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The canonical Gross-Neveu model for N two-component Dirac fermions in 2þ 1 dimensions suffers a
continuous phase transition at a critical interaction gc1 ∼ 1=N at large N, at which its continuous symmetry
SOð2NÞ is preserved and a discrete (Ising) symmetry becomes spontaneously broken. A recent mean-field
calculation, however, points to an additional transition at a different critical gc2 ∼ −Ngc1, at which
SOð2NÞ → SOðNÞ × SOðNÞ. To study the latter phase transition we rewrite the Gross-Neveu interaction
gðψ̄ψÞ2 in terms of three different quartic terms for the single (L ¼ 1) 4N-component real (Majorana)
fermion, and then extend the theory to L > 1. This allows us to track the evolution of the fixed points of the
renormalization group transformation starting from L ≫ 1, where one can discern three distinct critical
points which correspond to continuous phase transitions into (1) SOð2NÞ-singlet mass-order-parameter,
(2) SOð2NÞ-symmetric-tensor mass-order-parameters, and (3) SOð2NÞ-adjoint nematic-order-parameters,
down to L ¼ 1 value that is relevant to the standard Gross-Neveu model. Below the critical value of
LcðNÞ ≈ 0.35N forN ≫ 1 only the Gross-Neveu critical point (1) still implies a diverging susceptibility for
its corresponding (SOð2NÞ-singlet) order parameter, whereas the two new critical points that existed at
large L ultimately become equivalent to the Gaussian fixed point at L ¼ 1. We interpret this metamorphosis
of the SOð2NÞ-symmetric-tensor fixed point from critical to spurious as an indication that the transition at
gc2 in the original Gross-Neveu model is turned first-order by fluctuations.
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Gross-Neveu model [1–3] in 2þ 1 dimensions provides
probably the simplest example of fermionic criticality,
and as such it has been well studied over the years.
Besides its methodological importance in high-energy
physics its variants have also been connected to quantum
phase transitions in condensed matter systems that involve
gapless quasirelativistic fermions such as graphene [4,5],
unconventional superconductors [6,7], and surfaces of
topological insulators [8]. In these systems the leading
instabilities at strong couplings are typically toward
Lorentz-invariant order-parameters that represent relativis-
tic mass terms for low-energy Dirac fermions, and which
translate into broken-symmetry insulating or superconduct-
ing states in terms of the original electrons.
It was recently shown that all but one such different mass-

order-parameters for N copies of two-component Dirac
fermions can be unified into a single representation of the
SOð2NÞ symmetry of the free Dirac Lagrangian in 2þ 1
dimensions [9]. One mass-order-parameter is always a
singlet, whereas the remaining ones transform as a symmetric

irreducible two-component tensor under SOð2NÞ. The
singlet, in the context of graphene where N ¼ 4 for
example, corresponds to quantum anomalous Hall state [10]
which breaks a discrete Ising (time-reversal) symmetry. The
remaining 15 insulating and 20 superconducting mass-order-
parameters [11–14] fall into the symmetric tensor represen-
tation of dimension 35 of SO(8). Furthermore, themean-field
calculation suggests that if the interaction term broke the SO
(8) in favor of an insulating ground state at half-filling, a finite
chemical potential would eventually cause a first-order flop
into a superconductor [9].
The main technical novelty in Ref. [9] is the set of Fierz

identities [5] that enable rewriting of the standard Gross-
Neveu interaction term gðψ̄ψÞ2 as a sum of squares of the
fermion bilinears that form the symmetric tensor represen-
tation of SOð2NÞ. Since this exact transformation also
involves a change of the overall sign of the interaction term,
it reveals that the tensor and the singlet mass-order-
parameters are in direct competition, with the winner at
strong coupling depending on the sign. The standard mean-
field calculation shows that whereas for one sign of the
Gross-Neveu interaction g, SOð2NÞ symmetry is preserved
and the Ising symmetry becomes broken at a critical value
gc1 through the usual Gross-Neveu transition, for the
opposite sign of g there exists a new critical value, gc2,
beyond which SOð2NÞ symmetry becomes spontaneously
broken to SOðNÞ × SOðNÞ, and some of the components of

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 109, 096026 (2024)

2470-0010=2024=109(9)=096026(6) 096026-1 Published by the American Physical Society

https://orcid.org/0000-0003-3141-1964
https://orcid.org/0000-0001-5496-8330
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.096026&domain=pdf&date_stamp=2024-05-20
https://doi.org/10.1103/PhysRevD.109.096026
https://doi.org/10.1103/PhysRevD.109.096026
https://doi.org/10.1103/PhysRevD.109.096026
https://doi.org/10.1103/PhysRevD.109.096026
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


the tensor order parameter develop an expectation value.
Both transitions at the mean-field level appear continuous,
and for large N at least, gc2 ∼ ð−NÞgc1. The SOð2NÞ-
preserving Gross-Neveu transition, however, can also
be understood beyond the mean-field theory, where, for
example, it is found to remain continuous. Its critical
exponents have been computed by 1=N and ϵ-expansions,
and recently by conformal bootstrap [15–19]. Such a
deeper understanding of the second transition at gc2 at
present is lacking. In this paper we make the first step in
this direction by formulating a renormalization group
approach to the SOð2NÞ-symmetry breaking transition of
the Gross-Neveu model.
The Gross-Neveu model in 2þ 1 Euclidean dimensions

is defined by the action S ¼ R
dτd2xðL0 þ L1Þ, and

L0 ¼ ψ†ðIN ⊗ ðI2∂τ − iσ1∂1 − iσ3∂2ÞÞψ ; ð1Þ

L1 ¼ gðψ†ðIN ⊗ σ2ÞψÞ2; ð2Þ

where τ is the imaginary time, IN is the N-dimensional unit
matrix, and σi (i ¼ 1, 2, 3) is the Pauli matrix. The cutoff Λ
on momentum and frequency integration may be assumed,
and we set the velocity of fermions to unity. ψ is the
2N-component (complex) Dirac fermion. The Gross-Neveu
model is invariant under continuous U(1), SUðNÞ and
Lorentz symmetries, as well as under the discrete time-
reversal, as well known [9]. Note that we chose all Pauli
matrices featured in the kinetic energy part L0 to be
symmetric, with the antisymmetric σ2 appearing only in
the interaction term L1. This allows one to straightfor-
wardly introduce the “real,” or “Majorana” fermions as ψ ¼
ðϕ1 − iϕ2Þ=

ffiffiffi
2

p
and ψ† ¼ ðϕ⊺

1 þ iϕ⊺
2Þ=

ffiffiffi
2

p
, in terms of

which the kinetic and the interacting parts of the
Lagrangian may be rewritten as

L0 ¼
1

2
ϕ⊺ðI2N ⊗ ðI2∂τ − iσ1∂1 − iσ3∂2ÞÞϕ; ð3Þ

L1 ¼
g
4
ðϕ⊺ðI2N ⊗ σ2ÞϕÞ2; ð4Þ

where ϕ⊺ ¼ ðϕ⊺
1;ϕ

⊺
2Þ is the 4N-component real fermion. In

this “Majorana representation” it becomes evident that,
besides being Lorentz invariant, the Gross-Neveu
Lagrangian in 2þ 1 dimensions is also invariant under
the transformation ϕ → ðO ⊗ I2Þϕ, where the orthogonal
real matrixO∈SOð2NÞ, and the enlarged group SOð2NÞ ⊃
Uð1Þ × SUðNÞ [9].
The identity proven in Ref. [9] in terms of the real

fermions acquires a particularly compact form:

ðϕ⊺ðI2N ⊗σ2ÞϕÞ2¼
−1

Nþ1
ðϕ⊺ðSb⊗σ2ÞϕÞðϕ⊺ðSb⊗σ2ÞϕÞ;

ð5Þ

where the summation is over the repeated index
b ¼ 1; 2;…; ðN þ 1Þð2N − 1Þ, which enumerates linearly
independent 2N-dimensional, traceless, symmetric
matrices Sb, normalized as TrðSaSbÞ ¼ 2Nδab. Note the
overall minus sign on the right-hand side. For g < gc1 ∼
ð−1Þ=ðNΛÞ the mean-field theory suggests that
hϕ⊺ðI2N ⊗ σ2Þϕi ≠ 0, which is the usual Gross-Neveu
transition into the SOð2NÞ-singlet. Using the Hubbard-
Stratonovich (Hartree) decoupling of the right-hand side
of the last equation [9] when g > 0, however, equally
suggests that for g > gc2 ∼ ðN þ 1Þ=ðNΛÞ SOð2NÞ
becomes broken, and some of the components of the
symmetric tensor order parameter hϕ⊺ðSb ⊗ σ2Þϕi become
finite. It is evident, however, that while the (negative) critical
value gc1 becomes small at large N, which facilitates the
usual perturbative large-N approach to the standard Gross-
Neveu transition, the (positive) critical value gc2 does not.
One may rightfully question therefore whether the continu-
ous mean-field transition at gc2 indeed corresponds to some
fixed point of the renormalization group transformation,
similarly to gc1 albeit at strong coupling, or it does not. In the
latter case one may suspect that the quantum fluctuations
make the SOð2NÞ-symmetry-breaking transition at gc2
discontinuous.
To address this issue we first notice that the Fierz

formulas derived in Ref. [9] also imply an additional
identity, in terms of real fermions:

ðϕ⊺ðI2N ⊗ σ2ÞϕÞ2 ¼
−1
3N

ðϕ⊺ðAa ⊗ σ2σiÞϕÞ
× ðϕ⊺ðAa ⊗ σ2σiÞϕÞ; ð6Þ

where the summation on the right-hand side now
goes over i ¼ 1, 2, 3, and a ¼ 1; 2;…; Nð2N − 1Þ. The
latter index counts linearly independent, antisymmetric
2N-dimensional matrices Aa, also normalized as
TrðAaAbÞ ¼ 2Nδab. The fermion bilinear ϕ⊺ðAa ⊗ σ2σiÞϕ
transforms therefore as the adjoint irrep. of SOð2NÞ,
and as a vector under Lorentz transformation. A conden-
sation of such a bilinear for i ¼ 1 or i ¼ 3, for example,
would correspond to breaking of the spatial rotational
symmetry, i.e. to a general “nematic” state [20,21].
In graphene, the adjoint irrep. of SO(8) would be 28-
dimensional, for example. The three interaction terms
written as squares of the singlet, symmetric, and antisym-
metric SOð2NÞ tensor components are therefore all pre-
cisely proportional to each other. This conforms to the
general theorem [22] which allows not more than one
linearly independent SOð2NÞ-symmetric contact quartic
term for fermions.
We now generalize the Gross-Neveu model as

L0 →
1

2
ϕ⊺
kðI2N ⊗ ðI2∂τ − iσ1∂1 − iσ3∂2ÞÞϕk; ð7Þ
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L1 →
g1
4
ðϕ⊺

kI2N ⊗ σ2ϕkÞ2 −
g2

4ðN þ 1Þ ðϕ
⊺
kSb ⊗ σ2ϕkÞ2

−
g3
12N

ðϕ⊺
kAa ⊗ σ2σiϕkÞ2; ð8Þ

by introducing L flavors of the 4N-component real fer-
mions, enumerated by the new index k ¼ 1; 2;…; L. When
L ¼ 1 all three terms in Eq. (8) are the same and our
representation is redundant; the interaction term L1 can
simply be rewritten as in Eq. (4) with g ¼ g1 þ g2 þ g3. For
L > 1, however, the three terms in Eq. (8) are readily seen
to be linearly independent, and the theory has the larger
SOðLÞ × SOð2NÞ symmetry [23].
We now perform Wilson’s momentum-shell transforma-

tion to the leading order in the coupling constants [24].
Integrating out the real fermions with the magnitude of their
three-momenta between Λ=el and Λ, the coupling con-
stants are found to run as

dg1
dl

¼ −g1 − 4ðLN − 1Þg21 − 4ð2N − 1Þðg2 þ g3Þg1

þ 8ð2N − 1Þ
9N

g23; ð9Þ

dg2
dl

¼ −g2 þ
4ðNðL − 1Þ þ 1Þ

N þ 1
g22 þ 4ðg1 þ g3Þg2

−
8N
3

g2g3 −
8ðN2 − 1Þ

9N
g23; ð10Þ

dg3
dl

¼ −g3 −
4ðLþ 1Þ

9
g23 þ 4ðg2 þ g1Þg3

−
4N2

N þ 1
g22 −

28ðN − 1Þ
9

g23 −
16N
3

g2g3; ð11Þ

where we also have redefined them as giΛ=ð2π2Þ → gi for
convenience.
First, we observe that there always exists the “Gross-

Neveu” critical fixed point (“1”) of the above transforma-
tion at g�1 ¼ −1=ð4ðLN − 1ÞÞ, g�2 ¼ g�3 ¼ 0, since the
coupling g1 does not generate any of the other two
couplings, and the renormalization group transformation
is closed with g1 alone. In contrast, both g1 and g2 become
generated by g3, and g3 in turn becomes generated by g2;
with either g2 or g3 present one needs all three couplings to
have a closed set under renormalization. For L ≫ 1, the
equations decouple, and two additional critical points (that
is, fixed points with exactly one infrared relevant direction)
become clearly discernable: (2) g�1 ¼ Oð1=L4Þ, g�3 ¼
Oð1=L2Þ, g�2 ¼ ðN þ 1Þ=ð4LNÞ, and (3) g�1 ¼ g�2 ¼
Oð1=L2Þ, g�3 ¼ −9=ð4LÞ. The mean-field analysis for the
singlet, symmetric tensor, and nematic order parameters
separately finds them finite precisely for g1 < −1=ð4LNÞ,
g2 > ðN þ 1Þ=ð4LNÞ, and g3 < −9=ð4LÞ, respectively, so
we identify the critical fixed points (1), (2), and (3) at large

L with the mean-field transitions in these three distinct
available channels for condensation, respectively. Besides
(1) “Gross-Neveu,” (2) “symmetric,” and (3) “nematic”
critical points, at large L there are also three bicritical, one
tricritical, and one completely stable (Gaussian) fixed point
of the renormalization group transformation.
To substantiate the identification of the critical points in

terms of the corresponding order parameters one may
compute the susceptibilities for each order parameter at
each fixed point: introduce a source-term in the Lagrangian
by adding one of the three terms

LGN ¼ h1ðΦ⊺
kðI2N ⊗ σ2ÞΦkÞ; ð12Þ

Lsym ¼ h2ðΦ⊺
kðSa ⊗ σ2ÞΦkÞ; ð13Þ

Lnem ¼ h3ðΦ⊺
kðAb ⊗ σ2σiÞΦkÞ: ð14Þ

With the change of the cutoff the sources hi renormalize
as [25,26]

dhi
dl

¼ hið1þ xiðg1; g2; g3ÞÞ: ð15Þ

The susceptibility for each order parameter near the
critical point behaves as

χi ∼ jδgj−γi ; ð16Þ

where δg is the appropriate tuning parameter for the
transition, and the exponent γi ¼ ð2xiðg�1; g�2; g�3Þ − 1Þν,
with ν as the correlation length exponent at the critical
point in question [24]. The susceptibility is thus diverging if
the corresponding exponent γi is positive. Since at the
critical points the exponent ν is always positive, this
requires that xiðg�1; g�2; g�3Þ > 1=2. To the leading order in
coupling constants, we find

x1 ¼ −2ð2N − 1Þðg1 þ g2 þ g3Þ − 4NðL − 1Þg1; ð17Þ

x2 ¼ 2ðg1 þ g2 þ g3Þ þ
4NðL − 1Þ
N þ 1

g2; ð18Þ

x3 ¼ −
2

3
ðg1 þ g2 þ g3Þ −

4ðL − 1Þ
9

g3: ð19Þ

At each of the three critical points at large L there is
therefore precisely and only one diverging susceptibility,
which corresponds to the already identified associated
order parameter, and with the corresponding exponent
having the mean-field value γi ¼ 1. The correlation length
exponent at all three critical points at large L is also ν ¼ 1.
It is now interesting to see what happens to the three

critical points and the corresponding diverging susceptibil-
ities as the number of Majorana fermion copies L is
decreased to the value L ¼ 1, which corresponds to the
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original Gross-Neveu model. First of all, it is clear from
Eqs. (17)–(19) that all the susceptibilities depend only on
the sum of the three couplings when L ¼ 1. Furthermore,
summing the three flow equations (9)–(11) one finds

dg
dl

¼ −g − 4ðN − 1Þg2 − 4NðL − 1Þ
�
g21 −

g22
N þ 1

þ g23
9N

�
;

ð20Þ

where g ¼ g1 þ g2 þ g3. So when L ¼ 1, all the fixed
points are located either in the attractive plane g� ¼ 0
(called “Gaussian plane”), or in the repulsive g� ¼
−1=ð4ðN − 1ÞÞ plane (“Gross-Neveu plane”). The flows
within these two planes is given as an illustration in Fig. 1,
for N ¼ 20. We find all eight fixed points to survive the
limit L → 1, when N > 14.2252. At N ¼ 14.2252 and
L ¼ 1, two pairs of fixed points, one pair in the Gaussian
and another in Gross-Neveu plane, annihilate. Since the
one-loop beta-function can be understood as the leading
approximation in the large-N limit, hereafter we limit the
discussion to N > 14.2252. Since for N > 14.2252 there
are no collisions of the fixed points as L is decreased all the
fixed points retain their character [27–29], but the numeri-
cal values of the susceptibility exponents change. For all
N > 14.2252 we find the symmetric and the nematic fixed
points to end up in the g ¼ 0 plane, so that although they
remain critical in the standard renormalization group sense,
all three susceptibility exponents become γi ¼ −1, yielding
no divergent susceptibility. Only the Gross-Neveu critical
point, which is constrained to be on the line g2 ¼ g3 ¼ 0 at
any L, finds itself in the g� ¼ −1=ð4ðN − 1ÞÞ plane, and
therefore keeps its susceptibility for the scalar order
parameter divergent. The evolution of the three exponents
γi=ν at the Gross-Neveu, symmetric, nematic, and the
remaining five fixed points with L is presented at Fig. 2.
We find that the susceptibility exponents for the symmetric
and nematic order parameters change sign at values of L
(Fig. 3)

Lc;sym ¼ 0.4902þ 0.3490N; ð21Þ

(a) (b)

FIG. 1. The RG flow diagrams for the planes (a) g1 þ g2þ
g3 ¼ −1=ð4ðN − 1ÞÞ and (b) g1 þ g2 þ g3 ¼ 0 when L ¼ 1 and
N ¼ 20. (a) The blue circle, yellow square, green diamond, and red
triangle stand for the standard Gross-Neveu fixed point, bicritical
points 1, 2, and unstable fixed point, respectively. Here, g1 ¼
−1=ð4ðN − 1ÞÞ − ðt1 − t2Þ=

ffiffiffi
2

p
, g2¼ t1=

ffiffiffi
2

p
, and g3 ¼ −t2=

ffiffiffi
2

p
.

(b) The indigo circle, orange square, teal diamond, and
pink triangle stand for the Gaussian, SOð2NÞ symmetric, nematic
fixed points, and bicritical points, respectively. Here, g1 ¼
−ðs1 − s2Þ=

ffiffiffi
2

p
, g2 ¼ s1=

ffiffiffi
2

p
, and g3 ¼ −s2=

ffiffiffi
2

p
.

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 2. The values of 2xi − 1 ¼ γi=ν (i ¼ 1, 2, 3) at (a) the Gaussian, (b) Gross-Neveu, (c) SOð2NÞ symmetric, (d) nematic,
(e–g) bicritical 1-3, and (h) unstable fixed points for N ¼ 20 and 1 ≤ L. The blue circle, red triangle, and green diamond markers stand
for 2x1;2;3 − 1, respectively. The gray dashed line represents 2xi − 1 ¼ 0. The corresponding susceptibility diverges when 2xi − 1 > 0,
since the correlation length exponent ν > 0 always at a critical point.
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Lc;nem ¼ −7.1975þ 8.3784N: ð22Þ

Since Lc;nem ≫ Lc;sym, the nematic criticality seems to be
the most fragile, and the first to disappear. The evolution of
the correlation length exponent ν is illustrated at Fig. 4.
At first sight it must seem odd that even when L ¼ 1 we

find eight fixed points, at least for N large enough
(N > 14.2252). This is an artifact of the redundancy of
our representation of the Gross-Neveu interaction in terms
of three seemingly different but ultimately identical quartic
terms. All the fixed points in the Gaussian plane are
equivalent. This is evident in Fig. 2, where the fixed points
(a), (c), (d), and (g) all have the same values of all xi ¼ 0
when L ¼ 1. Similarly in the “Gross-Neveu” plane g ¼
−1=ð4ðN − 1ÞÞ all the fixed points (b), (e), (f), and (h) have
the exponent for the singlet order parameter xi ¼ 1, and for
the other two possible order parameters equal to xi ¼ 0.
When L > 1, on the other hand, all eight fixed points
immediately become distinct.
Returning to the issue of the transition into the sym-

metric tensor order parameters, we see that the correspond-
ing critical point, at least for N > 14.2252, requires a value
of L of the same order asN or larger for its existence. When
L → ∞ the fixed point corresponds to the mean-field
solution of Ref. [9]. To obtain the true Oð1=LÞ-corrections
to the mean-field values of the exponents γ ¼ ν ¼ 1 one
also needs the two-loop terms to the beta-functions in
Eqs. (9)–(11). Below the critical value Lc;sym ≈ 0.35N, for

N ≫ 1, however, the symmetric critical point loses its
diverging susceptibility, and this way becomes unphysical.
It would be interesting to address the criticality and the
loss thereof at the symmetric-tensor transition within the
Gross-Neveu-Yukawa formulation near 3þ 1 dimensions
[8,18,30–32]. This work is in progress.
To summarize, we have redefined the canonical Gross-

Neveu field theory of interacting 2N-component Dirac
fermions in 2þ 1 dimensions in terms of L copies for 4N-
component Majorana fermions. Our extension has three
interaction terms which are linearly independent when
L > 1, and it reduces to the standard Gross-Neveu model
when L ¼ 1. For L ≫ N the renormalization group trans-
formation, besides the standard Gross-Neveu critical point,
displays twonewcritical fixedpoints that describe continuous
transitions intomass-order-parameterswhich transformas the
symmetric tensor, and into nematic order parameters that
transform as the adjoint (antisymmetric tensor) under
SOð2NÞ. For N > 14.2252 we find a critical LcðNÞ > 1
below which both of these critical points cease to exhibit any
diverging susceptibility, and atL ¼ 1 they become equivalent
to the Gaussian fixed point. We interpret this metamorphosis
of the symmetric-tensor fixed point in particular as that the
spontaneous symmetry breaking SOð2NÞ → SOðNÞ ×
SOðNÞ in the Gross-Neveu model is likely to be made
discontinuous by the quantum fluctuations.

This work was supported by the NSERC of Canada.

FIG. 3. The critical values of L for the susceptibility exponent
for given N. The solid red and green lines are the fitting functions
Lc;sym ¼ 0.4902þ 0.3490N and Lc;nem ¼ −7.1975þ 8.3784N,
respectively. The red diamond and green triangle are the actual
critical values of L for given N. Note that the values for the
symmetric order parameter are magnified 20 times to facilitate
comparison.

FIG. 4. The values of the correlation length exponent ν−1 at the
Gross-Neveu (blue circle), SOð2NÞ symmetric (red triangle), and
nematic (green diamond) fixed points when N ¼ 20. The dashed
gray line stands for ν−1 ¼ 1. In the large-L limit the three values
converge to unity, and match the mean-field value.
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