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Autoregularization, a new divergence-free framework for calculating scattering amplitudes, uses a
Lorentz-invariant scale harvested from the kinematics of a scattering process to regularize the amplitude of
the process [N. Prabhu, J. Phys. Commun. 7, 115002 (2023).]. Preliminary validation studies show that
autoregularization’s predictions are in good agreement with experimental data—across several scattering
processes and a wide range of energy scales. Further, ab initio tree-level calculation of the vacuum energy
density of the free fields in the Standard Model, using autoregularization, is shown to yield a value that is
smaller than the current estimate of the cosmic critical density. In this paper, we prove that the scattering
amplitudes in QED, calculated using autoregularization, are gauge invariant. Our proof, which is valid both
for autoregularization and current theory, is stronger in that it shows the amplitude of every Feynman
diagram is gauge invariant in contrast to previous proofs, which establish gauge invariance only for sum
of amplitudes of Feynman diagrams of a process. Next, we show that—unlike in the standard
quantization framework, which requires modification of both the quantization framework itself as well
as the Lagrangian in order to quantize gauge fields in covariant gauge—in autoregularization the gauge
field in QED can be quantized, in covariant gauge, without modifying the standard quantization
procedure or the Lagrangian and without introducing the ghost field. Finally, we illustrate renormaliza-
tion based on autoregularization up to 1-loop in ¢* theory. Since perturbative corrections are finite in
autoregularization, the counterterms are not designed to remove divergences but to implement
renormalization prescriptions at every order of perturbation. We also derive the renormalization group
equation (RGE). Unlike in some regularization schemes (such as dimensional regularization), in which
the physical meaning of the fictitious scale introduced by regularization is unclear, in autoregularization
the scale in RGE has a transparent physical meaning—it is the Lorentz-invariant kinematic scale of the
scattering process of interest. The increasing simplifications resulting within autoregularization and the
agreement between its predictions and experimental data, together with the underlying thermodynamic
argument, which shows that the framework is essential for a complete description of quantum fields, all
converge to suggest that autoregularization provides the proper framework for the description of
quantum fields.

DOI: 10.1103/PhysRevD.109.096025

I. INTRODUCTION

In contrast to known regularization schemes, which
introduce an arbitrary energy scale into renormalization,
autoregularization [1] uses the energy scale harvested
from the kinematics of a scattering process to regularize
the amplitude of the process. Autoregularization is based
on a new thermodynamic view that an interacting
quantum field—which can exchange energy and particles
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with other quantum fields—can be regarded as a “sys-
tem” that is in thermal and diffusive equilibrium with a
“reservoir’, made of the other quantum fields that
coinhabit spacetime.

The current view of a quantum field is based on
a hypothesis, proposed by Heisenberg and Pauli [2] in
1929-1930, that a quantum field can be regarded1 as “..a
dynamical system amenable to Hamiltonian treatment....” It
is of historical interest that Dirac immediately objected to
applying the “Hamiltonian treatment” to the field rather
than to individual oscillators> [3]. Dirac’s objections

"The quoted text is from [3].

2Apart from his objections based on physical arguments, Dirac
also cautioned about the “mathematical difficulties” that would
result from the hypothesis [3].
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notwithstanding, the current quantum field theory (QFT) is
based on the Heisenberg-Pauli framework (HPF).

Autoregularization assumes that a quantum field
can be regarded as a dynamical system, as suggested
by Heisenberg and Pauli [2]. The behavior of any large
dynamical system—such as an interacting quantum field—
is governed not only by the laws of local microscopic
interactions—encoded in the Lagrangian of a theory—but
also by additional statistical laws, which are not encoded in
the Lagrangian but emerge due to collective interactions
among the large3 number of modes of the system and the
reservoir. Such emergent statistical laws, Landau and
Lifshitz write [4], “are of a different kind” and “cannot
in any way be reduced to purely mechanical laws”; that is,
they do not follow from the Lagrangian formalism, but
need to be added explicitly on top of the Lagrangian
formalism if one seeks to obtain a complete description of
interacting quantum fields."

The HPF does not incorporate such additional emer-
gent statistical laws. Hence, the current QFT, although it
has been remarkably successful, is likely an undercon-
strained description of quantum fields, with the missing
constraints manifesting as varied wrinkles in HPF,
including the divergences that plague the framework.
Imposing the additional emergent constraints on field
fluctuations, as autoregularization does, is expected to
preserve the successes of QFT, while ironing out the
wrinkles in QFT. We start with a brief overview of
autoregularization.

We can partition the set of interacting quantum fields that
inhabit spacetime into a “system’ comprising the quantum
field of interest and a “reservoir” made of all the other
quantum fields that coinhabit spacetime. Creation or
annihilation of particles of the quantum field can then be
viewed, from a thermodynamic perspective, as flow of
particles into or out of the system. Since a quantum field
can exchange both particles and energy with the reservoir, it
can be regarded as a system that is in thermal and diffusive
equilibrium with the reservoir.” The behavior of a system
that is in thermal and diffusive equilibrium with a reservoir
is well described by the grand canonical distribution
(GCD), derived by J. Willard Gibbs [5].

*Infinite number of modes in the case where the system-
reservoir complex is a set of interacting quantum fields.

An analog in classical mechanics is that the observed
Maxwell-Boltzmann distribution in ideal gas cannot be explained
using only Newton’s laws of mechanics. To derive Maxwell-
Boltzmann distribution, one needs to add an additional statistical
law, not contained in Newtonian formalism, that at equilibrium
the entropy of the system is maximized.

We assume that the timescale over which equilibrium is
restored when the system is perturbed is much smaller than the
time resolution of our instruments. Hence, we assume that we
observe only the equilibrium or near-equilibrium behavior of the
system.

The hallmark of GCD is that it states that a system’s
fluctuations are exponentially suppressed. Specifically,
GCD states that the probability of a fluctuation that puts
the system in a state with energy E and particle number 7 is
proportional to the so-called Gibbs factor e~ (E=)/7 where
7 and p are the temperature and chemical potential that
characterize the thermal and diffusive equilibrium between
the system and the reservoir. Such exponential suppression
of fluctuations is not predicted by the Lagrangian either in
the classical or quantum theory and must be added on top of
the Lagrangian formalism to fully describe the system’s
(quantum field’s) behavior.

The above Gibbs factor however is not Lorentz invari-
ant. The exponential suppression of field fluctuations,
encoded in the above frame-dependent Gibbs factor, is
achieved in autoregularization by scaling the creation and
annihilation operators in the free field expansion with
Lorentz-invariant “Gibbs factors”, which reduce to the form
of the frame-dependent Gibbs factors at large E. The details
of autoregularization are discussed in [1] and summarized in
Appendix A.

In preliminary validation studies of autoregularization, it
was used to calculate the amplitudes of several scattering
processes, and the results were found to be in good
agreement with the experimental data (over a broad range
of energy scales from <MeV to 2200 GeV) [1].6

Scaling the creation and annihilation operators with Gibbs
factors—hereafter called Gibbs scaling—has several conse-
quences. First, the exponential suppression of high-energy
field ﬂuctuations,7 due to Gibbs scaling, eliminates diver-
gences in scattering amplitudes at all orders of perturbation
theory.®

A second consequence of Gibbs scaling is that ab initio
calculation of the energy density of vacuum fluctuations of
the free fields in the Standard Model, using autoregulari-
zation, yields a value that is less than the current estimate of
cosmic critical density, potentially solving the cosmologi-
cal constant problem [1].

6Specifically, the 1-loop corrections to the electron’s gyro-
magnetic ratio and the Lamb shift, calculated using autoregula-
rization, are in good agreement with experimental data. The
1-loop calculation of the QCD coupling constant showed that
autoregularization also predicts asymptotic freedom in QCD.
The running of the fine structure constant, computed at 1-loop
using autoregularization, was shown to be in good agreement
with the prediction of cutoff regularization. The results of the
tree-level calculations of Compton scattering and pair annihi-
lation were also shown to be in good agreement with exper-
imental data.

"Also the exponential suppression of low-energy fluctuations
of massless boson fields; see (A3).

¥As examples, in Appendixes B and E, we show explicitly that
the propagator and a l-loop diagram in ¢* theory, which are,
respectively, quadratically and logarithmically divergent in HPF,
are finite in autoregularization.
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A third consequence of Gibbs scaling is that it breaks the
equivalence between the equal-time commutation relations
(ETCR) imposed on the field and its conjugate momentum
in HPF and the commutation relations imposed on the
creation and annihilation operators. Thus, either ETCR or
commutation relations on creation and annihilation oper-
ators can be retained, and the other must be abandoned.
Autoregularization retains the commutation relations on the
creation and annihilation operators and abandons the ETCR
on the field and its conjugate momentum. In a sense, the
choice represents reversion to the Diracian approach,
placing primacy on the individual oscillators, rather than
the field, as the dynamical degrees of freedom that are to be
quantized. As we show in Sec. III, the choice leads to
enormous simplification in the quantization of the gauge
field in QED.

Against the above backdrop, in this paper, we establish
additional key properties of the autoregularization frame-
work. Specifically, in Sec. I, we present a proof of gauge
invariance of the scattering amplitudes in QED within
autoregularization. The proof we present is valid for both
autoregularization and the HPF and is stronger than the
corresponding proof in HPF, in which gauge invariance is
established only for sum of Feynman diagrams with a given
set of external legs [6,7]. On the other hand, in Sec. I, we
prove that every Feynman diagram is individually gauge
invariant in autoregularization.

The ETCR that are imposed on a field and its conjugate
momentum in HPF severely complicate the gauge field
quantization in QED. The complications, which are often
imputed to the redundant degrees of freedom in the gauge
field rather than to the ETCR, are summarized in Sec. II.
The complications have previously led to several non-
trivial modifications of the canonical quantization pro-
cedure, such as the modification of the Lagrangian,
introduction of ghost fields, imposing the gauge con-
dition not as an operator condition but in a weaker form
thereby abandoning Maxwell’s equations in operator
form, partitioning the Fock space by fiat into “physical”
and “unphysical” states in covariant gauge, or in
Coulomb gauge modifying the ETCR themselves.

In Sec. III, we describe the gauge field quantization in
QED in covariant gauge using autoregularization. Since
ETCR are not imposed in autoregularization, none of the
complications that plague gauge field quantization in
HPF arises in autoregularization. The canonical quanti-
zation procedure in autoregularization applies without
modification to gauge field quantization. The redundant
degrees of freedom decouple naturally from the theory.
Unlike in HPF, Maxwell’s equations follow as Euler-
Lagrange equations, in operator form, in covariant gauge
in autoregularization. The Fock space has a positive
semidefinite metric. The Hamiltonian has a nonnegative
expectation value on the entire Fock space, which does
not need to be partitioned into “physical” and “unphys-
ical” states. Unlike in HPF, the quantization of gauge
field in autoregularization does not require introduction
of the unphysical ghost fields. The enormous simplifi-
cation that results from abandoning ETCR shows that the
difficulties previously faced in gauge field quantization
are to be imputed to ETCR and not the redundant degrees
of freedom in the gauge field, reinforcing Dirac’s objec-
tion to HPF [3].

Finally, in Sec. IV, we illustrate renormalization based
on autoregularization. Unlike in HPF, the perturbative
corrections to scattering amplitudes are all finite at every
order in autoregularization. Hence, the counterterms
and the bare parameters are finite as well, in autoregula-
rization; the counterterms are designed not to cancel
divergences but to implement the renormalization pre-
scriptions. We derive the renormalization group equation
(RGE). Unlike in HPF, in which RGE expresses inde-
pendence of the correlation function with respect to the
fictitious scale introduced during regularization, the RGE
in autoregularization represents the evolution of the
correlation function with the kinematic scale of the
scattering process.

II. GAUGE INVARIANCE
OF THE S-MATRIX IN QED

We establish the gauge invariance of the S-matrix
amplitude of a general scattering process in QED,

ep toter tef toteg ty oy, e ot e

teg el dyi v (1)

in which m electrons, n positrons, and r photons scatter to 7 electrons 7 positrons and 7 photons. The momenta of the

particles are shown as subscripts. For brevity, we use the following notation:

ki=kiokyo  q=qr.qe L=l k=kookse G=000G5 D=1
W) =g (o) (), PO =wn) (), X=X X Y1V
Y =)y (@), PO =G0,  F=F, % =TT
A (z,2) = Ay (21) . Ag, (2)A8 (21) - Ag (), z2:=21020 222150055 (2)
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Glajjg)(x. X 7. 3.2.2) = (O]T¥(%) ¥ () ¥ (x)¥(5)A ) (2. 2)[0)- (3)

The fields are in Heisenberg representation. The S-matrix amplitude of the above process is

S= HMa lavsa?za HM lbvsb?zb HD+(kl’Wl’ HD qW J’y/

s G (5. 9.5.2.9) [T P-keo s 1) [T P s ), (4)
d=1

c=1

where /\/l’:‘IE D., D, are the amputation operators,

e (Ls') [ 4 i
@(ls;z) =T S [ et
9,(D\/Z, )

Prla i) =1 1_}( \/_/d4ye_lqy iy = m), D‘”‘(i(’ Wi X) = —i ((k)\v/?)—/d‘lfceim(idx —m),
5_(k,w;x) = i/d“x(idx + m)e~ikx [gu((]f)iwé}

Z,,Z, are the normalization constants for photons and fermions, u and v are the usual Dirac spinors, s, §, w, W, h, h are the
polarizations, and g, and g, are the Gibbs factors for photons and fermions, respectively.

Before proceeding, we note that the correlation function Gy (x,X,y,9,2,Z) is invariant under a global gauge
transformation,

wo ey, ety A S A, (6)

where aj is a real constant. The global gauge invariance follows by observing that, from Wick’s theorem, the perturbative
expansion of Gy vanishes unless the number of y fields in Gy)3, namely, / + n equals the number of ¥ fields, namely,
m + fi. Further, every interaction vertex is globally gauge invariant.

An immediate consequence of the global gauge invariance is that in a local gauge transformation,

y(x) = ey (x),  p(x) > e (). AL (x) - A, - edyalx), (7)

in which the small parameter ¢ has been included for bookkeeping, we can assume that

a(0) = 0. (8)
If a(0) # 0, then we can write
eieea(x) _ eiee(a(x)—a((]))eieea(()) _ eiee‘('l(x)eieao’ &(.X) = a(x) _ (X(O), ay = €a(0)‘
Thus, the local gauge transformation in (7) can be imple- S =380 48, 9)

mented by first applying the global gauge transformation .
corresponding to ei®, which leaves Glgj invariant, where S denotes the sum over all connected Feynman

followed by a local gauge transformation corresponding ~ diagrams with E'=m +n+r+ i + 7+ 7 external legs
to @) where a(0) = 0. and S@ the sum over the remaining (disconnected)

The perturbative expansion of S contains connected as well ~ diagrams.

as disconnected Feynman diagrams. Accordingly, we write S), in turn, can be written as
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SO =38, &) =0 (p)M]), where
D,

=R RSN TEDSUEDSITED Yt
j=1 j=1 Jj=1 j=1 J=1 j=1
(10)

and the sum ) -, is over all connected diagrams Dy, D, ...
that have E external legs corresponding to the scattering

process (1). The dependence of Mgf) on the external
momenta k, ¢, [, k, g, is not shown explicitly for brevity.
In the following argument, we show that each of the
M§C>, M§C>, ... 1s separately gauge invariant.

We choose an arbitrary connected diagram, denoted D,,,
and establish the gauge invariance of the corresponding

./\/lgf). A straightforward calculation shows that M,(f), the

amputated amplitude of the connected diagram D, can be
written in the following form:

M) =@y g A»Y)

o (ke a. LG, UV

clalld — ﬁ [”T/Yjeaj(l;’s;)gﬂ(lj)} ﬁ 0 (ZJ’E})gP(Zl)
= VZp =1 VZp
. m u(kjij>ge(kj) U'zﬁﬁ(%j,wj)ge(’z])

Using (10), we define /\/l;f), the amputated amplitude of the
connected diagram Dy, as the coefficient of (27)*8*(p) in

SE,C). The same definition applies to the gauge transform as

well. Specifically, if S_l(f) is the gauge transform of Sgp,
then the gauge-transformed amputated amplitude of D,

namely, /\;l(bc> is the coefficient of (27)*5*(p) in ng),
Sy = (2a)*s* (p) M} + B, (12)

where B does not contain a factor of §*(p) and hence
does not contribute to the gauge-transformed amputated
amplitude. To prove gauge invariance, we show that

My = M.
Consider the infinitesimal gauge transformation,

w(x) = y'(x) = (1 + ieea(x))y(x),
A, (x) = A (x) = A, (x) — ed,a(x), (13)

where the small parameter ¢ has been included for
bookkeeping.

In the perturbative expansion of Gyyjz, let GE{II’])[&] denote
the term that corresponds to the connected diagram D;, with

E external legs. As the result of the infinitesimal gauge
transformation (13),

(b) (b) _ () (»)
Glai) = Clafia) = Clafla) T C ajfa)’
S\ 5 89 =819 4 581, (14)

where ng) and ng) are obtained by applying the ampu-
tation operators, shown in (5), to GE(ZZ])[a] and G<b)

respectively. o

First, since a is a c-number field, and (0[7'(d,a)A, |0) = 0,
the photon propagator (0|TA,A,|0) is gauge invariant at
O(e). Therefore, we can replace all transformed photon

fields Aj, in G[(:])[a]’ at O(e), with the corresponding untrans-

formed fields A,

Second, we note the j#(x) = y(x)y*w(x) is invariant
under the gauge transformation (13) at O(e). Hence, the
transformed fields ' and ' occurring in the transformed
interaction Hamiltonian term (j')*Aj, within GE:])[&] can be
replaced by the corresponding untransformed fields y and
W, respectively.

Thus, at O(e), the only transformed fields left in GES])[{)]
are ¥'(x), ¥ (y), ¥ (%), ¥ (9), which are the transforms of
the fields ¥(x), ¥(y), ¥(%), ¥(¥) defined in (2).

At O(¢), we have

b e SN
5GEa])[a] (x,%,9,9,2,2) = ice [Z a(y;) + Z a(X;)

j=1 j=1

=

|
S}
—
=
.
N
|
M <
Q
—
=t
~.
Nl
—_

X G[w)[a] (0, %, 9, 9.2, 2). (15)

58?, shown in (14), is obtained by the action of the

amputation operators, shown in (5), on 5GE5])[5¢] above.

Consider the term a(yl)GEé’])[&] (x,%,¥,9,2,2). Since ais a
real-valued function, it can be expanded as

alyr) = / gT){am +a(s)e™).  (16)

The action of the amputation operators, shown in (5), on
a(yl)GE(z)[&] yields, after a straightforward calculation,

5826;;] given by
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2
() _ i@y 71— 9.(p — q1) 1(b) I N .
5Sb;611 K VU[ (gll +m)} [ﬂ_% —m + ie A[a][&](kyq 71, k7 q, l){(l( p) +a (p)}UV’ (17)
where
A (ko 1 Fad) = |— | AD) (kg 1F ] = 18
(k- 41k 8. 1) = |2 | A (ke 4 Lk @ D) d = @0 = P (18)
Since SE,C) in (10) contains a factor of 5*(p), we can—treating k, g», ..., g,,, , k, g, 1 as the independent variables—rewrite
AE;)[&] (k,q,1, k, Z],Z) in (11) in terms of ¢’ as
M) = K@y i AR (kg 1 kg UV, (19)

where, as defined above, ¢' = q, — p, g2, ..., q,. Using (17) and (19), we have

S 468K = K@y (2754 (p)ge(@1)? — Ap, q1)J AL (k. ¢/, 1 F. 2. DUV,

Alp.q1) = (4 +m){

9.(p—q1)*
p—q, —m+ie

[o[a]

]{a(—m L (). (20)

Since /\;lgf) is the coefficient of the factor (27)*5*(p) in ng) + 58%1, we need to extract the component of §*(p) in
A(p,q;). We do so in Appendix C, in which we have shown that

a(p) ()| 2=

9.(p— 1) } — a(0

[ 9.(q1)*

m} (27)*6*(p) +Q(p. q1),

where Q(p, g,) has terms that contain derivatives of §*(p) and §*(p — ¢,) and no factor of 6*(p). Therefore, from (12),

we have

But from (8), «(0) = 0, and the second term within the
bracket, which contains the factor of «(0), vanishes at every
€ # 0. Using (21), (18), and (19), we have

My =My, (22)

showing that the amplitude of the diagram D, is gauge
invariant.

Although the above argument focused on the connected
diagram D,,, it is important to note that the argument did not
rely on any special feature of D, other than that it is a
connected diagram. Hence, the above argument can be
applied to any connected diagram and thus establishes the
gauge invariance of the amputated amplitude of every
connected diagram in QED. In particular, it can be applied
to diagrams Dy, D,, ... to establish the gauge invariance of

Mgc), /\/lgc), ... and hence the gauge invariance of S(¢),

M) = K@y g [gqu)z = (g1 +m)a(0) [m

(k,q',1,k,q,)UV. (21)

o][a]

9e(q1)? HA[@[

Next, we consider the S@ in (9). S@ can be written as
the sum of terms, where each term is a product of factors
with each factor corresponding to a connected diagram.
The above argument establishes the gauge invariance of
each connected diagram and thus the gauge invariance of
the product of connected diagrams. It follows that S is
gauge invariant as well, completing the proof of gauge
invariance of the S-matrix in QED.

III. CONSEQUENCES OF EQUAL-TIME
COMMUTATION RELATIONS

As is well-known, imposing equal-time commutation
relations (ETCR) on the gauge field and its conjugate in
QED forces the quantization procedure for the gauge field
to deviate significantly from the standard field quantization
procedure. The complications that arise in the quantization
of the gauge field and the several modifications that are
made to address the complications are imputed not to the

096025-6
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ETCR but to the unphysical degrees of freedom in the
gauge field. The ETCR on a field and its conjugate were
first postulated by Heisenberg and Pauli [2].

In this section, we summarize the modifications that are
made in the standard quantization procedure to accom-
modate the ETCR in two popular gauges—the Coulomb
gauge and the Lorenz (covariant) gauge.

Since the momentum conjugate to A°, namely, z° van-
ishes, A° is a nondynamical field. The Euler-Lagrange
equation for A°, however, imposes a condition on the gauge
field, namely, the Gauss’ law,

V.E=0, (23)

which must be satisfied by the quantized gauge field.

In Lorenz (covariant) gauge, manifest Lorentz covari-
ance is maintained by imposing ETCR on all four of the
field components as

(A, (E. 1), 7, (5. 1)] = in,,& (X = §). (24)

The ETCR immediately leads to two contradictions. First,
the ETCR for A° is not satisfied since z° = 0. Second, the

ETCR for A contradicts Gauss’ law (23). To fix the first
contradiction, the Lagrangian is modified as

1 1 1
L= FuF" = L= = F P ~ 2% (9,A4)%.  (25)

While the modified Lagrangian repairs the problem of
vanishing 7°, the theory described by £’ is different from
the original theory for the gauge field. For example,
Maxwell’s equations do not arise as Euler-Lagrange equa-
tions from £’. To recover the original theory, one imposes
the Lorenz (covariant) gauge condition,

9,A" = 0. (26)

However, imposing (26) as an operator condition reverses
the modification shown in (25). Therefore, a second ad hoc
patch is applied by insisting that (26) holds not as an
operator condition but in a weaker form as described later.
Since (26) is not imposed in operator form, the Euler-
Lagrange equations derived from £’ are not Maxwell’s
equations.

The modification of the Lagrangian, shown in (25),
repairs the problem in the ETCR of A°, but creates a new
problem that did not exist in £—the new Lagrangian £’ is
not gauge invariant.

The gauge dependence of £’ is repaired by applying a third
ad hoc patch that involves introducing an unphysical ghost
field. So £’ is modified further by adding a term containing
ghost field to get £”. The ghost field is then stipulated to
transform, under a gauge transformation, in exactly the right
manner to recover gauge invariance of £” [8].

The ETCR on all the four components of A# together
with the expansion of the free field as

dk S

A= | —— et(k,s
/ (2ﬂ)3(2w(k>); )
x {a(k, s)e~ ™ + &t (k, s)e’}

constrains the creation and annihilation operators to obey
the commutation relations,

-

[a(k.s),a" (K. 5)] = =" Qw(k))(27)38(k = k). (27)

The negative sign in (27) gives rise to another problem—it
makes the metric of the Fock space and the expectation
value of the Hamiltonian operator indefinite (not positive
semidefinite) [9].

The negative expectation value of the Hamiltonian, and
the restriction that the gauge condition (26) cannot be
imposed as an operator condition, are addressed with the
patch proposed by Gupta and Bleuler [10]. By fiat, a state in
the Fock space is declared as a “physical” state if it satisfies
the condition

3,AHly) =0, (28)

as suggested by Gupta and Bleuler [10]. The 0ﬂA(+>”
represents the positive energy component. States in the
Fock space that do not satisfy (28) are declared as “unphys-
ical” states and, by fiat, excluded. The constraint (28)
eliminates the negative expectation value of the
Hamiltonian for the “physical” states and implements the
gauge condition (26) in a weaker form as
(wl|o,A*|yr) = 0, w: physical state. (29)

Implementing the gauge condition (26) in the weaker form
as (29), and not as an operator equation, implies that the
operator £’ remains different from the original Lagrangian
operator L of the original theory, and Maxwell’s equations do
not emerge as Euler-Lagrange equations from £’.

In Coulomb gauge, manifest Lorentz covariance is
sacrificed by stipulating

V-A=0, (30)

and the ETCR are imposed only on the three dynamical

fields in A. However, since the momentum conjugate to A’
is 7 = —E', the ETCR,

[AT(E ). 7 (5.1)] = i678° (X = §), (31)
contradicts both Gauss’ law (23) as well as the gauge

condition (30). For example, when the operator d/dy’ acts
on (31), the left-hand side must vanish due to Gauss’ law,

096025-7



NAGABHUSHANA PRABHU

PHYS. REV. D 109, 096025 (2024)

but the right-hand side id/dy/&° (X — ¥) does not. The stress
between ETCR (31) on the one hand and Gauss’ law (23)
and gauge condition (30) on the other is resolved by either
abandoning (31) or by abandoning (23) and (30) as
operator constraints.

In one ad hoc modification, the § function on the right-
hand side of (31) is replaced with the so-called transverse
delta function &;.(X —¥), which is constructed to satisfy
0/0y/53.(X — y) = 9/0x/83(X — ¥) = 0. That is, the ETCR
(31) is replaced by the modified ETCR,

7! (§. 1))

which conforms with Gauss’ law and the gauge condition.

The alternative is to make a different ad hoc modification
by abandoning Gauss’ law and gauge condition as operator
conditions, implementing them instead in a weaker form
[9]. The Fock space would then need to be partitioned into
the set of “physical” states and “unphysical” states, along
the lines followed in Gupta-Bleuler formalism.

In summary, imposing ETCR on the gauge field and its
conjugate leads to several downstream consequences such
as violation of Gauss’ law, indefinite metric on the Fock
space, and negative expectation value for the Hamiltonian.
To preserve the ETCR, the above deficiencies are repaired
with a sequence of ad hoc patches, such as modification of
the Maxwell Lagrangian, abandoning Maxwell’s equations
in the operator form, introduction of “unphysical” ghost
field, stipulating, by fiat, certain states in the Fock space as
“unphysical”, or in a somewhat extreme step changing the
canonical ETCR itself as in (32).

[AT(X. 1), = 1653 (X = ). (32)

IV. QUANTIZATION OF THE QED GAUGE FIELD
IN AUTOREGULARIZATION

As discussed in the previous section, imposing ETCR on
the gauge field and its conjugate in QED hinders the
quantization of the gauge field. Several ad hoc modifica-
tions of the canonical quantization procedure, and even the
ETCR itself, are used to overcome the hurdles created by
the ETCR. The hurdles are often imputed to the redundant
degrees of freedom in the gauge field [9] rather than their
actual source—the ETCR.

Autoregularization does not impose ETCR on the field
and its conjugate and only postulates commutation rela-
tions on the creation and annihilation operators. Therefore,
as we show below, the gauge field can be quantized in
autoregularization without any modification of the canoni-
cal quantization procedure, despite the redundant degrees
of freedom in the gauge field. We present gauge field
quantization based on autoregularization in the covariant
gauge. As we show, Gauss’ law, Maxwell’s equations, and
the gauge condition hold in the operator form. Gauge
invariance is preserved without having to introduce the
unphysical ghost field. The Fock space and the expectation
value of the Hamiltonian are not indefinite. All the states in

the Fock space are physical states. The redundant degrees
of freedom decouple naturally from the theory.
The free gauge field is expanded in autoregularization as

H = dil_é k : H P alr —ikx
At (x) = / (2ﬂ>3<2a)(lz))gﬁ(k){;€ (k.s)[a(k,s)e
At (K, 5) e } (33)

with the creation and annihilation operators satisfying the
canonical commutation relations stipulated for generic
boson fields,

A%, ). 87 (. 5")] = 6, (20(0) (275 (k- F),

5,8 =0,1,2,3. (34)

The polarization vectors satisfy Lorentz-invariant
normalization,

e (k, s)e, (k. s') = n*. (35)

We choose the polarization vectors as follows:

= (1,0,0,0),

(k. 0)
k.2) = (0.2,).

e*(k.2)

As mentioned earlier we focus on Lorenz (covariant)
gauge. In autoregularization, ETCR are not imposed on the
gauge field and its conjugate. As a result, we do not have to,
and do not, modify the Lagrangian,

1

L= ZF Pl (37)
by adding a gauge-fixing term, as is done in HPF
Consequently, Maxwell’s equations (Euler-Lagrange equa-
tions) are satisfied in operator form. Since the Lagrangian
(37) is unmodified, it remains gauge invariant. Therefore, in
autoregularization, one does not need to introduce ghost
fields to preserve gauge invariance of the lagrangian.
Further, there is no hurdle in autoregularization to imposing
the Lorenz (covariant) gauge condition (26) in operator
form, obviating the contrived partition of the Fock space
into “physical” and “unphysical” states as in the Gupta-
Bleuler formalism.

Using (33) and (36), the gauge condition (26) yields

/(277 32a( 9p (K Kyo(K)[—ie~% {a(k,0) — a(k.3)}

(k))
T(k,0) - a%(k.3)}] = 0. (38)

+ lezkx{
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Applying the operator [ d¥e'?*d, to the left- and right-
hand sides of (38), where 22 = 0, we obtain

4(q.0) = a(q.3). (39)

Similarly, applying [ d)_c'e_iﬁx(go to the left- and right-hand
sides of (38) shows that

47(¢.0) =4a%(4.3). (40)

An immediate consequence of (39), (40), and (34) is that
both a%(g,0) and a7(g, 3) create states of zero norm when
they act on vacuum. For example,

A similar argument shows that states created by a'(g, 3)
also have zero norm. But the only vector in the Hilbert
space that has zero norm is the zero vector [11]. Since the
space of single particle states form a Hilbert space, we
conclude that

4'(g.0)|0) = a%(4.3)[0) = 0. (41)

That is, the gauge condition leads to the remarkable
conclusion that not only the annihilation operators but also
the creation operators of the scalar and longitudinal modes
annihilate vacuum! The creation operators a'(g,0) and
a%(g, 3) do not produce single particle states, and thus, the
redundant degrees of freedom naturally decouple from the
theory.

9gp(ﬁ) #0, but w(g) =0 for ¢ =0. So strictly, we can
conclude (26) only for ¢ # 0. Stipulating that (26) holds even
when g = 0 is not inconsistent with the gauge condition (26), and
hence, we take it to hold for g = 0 as well.

From (39), (40), and (33), it follows that

E = -VA" - g,A
- d—]_{)w_) 2E_>SA_>Se—ikx
- / (27)* Cw (k) (k)g, (k) b_; (%, s)a(k. )

— [é(k,2)a% (k, 1) — &(k. 1)a" (k. 2)]e’*}. (42)

The scalar and longitudinal creation and annihilation
operators do not appear in E and B. Since 5(1? s)-k=0
for s = 1, 2, it follows from (42) that Gauss’ law V - E=0
is satisfied in the operator form.

Using (42), the Hamiltonian [[12], Eq. (5.36)] can be
written as

{a(k, s)a’ (k. s)

Il
| —
[\®)

S
SN—
S
N
IS
—
~I
SN—
N—

S

—

bl

S—
NS

—

=~

N—
]~

Using the occupation number basis of the Fock space,
formed by the eigenvectors of the number operator of the
form [13]

|n1,n2,

3
HH 1/2< )"[0),  (43)
i j= ()

where the index i labels the momentum eigenstates10 in the
single-particle Hilbert space, we see that the Hamiltonian is
positive semidefinite.

Using the occupation number basis of the Fock space
and the commutation relations (34), one can also verify that
all the states in the Fock space have non-negative norm.

In summary, we have shown that the gauge field in QED
can be quantized in Lorenz (covariant) gauge with a
straightforward application of the canonical quantization
procedure in autoregularization. In contrast, the gauge field
quantization in the same gauge in HPF (Heisenberg-Pauli
framework) is a relatively convoluted procedure, as

l()Counting single-particle states ﬁ*(l_c', $)|0),s =0, 1, 2, 3 as
four different momentum eigenstates.
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summarized in Sec. II. Specifically, Maxwell’s equations
are satisfied as Euler-Lagrange equations in operator form
in autoregularization but are not satisfied in HPF. Second,
the gauge condition (26) can be applied in operator form in
autoregularization but only in a weaker form (29) in HPF.
Third, the unphysical modes—the scalar and longitudinal
modes—decouple naturally from the theory in autoregula-
rization, as shown in (41). In contrast, in HPF, the Fock
space is partitioned, by fiat, into “physical” and “unphys-
ical” states to force the decoupling of the unphysical
modes. Fourth, the Lagrangian remains gauge invariant
in autoregularization obviating the need to introduce the
ghost field; in contrast, the loss of gauge invariance due to
the addition of a gauge-fixing term in HPF necessitates the
introduction of the contrived ghost field in HPF. Fifth, the
Fock space has no negative-norm states in autoregulariza-
tion, whereas the single-particle states with scalar photons
have negative norm in HPF. Finally, the expectation value
of the Hamiltonian is naturally positive semidefinite in
autoregularization. In contrast, curing the indefiniteness of
the expectation value of the Hamiltonian in HPF hinges on
the imposition of the Gupta-Bleuler condition (28) by fiat.
The differences between autoregularization and HPF can
be imputed to the ETCR, which are imposed in HPF and
omitted in autoregularization. In a sense, it can be argued
that the convoluted modifications in the quantization
procedure in HPF, necessitated by ETCR, reinforce
Dirac’s objection to the Heisenberg-Pauli framework.

V. RENORMALIZATION USING
AUTOREGULRIZATION

In this section, we describe renormalization based on
autoregularization. We also derive the renormalization
group equation (RGE) based on autoregularization. The
derivation is markedly different from the corresponding
derivation in other regularization schemes, because the
perturbative corrections in autoregularization are finite at
all orders. Consequently, in renormalization based on
autoregularization, the counterterms are designed not to
cancel divergences but to implement renormalization pre-
scriptions, and all the counterterms are finite as well. Also,
unlike the other regularization schemes, which introduce a
fictitious energy scale, the energy scale used in autoregu-
larization has a transparent physical meaning—it is the
kinematic scale of the scattering process of interest. Thus,
the RGE depends on the scattering process under consid-
eration. For these reasons, the renormalization procedure
and the derivation of the RGE rely on different arguments
than those used by other regularization procedures.

We present the details of the renormalization procedure
and the derivation of the RGE using the ¢* theory. Similar
arguments can be used for other Lagrangians. The dis-
cussion is organized as follows. In Sec. VA, we describe
the renormalization of ¢* theory up to 1-loop to illustrate
the renormalization procedure based on autoregularization.

In Sec. V B, we derive the renormalization group equation
based on autoregularization.

A. Renormalization of @* theory at 1-loop

We use on-shell renormalization. That is, the renormal-
ization (subtraction) prescriptions for the parameters are
derived from physical measurements of the parameters.

Consider the Lagrangian of the ¢* theory,

A
-2 (/)4’ (44)

1 1
L, ==0"9d,p — = myg* 2l

2 2
where m, is the physical self-energy (mass) of a particle
measured in its rest frame. A particle at rest can be thought
of as scattering from an on-shell in-state to an on-shell out-
state, with the energy scale of the scattering process given
by © =m,,.

A, represents the measured physical strength of the
coupling in a 2-particle scattering process in which two
incoming on-shell particles, with vanishing 3-momenta,
scatter to two outgoing on-shell particles with vanishing
3-momenta, in the center-of-momentum frame of the
scattering process. The energy scale of such a scattering
process is 7 = 2m,,.

As is well-known, the full propagator in momentum
space can be written as

G20 = G2 + PR S ERGE |)

n=1

where Géz)(k) is the propagator at O(49), and X(k)
represents the sum of amputated, 1-particle irreducible
diagrams. Recalling that

i (ks m
(2) lg(p(k’ p’T)
Gy (k) = 5———-, 45
0 (0 K> —m? + ie (45)

we can formally sum the series to obtain

20
2) igy(kym,, 1)
G2 (k) = . (46
i (k) K —m? + ie — igh (kym,,, 7)E(k) (46)

where g, is the Gibbs factor for a massive scalar boson.
Representing X at O(4,) as X;, we have

ﬂp/ d*q go(qim,.7)
(

Z(ksA, m,, 1) =3 27—+ ie
P

We note that the correction X; depends on the scale .
Second, as we have showed in Corollary 1 in Appendix B,
X, is finite in autoregularization, unlike in the other
regularization schemes in which it diverges quadratically.
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Thus the purpose of the counterterms in renormalization
based on autoregularization is not to cancel divergences but
to impose the renormalization prescription at every order of
perturbation theory. The two renormalization prescriptions
we stipulate are as follows:

RP;: The full propagator G( (k) of a particle at rest

[k = (m,.0,0,0)] must comc1de with the propagator

of a free field of mass m,, namely, G(()Z)(k). That is,

P,
2 2
G‘Ej(k; Mp, T)|,:mp = G(() )(k; mP’T)|f:m,,’
k = (m,.0.0.0). (47)

RP,: The renormalized coupling constant, measured in a
scattering process in which two incoming particles at
rest scatter to two outgoing particles at rest, must
be 4,,.

To implement the first prescription, we add a counterterm,

which modifies the propagator (46) at O(4,) as

_ igh(k;m,,7)
K- m?, + ie — igg,(k; m,,7)|

T - idpA]
Setting k= (m,.,0,0,0), the first prescription RP; is

[21 - illPAIHk:l} = O,

which yields

=)

The prescription (49) is manifestly Lorentz invariant owing
to the Lorentz invariance of the Gibbs factor. From
Corollary 1 (Appendix B) we also note that A, (z) is finite,
unlike in other regularization schemes.

d*q gg(qim,.7)
Q2r)tq* —m3 + ie’

(49)

1 Next, consider the amputated 4-point function
8L, = —=1,A¢?, 48 ’
LT T (48) G® (k,. ky. ks, ky) defined as
|
4 d4x elk]x] 127)
2004 (3 by ) 6k k) / 11 O {p(x)...0(x)}0).
= lgq, k m, T)
where ¢ is in Heisenberg representation.
Adding terms up to O(43), a simple calculation shows
@ : G [P ey 0
G2 (k], k2, k3, k4) = —lﬂp + (—1/11)) (271')4 [GO (p)GO (k] -+ k2 - p)
+Go ()G (ky + ks = p) + GG (P)GE (ky + ks = p)]
To impose the second renormalization prescription, we add the counterterm
A
5Ly = —A2 < 2) ot (50)
which modifies the G5 — G = G — i22A,. That is,
GO (ke e ks k) = —i285 = i2, + (=idy)? | L2162 ()G
2 ( 1, R2,5 13, 4) = —lApAy — 1A, + (_lllp) (2”)4 [GO (p)GO (kl +k2 _p>
+ Gy ()G (ky + ks = p) + G (P)GE (ky + ky = p)]
The second renormalization prescription stipulates that for ky = k, = k3 = ky = (m,,0,0,0) =:¢
> (4 .
G (q.9.9.9) = —i2,.
That is,
[ d'p [igg(pim,.0)| [ igy(2q — pim,.7)
A2(7>:3l/ 4{2(# T | (51)
(27)* | p* —my, +ie] [(2g — p)* — my, + ie
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From Corollary 3 (Appendix E), it follows that A,(7) is
finite. If the Gibbs factors are set to unity, then A, diverges
logarithmically.

The above sample calculations illustrate the renormal-
ization procedure based on autoregularization. As the
calculations 1illustrate, the perturbative corrections and
the counterterms are finite. Next, we turn to the derivation
of the renormalization group equation.

B. Renormalization group equation

In this section, we derive the renormalization group
equation based on autoregularization. We note that the bare
Lagrangian can be written in terms of the bare parameters
and fields as

i (p4. (52)

1
mb(pb 4!

1
= _aﬂ(pbaﬂ(pb 3

Ly=1Ly) =3

The bare Lagrangian can also be written in terms of
physical parameters and fields using the multiplicative
renormalization constants  Z,(z;4,,m,), Z,,(t;4,,m,),
and Z,(z;4,,m,),

1/2,=1/2 _
my, = Zy! Z, / my, Py = Z(,,/ 7 Ay = 2,272,

(53)

as

1
Eb—ﬁ) 2Z¢()”(pp6“q0p

1 A
—Emef,(pfv - Z/14—1;(p§,. (54)

The renormalization constants can be calculated using
the counterterms. For example, at 1-loop, from (48) and
(51), we have

A,A
Zm:1+ rl

’

m,
and from (50) and (51), we have
Z) =1+ 1,A,.

The wave function renormalization constant Z, does not
receive a correction at 1-loop—the order to which we have
shown renormalization calculation in Sec. VA. However,
Z, does receive a correction at 2-loop; see [9]. The
superscripts b and p indicate whether £, is written in
terms of the bare or physical quantities.

We define the n-point function G<”>(kl,
momentum space as

(27)45* <Z kl-) GW (k. ..

i=1

,k,) in

ki Ay m, ,T)

= [T e 0ty ). opH0). 69

where @, is in the Heisenberg representation. The param-
eters 4, m, are shown explicitly to indicate (0|T¢),(x;)...
®,(x,)0) is evaluated in a perturbative expansion using the

Lagrangian ng’ ) written in terms of the physical parameters
as shown in (54).
Similarly,

n

(27)45* <Z ki> G (ky. .o ks Ay . 7)

i=1

— /ﬁd4xjeiij/‘<0\T{gob(x1)...(pb(xn)}\0>, (56)

where the parameters 4, m,, indicate that (0|T¢,(x)...
¢p(x,)|0) is evaluated in a perturbative expansion using the
bare Lagrangian £, written in terms of the bare parameters
as in (52). The vacuum |0) shown in both (55) and (56) is
the vacuum of the same interacting theory corresponding to
the Lagrangian L.

Since g(x) = Zy/ %, (%),
O[Ty (x1)...0(x,)[0) = Z4/* (0T o, (x1)...00, (x,,)|0).
(57)
and thus,
GV (ky,s oo ks Aoy, T) = ZPGY Ky, s ks Ay my, 7).
(58)

or using (53), we have

kys Ap.my,T)

G (ky, ... ki Ay,
= 7,26 (ky, ks 202520, 20275 Pm 7). (59)

In Gﬁ,’o(kl, .oosky3 A, my,, ), we scale momenta on both
the external legs (k;) and mternal legs (p;) of a Feynman
diagram, the mass m s and 7 as

ki = q; = k;/7, pi/t.

- 1=1/r,

pj—= D=

my = pp = m,[,

where ¢;, p;, u, are dimensionless variables.
Noting that for a generic momentum I, g5 (l,m,,7) =
g5(l/T,m,/z, 1) straightforward counting'' shows that

"In ¢* theory, a diagram with V vertices and n external legs
has I =2V —n/2 internal legs and L =1 —V + 1 loops. The
I+ n propagators contribute = 77~ and the L integral
measures contribute 7#V=2"** to the counting, giving an overall
factor of 74737,
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Gy (ky,s oo ki Ay, T)

:T4_3n(G)1(U)(QI7“H%ﬁﬂp’ﬂp’l)’ (60)

with the understanding that the momentumlike variables on
external and internal legs and the loop integration variables
are all dimensionless. We can rewrite the above identity12 as

(G);n)(ql’ tet q}l;ﬂpvﬂpv 1)
= 1-3”—4G£7n) (qu’ ceey an;ﬂ‘pa T,Ltp, T)- (61)

Instead of considering 4, and m,, as the z-independent free
variables, we can regard 4, and y,, to be the z-independent
free variables, making m, = zu,, r-dependent. The bare
Lagrangian (54) can be written in terms of 1, and u, as

~ 1 ~ 1 A,
Ly = Z(Piaﬂqopaﬂqop —Zy B (/‘p) Z/I 41 (Pp,

with

27

Zm(f; j'p,/lp) (2 (T Apv T/"p)
Z(/J(T;Ap’ﬂp) = Z (T;j‘p"[/’t[))7
Z/I(T;Apvﬂp) = Z/‘{(T;j'pv T/"p)‘

Then, the left-hand side of (61) is independent of 7z, and
therefore,

d

E(G)Ev")(ql, e i Ap iy, 1) = 0. (62)

Using (59) and (61), we can rewrite (62) as

d n/2 ~(n
dT[ 3n 4Z(ﬂ / G( )(TQIM-"

=0. (63)

2
14,2, 2520, 20 2, P, 7))

As shown in Appendix F, differentiating in (63), we obtain
the renormalization group equation,

9 9
3n—4 2 Ay — —
{( n ) + (I’l/ )ya + 7 4 0ﬂp +}I/nup a’up
9 0) n
+ k¢ ok + z—}G; V(kys ooy ks Ky Kptpty, 7) = 0,

(64)
where y,, 7,, v, are defined in (F5), and

We get 3n—4 as the scaling exponent, instead of n — 4
obtained in vertex functions because, unlike in the vertex
functions, the propagators of external legs are included in

Gy (koo by Ay 1, 7).

1/25-1/2
z*z,\ 2.

K/l(/lpv Hp, T) = ZﬂZ(ZZa

Km(lpwup’ T) =
The renormalization constants Z,, Z,,, and Zq, can be
calculated order by order in perturbation theory as shown
in Sec. VA. It should be noted that, unlike in other
regularization schemes, the renormalization constants are
finite, at every order of perturbation, in autoregularization.
The one important feature of autoregularization is that the
scale 7 has a transparent physical meaning—it is the Lorentz-
invariant kinematic scale of the scattering process of interest.

VI. CONCLUSION

We have presented a proof of gauge invariance of the
QED S-matrix that is stronger than previous proofs. Our
argument—valid within both autoregularization and the
current QFT—shows that the amplitude of every contributing
Feynman diagram is separately gauge invariant; in contrast,
the previous arguments establish gauge invariance of a sum of
amplitudes of the contributing Feynman diagrams. We also
showed that autoregularization yields a new method for
quantizing the QED gauge field in covariant gauge that is
significantly simpler than the standard Gupta-Bleuler
method. In the new gauge quantization method, ghost fields
are not needed. The unphysical modes decouple naturally.
The QED Lagrangian does not have to be modified. The
expectation value of the Hamiltonian is positive semidefinite.
The Fock space has a nonnegative norm and does not have to
be partitioned into “physical” and “unphysical” states, nor
gauge condition imposed in a weak form. Finally, we
illustrated renormalization at 1-loop in autoregularization
using the ¢* theory and derived the renormalization group
equation (RGE). The RGE we derive has a straightforward
physical interpretation—it describes the evolution of the
correlation function with the kinematic scale of the scattering
process of interest.
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APPENDIX A: OVERVIEW
OF AUTOREGULARIZATION

In this appendix, we present a summary of autoregula-
rization, which is described in greater detail in [1]. Consider
a scattering process P in which m incoming particles with
momenta py,...p,, scatter to n outgoing particles with
momenta ¢y, ..., q,,

P: pr+.t+pp—=>q+ ... +q, (A1)

For simplicity, we assume that one of the particles
participating in the scattering process is described by a
scalar field ¢ of mass m > 0.

In autoregularization, the free-field expansion of ¢ is
taken to be

096025-13



NAGABHUSHANA PRABHU

PHYS. REV. D 109, 096025 (2024)

“P) = dk DAk e=** L AT (k) ek
oxP)= [ o oy P PRI 8 (B

(A2)

where g,,(k;P) is Lorentz-invariant Gibbs factor, which
depends on the process P. The Gibbs factors are defined as

[[1], Eq. (6)],
d,

. 1/4
By B )71

. . d, 1/4
91,/(1(’7)) = |:e("3u/(1<)—ﬂ|y)/7+]:|

W . massive boson

y . massive fermion,

d

v ]/ . 1 b
By W+ Ey ) _| Y . massless boson

(A3)

where d,, is the number of degrees of freedom of the y
field, defined in [[1], Sec. 2.2]. E,, (k) is a Lorentz-invariant

that reduces to w(k) = \/|k]>+m? in the center-of-

momentum (CM) frame. The construction of E, (k) is
described in [[1], Sec. 2.1]. p, is a Lorentz-invariant
chemical potential of y, defined in [1, Eq. (7)]. 7 is the
Lorentz invariant kinematic scale of the process P, defined
in [1, Eq. (8)] and reproduced in (A4) below:

o UL SE S )
’ i€l JjeET

where ZC{1,....m},JC{l,....,n},0<|Z|+|T|<m+n.

When the process P is clear from the context, we

abbreviate g,,(k; P) to g,,(k) and omit the subscript in 7.

The free-field expansion in (A2) satisfies the Klein-
Gordon equation. From (A3), we note that gf,‘, resembles the
Fermi-Dirac (Bose-Einstein) distribution if y is a massive
fermion (boson). An extra 7/ E,, (k) term has been added to
the exponent in the Gibbs factor of the massless boson to
suppress the IR divergence; the validity of the extra term,
and of the form of all the Gibbs factors, is supported by the
preliminary tests of autoregularization presented in [1].
We also note that gi resembles the classical Gibbs factor
for E, (k)/7 > 1.

Since the Gibbs factor depends on P, the free-field
expansion in (A2) also depends on the scattering process P
representing a departure from previous formalism, which
relied on process-independent free-field expansions. The
calculation of the scattering amplitudes is thus customized
to the scattering process under consideration.

The Gibbs factor in the free-field expansion (A2) breaks
the equivalence between equal-time commutation relations
(ETCR) imposed on the field and its conjugate momentum
on the one hand and the commutation relations on the
creation and annihilation operators on the other. In autor-
egularization, the standard commutation relations are

imposed on the creation and annihilation operators a and
4", and the ETCR on the field and its momentum are omitted.
Thus, the individual oscillators are quantized and not the
field, representing a reversion to the Diracian approach.

Straightforward calculations show that the Gibbs factor
in (A2) modifies the propagator. Thus, we have

D(x —y) = (0[Tp(x)p(y)[0)

Ik e—ik(x—y)
= lim|i k;P)?|.
P [1/ (2r)* {k2 —-m*+ ie}gq}( P) ]

Similarly, factors of gﬁ, appear in the propagator when yr is a
massive fermion or a massless boson. Finally, the Gibbs
factors lead to a straightforward modification of the LSZ
formalism [[1], Sec. 2.4].

APPENDIX B: FINITENESS
OF THE PROPAGATOR

We show that the propagator of the ¢* theory, D(x — y),
which is quadratically divergent in the Heisenberg-Pauli
framework (HPF), is finite in autoregularization.

The propagator is given by

d*k e gl (k)
(27)* K —m?+ie

D(x=y) = (O[Tp(x)o(y)0) ~limy [

where g, (k) is the Gibbs factor, which we abbreviate as
g(k) hereafter. Since D(x — y) is Lorentz invariant, we can
choose a convenient frame for the calculation. We choose
the center-of-momentum frame of the scattering process of

interest in which g(k) depends only on k and is given by

2 1/4 BN/ 7174
g(k) = [@/} = [~] )
0/ _ sinh(@(r)/27)

where a)(lz) =4/ |l;|2 +m?, a(r)=Vrr+m?, r= |]:
and 7 is the kinematic scale of the scattering process of

interest as defined in (A4). For a massive scalar field, which
has no conserved charge, the chemical potential u, = 0.

’

-

With some abuse of notation, we write g(k) as g(k)
hereafter. Then,

. d]_é ik (=3
D(x_y):l/mek< Y)

- (o) e_iko(x _y0>
x g(k)*lim [ / dk° . :
=0l Jo T (k02 = (w(k) — ie)?

The k° integral is evaluated using contour integration,
closing the contour with a lower semicircle if x° > y° and
the upper semicircle if x° < y°. Performing the contour
integration we obtain

096025-14



GAUGE INVARIANCE, GAUGE FIELD QUANTIZATION, AND ... PHYS. REV. D 109, 096025 (2024)

Dlx=y) = 1673 k Therefore, we obtain the following corollary.

1 - [g(lz)z} i) =0 |+ (=) The above argument holds without modification if x = y.

(k) '
Corollary 1.

Taking the absolute value and performing the angular

integration, we have ' / d*k gk

2m)* k? — m? —|— ie 0
1 [ 1 e~ (/2 1/2
D(x—-y)|<— rre| = — . e also obtain the following coro or fermion
[D(x — )] 2/d2[ ][ ] We al btain the following llary for fermi
4r* Jo @(r)| [sinh(@(r)/27) propagator.
Noting that @(r) > r,@(r) > m, sinh(@(r)/2¢) > @(r) /22 > Corollary 2. The electron propagator,
m/2T we have (x) hm|: / d4k e—th (k) (}é+m)]
e 2n) kK -m?+ie |
oo 4+/2 5/2 0 (
L L
27\ 2m Jo n*/m is finite, where

De-@p)u)/2e  11/2 9 ) R
)} He = ap) = [p* +m?"2,  p=Ik.

9.(k)” = [cosh((a)(p) myaYoE Tor

ge(k) and y, are defined in (A3) and [1, Eq. (7)], respectively. a is the fine structure constant. g, (k)? has the form shown
above in the center-of-momentum frame.
Proof. We note

S(x) = iyoB°(x;m) + iy ;B (x; m) 4 iC(x; m),

d4k kue—lkxg (k)2 d4k e—ikxg (k)2
B# 5 = ¢ , C : — e
(x; m) / (2r)* k* —m? + ie (x; m) m/ (2rm)* k> —m? + ie

Since g, (k) = g,(—k) in center-of-momentum frame, B*(0; m) = 0. So in calculating B, we assume x # 0. Performing k°
integration, closing the contour using the upper (lower) semicircle, if X’ < 0 (x° > 0), we have

BO()C m) ﬂ:—/dpp )2 +ia(k)x 0+lkx
Noting that cosh(@) > 1, and @(p) > p,

[ d 26—10(,0)/47 <
2272 Jo e 2272 p

He/4T Lo . He/4T  [oo 324/213 ete/ 4t
B (x; m)| < ; / dpppersite = BT

Similarly, performing the k° contour integration in B/ and C, and noting |k/| < |12| = p, we have for j =1,2,3,

Bj(x;m) = / dk4ge(k)2kj 27[1 eiiﬁ(\z\)xo+i£-}’
(27) 2(|k])

|B] (x m)| eﬂe/4‘7 / - |k|e_“~)(‘k|)/47 < e”e/47 /oo dppz —p/41 _ 32\/57’-36”2/4‘[
~/17 2 B — .
8v/2r° a(k)  2V2x ™
Finally,
)| =|—im dk ge(k)zeii@(\lzl)xwz'l?} - meke/* oo Dope-nlit — A2l etel4t
| 167r3 =017 2\/2 2 PP — 5 -
(|k|) b b
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APPENDIX C: COMPONENT OF 64(1)) IN A(p,q,)
We recall from (20)

PRV
Alp.ar) = Gh-+m) | 2L =D () ().

Our objective is to extract the component of 5*(p) in A(p,q;). Using the definition of & in (16), we have
a(-p)+a(p) = /d4xe‘i1’xa(x).

Expanding a(x) around x = 0, we have
a(x) = a(0) + d0,a(0)x* + ...

Therefore, from (C1), we have
a(-p) +a*(p) = a(0)(27)*s*(p) + 9,2(0) / dxxteiY 4

= a(0)](22)%6%(p)] + i(22)*0,(0) [%64@)} T o= a(0)20'5(p) + ().

where B(p) contains terms that have derivatives of 6*(p). Therefore,

a(op) + @ ()| L] )| IO ayio(py 4 L2 D)

We note that

a2
—I/ ge;p (Jll. :—i/d4xS(x)e(P_ql)", (C2)
-y —m+ie
where S(x) is the electron propagator,
d4k kue—ikxg (k)2 d4k me—ikxg (k)2
S(x) = iB(x; iC(x;m), Bt = ¢ , C= ¢ .
@ =it vicsm). v =[G T o [

In the center-of-momentum frame of the process of interest, g,(k) = g,(—k), and as a result,”” B#(0;m) = 0. From
Corollary 2 in Appendix B, we know that B(x;m) and C(x;m) are finite.
Expanding B*(x;m) and C(x;m) about x = 0, and recalling that B#(0;m) = 0, we have

B*(x;m) = 0,B*(0;m)x* + ..., C(x;m) = C(0;m) +0,C(0;m)x* + ... (C3)
Inserting (C3) into (C2), we obtain

9.(p—q1)* 9

p—g,—m+ie

= COm)28)'5(p = 40) + 0,80m) + 0,02 |23 =) |+ (€

v

Inserting (C4) into (C1), we get

o(p) + ([P )| D 0154 (5) 4 €02 = 0)B(0) + M)

“The integrand becomes an odd function.
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where A(p,q,) contains terms that have derivatives of
5*(p—¢q,) and §*(p) and, as mentioned before, S(p)
contains terms that have derivatives of §*(p). In summary,

a(p) () |2 =0

_ ge(‘]l)z 4cd
= a(0) | ———— | (22)"5"(p) + Q(p, q1),  (C5)
—¢) —m + ie
where Q(p.q,) = C(0:m)(27)*6*(p = q1)B(p) + A(p.q1)
contains terms that have derivatives of &*(p)
and &*(p — q1).

APPENDIX D: FINITENESS OF AN INTEGRAL

The following lemma is used in the proof of finiteness in
Appendix E.

Lemma 1. Let f(x) be areal-valued continuously differ-
entiable function with bounded derivative in the interval
[a —€,a+ €], where a €R and 0 < € < 0. Then,

ate
F ==/ de < 0.
a—e X —d

Proof. The integral F is defined in the sense of Cauchy
principal value as

F_(3)+ F.(6))
Fo(8) = / RGN

ats X —d

F = lim|
6—0

where 0 < § < e. Settinga—x=yinF_(§)andx—a =y
in F(5), we have

F:lim/;[f(a‘l'y)—f(a—y)

6—0 y

dy.

From Mean Value Theorem, there exists a c(y)E(a—y,a+y)
for which

fla+y)—fla—y) = f'(c(y)(2y).
Therefore,
F= 211m/ f(c dy—Z/ f(c(y))dy. (D1)
Let
m=_ min f(. M= mx f(). (D2

From the assumptions in the Lemma, m and M are finite.
Using (D1) and (D2), we have

2me < F = Z/f’ ))dy < 2Me,

which completes the proof. =

k+p, +p,

P4 A q,
N s
Pz N

p, N~ q;

k

FIG. 1. A l-loop diagram D of 2-particle scattering in ¢*

theory.

APPENDIX E: FINITENESS OF THE AMPLITUDE
OF A 1-LOOP DIAGRAM

Figure 1 shows a 1-loop diagram D that arises in 2-
particle scattering in the ¢* theory14 of a massive scalar
field. We show that the amplitude of D is finite in
autoregularization. In contrast, D’s amplitude is logarithmi-
cally divergent in HPF.

The amputated amplitude of D in autoregularization is

A= (2n)*8*(py + P2 — q1 — q2)B1.
29(p1)9(p2)9(q1)9(q>)

ﬁ - b
(VZ)*
where
[ —tim [
e—0 (271')4

{ g (k)G (k + pi + p»)
(k* —m? + ie)((k + p; + p»)?* — m? + ie)

, (E1)

where the Gibbs factor g, has been abbreviated to g.
The corresponding amplitude in HPF, obtained by
setting the Gibbs factors to unity, is logarithmically
divergent.

We show that the integral 7 is finite. Since [ is
Lorentz invariant, we can perform the calculation in
any frame. We perform the calculation in the center-
of-momentum frame Fy in which p;+ p, =

(2va*> + m?,0,0,0), where a = |p,| = |p,|. For brevity,

we set y := 2V a?> + m?. In F ey, g(k) depends only on k
(see [[1], Sec. 2.1]) and with some abuse of notation, we

write (k) = g(k). glk + py + pa) =
g(k) = g(k). So, we can write I as

Hence, in F¢yy,

e = 0,90 — 2m¢—mgo.m>0and0<ﬂ<<l
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= lim d_l? k)4 0 !
= (2n)4g(k) / ak {((ko)z—(w(l_é)—ie)z)((k°+x)2—(w(§)—ie)z)}’

where w(k) = [k* + m?]"/%.
The k° integral can be evaluated with contour integration closing the contour using the upper semicircle. The integral on
the semicircle vanishes (see [[14], Sec. 70]) yielding

1
(K = (w(k) = ie)*) (K + )% = ((K) - ie)z)}

I can be written as

7l
S
Gayy -
R ]; 4 o 250 \4
Ii_/dk[ 9w ]_4;;/ d;{—~ () ] (E2)
w(K)(y + 2w(k)) 0 a(r)(x +2d(r))
where r = |I;|, 7 is the scale of the process as defined in (A4), and
2 e—(b(r)/ZT
o (r) = [r? 21172 g(r)* = |— = ) E3
)=l +m 5 g(r) me/f - 1] sinh(a(r)/27) (E3)
Since
a(r) > m, a(r)>r, x> 2m, sinh(@(r)/27) > sinh(m/27), (E4)
we have
—-r/2t
RV
gir)” < sinh(m/27)’
and
z 0 1677
I, < d 2 ,—r/2t _ . ES
T m? sinh(m/2r)% e m? sinh(m/27) = (ES)

To prove the finiteness of /_ we rationalize the denominator in the integrand. Using the definitions of y and @(r), we obtain

e, S0 [ R 2a()
I-= /0 d (r—a)’ flr) = L?)(r)(r—&—a) sinh(@(r)/27) |

(E6)

We prove the finiteness of /_ by considering two cases: a = 0 and a > 0. In the trivial case a = 0, in which the incoming
particles are at rest in F ¢y, ¥y = 2m, and we have

B 0 e—&}(r)/2r(m+&')(r)) B
-1 = 2’% dr[&)(r) sinh(&)(r)/Zr)} =10 +19,

I(l) 5 s J e—&)(r)/ZT 1(2) 5 I J e—(b(r)/Zr
- ”’"/o r[@(r)sinh(@(r)/zﬂ]’ - ”/o fLmh@(r)/zT)}

Using the inequalities in (E4), we have
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’

1M < 2ﬂim/m e dr :ﬁi < oo
msinh(m/27) Jo m sinh(m/27)

At

27 ©
P / g AT
= T sinh(m/27) Jo ¢ : sinh(m/27) =

Therefore, when a = 0, we have |I_| = IV + I?) < .
Next, we consider the case a > 0. Using (E6), we set

N(r) = r2e=®N/% (y £ 20(r)), D(r) = @(r)(r + a) sinh(@(r)/27).

Evaluating'> N'(r) and D'(r), we see that

is continuous and bounded in [a — €, a + ¢] forany 0 < ¢ < a. We pick a small ¢, satisfying 0 < ¢ < a and conclude, using

Lemma 1, in Appendix D, that

a+te
I, :==—-n ﬂdr < 00.
a— FT—a

Using (E6) we can write /_ as

I_=1p + 1+ I, IL:_”/“—ff(r) dr, IR:—zr/oo f(r) dr.
0 a

r—a 4l —a

We write f(r) as

f(r) = fi1(r) + fa(r),
B rZe—a”J(r)/%Z _ 2r28—(1)(r)/2r
Filr) = 50+ a)smn(@(n/z) 2(r) = (r + a) sinh(@(r)/27)

Using the bounds in (E4) and noting that |r? — a*| > €? in [0,a — €] and in [a + €, ), we obtain

X 2 —r)2t
<
= [mez sinh(m/Zr)]r c

fi(r)

r—a

fa(r)

r—a

= Lz sinh(m/27)

Using (E9)—(E11) and setting

= [ L2

we obtain

e~ N2 [dera(r) (y + 20(r)) = r (y +2a(r)) + 4177]
2zé(r)

_ sinh(&(r)/27){2zr(r + a) + 27@(r)?

2za(r

s

N'(r) =

D'(r) })~ + ra(r)(r + a) cosh(@(r)/27) .
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1| < é/u_e r2e”"dr < §(167°) < oo,
0

[Ig] < .f/oo rPe”"/7dr < E2t{8ar + 4a* + 87%}]
a+e

x e~/ < oo. (E12)
From (E9), (E8), and (E12), it follows that I_ is finite.
The finiteness of I then follows from (E2), (E5), and the
finiteness of 7_.

Since g(k) = g(—k), changing the variable of integration
k — —k in the above argument, we get the following
corollary.

Corollary 3.
L g’ (k)g*(p1 + Py — k)
>0/ 2z)* [(K* = m? +ie)((py + py — k)* —m® + ie)

< ©00.

APPENDIX F: RENORMALIZATION
GROUP EQUATION

In this appendix, we present the calculations underlying
the derivation of (64) from (63). For convenience, Eq. (63)
is reproduced below:
|

d )2 (n _ 1/25-1/2
E['P” 4Z,// G;)(qu,...,'rqn;ZAZ(pzﬂp,Zm/ zZ, / T, T)]

=0.

Differentiating in (63) and dividing throughout by

_5,-n/2 .
157" the equation becomes

. dinZ,\ o  dG™
(3n—4)G§, ) (n/2)1'<7")> Gé 4z d:

—0. (Fl)

We change the set of independent variables from the
physical parameters (4,.4,.7,) to the bare parameters
(4, my, 7,). Although 7, = 7, = 7, we have used different
subscripts because different sets of variables are held
constant in d/dr, and d/0dr,. In the above notation, the
7 occurring in (F1) is z,. Further, we use the following
definitions:

A
K,=2,Z* = ay

_ m
7 K, =22, == (F2)

P Hp

Then, using the chain rule, we have

0 [0k Omy,  Ory 9
o4, ok, 0k, 04, %,
O | _ | %% Odmy 07 | | 9
Hp | T | Oy Oup Oy my,
9 o om0 || 2
oz, 0z, %, O, o7y
A4, p A m,4,“pFp oAy Ay
_ o0 | _ 9
= Kﬂ,ﬂp;{p (Km,ﬂpﬂp + Km)Tp 0 om, | = A om,,
il il
KicAp (Km,,prp + Ky, 1 P P
A
— dKa

where we have used the notation K, = 7.

Then, denoting the (i, j)th element of the matrix A as A

A22
_A21
(A21A32 - A31A22)

B::A_lz—

and assuming that A is invertible,

A 0,
—(A1 A —A5A) A

A= A11A22 - A21A12 = TpKle,lpﬂp + K&)(Km,yp:“p + Km) - K/l.ﬂp)’me./ll,:up]’

and
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0 0 a
2 oy Bug, t By,
1|0 0 2
ﬁ =A" 5, | = By, +Bng. |, (F3)
2 0 0 2 ]
E Fp B31 % + B32 Wp + E
where
B, — (Km,/,tp:up + Km)rp By — — Kmp,ﬁprp/'lp
11 A ) 12 A s
B _ K/Lﬂ,/lp _ K/l,/ll,/lp + K/l)
21 A ’ 22 A s
. [Ki.yplp(Km.TTp + Km):up - Kl.rplp(Km.up;up + Km)Tp:|
31 — Az s
B — — (K/Mplp + KA)(Km,er =+ Km)/"p - Kﬂ,rp/lmep./lpfp/"p (F4)
32 Az .
Inserting (F3) into (F1), we obtain
Gn=4)G" = (n/2)z, | ( By -2+ By ="+ -2 n(z,) | G"
b PINTTar, o, or, 1
0 0 0 | (n)
Byy—+Byp—+—|G =0.
J”P[ o, " 32aﬂp+arj b }
We drop the subscript in 7,,, understanding that we are working in (z,,4,,4,) coordinates hereafter. Defining
0 0 0
Ya = —7| B3 % + 332% + e In(Z,), vy = 1B31/4,, Yu = 1B3 /., (F5)

and recalling that m, = zu,, we obtain the equation

{(3'1 —4) 4+ (n/2)y, + 12Ap 5 0,1

o 0
bt g, +T—T}G§")(1ql,-..,fqn;ZgZ(;Qﬂp;Z%z P, 1) =0,

where Z;,Z,, and Z,, are as defined in (53). We revert to the variables k; instead of g;, to obtain the renormalization group

equation,

7} 7}
{(3)’1 - ) (n/z)ya + y/llp a/{ + Yulp 53— a

where K;(4,.u,,7) and K,,(4,,u,,7) are defined in (F2).

ka
th ok¢ or

o ) .
+’L’}GI(7 V(kys ooy ks Ky Ktpty, ©) = 0,
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