in Eqs. (36)
and (37), yielding

ðκTÞðsþuÞ ¼
1

256π3jp⃗1jE1

Z
∞

0

djp⃗2jE2n2ðE2Þ

×
Z

1

−1
dðcosψÞ

Z
0

tmin

dtB · jM2jQgðsþuÞ ð39Þ

ðκLÞðsþuÞ ¼
1

256π3jp⃗1j3E1

Z
∞

0

djp⃗2jE2n2ðE2Þ

×
Z

1

−1
dðcosψÞ

Z
0

tmin

dtC · jM2jQgðsþuÞ: ð40Þ

See Ref. [25] for more details.

III. RESULTS AND DISCUSSIONS

A. The collisional energy loss

In Fig. 3(a), the charm quark energy loss obtained
with −t� ¼ 4m2

D and μ ¼ πT at a given initial energy
E ¼ 100 GeV, are presented as a function of QCDmedium
temperature. The contributions of the various sources are
displayed as curves with different styles. See the legend for
details. It is found that (1) the soft contribution (dot-dashed
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cyan curve; Eq. (17) shows a decreasing behavior in the
range Tc < T ≲ 0.25 GeV, following by an increasing
trend at higher temperature. This non-monotonic behavior
is mainly induced by the running of the coupling with
temperature. See Fig. 5(a) for details. When increasing the
local temperature, a heavy quark will suffer more frequent
momentum kicks from its surrounding medium partons,
resulting in a stronger interaction strength, which, in turn,
loses more of its initial energy; (2) the hard contribution
from t-channel [long dashed black curve; Eq. (20)] grows
with temperature since the thermal parton distribution
function behaves n ∼ e−E=T [Eq. (A3)] at large energy
(E ≫ T); (3) the contribution from s- and u-channels
[dotted pink curve; Eq. (21)] exhibits a similar trend.
Comparing with the result from t-channel (dashed blue
curve), this contribution is negligible, which is expected
since the relevant interaction rate is much smaller with
respect to the one in t-channel; (4) the soft contribution is
close to the combined result (solid red curve), reflecting its
dominance in the whole temperature range. We note that
the soft (hard) contribution to the energy loss increases
(decreases) with the scale jt�j.
Figure 3(b) shows the results for T ¼ 0.5 GeV as a

function of heavy quark energy. All the components show a
monotonously rising energy dependence. The soft contri-
bution (dot-dashed cyan curve) dominates in the considered
energy region. It has a stronger energy dependence at low
energy E≲ 3 GeV, followed by an almost flat behavior at
much higher energy E≳ 10 GeV. This may be induced by
the fact that, compared with the diffusion term, the
drag term dominates the scatterings since the initial
momentum spectra of heavy quarks is much harder than
that of medium partons. Thus, the relevant in-medium
energy loss can be described by the drag force, which is
proportional to (a positive power of) the heavy quark

velocity v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

Q

q
=E. The relativistic effect is trivial

in the low-energy region (mQ ≤ E≲ 2mQ), where the
velocity and the energy loss change significantly with
increasing energy. However, the ultrarelativistic effect
should be considered in the very large energy region
(E ≫ mQ), where the velocity is very close to unity and
consequently, the energy loss will increase very slowly.
Same conclusions can be drawn for bottom quarks.
In Fig. 4, the total energy loss of charm quark is

calculated, with −t�=m2
D ¼ 8, 10, 12, 14 and μ ¼ πT, at

fixed energy E ¼ 80 GeV [panel (a)] and fixed temperature
T ¼ 0.5 GeV [panel (b)]. The maximum deviation among
them is ∼8% (∼12%) at T ¼ 0.16 GeV (E ¼ 2 GeV), and
then decreases up to ∼4.5% (∼6%) at T ¼ 0.6 GeV
(E ¼ 80 GeV). Therefore, very similar to the situation of
momentum diffusion coefficients [25,38], the energy loss
also behave with a mild sensitivity to the intermediate
cutoff scale t�, supporting the validity of the soft-hard
approach when the coupling is not terribly small [Eq. (6)].
Same conclusions can be drawn for bottom quarks. Note
that, with large momentum exchange, the t� dependence
of dE=dz vanishes in the high-energy approximation.
See Eq. (26) for details.

B. The energy loss in the high-energy approximation

In Fig. 5(a), charm quark dE=dz evaluated at fixed
coupling αs ¼ 0.3 and fixed energy E ¼ 80 GeV, are
presented as a function of temperature. Same as Fig. 3(a),
the contributions from various channels are shown separately
as curves with different styles. We examine these calcu-
lations by systematically comparing the results based on
the full calculations [“Full”; thick curves; Eqs. (17), (20),
and (21)] and the high-energy approximation [“HEA”; thin
curves; Eqs. (22)–(26)]. It is found that: (1) the difference
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FIG. 3. Left (a): comparison of the energy loss dE=dz as a function of temperature, for charm quark with −t� ¼ 4m2
D and μ ¼ πT at a

given energy E ¼ 100 GeV, contributed by hard interactions in t-channel [long dashed black curve; Eq. (20)], soft interactions in
t-channel (dot-dashed cyan curve; Eq. (17) and s- and u-channels [dotted pink curve; Eq. (21)]. The combined results, i.e., the
contributions from the soft and hard interactions in t-channels (dashed blue curve) and from the all components (solid red curve),
are shown for comparison. Right (b): same as panel-a but for dE=dz as a function of heavy quark energy at a given
temperature T ¼ 0.5 GeV.
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between them is quite small (∼2%) for the contributions
from the soft interaction (dot-dashed cyan curves) in the
entire region of temperature. This is because the given
energy E ¼ 80 GeV, satisfying the requirement in the
“HEA”, E ≫ m2=T [Eq. (B9)], and thus “Full ≈ HEA” is
valid in this region. We have checked the results at low
energy E ¼ 4 GeV, and sizeable difference (∼30%) is
found; (2) for the hard interactions in t-channel (long dashed
black curves), a negligible difference (∼5% at maximum)
found at low temperature T ≲ 0.25 GeV, while a visible
discrepancy observed at larger temperature (∼50% at
T ¼ 0.6 GeV). It is contributed by the scatterings off both
quarks and gluons, while the latter is dominated, in particular
at high temperature, since an additional assumption, i.e.,
very hard momentum exchange [Eq. (B21); or backward
scattering), is adopted to obtain the corresponding results in
the “HEA” [see Eqs. (B20) and (B23)]; (3) a monotonously
rising temperature dependence is found for the soft
contributions obtained with a fixed coupling constant, see

Fig. 5(a), while a non-monotonic behavior is observed for
the running coupling with temperature, see Fig. 3(a); Similar
case for s- and u-channels, even though the related results
are limited.
Figure 5(b) shows the results at fixed temperature

T ¼ 0.5 GeV. It is clearly observed that: (1) the asymptotic
behavior is presented toward high energy, while a consid-
erable variation is found at low and moderate energy for
each channel; (2) as discussed in Eq. (22), the energy-
dependency vanishes for the soft contribution in the HEA,
which is well described by the full calculation in asymp-
totically high energy region. Therefore, the energy loss
based on the full approach allows to quantify the relevant
analytical result based on the HEA, in particular at high
energy region. Meanwhile, the full calculation opens the
room to study the energy loss of heavy quark at low and
moderate energy E≲ 50 GeV, where the heavy-flavor
probes are measured comprehensively at RHIC and LHC
energies.
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FIG. 4. Comparison of the total energy loss dE=dz of a charm quark as a function of (a) temperature and (b) its energy, displaying
separately the results based on various testing parameters: −t�=m2

D ¼ 8, 10, 12, 14, and μ ¼ πT.
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FIG. 5. Comparison of charm quark energy loss based on the full calculations [“Full”; thick curves; Eqs. (17), (20), and (21)] and the
high-energy approximation [“HEA”; thin curves; Eqs. (22)–(26)] at fix coupling αs ¼ 0.3 as a function of (a) temperature and
(b) energy. The relevant results are shown as thick and thin curves, respectively, in each panel. Various contributions to the energy loss
are displayed separately as curves with different styles. See the legend and text for details.
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C. Comparison with other models

Here, we show the typical predictions for the collisional
energy loss of heavy quarks from the other models, and
then make a comparison among them.
Bjorken: In Ref. [16], he considered the propagation of a

massless parton with high energy through an ideal QCD
medium with temperature T. The resulting energy per unit
length was formulated, which can be adapted to the case of
heavy quarks,

−
dE
dz

¼ 4

3
πα2sT2

�
Nc

3
þ Nf

6

�
ln
q2max

q2min

: ð41Þ

To regulate the infrared and ultraviolet divergences in
t-channels, the invariant four-momentum transfer q is
restricted within the range −q2min < −q2 < −q2max, where,
−q2max ¼ 4TE1 and −q2min ¼ m2

D [20]. We can see that its
path-dependency vanishes (see Fig. 7); dE=dz depends
logarithmically on the quark energy; the temperature-
dependency behaves dE=dz ∝ T2 lnðT þ const:Þ at fixed
coupling.
Thoma-Gyulassy: In Ref. [18], Thoma and Gyulassy

updated the Bjorken approach by including a more careful
treatment of the infrared divergences, yielding

−
dE
dz

¼4

3
πα2sT2

�
Nc

3
þNf

6

�
ln

4Tjp⃗1j
ðE1− jp⃗1jþ4TÞm2

D
; ð42Þ

where,E1 (p⃗1) denotes the heavy quark energy (momentum).
Lin-Pisarski-Skokov: In Ref. [53], the authors formulated

the collisional energy loss for heavy quarks based on the
semiquark-gluon plasma approach,

−
dE
dz

¼ πα2sT2

�
Sqk

NfðN2
c − 1Þ

12Nc
ln

�
E1T
m2

D

�

þ Sgl
�
N2

c − 1

6
ln

�
E1T
m2

D

�
þ C2

F

6
ln

�
E1T
m2

1

���
; ð43Þ

in which Sqk and Sgl indicate the suppression factor for
quark and gluon, respectively, as shown in Fig. 4 of
Ref. [53]. This model incorporates partially confinement
effect through purely imaginary background color charge
determined by Polyakov loop from lattice studies, leading
reduced quark and gluon degrees of freedom. It is argued
that the heavy quark scattering off quarks (gluons) is
suppressed by one (two) power of the Polyakov loop,
resulting in a stronger suppression of the corresponding
energy loss [53].
Figure 6 presents the temperature [panel (a)] and energy

dependence [panel (b)] of dE=dz as obtained, with a fixed
coupling constant αs ¼ 0.3 and charm quark mass
mc ¼ 1.5 GeV, from the Bjorken approach [16] (long
dashed pink curves), Thoma-Gyulassy [18] (dotted black
curves) and Lin-Pisarski-Skokov [53] (dot-dashed green
curves), as well as the results from the two approaches in
this work, i.e., the full calculation (solid red curves;
Eqs. (17), (20) and (21) and the high-energy approximation
[dashed blue curves; Eq. (26)]. We can see that: (1) a
common behavior, i.e., a monotonously rising temperature
(momentum) dependence, is observed for all the models,
together with the larger (smaller) gradient in the high
temperature (momentum) region; (2) concerning the tem-
perature-dependency, except for the Lin-Pisarski-Skokov
approach, the remaining results are closer at low temper-
ature, while they are compatible at high temperature;
similarly, for the momentum-dependency, they are appa-
rently closer to each other at large momentum, where the
high-energy approximation is more reasonable; (3) the
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FIG. 6. Left (a): the total energy loss dE=dz of a charm quark as a function of temperature at fixed coupling αs ¼ 0.3 and fixed
momentum p ¼ 80 GeV. The results based on the full calculations [solid red curve; Eqs. (17), (20), and (21)] and the high-energy
approximation [dashed blue curve; Eq. (26)] are compared to the other calculations by Bjorken [16] (long dashed pink curve), Thoma-
Gyulassy [18] (dotted black curve) and Lin-Pisarski-Skokov [53] (dot-dashed green curve). Right (b): same as panel (a) but for dE=dz as
a function of heavy quark momentum at fixed temperature T ¼ 0.3 GeV.
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results based on the Lin-Pisarski-Skokov approach are, as
expected, smaller than that based on the “HEA” approach.
To investigate the mass effect on the collisional energy

loss, we also calculate similar results for bottom quarks.
The ratio (¼ “Charm=Bottom”) between them is shown
in Fig. 7. It is clearly shown that a charm quark
(mc ¼ 1.5 GeV) loses more its energy when comparing
with a bottom quark (mb ¼ 4.75 GeV) with the same
momentum [panel (a)] or medium temperature [panel (b)].
Considering the fact that the momentum and energy of
heavy quark can be related to its velocity through the

equation jp⃗Qj¼mQvQ=
ffiffiffiffiffiffiffiffiffiffiffiffi
1−v2Q

q
and EQ ¼ mQ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2Q

q
,

respectively, thus, as shown in Eq. (26), the energy loss
dE=dz increases monotonously with increasing the velocity
vQ. For a given momentum and temperature, the quark
with larger mass has a smaller velocity, which, in turn,
loses less its initial energy, i.e., −dE=dzðBottomÞ <
−dE=dzðCharmÞ as observed in Fig. 7. In principle, this
can also be understood from the fact that, to build a
sizeable energy loss, the massive heavy quark needs
frequent interactions with large coupling. Therefore,
compared to charm, the bottom quark has difficulty
losing its energy, resulting in smaller dE=dz at a given
momentum. The discrepancy between dE=dzðBottomÞ
and dE=dzðCharmÞ, as shown in Fig. 7, tends to decrease
toward high momentum, where the mass effect is
expected small. Similar conclusion was found in our
previous work [54].

D. The energy loss calculated
with the Einstein’s relation

As discussed in Sec. II B and II D, the heavy quark
energy loss, −dE=dz ¼ ηDjp⃗j, can be evaluated in two
different scenarios: (I) ηD calculated via the scattering rate
(Eq. (15),

ηD ¼ 1

jp⃗1j
Z

d3q⃗
dΓ
d3q⃗

ω

v1
; ð44Þ

(II) ηD calculated by taking the momentum diffusion
coefficients as fundamental ηDðκT; κLÞ, i.e., via the
Einstein’s relationship [Eqs. (27)–(30)]. In the following,
these two scenarios are denoted as “Full” and “Full-ER”,
indicating the energy loss without and with imposing the
Einstein’s relationship, respectively.
The energy loss of charm quark with Einstein’s

relationship imposed are presented as a function of
temperature [panel (a)] and energy [panel (b)] in Fig. 8
(dot-dashed blue curves). The results without imposing
Einstein’s relationship (solid red curves) are shown as
well for comparison. It is found that: (1) they show a
qualitatively similar trend but with stronger temperature
and energy dependence for the former one; (2) the former
one is systematically larger than the latter one, indicating a
stronger interaction strength between the heavy quarks
and the thermal medium constituents.
We can therefore expect that, when imposing the

Einstein’s relationship, the energic heavy quarks will lose
more their initial energy during scatterings and approach
the thermal equilibrium faster, resulting in (1) a steeper
momentum spectra, as observed in Figs. 5 and 6 of
Ref. [55], since stronger interactions are more powerful
to pull the heavy quarks from high momentum and low
momentum; (2) a stronger suppression in the nuclear
modification factor, which is sensitive to the effects such
as in-medium energy loss at moderate and high transverse
momentum (pT ≳mQ); (3) a larger elliptic flow coefficient,
which is sensitive to the path-length dependence of the
in-medium energy loss at high transverse momentum
(pT ≫ mQ). Similar behaviors were found and shown in
Figs. 13 and 14 of Ref. [56].
As pointed in Ref. [56], there is an ambiguity when

imposing the Einstein’s relationship [Eq. (28)] since only
two variables among ηD, κT , κL are required in the
implementation. The resulting heavy quark energy loss,
as shown in Fig. 8, and the relevant final observables, such
as the nuclear modification factor and the elliptic flow
coefficient [56], are strongly influenced by this choice.
Thus, as discussed in Refs. [56,57], the Fokker-Planck and
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FIG. 7. Comparison of dE=dz for charm and bottom quarks at fixed coupling αs ¼ 0.3.
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Langevin approach may not capture the whole evolution
properties of heavy quarks.

IV. SUMMARY

In summary we have reconsidered the heavy quark
energy loss dE=dz in a thermalized QCD medium. The
contributions from the binary interactions with light
quarks and gluons are formulated at leading order in
QCD coupling constant, by utilizing a recently developed
soft-hard factorization approach. It is found that the full
dE=dz has a mild sensitivity to the intermediate scale t�,
supporting the validity of the soft-hard model when the
coupling is not terribly small. The soft contribution
(−t < −t�) behaves a nonmonotonic dependence on the
medium temperature, which is mainly induced by the
running of the coupling with temperature. The hard
contributions (−t > −t�) from the t-channel increase with
temperature. A similar trend is observed in s- and u-
channels, even though the related results are limited
comparing with the results from t-channel. Due to the
relativistic effect, the soft contribution has a stronger
energy dependence at low energy E≲ 3 GeV, while an
almost flat behavior at much higher energy E≳ 10 GeV.
The energy loss based on the full calculations can be

simplified to an analytical form in the limit of high quark
energy, E1 ≫ m2

1=T, where E1 is the injected heavy quark
energy and m1 is its mass. The logarithmic contributions
are obtained for the soft [dE=dz ∝ lnð−t�=m2

DÞ] and hard
interactions (dE=dz∝ ln½E1T=ð−t�Þ�) in t-channel, together
with the overall interactions [dE=dz ∝ lnðE1T=m2

1Þ] in
s- and u-channels. Combining all these processes, the final
result cancels the t�-dependence. The results based on this
high-energy approximation are compared with other model
predictions. They are similar at fixed coupling. The energy
loss for charm quark (mc ¼ 1.5 GeV) is systematically
larger than that for bottom quark (mb ¼ 4.75 GeV), in
particular at low energy. The results based on the full

calculations are consistent with the analytical result at very
high energy, while a sizeable discrepancy is noticed at
low energy. Thus, our calculations are also important to
study the energy loss effect at low and moderate energy
E≲ 50 GeV, where the heavy-flavor probes are measured
comprehensively at RHIC and LHC energies.
Finally, we calculate the energy loss from the

drag coefficient, −dE=dz ¼ ηDjp⃗1j, by considering the
momentum diffusion coefficients as fundamental, i.e.,
ηD ¼ ηDðκT=LÞ, namely Einstein’s relationship. It is real-
ized that the corresponding results are systematically larger
than the ones without imposing the Einstein’s relationship.
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APPENDIX A: DERIVATION OF THE
COLLISIONAL ENERGY LOSS IN THE
SOFT-HARD FACTORIZED APPROACH

The energy loss of heavy quark (HQ) in soft collisions
can be obtained by inserting Eq. (8) into Eq. (15). It gives

�
−
dE
dz

�
soft

ðtÞ
¼ CFg2

v1

Z
q

Z
dωωn̄BðωÞδðω − v⃗1 · q⃗Þ

× fρLðω; qÞ þ v⃗21½1 − ðv̂1 · q̂Þ2�ρTðω; qÞg;
ðA1Þ

in which we use the short notation

Z
q
…≡

Z
d3q⃗
ð2πÞ3… ðA2Þ
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FIG. 8. Energy loss of charm quarks as a function of (a) temperature and (b) energy: results obtained with −t� ¼ 8m2
D and μ ¼ πT via

the full calculations [Full, Eqs. (17), (20), and (21)] and the Einstein’s relationship [ER, Eqs. (27)–(30)] are shown separately as solid
read and dot-dashed blue curves, respectively, in each panel. See the text for details.
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and show the thermal distribution function of the bosons
(B) and fermions (F) as

nB=FðEÞ ¼ ðeE=T ∓ 1Þ−1
n̄B=F ≡ 1� nB=F: ðA3Þ

v⃗1 ¼ p⃗1=E1 indicates the HQ velocity, while v̂1 ¼ v⃗1=jv⃗1j
denotes the unit vector in v⃗1 direction. θ is the angle
between v⃗1 and q⃗, thus, the δ function in Eq. (A1) can be
rewritten as

δðω − v⃗1 · q⃗Þ ¼
1

v1q
δ

�
cos θ −

ω

v1q

�
: ðA4Þ

Inserting Eq. (A4) into Eq. (A1) and performing the
integral over the azimuthal and polar angles of q⃗, we have

�
−
dE
dz

�
soft

ðtÞ
¼ CFg2

4π2v21

Z
qmax

0

dqq
Z

v1q

−v1q
dωωn̄BðωÞ

×

�
ρLðω; qÞ þ v21

�
1 −

ω2

v21q
2

�
ρTðω; qÞ

�
;

ðA5Þ

where, qmax is the maximum momentum transfer in a
collision of HQ with a medium parton. Both the transverse
and longitudinal spectral functions are odd [see Eq. (10)
and (11)], the integral over the energy transferω in Eq. (A5)
can be therefore expressed as

Z
v1q

−v1q
dωωn̄B

�
ρL þ v21

�
1 −

ω2

v21q
2

�
ρT

�

¼
Z

v1q

0

dωω½n̄BðωÞ þ n̄Bð−ωÞ�
�
ρL þ

�
v21 −

ω2

q2

�
ρT

�

¼
Z

v1q

0

dωω

�
ρLðω; qÞ þ

�
v21 −

ω2

q2

�
ρTðω; qÞ

�
ðA6Þ

with the identity

n̄BðωÞ þ n̄Bð−ωÞ ¼ 1 ðA7Þ

used in the second equality in Eq. (A6).
For convenience we change the variables in multiple

integrals in Eq. (A5) as

t ¼ ω2 − q2; x ¼ ω

q
; ðA8Þ

yielding

dtdx ¼
						
∂t
∂ω

∂t
∂q

∂x
∂ω

∂x
∂q

						dqdω ¼ 2ð1 − x2Þdqdω: ðA9Þ

Substituting Eq. (A6), (A8), and (A9) back into Eq. (A5),
we arrive at Eq. (17)

�
−
dE
dz

�
soft

ðtÞ
¼ CFg2

8π2v21

Z
0

t�
dtð−tÞ

Z
v1

0

dx
x

ð1 − x2Þ2
× ½ρLðt; xÞ þ ðv21 − x2ÞρTðt; xÞ�: ðA10Þ

In hard collisions of heavy quark (Q) and medium
partons (i ¼ q, g), the relevant energy loss from t-channel
can be obtained by inserting Eq. (13) into Eq. (15), yielding

�
−
dE
dz

�
hard

QiðtÞ
¼ 1

2jp⃗1j
Z
p2

nðE2Þ
2E2

Z
p3

E1 − E3

2E3

Z
p4

n̄ðE4Þ
2E4

× jM2jQiðtÞð2πÞ4δð4Þðp1 þ p2 − p3 − p4Þ
ðA11Þ

in which n and n̄ are the thermal distributions [see
Eq. (A3)]. With the help of δ-function, we can reduce
the integral in Eq. (A11) down to 3-dimension in the
numerical calculations, as implemented in Refs. [21,25].
It gives

�
−
dE
dz

�
hard

QiðtÞ
¼ 1

256π3p⃗2
1

Z
∞

jp⃗2jmin

djp⃗2jE2nðE2Þ

×
Z

cosψ jmax

−1
dðcosψÞ

Z
t�

tmin

dt
b
a3

jM2jQiðtÞ;

ðA12Þ

where, ψ is the polar angle of p⃗2. Adding up the
contributions from the quark (i ¼ q) and gluon (i ¼ g)
from t-channel, we arrive at Eq. (20)

�
−
dE
dz

�
hard

ðtÞ
¼

X
i¼q;g

�
−
dE
dz

�
hard

QiðtÞ

¼ 1

256π3p⃗2
1

X
i¼q;g

Z
∞

jp⃗2jmin

djp⃗2jE2nðE2Þ

×
Z

cosψ jmax

−1
dðcosψÞ

Z
t�

tmin

dt
b
a3

jM2jQiðtÞ:

ðA13Þ

The relevant boundaries of the integrals together with the
additional notations are summarized below [25]:

jp⃗2jmin ¼
jt�j þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t�2 þ 4m2

1jt�j
p

4ðE1 þ jp⃗1jÞ
; ðA14Þ

cosψ jmax¼min
�
1;

E1

jp⃗1j
−
jt�jþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t�2þ4m2

1jt�j
p
4jp⃗1j · jp⃗2j

�
; ðA15Þ
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tmin ¼ −
ðs −m2

1Þ2
s

; ðA16Þ

a ¼ s −m2
1

jp⃗1j
; ðA17Þ

b ¼ −
2t
p⃗2
1

½E1ðs −m2
1Þ − E2ðsþm2

1Þ�: ðA18Þ

c ¼ −
t
p⃗2
1

ft½ðE1 þ E2Þ2 − s� þ 4p⃗2
1p⃗

2
2 sin

2 ψg: ðA19Þ

D≡b2þ4a2c¼−t½tsþðs−m2
1Þ2� ·

�
4E2 sinψ
jp⃗1j

�
2

: ðA20Þ

The vacuum matrix elements jM2jQi for quark (i ¼ q)
and gluon (i ¼ g) are expressed, respectively, as [25,58]

jM2jQqðtÞ ¼
16

9
NfNcg4

�
2s̃2

t2
þ 2ðs̃þm2

1Þ
t

þ 1

�
; ðA21Þ

jM2jQgðtÞ ¼ 2ðN2
c − 1Þg4

�
−
2s̃ ũ
t2

þm2
1ðs̃ − ũÞ − s̃ ũ

ts̃

−
m2

1ðs̃ − ũÞ þ s̃ ũ
tũ

�
; ðA22Þ

jM2jQgðsþuÞ ¼
8

9
ðN2

c − 1Þg4
�
2m2

1ðs̃þ 2m2
1Þ − s̃ ũ

s̃2

þ 2m2
1ðũþ 2m2

1Þ − s̃ ũ
ũ2

−
m2

1ð4m2
1 − tÞ

4s̃ ũ

�
:

ðA23Þ

Here, we have introduced the abbreviation,

s̃≡ s −m2
1; ũ≡ u −m2

1; ðA24Þ

where, m1 denotes the mass of the injected heavy quark.
The Mandelstam relation can be rewritten as s̃þ ũþ t ¼ 0.
For Qg scattering, the contributions from the t-channel,

jM2jQgðtÞ, and s- and u-channels, jM2jQgðsþuÞ, are shown
in Eq. (A22) and (A23), respectively.
The scattering of Qg in the s- and u-channels does not

give rise to an infrared divergence from the small momen-
tum transfer t → 0. The intermediate cutoff can be therefore
set to zero, t� ¼ 0, leading to jp⃗2jmin ¼ 0 [Eq. (A14)] and
cosψ jmax ¼ 1 [Eq. (A15)]. Accordingly, the energy loss
from the s- and u-channels can be obtained by modifying
the relevant result from the t-channel [Eq. (A13)],

�
−
dE
dz

�
ðsþuÞ

¼ 1

256π3p⃗2
1

Z
∞

0

djp⃗2jE2nðE2Þ

×
Z

1

−1
dðcosψÞ

Z
0

tmin

dt
b
a3

jM2jQgðsþuÞ;

ðA25Þ

as quoted in Eq. (21).

APPENDIX B: DERIVATION OF THE
ANALYTICAL RESULTS IN THE HIGH-ENERGY

APPROXIMATION

In this appendix, we derive the analytical results for the
heavy quark (HQ) energy loss in the high-energy limit
E1 → ∞. For both soft and hard contributions, we will first
investigate the kinematic constraints in this limit, and then
perform the relevant calculations for the energy loss.
The injected HQ moving with the velocity v1 ¼

jp⃗1j=E1 → 1 in the high-energy approximation E1 → ∞.
Thus, for soft collisions of HQ and medium partons, where
the momentum transfer is small, the energy loss of HQ per
traveling length [Eq. (A10)] can be modified as

�
−
dE
dz

�
soft

ðtÞ
≈
CFg2

8π2

Z
1

0

dx
Z

0

t�
dtð−tÞ

�
x

ð1 − x2Þ2 ½ρLðt; xÞ þ ð1 − x2ÞρTðt; xÞ�
�
: ðB1Þ

With Eq. (18) and (19), it is found that,
�

x
ð1 − x2Þ2 ½ρL þ ðv21 − x2ÞρT �

�
¼ πm2

Dx
2½ð−tþAÞ2 þ 4C2�−1 þ πm2

Dx
2

2
½ð−tþ BÞ2 þ C2�−1 ðB2Þ

in which

AðxÞ≡m2
D · FAðxÞ ¼ m2

D ·

�
ð1 − x2Þ

�
1 −

x
2
ln
1þ x
1 − x

��

BðxÞ≡m2
D · FBðxÞ ¼ m2

D ·

�
x2
�
1þ 1 − x2

2x
ln
1þ x
1 − x

��

CðxÞ≡m2
D · FCðxÞ ¼ m2

D ·

�
π

4
xð1 − x2Þ

�
: ðB3Þ
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Concerning the condition m2
D ≪ −t� ≪ T2 [Eq. (6)] we are interested in, it is useful to define the variable,

K≡ −t�

m2
D
≫ 1; ðB4Þ

for further calculations. In terms of the quantities defined in Eqs. (B3) and (B4), the integral over t in Eq. (B1) can be
expressed as

Z
0

t�
dtð−tÞ

�
x

ð1 − x2Þ2 ½ρLðt; xÞ þ ðv21 − x2ÞρTðt; xÞ�
�

≈
3

2
πm2

Dx
2 lnð2KÞ þ πm2

D

�
x2
�
1

2
ln
ðKþ 2FAÞ2 þ 4F 2

C

16K2ðF 2
A þ F 2

CÞ
−
2FC

FA

�
arctatan

Kþ 2FA

2FC
− arctatan

FA

FC

��

þ x2

2

�
1

2
ln
ðKþ 2FBÞ2 þ F 2

C

4K2ð4F 2
B þ F 2

CÞ
−
FC

FB

�
arctatan

Kþ 2FB

FC
− arctatan

2FB

FC

���

≡ 3

2
πm2

Dx
2 lnð2KÞ þ πm2

D · GðxÞ ðB5Þ

By substituting Eq. (B5) back into Eq. (B1) and performing
the remaining integral over x, we arrive at

�
−
dE
dz

�
soft−HEA

ðtÞ
≈
CFg2m2

D

16π

�
ln

�
−2t�

m2
D

�
þ 2

Z
1

0

dxGðxÞ
�
:

ðB6Þ

It is difficult to evaluate analytically the integral in
Eq. (B6),

R
1
0 dxGðxÞ, which is very close to zero by

checking numerically. Therefore, by dropping this term,
Eq. (B6) can be further reduced to

�
−
dE
dz

�
soft−HEA

ðtÞ
≈

CF

16π

�
Nc

3
þ Nf

6

�
g4T2 ln

−2t�

m2
D

ðB7Þ

For hard collisions, since the incident medium partons
are in thermal equilibrium at a temperature T, and their
energy read E2 ∼OðTÞ. In the limit of high-energy
E1 → ∞, the Mandelstam variable s [Eq. (2)] behaves

s ¼ m2
1 þ 2E1E2ð1 − cos θp⃗1p⃗2

Þ → ∞; ðB8Þ

for the scattering of HQ and massless partons in the
laboratory frame. It yields

s ∼OðE1TÞ ≫ m2
1 ≫ −t�;

s̃≡ s −m2
1 ≈ s: ðB9Þ

Considering the results for the variables t and u,

tmin ¼ −s̃þm2
1s̃
s

≡ −s̃þ ð−ũÞmin;

−ũ < sþm2
1 ¼ ð−ũÞmax; ðB10Þ

we have ð−ũÞmin < −ũ < ð−ũÞmax, more specifically

m2
1s̃
s

< −ũ < sþm2
1; ðB11Þ

which can be rewritten as

m2
1 < −ũ < s̃; ðB12Þ

in the high-energy limit [Eq. (B9)].
Using Eq. (B9), we rewrite Eqs. (A14)–(A18) as

jp⃗2jmin ≈ 0; cosψ jmax ≈ 1; tmin ≈ −s;

a ≈
s
E1

; b ≈ −
2ts
E1

: ðB13Þ

Considering the high-energy approximation [HEA,
Eq. (B9)], the energy loss in t-channel hard scattering
[Eq. (A13)] can be therefore simplified as

�
−
dE
dz

�
hard−HEA

QiðtÞ
¼

Z
p2

nðE2Þ
2E2

�Z
s

−t�
dð−tÞð−tÞ

�
dσ
dt

�
QiðtÞ

�
;

ðB14Þ

where, the differential cross section is explicitly given by

dσ
dt

¼ jM2j
16πs̃2

: ðB15Þ

Thus, for Qq scattering [Eq. (A21)], the integral over
−t∈ ð−t�; sÞ, i.e., the terms in the curly brace on the right-
hand side of Eq. (B14), is expressed as
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Z
s

−t�
dð−tÞð−tÞ

�
dσ
dt

�
QqðtÞ

≈
NfNc

9π
g4

Z
s

−t�
dð−tÞ

�
2

−t
−
2

s̃
þ −t

s̃2

�

≈
2NfNc

9π
g4
�
ln

s
−t�

−
3

4

�
: ðB16Þ

Inserting Eq. (B16) into Eq. (B14), and using

Z
∞

0

dEEnFðEÞ ¼
π2T2

12
ðB17Þ

Z
∞

0

dEEnFðEÞln
E
a
¼π2T2

12

�
ln
2T
a
þ1−γEþ

ζ0ð2Þ
ζð2Þ

�
ðB18Þ

for the integral over the magnitude of p⃗2, we can get

�
−
dE
dz

�
hard−HEA

QqðtÞ
≈
NfNc

216π
g4T2

�
ln
8E1T
−t�

−
3

4
þ c

�
; ðB19Þ

where, the constant factor c≡−γEþζ0ð2Þ=ζð2Þ≈−1.14718
with the Euler constant γE ≈ 0.57722 and the Riemann
function ζ and its derivative ζ0, ζ0ð2Þ=ζð2Þ ≈ −0.56996.
Note that the conditions E1 ≫ m2

1=T [Eq. (B9)] is utilized
in Eq. (B19).
For Qg scattering in t-channel [Eq. (A22)], the integral

over −t∈ ð−t�; sÞ, is given by
Z

s

−t�
dð−tÞð−tÞ

�
dσ
dt

�
QgðtÞ

¼ N2
c − 1

8π
g4

Z
s

−t�
dð−tÞ

��
2

−t
−
2

s̃
þ −t

s̃2

�

−
m2

1ðs̃ − ũÞ
s̃2

�
1

s̃
−
1

ũ

��
; ðB20Þ

in which the contribution of the first inner bracket is
evaluated as for the scattering off quark [see the first
equality in Eq. (B16)], while the contribution of the second
vanishes for the very hard momentum exchange,

−t ≈ s̃ ≈ s ≫ m2
1 ⇔ −ũ ≪ s̃ ≈ s: ðB21Þ

Note that, with Eq. (B21), the Mandelstam invariant t reads

−t ¼ s̃2

2s
ð1 − cos θp⃗1p⃗3

Þ ≈ s̃; ðB22Þ

corresponding to the backward scattering θp⃗1p⃗3
¼ π in

the center-of-mass frame of HQ and medium parton.
Therefore, Eq. (B20) can be simplified in this region

Z
s

−t�
dð−tÞð−tÞ

�
dσ
dt

�
QgðtÞ

≈
N2

c−1

4π
g4
�
ln

s
−t�

−
3

4

�
: ðB23Þ

The logarithm in Eq. (B23) arises from the range as shown
in Eq. (B21) in the t-channel, and the constant part comes
from its interference terms. Inserting Eq. (B23) into
Eq. (B14), and using

Z
∞

0

dEEnBðEÞ ¼
π2T2

6
ðB24Þ

Z
∞

0

dEEnBðEÞ ln
E
a
¼π2T2

6

�
ln
T
a
þ1−γEþ

ζ0ð2Þ
ζð2Þ

�
ðB25Þ

for the integral over p2, we arrive at

�
−
dE
dz

�
hard−HEA

QgðtÞ
¼N2

c−1

96π
g4T2

�
ln
4E1T
−t�

−
3

4
þc

�
: ðB26Þ

For Qg scattering in s- and u-channels [Eq. (A23)], the
integral over −t∈ ð0; sÞ, is characterized by

Z
s

0

dð−tÞð−tÞ
�
dσ
dt

�
QgðsþuÞ

¼ N2
c − 1

18π
g4

Z
s

0

dð−tÞ−t
s̃2

��
−
ũ
s̃
−
s̃
ũ

�

þ
�
2m2

1ðsþm2
1Þ

s̃2
þ 2m2

1ðm2
1 þ uÞ

ũ2
−
m2

1ð4m2
1 − tÞ

4s̃ ũ

��
;

ðB27Þ

in which the contribution of the terms shown in the
square bracket vanishes within the range Eq. (B21), thus,
Eq. (B27) can be simplified as

Z
s

0

dð−tÞð−tÞ
�
dσ
dt

�
QgðsþuÞ

¼ N2
c − 1

18πs̃2
g4

Z ð−ũÞmax

ð−ũÞmin

dð−ũÞ
�
−ũ −

ũ2

s̃
þ s̃2

−ũ
− s̃

�

≈
N2

c − 1

18π
g4
�
ln

s
m2

1

−
5

6

�
: ðB28Þ

Note that (1) the boundaries for the integral over ũ are given
in Eq. (B12); (2) the logarithm in Eq. (B28) arises from the
term

R
dũ=ũ (u-channel) in the range Eq. (B21); (3) in

the last step of Eq. (B28) we neglect the terms Oðs̃−1Þ
and Oðs̃−2Þ, which are suppressed by at least one power of
s̃ ≈ s ∼OðE1TÞ when E1 → ∞. Inserting Eq. (B28) into
Eq. (B14), and using Eq. (B24) and (B25) for the
subsequent integral, we can obtain

�
−
dE
dz

�
hard−HEA

QgðsþuÞ
¼N2

c−1

432π
g4T2

�
ln
4E1T
m2

1

−
5

6
þc

�
: ðB29Þ
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Combining the contributions from the soft−t < −t� [Eq. (B7)] and hard regions −t > −t� [Eq. (B19), (B26), and (B29)],
we find the heavy quark energy loss from scattering off quarks and gluons as

�
−
dE
dz

�
HEA

QqþQg
¼ 4

3
πα2sT2

��
1þ Nf

6

�
ln
E1T
m2

D
þ 2

9
ln
E1T
m2

1

þ dðNfÞ
�
; ðB30Þ

where, the color factorNc ¼ 3, the strong coupling factor g2 ¼ 4παs and the constant parameter dðNfÞ ≈ 0.146Nf þ 0.050.
Similar results can be found in Ref. [21].
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