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Autoregularization, a new divergence-free framework for calculating scattering amplitudes, uses a
Lorentz-invariant scale harvested from the kinematics of a scattering process to regularize the amplitude of
the process [N. Prabhu, J. Phys. Commun. 7, 115002 (2023).]. Preliminary validation studies show that
autoregularization’s predictions are in good agreement with experimental data—across several scattering
processes and a wide range of energy scales. Further, ab initio tree-level calculation of the vacuum energy
density of the free fields in the Standard Model, using autoregularization, is shown to yield a value that is
smaller than the current estimate of the cosmic critical density. In this paper, we prove that the scattering
amplitudes in QED, calculated using autoregularization, are gauge invariant. Our proof, which is valid both
for autoregularization and current theory, is stronger in that it shows the amplitude of every Feynman
diagram is gauge invariant in contrast to previous proofs, which establish gauge invariance only for sum
of amplitudes of Feynman diagrams of a process. Next, we show that—unlike in the standard
quantization framework, which requires modification of both the quantization framework itself as well
as the Lagrangian in order to quantize gauge fields in covariant gauge—in autoregularization the gauge
field in QED can be quantized, in covariant gauge, without modifying the standard quantization
procedure or the Lagrangian and without introducing the ghost field. Finally, we illustrate renormaliza-
tion based on autoregularization up to 1-loop in φ4 theory. Since perturbative corrections are finite in
autoregularization, the counterterms are not designed to remove divergences but to implement
renormalization prescriptions at every order of perturbation. We also derive the renormalization group
equation (RGE). Unlike in some regularization schemes (such as dimensional regularization), in which
the physical meaning of the fictitious scale introduced by regularization is unclear, in autoregularization
the scale in RGE has a transparent physical meaning—it is the Lorentz-invariant kinematic scale of the
scattering process of interest. The increasing simplifications resulting within autoregularization and the
agreement between its predictions and experimental data, together with the underlying thermodynamic
argument, which shows that the framework is essential for a complete description of quantum fields, all
converge to suggest that autoregularization provides the proper framework for the description of
quantum fields.

DOI: 10.1103/PhysRevD.109.096025

I. INTRODUCTION

In contrast to known regularization schemes, which
introduce an arbitrary energy scale into renormalization,
autoregularization [1] uses the energy scale harvested
from the kinematics of a scattering process to regularize
the amplitude of the process. Autoregularization is based
on a new thermodynamic view that an interacting
quantum field—which can exchange energy and particles

with other quantum fields—can be regarded as a “sys-
tem” that is in thermal and diffusive equilibrium with a
“reservoir”, made of the other quantum fields that
coinhabit spacetime.
The current view of a quantum field is based on

a hypothesis, proposed by Heisenberg and Pauli [2] in
1929–1930, that a quantum field can be regarded1 as “...a
dynamical system amenable to Hamiltonian treatment....” It
is of historical interest that Dirac immediately objected to
applying the “Hamiltonian treatment” to the field rather
than to individual oscillators2 [3]. Dirac’s objections*prabhu@purdue.edu
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1The quoted text is from [3].
2Apart from his objections based on physical arguments, Dirac

also cautioned about the “mathematical difficulties” that would
result from the hypothesis [3].
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notwithstanding, the current quantum field theory (QFT) is
based on the Heisenberg-Pauli framework (HPF).
Autoregularization assumes that a quantum field

can be regarded as a dynamical system, as suggested
by Heisenberg and Pauli [2]. The behavior of any large
dynamical system—such as an interacting quantum field—
is governed not only by the laws of local microscopic
interactions—encoded in the Lagrangian of a theory—but
also by additional statistical laws, which are not encoded in
the Lagrangian but emerge due to collective interactions
among the large3 number of modes of the system and the
reservoir. Such emergent statistical laws, Landau and
Lifshitz write [4], “are of a different kind” and “cannot
in any way be reduced to purely mechanical laws”; that is,
they do not follow from the Lagrangian formalism, but
need to be added explicitly on top of the Lagrangian
formalism if one seeks to obtain a complete description of
interacting quantum fields.4

The HPF does not incorporate such additional emer-
gent statistical laws. Hence, the current QFT, although it
has been remarkably successful, is likely an undercon-
strained description of quantum fields, with the missing
constraints manifesting as varied wrinkles in HPF,
including the divergences that plague the framework.
Imposing the additional emergent constraints on field
fluctuations, as autoregularization does, is expected to
preserve the successes of QFT, while ironing out the
wrinkles in QFT. We start with a brief overview of
autoregularization.
We can partition the set of interacting quantum fields that

inhabit spacetime into a “system” comprising the quantum
field of interest and a “reservoir” made of all the other
quantum fields that coinhabit spacetime. Creation or
annihilation of particles of the quantum field can then be
viewed, from a thermodynamic perspective, as flow of
particles into or out of the system. Since a quantum field
can exchange both particles and energy with the reservoir, it
can be regarded as a system that is in thermal and diffusive
equilibrium with the reservoir.5 The behavior of a system
that is in thermal and diffusive equilibrium with a reservoir
is well described by the grand canonical distribution
(GCD), derived by J. Willard Gibbs [5].

The hallmark of GCD is that it states that a system’s
fluctuations are exponentially suppressed. Specifically,
GCD states that the probability of a fluctuation that puts
the system in a state with energy E and particle number n is
proportional to the so-called Gibbs factor e−ðE−nμÞ=τ, where
τ and μ are the temperature and chemical potential that
characterize the thermal and diffusive equilibrium between
the system and the reservoir. Such exponential suppression
of fluctuations is not predicted by the Lagrangian either in
the classical or quantum theory and must be added on top of
the Lagrangian formalism to fully describe the system’s
(quantum field’s) behavior.
The above Gibbs factor however is not Lorentz invari-

ant. The exponential suppression of field fluctuations,
encoded in the above frame-dependent Gibbs factor, is
achieved in autoregularization by scaling the creation and
annihilation operators in the free field expansion with
Lorentz-invariant “Gibbs factors”, which reduce to the form
of the frame-dependent Gibbs factors at large E. The details
of autoregularization are discussed in [1] and summarized in
Appendix A.
In preliminary validation studies of autoregularization, it

was used to calculate the amplitudes of several scattering
processes, and the results were found to be in good
agreement with the experimental data (over a broad range
of energy scales from ≲MeV to ≳200 GeV) [1].6

Scaling the creation and annihilation operators with Gibbs
factors—hereafter called Gibbs scaling—has several conse-
quences. First, the exponential suppression of high-energy
field fluctuations,7 due to Gibbs scaling, eliminates diver-
gences in scattering amplitudes at all orders of perturbation
theory.8

A second consequence of Gibbs scaling is that ab initio
calculation of the energy density of vacuum fluctuations of
the free fields in the Standard Model, using autoregulari-
zation, yields a value that is less than the current estimate of
cosmic critical density, potentially solving the cosmologi-
cal constant problem [1].

3Infinite number of modes in the case where the system-
reservoir complex is a set of interacting quantum fields.

4An analog in classical mechanics is that the observed
Maxwell-Boltzmann distribution in ideal gas cannot be explained
using only Newton’s laws of mechanics. To derive Maxwell-
Boltzmann distribution, one needs to add an additional statistical
law, not contained in Newtonian formalism, that at equilibrium
the entropy of the system is maximized.

5We assume that the timescale over which equilibrium is
restored when the system is perturbed is much smaller than the
time resolution of our instruments. Hence, we assume that we
observe only the equilibrium or near-equilibrium behavior of the
system.

6Specifically, the 1-loop corrections to the electron’s gyro-
magnetic ratio and the Lamb shift, calculated using autoregula-
rization, are in good agreement with experimental data. The
1-loop calculation of the QCD coupling constant showed that
autoregularization also predicts asymptotic freedom in QCD.
The running of the fine structure constant, computed at 1-loop
using autoregularization, was shown to be in good agreement
with the prediction of cutoff regularization. The results of the
tree-level calculations of Compton scattering and pair annihi-
lation were also shown to be in good agreement with exper-
imental data.

7Also the exponential suppression of low-energy fluctuations
of massless boson fields; see (A3).

8As examples, in Appendixes B and E, we show explicitly that
the propagator and a 1-loop diagram in φ4 theory, which are,
respectively, quadratically and logarithmically divergent in HPF,
are finite in autoregularization.
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A third consequence of Gibbs scaling is that it breaks the
equivalence between the equal-time commutation relations
(ETCR) imposed on the field and its conjugate momentum
in HPF and the commutation relations imposed on the
creation and annihilation operators. Thus, either ETCR or
commutation relations on creation and annihilation oper-
ators can be retained, and the other must be abandoned.
Autoregularization retains the commutation relations on the
creation and annihilation operators and abandons the ETCR
on the field and its conjugate momentum. In a sense, the
choice represents reversion to the Diracian approach,
placing primacy on the individual oscillators, rather than
the field, as the dynamical degrees of freedom that are to be
quantized. As we show in Sec. III, the choice leads to
enormous simplification in the quantization of the gauge
field in QED.
Against the above backdrop, in this paper, we establish

additional key properties of the autoregularization frame-
work. Specifically, in Sec. I, we present a proof of gauge
invariance of the scattering amplitudes in QED within
autoregularization. The proof we present is valid for both
autoregularization and the HPF and is stronger than the
corresponding proof in HPF, in which gauge invariance is
established only for sum of Feynman diagrams with a given
set of external legs [6,7]. On the other hand, in Sec. I, we
prove that every Feynman diagram is individually gauge
invariant in autoregularization.
The ETCR that are imposed on a field and its conjugate

momentum in HPF severely complicate the gauge field
quantization in QED. The complications, which are often
imputed to the redundant degrees of freedom in the gauge
field rather than to the ETCR, are summarized in Sec. II.
The complications have previously led to several non-
trivial modifications of the canonical quantization pro-
cedure, such as the modification of the Lagrangian,
introduction of ghost fields, imposing the gauge con-
dition not as an operator condition but in a weaker form
thereby abandoning Maxwell’s equations in operator
form, partitioning the Fock space by fiat into “physical”
and “unphysical” states in covariant gauge, or in
Coulomb gauge modifying the ETCR themselves.

In Sec. III, we describe the gauge field quantization in
QED in covariant gauge using autoregularization. Since
ETCR are not imposed in autoregularization, none of the
complications that plague gauge field quantization in
HPF arises in autoregularization. The canonical quanti-
zation procedure in autoregularization applies without
modification to gauge field quantization. The redundant
degrees of freedom decouple naturally from the theory.
Unlike in HPF, Maxwell’s equations follow as Euler-
Lagrange equations, in operator form, in covariant gauge
in autoregularization. The Fock space has a positive
semidefinite metric. The Hamiltonian has a nonnegative
expectation value on the entire Fock space, which does
not need to be partitioned into “physical” and “unphys-
ical” states. Unlike in HPF, the quantization of gauge
field in autoregularization does not require introduction
of the unphysical ghost fields. The enormous simplifi-
cation that results from abandoning ETCR shows that the
difficulties previously faced in gauge field quantization
are to be imputed to ETCR and not the redundant degrees
of freedom in the gauge field, reinforcing Dirac’s objec-
tion to HPF [3].
Finally, in Sec. IV, we illustrate renormalization based

on autoregularization. Unlike in HPF, the perturbative
corrections to scattering amplitudes are all finite at every
order in autoregularization. Hence, the counterterms
and the bare parameters are finite as well, in autoregula-
rization; the counterterms are designed not to cancel
divergences but to implement the renormalization pre-
scriptions. We derive the renormalization group equation
(RGE). Unlike in HPF, in which RGE expresses inde-
pendence of the correlation function with respect to the
fictitious scale introduced during regularization, the RGE
in autoregularization represents the evolution of the
correlation function with the kinematic scale of the
scattering process.

II. GAUGE INVARIANCE
OF THE S-MATRIX IN QED

We establish the gauge invariance of the S-matrix
amplitude of a general scattering process in QED,

e−k1 þ � � � þ e−km þ eþq1 þ � � � þ eþqn þ γl1 þ � � � γlr → e−
k̃1
þ � � � þ e−

k̃m̃
þ eþq̃1 þ � � � þ eþq̃ñ þ γ l̃1 þ � � � γ l̃r̃ ; ð1Þ

in which m electrons, n positrons, and r photons scatter to m̃ electrons ñ positrons and r̃ photons. The momenta of the
particles are shown as subscripts. For brevity, we use the following notation:

k≔ k1;…; km; q≔ q1;…; qn; l≔ l1;…; lr; k̃≔ k̃1;…; k̃m̃; q̃≔ q̃1;…; q̃ñ; l̃≔ l̃1;…; l̃r̃

Ψ̄ðxÞ≔ ψ̄ðx1Þ…ψ̄ðxmÞ; ΨðyÞ≔ ψðy1Þ…ψðynÞ; x≔ x1;…; xm; y≔ y1;…; yn

Ψðx̃Þ≔ ψðx̃1Þ…ψðx̃m̃Þ; Ψ̄ðỹÞ≔ ψ̄ðỹ1Þ…ψ̄ðỹñÞ; x̃≔ x̃1;…; x̃m̃; ỹ≔ ỹ1;…; ỹñ

A½α�½α̃�ðz; z̃Þ≔ Aα1ðz1Þ…AαrðzrÞAα̃1ðz̃1Þ…Aα̃r̃ðz̃r̃Þ; z≔ z1;…; zr; z̃≔ z̃1;…; z̃r̃; ð2Þ
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G½α�½α̃�ðx; x̃; y; ỹ; z; z̃Þ ¼ h0jTΨðx̃ÞΨðyÞΨ̄ðxÞΨ̄ðỹÞA½α�½α̃�ðz; z̃Þj0i: ð3Þ

The fields are in Heisenberg representation. The S-matrix amplitude of the above process is

S ¼
Yr
a¼1

Mαa− ðla; sa; zaÞ
Ỹr
b¼1

Mα̃bþ ðl̃b; s̃b; z̃bÞ
Ỹm
i¼1

Dþðk̃i; w̃i; x̃iÞ
Yn
j¼1

D−ðqj; hj; yjÞ

×G½α�½α̃�ðx; x̃; y; ỹ; z; z̃Þ
Ym
c¼1

D
↼

−ðkc; wc; xcÞ
Ỹn
d¼1

D
↼

þðq̃d; h̃d; ỹdÞ; ð4Þ

where Mμ
�;D�;D

↼

� are the amputation operators,

Mα
�ðl; s; zÞ ¼

iηss
0
ϵαðl; s0Þ

gpðlÞ
ffiffiffiffiffiffi
Zp

p Z
d4ze�ilz□z;

D−ðq; h; yÞ ¼ i
v̄ðq; hÞ

geðqÞ
ffiffiffiffiffi
Ze

p
Z

d4ye−iqyði=∂y −mÞ; Dþðk̃; w̃; x̃Þ ¼ −i
ūðk̃; w̃Þ

geðk̃Þ
ffiffiffiffiffi
Ze

p
Z

d4x̃eik̃ x̃ði=∂x̃ −mÞ;

D
↼

−ðk; w; xÞ ¼ i
Z

d4xði=∂
↼

x þmÞe−ikx
�

uðk; wÞ
geðkÞ

ffiffiffiffiffi
Ze

p
�
;

D
↼

þðq̃; h̃; ỹÞ ¼ −i
Z

d4ỹði=∂
↼

ỹ þmÞeiq̃ ỹ
�

vðq̃; h̃Þ
geðq̃Þ

ffiffiffiffiffi
Ze

p
�
: ð5Þ

Zp; Ze are the normalization constants for photons and fermions, u and v are the usual Dirac spinors, s; s̃; w; w̃; h; h̃ are the
polarizations, and gp and ge are the Gibbs factors for photons and fermions, respectively.
Before proceeding, we note that the correlation function G½α�½α̃�ðx; x̃; y; ỹ; z; z̃Þ is invariant under a global gauge

transformation,

ψ → eieα0ψ ; ψ̄ → e−ieα0 ψ̄ Aμ → Aμ; ð6Þ

where α0 is a real constant. The global gauge invariance follows by observing that, from Wick’s theorem, the perturbative
expansion of G½α�½α̃� vanishes unless the number of ψ fields in G½α�½α̃�, namely, m̃þ n equals the number of ψ̄ fields, namely,
mþ ñ. Further, every interaction vertex is globally gauge invariant.
An immediate consequence of the global gauge invariance is that in a local gauge transformation,

ψðxÞ → eieϵαðxÞψðxÞ; ψ̄ðxÞ → e−ieϵαðxÞψ̄ðxÞ; AμðxÞ → Aμ − ϵ∂μαðxÞ; ð7Þ

in which the small parameter ϵ has been included for bookkeeping, we can assume that

αð0Þ ¼ 0: ð8Þ

If αð0Þ ≠ 0, then we can write

eieϵαðxÞ ¼ eieϵðαðxÞ−αð0ÞÞeieϵαð0Þ ¼ eieϵᾱðxÞeieα0 ; ᾱðxÞ ≔ αðxÞ − αð0Þ; α0 ≔ ϵαð0Þ:

Thus, the local gauge transformation in (7) can be imple-
mented by first applying the global gauge transformation
corresponding to eieα0 , which leaves G½α�½α̃� invariant,
followed by a local gauge transformation corresponding
to eieϵᾱðxÞ, where ᾱð0Þ ¼ 0.
The perturbative expansion ofS contains connected as well

as disconnected Feynman diagrams. Accordingly, we write

S ¼ SðcÞ þ SðdÞ; ð9Þ
where SðcÞ denotes the sum over all connected Feynman
diagrams with E ¼ mþ nþ rþ m̃þ ñþ r̃ external legs
and SðdÞ the sum over the remaining (disconnected)
diagrams.
SðcÞ, in turn, can be written as
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SðcÞ ¼
X
Db

SðcÞ
b ; SðcÞ

b ¼ ð2πÞ4δ4ðpÞMðcÞ
b ; where

p ¼
Xr

j¼1

lj þ
Xm
j¼1

kj þ
Xn
j¼1

qj −
X̃r

j¼1

l̃j −
X̃m
j¼1

k̃j −
X̃n
j¼1

q̃j;

ð10Þ

and the sum
P

Db
is over all connected diagramsD1; D2;…

that have E external legs corresponding to the scattering

process (1). The dependence of MðcÞ
b on the external

momenta k; q; l; k̃; q̃; l̃ is not shown explicitly for brevity.
In the following argument, we show that each of the

MðcÞ
1 ;MðcÞ

2 ;… is separately gauge invariant.
We choose an arbitrary connected diagram, denoted Db,

and establish the gauge invariance of the corresponding

MðcÞ
b . A straightforward calculation shows that MðcÞ

b , the
amputated amplitude of the connected diagram Db, can be
written in the following form:

MðcÞ
b ¼ κ½α�½α̃�V̄ ŪAðbÞ

½α�½α̃�ðk;q;l; k̃; q̃; l̃ÞUV;

κ½α�½α̃� ¼
Yl
j¼1

�
ηsjs

0
jϵαjðl⃗j;s0jÞgpðljÞffiffiffiffiffiffi

Zp
p

�Yl̃
j¼1

�
ηs̃js̃

0
jϵα̃jð ⃗̃lj; s̃0jÞgpðl̃jÞffiffiffiffiffiffi

Zp
p

�
;

U≔
Ym
j¼1

uðkj;wjÞgeðkjÞffiffiffiffiffi
Ze

p ; Ū≔
Ỹm
j¼1

ūðk̃j;w̃jÞgeðk̃jÞffiffiffiffiffi
Ze

p ;

V≔
Ỹn
j¼1

vðq̃j; h̃jÞgeðq̃jÞffiffiffiffiffi
Ze

p ; V̄≔
Yn
j¼1

v̄ðqj;hjÞgeðqjÞffiffiffiffiffi
Ze

p :

ð11Þ

Using (10), we defineMðcÞ
b , the amputated amplitude of the

connected diagram Db, as the coefficient of ð2πÞ4δ4ðpÞ in
SðcÞ
b . The same definition applies to the gauge transform as

well. Specifically, if S̄ðcÞ
b is the gauge transform of SðcÞ

b ,
then the gauge-transformed amputated amplitude of Db,

namely, M̄ðcÞ
b is the coefficient of ð2πÞ4δ4ðpÞ in S̄ðcÞ

b ,

S̄ðcÞ
b ¼ ð2πÞ4δ4ðpÞM̄ðcÞ

b þ B; ð12Þ

where B does not contain a factor of δ4ðpÞ and hence
does not contribute to the gauge-transformed amputated
amplitude. To prove gauge invariance, we show that

M̄ðcÞ
b ¼ MðcÞ

b .
Consider the infinitesimal gauge transformation,

ψðxÞ → ψ 0ðxÞ ¼ ð1þ iϵeαðxÞÞψðxÞ;
AμðxÞ → A0

μðxÞ ¼ AμðxÞ − ϵ∂μαðxÞ; ð13Þ

where the small parameter ϵ has been included for
bookkeeping.

In the perturbative expansion of G½α�½ã�, let G
ðbÞ
½α�½ã� denote

the term that corresponds to the connected diagramDb with
E external legs. As the result of the infinitesimal gauge
transformation (13),

GðbÞ
½α�½ã� → ḠðbÞ

½α�½ã� ¼ GðbÞ
½α�½ã� þ δGðbÞ

½α�½ã�;

SðcÞ
b → S̄ðcÞ

b ¼ SðcÞ
b þ δSðcÞ

b ; ð14Þ

where SðcÞ
b and S̄ðcÞ

b are obtained by applying the ampu-

tation operators, shown in (5), to GðbÞ
½α�½ã� and ḠðbÞ

½α�½ã�,
respectively.
First, sinceα is a c-number field, and h0jTð∂μαÞAνj0i ¼ 0,

the photon propagator h0jTAμAνj0i is gauge invariant at
OðϵÞ. Therefore, we can replace all transformed photon

fields A0
μ in Ḡ

ðbÞ
½α�½ã�, at OðϵÞ, with the corresponding untrans-

formed fields Aμ.
Second, we note the jμðxÞ ¼ ψ̄ðxÞγμψðxÞ is invariant

under the gauge transformation (13) at OðϵÞ. Hence, the
transformed fields ψ 0 and ψ̄ 0 occurring in the transformed

interaction Hamiltonian term ðj0ÞμA0
μ within ḠðbÞ

½α�½ã� can be

replaced by the corresponding untransformed fields ψ and
ψ̄ , respectively.

Thus, at OðϵÞ, the only transformed fields left in ḠðbÞ
½α�½ã�

are Ψ̄0ðxÞ;Ψ0ðyÞ;Ψ0ðx̃Þ; Ψ̄0ðỹÞ, which are the transforms of
the fields Ψ̄ðxÞ;ΨðyÞ;Ψðx̃Þ; Ψ̄ðỹÞ defined in (2).
At OðϵÞ, we have

δGðbÞ
½α�½α̃�ðx; x̃; y; ỹ; z; z̃Þ ¼ iϵe

�Xn
j¼1

αðyjÞ þ
X̃m
j¼1

αðx̃jÞ

−
Xm
j¼1

αðxjÞ −
X̃n
j¼1

αðỹjÞ
�

×GðbÞ
½α�½α̃�ðx; x̃; y; ỹ; z; z̃Þ: ð15Þ

δSðcÞ
b , shown in (14), is obtained by the action of the

amputation operators, shown in (5), on δGðbÞ
½α�½α̃� above.

Consider the term αðy1ÞGðbÞ
½α�½α̃�ðx; x̃; y; ỹ; z; z̃Þ. Since α is a

real-valued function, it can be expanded as

αðy1Þ ¼
Z

d4s
ð2πÞ4 fα̃ðsÞe

−isy1 þ α̃�ðsÞeisy1g: ð16Þ

The action of the amputation operators, shown in (5), on

αðy1ÞGðbÞ
½α�½α̃� yields, after a straightforward calculation,

δSðcÞ
b;q1

given by
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δSðcÞ
b;q1

¼ κ½α�½α̃�V̄ Ū½−ð=q1 þmÞ�
�

geðp − q1Þ2
=p − =q1 −mþ iϵ

�
ĀðbÞ

½α�½α̃�ðk; q0; l; k̃; q̃; l̃Þfα̃ð−pÞ þ α̃�ðpÞgUV; ð17Þ

where

ĀðbÞ
½α�½α̃�ðk; q0; l; k̃; q̃; l̃Þ ¼

�
1

geðq1Þ2
�
AðbÞ

½α�½α̃�ðk; q0; l; k̃; q̃; l̃Þ q0 ≔ q1 − p; q2;…qn: ð18Þ

Since SðcÞ
b in (10) contains a factor of δ4ðpÞ, we can—treating k; q2;…; qn; l; k̃; q̃; l̃ as the independent variables—rewrite

AðbÞ
½α�½α̃�ðk; q; l; k̃; q̃; l̃Þ in (11) in terms of q0 as

MðcÞ
b ¼ κ½α�½α̃�V̄ ŪAðbÞ

½α�½α̃�ðk; q0; l; k̃; q̃; l̃ÞUV; ð19Þ

where, as defined above, q0 ¼ q1 − p; q2;…; qn. Using (17) and (19), we have

SðcÞ
b þ δSðcÞ

b;q1
¼ κ½α�½α̃�V̄ Ū½ð2πÞ4δ4ðpÞgeðq1Þ2 − Δðp; q1Þ�ĀðbÞ

½α�½α̃�ðk; q0; l; k̃; q̃; l̃ÞUV;

Δðp; q1Þ ¼ ð=q1 þmÞ
�

geðp − q1Þ2
=p − =q1 −mþ iϵ

�
fα̃ð−pÞ þ α̃�ðpÞg: ð20Þ

Since M̄ðcÞ
b is the coefficient of the factor ð2πÞ4δ4ðpÞ in SðcÞ

b þ δSðcÞ
b;q1

, we need to extract the component of δ4ðpÞ in
Δðp; q1Þ. We do so in Appendix C, in which we have shown that

½α̃ð−pÞ þ α̃�ðpÞ�
�

geðp − q1Þ2
=p − =q1 −mþ iϵ

�
¼ αð0Þ

�
geðq1Þ2

−=q1 −mþ iϵ

�
ð2πÞ4δ4ðpÞ þΩðp; q1Þ;

where Ωðp; q1Þ has terms that contain derivatives of δ4ðpÞ and δ4ðp − q1Þ and no factor of δ4ðpÞ. Therefore, from (12),
we have

M̄ðcÞ
b ¼ κ½α�½α̃�V̄ Ū

�
geðq1Þ2 − ð=q1 þmÞαð0Þ

�
geðq1Þ2

−=q1 −mþ iϵ

��
ĀðbÞ

½α�½α̃�ðk; q0; l; k̃; q̃; l̃ÞUV: ð21Þ

But from (8), αð0Þ ¼ 0, and the second term within the
bracket, which contains the factor of αð0Þ, vanishes at every
ϵ ≠ 0. Using (21), (18), and (19), we have

M̄ðcÞ
b ¼ MðcÞ

b ; ð22Þ

showing that the amplitude of the diagram Db is gauge
invariant.
Although the above argument focused on the connected

diagramDb, it is important to note that the argument did not
rely on any special feature of Db other than that it is a
connected diagram. Hence, the above argument can be
applied to any connected diagram and thus establishes the
gauge invariance of the amputated amplitude of every
connected diagram in QED. In particular, it can be applied
to diagrams D1; D2;… to establish the gauge invariance of

MðcÞ
1 ;MðcÞ

2 ;… and hence the gauge invariance of SðcÞ.

Next, we consider the SðdÞ in (9). SðdÞ can be written as
the sum of terms, where each term is a product of factors
with each factor corresponding to a connected diagram.
The above argument establishes the gauge invariance of
each connected diagram and thus the gauge invariance of
the product of connected diagrams. It follows that SðdÞ is
gauge invariant as well, completing the proof of gauge
invariance of the S-matrix in QED.

III. CONSEQUENCES OF EQUAL-TIME
COMMUTATION RELATIONS

As is well-known, imposing equal-time commutation
relations (ETCR) on the gauge field and its conjugate in
QED forces the quantization procedure for the gauge field
to deviate significantly from the standard field quantization
procedure. The complications that arise in the quantization
of the gauge field and the several modifications that are
made to address the complications are imputed not to the
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ETCR but to the unphysical degrees of freedom in the
gauge field. The ETCR on a field and its conjugate were
first postulated by Heisenberg and Pauli [2].
In this section, we summarize the modifications that are

made in the standard quantization procedure to accom-
modate the ETCR in two popular gauges—the Coulomb
gauge and the Lorenz (covariant) gauge.
Since the momentum conjugate to A0, namely, π0 van-

ishes, A0 is a nondynamical field. The Euler-Lagrange
equation for A0, however, imposes a condition on the gauge
field, namely, the Gauss’ law,

∇ · E⃗ ¼ 0; ð23Þ

which must be satisfied by the quantized gauge field.
In Lorenz (covariant) gauge, manifest Lorentz covari-

ance is maintained by imposing ETCR on all four of the
field components as

½Aμðx⃗; tÞ; πνðy⃗; tÞ� ¼ iημνδ3ðx⃗ − y⃗Þ: ð24Þ

The ETCR immediately leads to two contradictions. First,
the ETCR for A0 is not satisfied since π0 ¼ 0. Second, the
ETCR for A⃗ contradicts Gauss’ law (23). To fix the first
contradiction, the Lagrangian is modified as

L ¼ −
1

4
FμνFμν → L0 ¼ −

1

4
FμνFμν −

1

2ξ
ð∂μAμÞ2: ð25Þ

While the modified Lagrangian repairs the problem of
vanishing π0, the theory described by L0 is different from
the original theory for the gauge field. For example,
Maxwell’s equations do not arise as Euler-Lagrange equa-
tions from L0. To recover the original theory, one imposes
the Lorenz (covariant) gauge condition,

∂μAμ ¼ 0: ð26Þ

However, imposing (26) as an operator condition reverses
the modification shown in (25). Therefore, a second ad hoc
patch is applied by insisting that (26) holds not as an
operator condition but in a weaker form as described later.
Since (26) is not imposed in operator form, the Euler-
Lagrange equations derived from L0 are not Maxwell’s
equations.
The modification of the Lagrangian, shown in (25),

repairs the problem in the ETCR of A0, but creates a new
problem that did not exist in L—the new Lagrangian L0 is
not gauge invariant.
The gauge dependence ofL0 is repaired by applying a third

ad hoc patch that involves introducing an unphysical ghost
field. So L0 is modified further by adding a term containing
ghost field to get L00. The ghost field is then stipulated to
transform, under a gauge transformation, in exactly the right
manner to recover gauge invariance of L00 [8].

The ETCR on all the four components of Aμ together
with the expansion of the free field as

Aμ ¼
Z

dk⃗

ð2πÞ3ð2ωðk⃗ÞÞ
X3
s¼0

ϵμðk⃗; sÞ

× fâðk⃗; sÞe−ikx þ â†ðk⃗; sÞeikxg

constrains the creation and annihilation operators to obey
the commutation relations,

½âðk⃗; sÞ; â†ðk⃗0; s0Þ� ¼ −ηss0 ð2ωðk⃗ÞÞð2πÞ3δ3ðk⃗ − k⃗0Þ: ð27Þ

The negative sign in (27) gives rise to another problem—it
makes the metric of the Fock space and the expectation
value of the Hamiltonian operator indefinite (not positive
semidefinite) [9].
The negative expectation value of the Hamiltonian, and

the restriction that the gauge condition (26) cannot be
imposed as an operator condition, are addressed with the
patch proposed by Gupta and Bleuler [10]. By fiat, a state in
the Fock space is declared as a “physical” state if it satisfies
the condition

∂μAðþÞμjψi ¼ 0; ð28Þ

as suggested by Gupta and Bleuler [10]. The ∂μAðþÞμ

represents the positive energy component. States in the
Fock space that do not satisfy (28) are declared as “unphys-
ical” states and, by fiat, excluded. The constraint (28)
eliminates the negative expectation value of the
Hamiltonian for the “physical” states and implements the
gauge condition (26) in a weaker form as

hψ j∂μAμjψi ¼ 0; ψ∶ physical state: ð29Þ

Implementing the gauge condition (26) in the weaker form
as (29), and not as an operator equation, implies that the
operator L0 remains different from the original Lagrangian
operatorL of the original theory, andMaxwell’s equations do
not emerge as Euler-Lagrange equations from L0.
In Coulomb gauge, manifest Lorentz covariance is

sacrificed by stipulating

∇ · A⃗ ¼ 0; ð30Þ

and the ETCR are imposed only on the three dynamical
fields in A⃗. However, since the momentum conjugate to Ai

is π⃗ ¼ −Ei, the ETCR,

½Aiðx⃗; tÞ; πjðy⃗; tÞ� ¼ iδijδ3ðx⃗ − y⃗Þ; ð31Þ

contradicts both Gauss’ law (23) as well as the gauge
condition (30). For example, when the operator ∂=∂yj acts
on (31), the left-hand side must vanish due to Gauss’ law,
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but the right-hand side i∂=∂yjδ3ðx⃗ − y⃗Þ does not. The stress
between ETCR (31) on the one hand and Gauss’ law (23)
and gauge condition (30) on the other is resolved by either
abandoning (31) or by abandoning (23) and (30) as
operator constraints.
In one ad hoc modification, the δ function on the right-

hand side of (31) is replaced with the so-called transverse
delta function δ3trðx⃗ − y⃗Þ, which is constructed to satisfy
∂=∂yjδ3trðx⃗ − y⃗Þ ¼ ∂=∂xjδ3trðx⃗ − y⃗Þ ¼ 0. That is, the ETCR
(31) is replaced by the modified ETCR,

½Aiðx⃗; tÞ; πjðy⃗; tÞ� ¼ iδijδ3trðx⃗ − y⃗Þ; ð32Þ

which conforms with Gauss’ law and the gauge condition.
The alternative is to make a different ad hocmodification

by abandoning Gauss’ law and gauge condition as operator
conditions, implementing them instead in a weaker form
[9]. The Fock space would then need to be partitioned into
the set of “physical” states and “unphysical” states, along
the lines followed in Gupta-Bleuler formalism.
In summary, imposing ETCR on the gauge field and its

conjugate leads to several downstream consequences such
as violation of Gauss’ law, indefinite metric on the Fock
space, and negative expectation value for the Hamiltonian.
To preserve the ETCR, the above deficiencies are repaired
with a sequence of ad hoc patches, such as modification of
the Maxwell Lagrangian, abandoning Maxwell’s equations
in the operator form, introduction of “unphysical” ghost
field, stipulating, by fiat, certain states in the Fock space as
“unphysical”, or in a somewhat extreme step changing the
canonical ETCR itself as in (32).

IV. QUANTIZATION OF THE QED GAUGE FIELD
IN AUTOREGULARIZATION

As discussed in the previous section, imposing ETCR on
the gauge field and its conjugate in QED hinders the
quantization of the gauge field. Several ad hoc modifica-
tions of the canonical quantization procedure, and even the
ETCR itself, are used to overcome the hurdles created by
the ETCR. The hurdles are often imputed to the redundant
degrees of freedom in the gauge field [9] rather than their
actual source—the ETCR.
Autoregularization does not impose ETCR on the field

and its conjugate and only postulates commutation rela-
tions on the creation and annihilation operators. Therefore,
as we show below, the gauge field can be quantized in
autoregularization without any modification of the canoni-
cal quantization procedure, despite the redundant degrees
of freedom in the gauge field. We present gauge field
quantization based on autoregularization in the covariant
gauge. As we show, Gauss’ law, Maxwell’s equations, and
the gauge condition hold in the operator form. Gauge
invariance is preserved without having to introduce the
unphysical ghost field. The Fock space and the expectation
value of the Hamiltonian are not indefinite. All the states in

the Fock space are physical states. The redundant degrees
of freedom decouple naturally from the theory.
The free gauge field is expanded in autoregularization as

AμðxÞ ¼
Z

dk⃗

ð2πÞ3ð2ωðk⃗ÞÞ
gpðk⃗Þ

�X3
s¼0

ϵμðk⃗; sÞ½âðk⃗; sÞe−ikx

þ â†ðk⃗; sÞeikx�
�
; ð33Þ

with the creation and annihilation operators satisfying the
canonical commutation relations stipulated for generic
boson fields,

½âðk⃗; sÞ; â†ðk⃗0; s0Þ� ¼ δs;s0 ð2ωðk⃗ÞÞð2πÞ3δ3ðk⃗ − k⃗0Þ;
s; s0 ¼ 0; 1; 2; 3: ð34Þ

The polarization vectors satisfy Lorentz-invariant
normalization,

ϵμðk⃗; sÞϵμðk⃗; s0Þ ¼ ηss
0
: ð35Þ

We choose the polarization vectors as follows:

ϵ0ðk⃗; 0Þ ¼ ð1; 0; 0; 0Þ; ϵ1ðk⃗; 1Þ ¼ ð0; ê1Þ;
ϵ2ðk⃗; 2Þ ¼ ð0; ê2Þ; ϵ3ðk⃗; 3Þ ¼ ð0; k̂Þ; ϵ̂1 × ϵ̂2 ¼ k̂:

ð36Þ

As mentioned earlier we focus on Lorenz (covariant)
gauge. In autoregularization, ETCR are not imposed on the
gauge field and its conjugate. As a result, we do not have to,
and do not, modify the Lagrangian,

L ¼ −
1

4
FμνFμν; ð37Þ

by adding a gauge-fixing term, as is done in HPF.
Consequently, Maxwell’s equations (Euler-Lagrange equa-
tions) are satisfied in operator form. Since the Lagrangian
(37) is unmodified, it remains gauge invariant. Therefore, in
autoregularization, one does not need to introduce ghost
fields to preserve gauge invariance of the lagrangian.
Further, there is no hurdle in autoregularization to imposing
the Lorenz (covariant) gauge condition (26) in operator
form, obviating the contrived partition of the Fock space
into “physical” and “unphysical” states as in the Gupta-
Bleuler formalism.
Using (33) and (36), the gauge condition (26) yields

Z
dk⃗

ð2πÞ3ð2ωðk⃗ÞÞ
gpðk⃗Þωðk⃗Þ½−ie−ikxfâðk⃗; 0Þ − âðk⃗; 3Þg

þ ieikxfâ†ðk⃗; 0Þ − â†ðk⃗; 3Þg� ¼ 0: ð38Þ
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Applying the operator
R
dx⃗eiqx ∂

↔

0 to the left- and right-
hand sides of (38), where q2 ¼ 0, we obtain

gpðq⃗Þωðq⃗Þfâðq⃗; 0Þ − âðq⃗; 3Þg ¼ 0;

from which we conclude9 that

âðq⃗; 0Þ ¼ âðq⃗; 3Þ: ð39Þ

Similarly, applying
R
dx⃗e−iqx ∂

↔

0 to the left- and right-hand
sides of (38) shows that

â†ðq⃗; 0Þ ¼ â†ðq⃗; 3Þ: ð40Þ

An immediate consequence of (39), (40), and (34) is that
both â†ðq⃗; 0Þ and â†ðq⃗; 3Þ create states of zero norm when
they act on vacuum. For example,

h0jâðq⃗; 0Þâ†ðq⃗; 0Þj0i ¼ h0jâðq⃗; 3Þâ†ðq⃗; 0Þj0i
¼ h0jâ†ðq⃗; 0Þâðq⃗; 3Þj0i ¼ 0:

A similar argument shows that states created by â†ðq⃗; 3Þ
also have zero norm. But the only vector in the Hilbert
space that has zero norm is the zero vector [11]. Since the
space of single particle states form a Hilbert space, we
conclude that

â†ðq⃗; 0Þj0i ¼ â†ðq⃗; 3Þj0i ¼ 0: ð41Þ

That is, the gauge condition leads to the remarkable
conclusion that not only the annihilation operators but also
the creation operators of the scalar and longitudinal modes
annihilate vacuum! The creation operators â†ðq⃗; 0Þ and
â†ðq⃗; 3Þ do not produce single particle states, and thus, the
redundant degrees of freedom naturally decouple from the
theory.

From (39), (40), and (33), it follows that

E⃗ ¼ −∇A0 − ∂0A⃗

¼ i
Z

dk⃗

ð2πÞ3ð2ωðk⃗ÞÞ
ωðk⃗ÞgpðkÞ

�X2
s¼1

ϵ⃗ðk⃗; sÞâðk⃗; sÞe−ikx

−
X2
s¼1

ϵ⃗ðk⃗; sÞâ†ðk⃗; sÞeikx
�
;

B⃗ ¼ ∇ × A⃗

¼ i
Z

dk⃗

ð2πÞ3ð2ωðk⃗ÞÞ
ωðk⃗ÞgpðkÞ

× f½ϵ⃗ðk⃗; 2Þâðk⃗; 1Þ − ϵ⃗ðk⃗; 1Þâðk⃗; 2Þ�e−ikx

− ½ϵ⃗ðk⃗; 2Þâ†ðk⃗; 1Þ − ϵ⃗ðk⃗; 1Þâ†ðk⃗; 2Þ�eikxg: ð42Þ

The scalar and longitudinal creation and annihilation
operators do not appear in E⃗ and B⃗. Since ϵ⃗ðk⃗; sÞ · k⃗ ¼ 0

for s ¼ 1, 2, it follows from (42) that Gauss’ law ∇ · E⃗ ¼ 0
is satisfied in the operator form.
Using (42), the Hamiltonian [[12], Eq. (5.36)] can be

written as

H ¼ 1

2

Z
d3xfE⃗2 þ B⃗2g

¼ 1

2

Z
dk⃗

ð2πÞ3ð2ωðk⃗ÞÞ
ωðk⃗Þg2pðkÞ

X2
s¼1

fâðk⃗; sÞâ†ðk⃗; sÞ

þ â†ðk⃗; sÞâðk⃗; sÞg:

Using the occupation number basis of the Fock space,
formed by the eigenvectors of the number operator of the
form [13]

jn1; n2;…i ≔
Y
i

Y3
j¼0

1

ðni!Þ1=2
ða†i Þni j0i; ð43Þ

where the index i labels the momentum eigenstates10 in the
single-particle Hilbert space, we see that the Hamiltonian is
positive semidefinite.
Using the occupation number basis of the Fock space

and the commutation relations (34), one can also verify that
all the states in the Fock space have non-negative norm.
In summary, we have shown that the gauge field in QED

can be quantized in Lorenz (covariant) gauge with a
straightforward application of the canonical quantization
procedure in autoregularization. In contrast, the gauge field
quantization in the same gauge in HPF (Heisenberg-Pauli
framework) is a relatively convoluted procedure, as9gpðq⃗Þ ≠ 0, but ωðq⃗Þ ¼ 0 for q⃗ ¼ 0. So strictly, we can

conclude (26) only for q⃗ ≠ 0. Stipulating that (26) holds even
when q⃗ ¼ 0 is not inconsistent with the gauge condition (26), and
hence, we take it to hold for q⃗ ¼ 0 as well.

10Counting single-particle states â†ðk⃗; sÞj0i; s ¼ 0, 1, 2, 3 as
four different momentum eigenstates.
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summarized in Sec. II. Specifically, Maxwell’s equations
are satisfied as Euler-Lagrange equations in operator form
in autoregularization but are not satisfied in HPF. Second,
the gauge condition (26) can be applied in operator form in
autoregularization but only in a weaker form (29) in HPF.
Third, the unphysical modes—the scalar and longitudinal
modes—decouple naturally from the theory in autoregula-
rization, as shown in (41). In contrast, in HPF, the Fock
space is partitioned, by fiat, into “physical” and “unphys-
ical” states to force the decoupling of the unphysical
modes. Fourth, the Lagrangian remains gauge invariant
in autoregularization obviating the need to introduce the
ghost field; in contrast, the loss of gauge invariance due to
the addition of a gauge-fixing term in HPF necessitates the
introduction of the contrived ghost field in HPF. Fifth, the
Fock space has no negative-norm states in autoregulariza-
tion, whereas the single-particle states with scalar photons
have negative norm in HPF. Finally, the expectation value
of the Hamiltonian is naturally positive semidefinite in
autoregularization. In contrast, curing the indefiniteness of
the expectation value of the Hamiltonian in HPF hinges on
the imposition of the Gupta-Bleuler condition (28) by fiat.
The differences between autoregularization and HPF can

be imputed to the ETCR, which are imposed in HPF and
omitted in autoregularization. In a sense, it can be argued
that the convoluted modifications in the quantization
procedure in HPF, necessitated by ETCR, reinforce
Dirac’s objection to the Heisenberg-Pauli framework.

V. RENORMALIZATION USING
AUTOREGULRIZATION

In this section, we describe renormalization based on
autoregularization. We also derive the renormalization
group equation (RGE) based on autoregularization. The
derivation is markedly different from the corresponding
derivation in other regularization schemes, because the
perturbative corrections in autoregularization are finite at
all orders. Consequently, in renormalization based on
autoregularization, the counterterms are designed not to
cancel divergences but to implement renormalization pre-
scriptions, and all the counterterms are finite as well. Also,
unlike the other regularization schemes, which introduce a
fictitious energy scale, the energy scale used in autoregu-
larization has a transparent physical meaning—it is the
kinematic scale of the scattering process of interest. Thus,
the RGE depends on the scattering process under consid-
eration. For these reasons, the renormalization procedure
and the derivation of the RGE rely on different arguments
than those used by other regularization procedures.
We present the details of the renormalization procedure

and the derivation of the RGE using the φ4 theory. Similar
arguments can be used for other Lagrangians. The dis-
cussion is organized as follows. In Sec. VA, we describe
the renormalization of φ4 theory up to 1-loop to illustrate
the renormalization procedure based on autoregularization.

In Sec. V B, we derive the renormalization group equation
based on autoregularization.

A. Renormalization of φ4 theory at 1-loop

We use on-shell renormalization. That is, the renormal-
ization (subtraction) prescriptions for the parameters are
derived from physical measurements of the parameters.
Consider the Lagrangian of the φ4 theory,

Lp ¼ 1

2
∂
μφ∂μφ −

1

2
m2

pφ
2 −

λp
4!

φ4; ð44Þ

where mp is the physical self-energy (mass) of a particle
measured in its rest frame. A particle at rest can be thought
of as scattering from an on-shell in-state to an on-shell out-
state, with the energy scale of the scattering process given
by τ ¼ mp.
λp represents the measured physical strength of the

coupling in a 2-particle scattering process in which two
incoming on-shell particles, with vanishing 3-momenta,
scatter to two outgoing on-shell particles with vanishing
3-momenta, in the center-of-momentum frame of the
scattering process. The energy scale of such a scattering
process is τ ¼ 2mp.
As is well-known, the full propagator in momentum

space can be written as

Gð2Þ
f ðkÞ ¼ Gð2Þ

0 ðkÞ þ Gð2Þ
0 ðkÞ

X∞
n¼1

ðΣðkÞGð2Þ
0 ðkÞÞn;

where Gð2Þ
0 ðkÞ is the propagator at Oðλ0pÞ, and ΣðkÞ

represents the sum of amputated, 1-particle irreducible
diagrams. Recalling that

Gð2Þ
0 ðkÞ ¼ ig2φðk;mp; τÞ

k2 −m2
p þ iϵ

; ð45Þ

we can formally sum the series to obtain

Gð2Þ
f ðkÞ ¼ ig2φðk;mp; τÞ

k2 −m2
p þ iϵ − ig2φðk;mp; τÞΣðkÞ

; ð46Þ

where gφ is the Gibbs factor for a massive scalar boson.
Representing Σ at OðλpÞ as Σ1, we have

Σ1ðk; λp;mp; τÞ ¼
λp
2

Z
d4q
ð2πÞ4

g2φðq;mp; τÞ
q2 −m2

p þ iϵ
:

We note that the correction Σ1 depends on the scale τ.
Second, as we have showed in Corollary 1 in Appendix B,
Σ1 is finite in autoregularization, unlike in the other
regularization schemes in which it diverges quadratically.
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Thus the purpose of the counterterms in renormalization
based on autoregularization is not to cancel divergences but
to impose the renormalization prescription at every order of
perturbation theory. The two renormalization prescriptions
we stipulate are as follows:

RP1: The full propagator Gð2Þ
f ðkÞ of a particle at rest

[k ¼ ðmp; 0; 0; 0Þ] must coincide with the propagator

of a free field of mass mp, namely, Gð2Þ
0 ðkÞ. That is,

Gð2Þ
f ðk;mp; τÞjτ¼mp

¼ Gð2Þ
0 ðk;mp; τÞjτ¼mp

;

k ¼ ðmp; 0; 0; 0Þ: ð47Þ

RP2: The renormalized coupling constant, measured in a
scattering process in which two incoming particles at
rest scatter to two outgoing particles at rest, must
be λp.

To implement the first prescription, we add a counterterm,

δL1 ¼ −
1

2
λpΔ1φ

2; ð48Þ

which modifies the propagator (46) at OðλpÞ as

Gð2Þ
f ðkÞ ¼ ig2φðk;mp; τÞ

k2 −m2
p þ iϵ − ig2φðk;mp; τÞ½Σ1 − iλpΔ1�

:

Setting k̃ ¼ ðmp; 0; 0; 0Þ, the first prescription RP1 is

½Σ1 − iλpΔ1�jk¼k̃ ¼ 0;

which yields

Δ1ðτÞ ¼
�
i
2

�Z
d4q
ð2πÞ4

g2φðq;mp; τÞ
q2 −m2

p þ iϵ
: ð49Þ

The prescription (49) is manifestly Lorentz invariant owing
to the Lorentz invariance of the Gibbs factor. From
Corollary 1 (Appendix B) we also note that Δ1ðτÞ is finite,
unlike in other regularization schemes.
Next, consider the amputated 4-point function

Gð4Þðk1; k2; k3; k4Þ defined as

ð2πÞ4δ4
�X4

j¼1

kj

�
Gð4Þðk1; k2; k3; k4Þ ¼

Z Y4
j¼1

d4xjeikjxjð□xj þm2
pÞ

ig2φðkj;mp; τÞ
h0jTfφðx1Þ…φðx4Þgj0i;

where φ is in Heisenberg representation.
Adding terms up to Oðλ2pÞ, a simple calculation shows

Gð4Þ
2 ðk1; k2; k3; k4Þ ¼ −iλp þ ð−iλpÞ2

Z
d4p
ð2πÞ4 ½G

ð2Þ
0 ðpÞGð2Þ

0 ðk1 þ k2 − pÞ

þGð2Þ
0 ðpÞGð2Þ

0 ðk1 þ k3 − pÞ þ Gð2Þ
0 ðpÞGð2Þ

0 ðk1 þ k4 − pÞ�:

To impose the second renormalization prescription, we add the counterterm

δL2 ¼ −λ2p
�
Δ2

4!

�
φ4; ð50Þ

which modifies the Gð4Þ
2 → G̃ð4Þ

2 ¼ Gð4Þ
2 − iλ2pΔ2. That is,

G̃ð4Þ
2 ðk1; k2; k3; k4Þ ¼ −iλ2pΔ2 − iλp þ ð−iλpÞ2

Z
d4p
ð2πÞ4 ½G

ð2Þ
0 ðpÞGð2Þ

0 ðk1 þ k2 − pÞ

þ Gð2Þ
0 ðpÞGð2Þ

0 ðk1 þ k3 − pÞ þGð2Þ
0 ðpÞGð2Þ

0 ðk1 þ k4 − pÞ�:

The second renormalization prescription stipulates that for k1 ¼ k2 ¼ k3 ¼ k4 ¼ ðmp; 0; 0; 0Þ≕ q,

G̃ð4Þ
2 ðq; q; q; qÞ ¼ −iλp:

That is,

Δ2ðτÞ ¼ 3i
Z

d4p
ð2πÞ4

�
ig2φðp;mp; τÞ
p2 −m2

p þ iϵ

��
ig2φð2q − p;mp; τÞ
ð2q − pÞ2 −m2

p þ iϵ

�
: ð51Þ
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From Corollary 3 (Appendix E), it follows that Δ2ðτÞ is
finite. If the Gibbs factors are set to unity, then Δ2 diverges
logarithmically.
The above sample calculations illustrate the renormal-

ization procedure based on autoregularization. As the
calculations illustrate, the perturbative corrections and
the counterterms are finite. Next, we turn to the derivation
of the renormalization group equation.

B. Renormalization group equation

In this section, we derive the renormalization group
equation based on autoregularization. We note that the bare
Lagrangian can be written in terms of the bare parameters
and fields as

Lb ¼ LðbÞ
b ¼ 1

2
∂μφb∂

μφb −
1

2
m2

bφ
2
b −

λb
4!

φ4
b: ð52Þ

The bare Lagrangian can also be written in terms of
physical parameters and fields using the multiplicative
renormalization constants Zφðτ; λp;mpÞ; Zmðτ; λp;mpÞ,
and Zλðτ; λp;mpÞ,

mb ¼ Z1=2
m Z−1=2

φ mp; φb ¼ Z1=2
φ φp λb ¼ ZλZ−2

φ λp

ð53Þ
as

Lb ¼LðpÞ
b ¼ 1

2
Zφ∂μφp∂

μφp −
1

2
Zmm2

pφ
2
p −Zλ

λp
4!
φ4
p: ð54Þ

The renormalization constants can be calculated using
the counterterms. For example, at 1-loop, from (48) and
(51), we have

Zm ¼ 1þ λpΔ1

m2
p

;

and from (50) and (51), we have

Zλ ¼ 1þ λpΔ2:

The wave function renormalization constant Zφ does not
receive a correction at 1-loop—the order to which we have
shown renormalization calculation in Sec. VA. However,
Zφ does receive a correction at 2-loop; see [9]. The
superscripts b and p indicate whether Lb is written in
terms of the bare or physical quantities.
We define the n-point function GðnÞðk1;…; knÞ in

momentum space as

ð2πÞ4δ4
�Xn

i¼1

ki

�
GðnÞ

p ðk1;…; kn; λp;mp; τÞ

¼
Z Yn

j¼1

d4xjeikjxjh0jTfφpðx1Þ…φpðxnÞgj0i; ð55Þ

where φp is in the Heisenberg representation. The param-
eters λp;mp are shown explicitly to indicate h0jTφpðx1Þ…
φpðxnÞ0i is evaluated in a perturbative expansion using the
Lagrangian LðpÞ

b written in terms of the physical parameters
as shown in (54).
Similarly,

ð2πÞ4δ4
�Xn

i¼1

ki

�
GðnÞ

b ðk1;…; kn; λb; mb; τÞ

¼
Z Yn

j¼1

d4xjeikjxjh0jTfφbðx1Þ…φbðxnÞgj0i; ð56Þ

where the parameters λb, mb indicate that h0jTφbðx1Þ…
φbðxnÞj0i is evaluated in a perturbative expansion using the
bare Lagrangian Lb written in terms of the bare parameters
as in (52). The vacuum j0i shown in both (55) and (56) is
the vacuum of the same interacting theory corresponding to
the Lagrangian Lb.
Since φbðxÞ ¼ Z1=2

φ φpðxÞ,

h0jTφbðx1Þ…φbðxnÞj0i ¼ Zn=2
φ h0jTφpðx1Þ…φpðxnÞj0i;

ð57Þ

and thus,

GðnÞ
b ðk1;…; kn; λb; mb; τÞ ¼ Zn=2

φ GðnÞ
p ðk1;…; kn; λp;mp; τÞ;

ð58Þ

or using (53), we have

GðnÞ
p ðk1;…; kn; λp;mp; τÞ
¼ Z−n=2

φ GðnÞ
b ðk1;…; kn;ZλZ−2

φ λp; Z
1=2
m Z−1=2

φ mp; τÞ: ð59Þ

In GðnÞ
p ðk1;…; kn; λp;mp; τÞ, we scale momenta on both

the external legs (ki) and internal legs (pj) of a Feynman
diagram, the mass mp, and τ as

ki → qi ¼ ki=τ; pj → p0
j ¼ pi=τ;

mp → μp ¼ mp=τ; τ → 1 ¼ τ=τ;

where qi; p0
j; μp are dimensionless variables.

Noting that for a generic momentum l, g2φðl; mp; τÞ ¼
g2φðl=τ; mp=τ; 1Þ straightforward counting11 shows that

11In φ4 theory, a diagram with V vertices and n external legs
has I ¼ 2V − n=2 internal legs and L ¼ I − V þ 1 loops. The
I þ n propagators contribute ¼ τ−4V−n, and the L integral
measures contribute τ4V−2nþ4 to the counting, giving an overall
factor of τ4−3n.
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GðnÞ
p ðk1;…; kn; λp;mp; τÞ
¼ τ4−3nðG̃ÞðnÞp ðq1;…; qn; λp; μp; 1Þ; ð60Þ

with the understanding that the momentumlike variables on
external and internal legs and the loop integration variables
are all dimensionless. We can rewrite the above identity12 as

ðG̃ÞðnÞp ðq1;…; qn; λp; μp; 1Þ
¼ τ3n−4GðnÞ

p ðτq1;…; τqn; λp; τμp; τÞ: ð61Þ

Instead of considering λp and mp as the τ-independent free
variables, we can regard λp and μp to be the τ-independent
free variables, making mp ¼ τμp, τ-dependent. The bare
Lagrangian (54) can be written in terms of λp and μp as

Lb ¼ Z̃φ
1

2
∂
μφp∂μφp − Z̃m

1

2
ðμpÞ2φ2

p − Z̃λ
λp
4!

φ4
p;

with

Z̃mðτ; λp; μpÞ ≔ τ2Zmðτ; λp; τμpÞ;
Z̃φðτ; λp; μpÞ ≔ Zφðτ; λp; τμpÞ;
Z̃λðτ; λp; μpÞ ≔ Zλðτ; λp; τμpÞ:

Then, the left-hand side of (61) is independent of τ, and
therefore,

d
dτ

ðG̃ÞðnÞp ðq1;…; qn; λp; μp; 1Þ ¼ 0: ð62Þ

Using (59) and (61), we can rewrite (62) as

d
dτ

½τ3n−4Z−n=2
φ GðnÞ

b ðτq1;…;τqn;ZλZ−2
φ λp;Z

1=2
m Z−1=2

φ τμp;τÞ�
¼ 0: ð63Þ

As shown in Appendix F, differentiating in (63), we obtain
the renormalization group equation,

�
ð3n − 4Þ þ ðn=2Þγa þ γλλp

∂

∂λp
þ γμμp

∂

∂μp

þ kai
∂

∂kai
þ τ

∂

∂τ

�
GðnÞ

b ðk1;…; kn;Kλλp;Kmτμp; τÞ ¼ 0;

ð64Þ

where γa, γλ, γμ are defined in (F5), and

Kλðλp; μp; τÞ ¼ ZλZ−2
φ ; Kmðλp; μp; τÞ ¼ Z1=2

m Z−1=2
φ :

The renormalization constants Zλ, Zm, and Zφ can be
calculated order by order in perturbation theory as shown
in Sec. VA. It should be noted that, unlike in other
regularization schemes, the renormalization constants are
finite, at every order of perturbation, in autoregularization.
The one important feature of autoregularization is that the
scale τ has a transparent physical meaning—it is the Lorentz-
invariant kinematic scale of the scattering process of interest.

VI. CONCLUSION

We have presented a proof of gauge invariance of the
QED S-matrix that is stronger than previous proofs. Our
argument—valid within both autoregularization and the
currentQFT—shows that the amplitude of every contributing
Feynman diagram is separately gauge invariant; in contrast,
the previous arguments establish gauge invariance of a sumof
amplitudes of the contributing Feynman diagrams. We also
showed that autoregularization yields a new method for
quantizing the QED gauge field in covariant gauge that is
significantly simpler than the standard Gupta-Bleuler
method. In the new gauge quantization method, ghost fields
are not needed. The unphysical modes decouple naturally.
The QED Lagrangian does not have to be modified. The
expectation value of theHamiltonian is positive semidefinite.
The Fock space has a nonnegative norm and does not have to
be partitioned into “physical” and “unphysical” states, nor
gauge condition imposed in a weak form. Finally, we
illustrated renormalization at 1-loop in autoregularization
using the φ4 theory and derived the renormalization group
equation (RGE). The RGE we derive has a straightforward
physical interpretation—it describes the evolution of the
correlation function with the kinematic scale of the scattering
process of interest.
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APPENDIX A: OVERVIEW
OF AUTOREGULARIZATION

In this appendix, we present a summary of autoregula-
rization, which is described in greater detail in [1]. Consider
a scattering process P in which m incoming particles with
momenta p1;…pm scatter to n outgoing particles with
momenta q1;…; qn,

P∶ p1 þ…þ pm → q1 þ…þ qn: ðA1Þ
For simplicity, we assume that one of the particles
participating in the scattering process is described by a
scalar field φ of mass m > 0.
In autoregularization, the free-field expansion of φ is

taken to be

12We get 3n − 4 as the scaling exponent, instead of n − 4
obtained in vertex functions because, unlike in the vertex
functions, the propagators of external legs are included in
GðnÞ

p ðk1;…; kn; λp; mp; τÞ.
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φðx;PÞ ¼
Z

dk⃗

ð2πÞ3ð2ωðk⃗ÞÞ
gφðk;PÞ½âðk⃗Þe−ikxþ â†ðk⃗Þeikx�;

ðA2Þ

where gφðk;PÞ is Lorentz-invariant Gibbs factor, which
depends on the process P. The Gibbs factors are defined as
[[1], Eq. (6)],

gψ ðk;PÞ ¼

8>>>>><
>>>>>:

h
dψ

eðEψ ðkÞ−μψ Þ=τ−1

i
1=4

ψ∶ massive bosonh
dψ

eðEψ ðkÞ−μψ Þ=τþ1

i
1=4

ψ∶ massive fermionh
dψ

eðEψ ðkÞ=τþτ=Eψ ðkÞ−1

i
1=4

ψ∶ massless boson

;

ðA3Þ
where dψ is the number of degrees of freedom of the ψ
field, defined in [[1], Sec. 2.2]. Eψ ðkÞ is a Lorentz-invariant
that reduces to ωðk⃗Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk⃗j2 þm2

q
in the center-of-

momentum (CM) frame. The construction of EψðkÞ is
described in [[1], Sec. 2.1]. μψ is a Lorentz-invariant
chemical potential of ψ , defined in [1, Eq. (7)]. τ is the
Lorentz invariant kinematic scale of the process P, defined
in [1, Eq. (8)] and reproduced in (A4) below:

τP ¼ max
I ;J

� ffiffiffiffiffiffiffiffiffiffiffiffi
jkμkμj

q
jk ¼

X
i∈ I

pi −
X
j∈J

qj

�
; ðA4Þ

where I ⊆f1;…;mg;J ⊆f1;…;ng;0< jI jþjJ j<mþn.
When the process P is clear from the context, we
abbreviate gψ ðk;PÞ to gψ ðkÞ and omit the subscript in τP .
The free-field expansion in (A2) satisfies the Klein-

Gordon equation. From (A3), we note that g4ψ resembles the
Fermi-Dirac (Bose-Einstein) distribution if ψ is a massive
fermion (boson). An extra τ=EψðkÞ term has been added to
the exponent in the Gibbs factor of the massless boson to
suppress the IR divergence; the validity of the extra term,
and of the form of all the Gibbs factors, is supported by the
preliminary tests of autoregularization presented in [1].
We also note that g4ψ resembles the classical Gibbs factor
for EψðkÞ=τ ≫ 1.
Since the Gibbs factor depends on P, the free-field

expansion in (A2) also depends on the scattering process P
representing a departure from previous formalism, which
relied on process-independent free-field expansions. The
calculation of the scattering amplitudes is thus customized
to the scattering process under consideration.
The Gibbs factor in the free-field expansion (A2) breaks

the equivalence between equal-time commutation relations
(ETCR) imposed on the field and its conjugate momentum
on the one hand and the commutation relations on the
creation and annihilation operators on the other. In autor-
egularization, the standard commutation relations are

imposed on the creation and annihilation operators â and
â†, and the ETCRon the field and itsmomentumare omitted.
Thus, the individual oscillators are quantized and not the
field, representing a reversion to the Diracian approach.
Straightforward calculations show that the Gibbs factor

in (A2) modifies the propagator. Thus, we have

Dðx − yÞ ¼ h0jTφðxÞφðyÞj0i

¼ lim
ϵ→0

�
i
Z

d4k
ð2πÞ4

�
e−ikðx−yÞ

k2 −m2 þ iϵ

�
gφðk;PÞ2

�
:

Similarly, factors of g2ψ appear in the propagator when ψ is a
massive fermion or a massless boson. Finally, the Gibbs
factors lead to a straightforward modification of the LSZ
formalism [[1], Sec. 2.4].

APPENDIX B: FINITENESS
OF THE PROPAGATOR

We show that the propagator of the φ4 theory, Dðx − yÞ,
which is quadratically divergent in the Heisenberg-Pauli
framework (HPF), is finite in autoregularization.
The propagator is given by

Dðx−yÞ¼h0jTφðxÞφðyÞj0i¼ lim
ϵ→0

i
Z

d4k
ð2πÞ4

e−ikðx−yÞg2φðkÞ
k2−m2þ iϵ

;

where gφðkÞ is the Gibbs factor, which we abbreviate as
gðkÞ hereafter. Since Dðx − yÞ is Lorentz invariant, we can
choose a convenient frame for the calculation. We choose
the center-of-momentum frame of the scattering process of
interest in which gðkÞ depends only on k⃗ and is given by

gðkÞ ¼
�

2

eωðk⃗Þ=τ − 1

�
1=4

¼
�

e−ω̃ðrÞ=2τ

sinhðω̃ðrÞ=2τÞ
�
1=4

;

where ωðk⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk⃗j2 þm2

q
, ω̃ðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þm2

p
, r ¼ jk⃗j,

and τ is the kinematic scale of the scattering process of
interest as defined in (A4). For a massive scalar field, which
has no conserved charge, the chemical potential μφ ¼ 0.

With some abuse of notation, we write gðkÞ as gðk⃗Þ
hereafter. Then,

Dðx − yÞ ¼ i
Z

dk⃗
ð2πÞ4 e

ik⃗·ðx⃗−y⃗Þ

× gðk⃗Þ2lim
ϵ→0

�Z
∞

0

dk0
e−ik

0ðx0−y0Þ

ðk0Þ2 − ðωðk⃗Þ − iϵÞ2
�
:

The k0 integral is evaluated using contour integration,
closing the contour with a lower semicircle if x0 > y0 and
the upper semicircle if x0 ≤ y0. Performing the contour
integration we obtain
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Dðx − yÞ ¼ 1

16π3

Z
dk⃗

�
gðk⃗Þ2
ωðk⃗Þ

�
e�iωðk⃗Þjx0−y0jþik⃗·ðx⃗−y⃗Þ:

Taking the absolute value and performing the angular
integration, we have

jDðx − yÞj ≤ 1

4π2

Z
∞

0

drr2
�

1

ω̃ðrÞ
��

e−ω̃ðrÞ=2τ

sinhðω̃ðrÞ=2τÞ
�
1=2

:

Noting that ω̃ðrÞ≥ r; ω̃ðrÞ≥m;sinhðω̃ðrÞ=2τÞ≥ ω̃ðrÞ=2τ ≥
m=2τ, we have

jDðx − yÞj ≤
ffiffiffi
τ

p

2π2
ffiffiffiffiffiffiffi
2m

p
Z

∞

0

drre−r=4τ ¼ 4
ffiffiffi
2

p ðτÞ5=2
π2

ffiffiffiffi
m

p < ∞:

The above argument holds without modification if x ¼ y.
Therefore, we obtain the following corollary.
Corollary 1.				

Z
d4k
ð2πÞ4

gðkÞ2
k2 −m2 þ iϵ

				 < ∞

We also obtain the following corollary for fermion
propagator.
Corollary 2. The electron propagator,

SðxÞ ¼ lim
ϵ→0

�
i
Z

d4k
ð2πÞ4

e−ikxgeðkÞ2ðkþmÞ
k2 −m2 þ iϵ

�
;

is finite, where

geðkÞ2 ¼
�

2e−ðω̃ðρÞ−μeÞ=2τ

coshððω̃ðρÞ − μeÞ=2τÞ
�
1=2

; μe ¼
ffiffiffiffiffiffiffiffi
9α

16π

r
; ω̃ðρÞ ≔ ½ρ2 þm2�1=2; ρ ¼ jk⃗j:

geðkÞ and μe are defined in (A3) and [1, Eq. (7)], respectively. α is the fine structure constant. geðkÞ2 has the form shown
above in the center-of-momentum frame.
Proof. We note

SðxÞ ¼ iγ0B0ðx;mÞ þ iγjBjðx;mÞ þ iCðx;mÞ;

Bμðx;mÞ ¼
Z

d4k
ð2πÞ4

kμe−ikxgeðkÞ2
k2 −m2 þ iϵ

; Cðx;mÞ ¼ m
Z

d4k
ð2πÞ4

e−ikxgeðkÞ2
k2 −m2 þ iϵ

Since geðkÞ ¼ geð−kÞ in center-of-momentum frame, Bμð0;mÞ ¼ 0. So in calculating Bμ, we assume x ≠ 0. Performing k0

integration, closing the contour using the upper (lower) semicircle, if x0 < 0 (x0 > 0), we have

B0ðx;mÞ ¼ � i
4π2

Z
dρρ2g̃eðρÞ2e�iωðk⃗Þx0þik⃗·x⃗:

Noting that coshðθÞ ≥ 1, and ω̃ðρÞ > ρ,

jB0ðx;mÞj < eμe=4τ

2
ffiffiffi
2

p
π2

Z
∞

0

dρρ2e−ω̃ðρÞ=4τ <
eμe=4τ

2
ffiffiffi
2

p
π2

Z
∞

0

dρρ2e−ρ=4τ ¼ 32
ffiffiffi
2

p
τ3eμe=4τ

π2
:

Similarly, performing the k0 contour integration in Bj and C, and noting jkjj < jk⃗j ¼ ρ, we have for j ¼ 1; 2; 3,

Bjðx;mÞ ¼ −
Z

dk⃗
ð2πÞ4 geðkÞ

2kj
�

2πi

2ω̃ðjk⃗jÞ

�
e�iω̃ðjk⃗jÞx0þik⃗·x⃗;

jBjðx;mÞj ≤ eμe=4τ

8
ffiffiffi
2

p
π3

Z
dk⃗

jk⃗je−ω̃ðjk⃗jÞ=4τ
ω̃ðjk⃗jÞ

<
eμe=4τ

2
ffiffiffi
2

p
π2

Z
∞

0

dρρ2e−ρ=4τ ¼ 32
ffiffiffi
2

p
τ3eμe=4τ

π2
:

Finally,

jCðx;mÞj ¼
				−im

Z
dk⃗
16π3

geðkÞ2e�iω̃ðjk⃗jÞx0þik⃗·x⃗

ω̃ðjk⃗jÞ

				 < meμe=4τ

2
ffiffiffi
2

p
π2

Z
∞

0

dρρe−ρ=4τ ¼ 4
ffiffiffi
2

p
mτ2eμe=4τ

π2
:

▪
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APPENDIX C: COMPONENT OF δ4ðpÞ IN Δðp; q1Þ
We recall from (20)

Δðp; q1Þ ¼ ð=q1 þmÞ
�

geðp − q1Þ2
=p − =q1 −mþ iϵ

�
fα̃ð−pÞ þ α̃�ðpÞg;

Our objective is to extract the component of δ4ðpÞ in Δðp; q1Þ. Using the definition of α in (16), we have

α̃ð−pÞ þ α̃�ðpÞ ¼
Z

d4xe−ipxαðxÞ:

Expanding αðxÞ around x ¼ 0, we have

αðxÞ ¼ αð0Þ þ ∂μαð0Þxμ þ…:

Therefore, from (C1), we have

α̃ð−pÞ þ α̃�ðpÞ ¼ αð0Þð2πÞ4δ4ðpÞ þ ∂μαð0Þ
Z

d4xxμe−ipx þ…

¼ αð0Þ½ð2πÞ4δ4ðpÞ� þ ið2πÞ4∂μαð0Þ
�

∂

∂pμ
δ4ðpÞ

�
þ… ¼ αð0Þð2πÞ4δ4ðpÞ þ βðpÞ;

where βðpÞ contains terms that have derivatives of δ4ðpÞ. Therefore,

½α̃ð−pÞ þ α̃�ðpÞ�
�

geðp − q1Þ2
=p − =q1 −mþ iϵ

�
¼ αð0Þ

�
geðq1Þ2

−=q1 −mþ iϵ

�
ð2πÞ4δ4ðpÞ þ

�
geðp − q1Þ2

=p − =q1 −mþ iϵ

�
βðpÞ: ðC1Þ

We note that

geðp − q1Þ2
=p − =q1 −mþ iϵ

¼ −i
Z

d4xSðxÞeðp−q1Þx; ðC2Þ

where SðxÞ is the electron propagator,

SðxÞ ¼ iBðx;mÞ þ iCðx;mÞ; Bμ ¼
Z

d4k
ð2πÞ4

kμe−ikxgeðkÞ2
k2 −m2 þ iϵ

; C ¼
Z

d4k
ð2πÞ4

me−ikxgeðkÞ2
k2 −m2 þ iϵ

:

In the center-of-momentum frame of the process of interest, geðkÞ ¼ geð−kÞ, and as a result,13 Bμð0;mÞ ¼ 0. From
Corollary 2 in Appendix B, we know that Bðx;mÞ and Cðx;mÞ are finite.
Expanding Bμðx;mÞ and Cðx;mÞ about x ¼ 0, and recalling that Bμð0;mÞ ¼ 0, we have

Bμðx;mÞ ¼ ∂νBμð0;mÞxν þ…; Cðx;mÞ ¼ Cð0;mÞ þ ∂νCð0;mÞxν þ…: ðC3Þ

Inserting (C3) into (C2), we obtain

geðp − q1Þ2
=p − =q1 −mþ iϵ

¼ Cð0;mÞð2πÞ4δ4ðp − q1Þ þ ½∂νBð0;mÞ þ ∂νCð0;mÞ�½ið2πÞ4�
�

∂

∂pν
δ4ðp − q1Þ

�
þ…; ðC4Þ

Inserting (C4) into (C1), we get

½α̃ð−pÞ þ α̃�ðpÞ�
�

geðp − q1Þ2
=p − =q1 −mþ iϵ

�
¼ αð0Þ

�
geðq1Þ2

−=q1 −mþ iϵ

�
ð2πÞ4δ4ðpÞ þ Cð0;mÞð2πÞ4δ4ðp − q1ÞβðpÞ þ Λðp; q1Þ;

13The integrand becomes an odd function.
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where Λðp; q1Þ contains terms that have derivatives of
δ4ðp − q1Þ and δ4ðpÞ and, as mentioned before, βðpÞ
contains terms that have derivatives of δ4ðpÞ. In summary,

½α̃ð−pÞ þ α̃�ðpÞ�
�

geðp − q1Þ2
=p − =q1 −mþ iϵ

�

¼ αð0Þ
�

geðq1Þ2
−=q1 −mþ iϵ

�
ð2πÞ4δ4ðpÞ þ Ωðp; q1Þ; ðC5Þ

where Ωðp;q1Þ ¼Cð0;mÞð2πÞ4δ4ðp−q1ÞβðpÞþΛðp;q1Þ
contains terms that have derivatives of δ4ðpÞ
and δ4ðp − q1Þ.

APPENDIX D: FINITENESS OF AN INTEGRAL

The following lemma is used in the proof of finiteness in
Appendix E.
Lemma 1. Let fðxÞ be a real-valued continuously differ-

entiable function with bounded derivative in the interval
½a − ϵ; aþ ϵ�, where a∈R and 0 < ϵ < ∞. Then,

F ≔
Z

aþϵ

a−ϵ

fðxÞ
x − a

dx < ∞:

Proof. The integral F is defined in the sense of Cauchy
principal value as

F ¼ lim
δ→0

½F−ðδÞ þ FþðδÞ�; F−ðδÞ ¼
Z

a−δ

a−ϵ

fðxÞ
x − a

dx;

FþðδÞ ¼
Z

aþϵ

aþδ

fðxÞ
x − a

dx;

where 0 < δ < ϵ. Setting a− x¼ y in F−ðδÞ and x − a ¼ y
in FþðδÞ, we have

F ¼ lim
δ→0

Z
ϵ

δ

�
fðaþ yÞ − fða − yÞ

y

�
dy:

FromMeanValueTheorem, there exists a cðyÞ∈ða−y;aþyÞ
for which

fðaþ yÞ − fða − yÞ ¼ f0ðcðyÞÞð2yÞ:
Therefore,

F ¼ 2lim
δ→0

Z
ϵ

δ
f0ðcðyÞÞdy ¼ 2

Z
ϵ

0

f0ðcðyÞÞdy: ðD1Þ

Let

m ¼ min
a−ϵ≤x≤aþϵ

f0ðxÞ; M ¼ max
a−ϵ≤x≤aþϵ

f0ðxÞ: ðD2Þ

From the assumptions in the Lemma, m and M are finite.
Using (D1) and (D2), we have

2mϵ ≤ F ¼ 2

Z
ϵ

0

f0ðcðyÞÞdy ≤ 2Mϵ;

which completes the proof. ▪

APPENDIX E: FINITENESS OF THE AMPLITUDE
OF A 1-LOOP DIAGRAM

Figure 1 shows a 1-loop diagram D that arises in 2-
particle scattering in the φ4 theory14 of a massive scalar
field. We show that the amplitude of D is finite in
autoregularization. In contrast,D’s amplitude is logarithmi-
cally divergent in HPF.
The amputated amplitude of D in autoregularization is

A ¼ ð2πÞ4δ4ðp1 þ p2 − q1 − q2ÞβI;

β ¼ λ2gðp1Þgðp2Þgðq1Þgðq2Þ
ð ffiffiffiffi

Z
p Þ4 ;

where

I ¼ lim
ϵ→0

Z
d4k
ð2πÞ4

×

�
g2ðkÞg2ðkþ p1 þ p2Þ

ðk2 −m2 þ iϵÞððkþ p1 þ p2Þ2 −m2 þ iϵÞ
�
; ðE1Þ

where the Gibbs factor gφ has been abbreviated to g.
The corresponding amplitude in HPF, obtained by
setting the Gibbs factors to unity, is logarithmically
divergent.
We show that the integral I is finite. Since I is

Lorentz invariant, we can perform the calculation in
any frame. We perform the calculation in the center-
of-momentum frame FCM in which p1 þ p2 ¼
ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þm2

p
; 0; 0; 0Þ, where a ¼ jp⃗1j ¼ jp⃗2j. For brevity,

we set χ ≔ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þm2

p
. In FCM, gðkÞ depends only on k⃗

(see [[1], Sec. 2.1]) and with some abuse of notation, we
write gðkÞ ¼ gðk⃗Þ. Hence, in FCM, gðkþ p1 þ p2Þ ¼
gðkÞ ¼ gðk⃗Þ. So, we can write I as

FIG. 1. A 1-loop diagram D of 2-particle scattering in φ4

theory.

14L ¼ 1
2
∂μφ∂

μφ − 1
2
m2φ2 − λ

4!
φ4. m > 0 and 0 < λ ≪ 1.
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I ¼ lim
ϵ→0

Z
dk⃗

ð2πÞ4 gðk⃗Þ
4

Z
dk0

�
1

ððk0Þ2 − ðωðk⃗Þ − iϵÞ2Þððk0 þ χÞ2 − ðωðk⃗Þ − iϵÞ2Þ

�
;

where ωðk⃗Þ ≔ ½k⃗2 þm2�1=2.
The k0 integral can be evaluated with contour integration closing the contour using the upper semicircle. The integral on

the semicircle vanishes (see [[14], Sec. 70]) yielding

I0 ¼ lim
ϵ→0

Z
dk0

�
1

ððk0Þ2 − ðωðk⃗Þ − iϵÞ2Þððk0 þ χÞ2 − ðωðk⃗Þ − iϵÞ2Þ

�

¼ −
πi

ωðk⃗Þχ

�
1

χ − 2ωðk⃗Þ
þ 1

χ þ 2ωðk⃗Þ

�
:

I can be written as

I ¼ −
πi

ð2πÞ4χ fI− þ Iþg;

I� ¼
Z

dk⃗

�
gðk⃗Þ4

ωðk⃗Þðχ � 2ωðk⃗ÞÞ

�
¼ 4π

Z
∞

0

dr

�
r2g̃ðrÞ4

ω̃ðrÞðχ � 2ω̃ðrÞÞ
�
; ðE2Þ

where r ¼ jk⃗j, τ is the scale of the process as defined in (A4), and

ω̃ðrÞ ≔ ½r2 þm2�1=2; g̃ðrÞ4 ≔
�

2

eω̃ðrÞ=τ − 1

�
¼ e−ω̃ðrÞ=2τ

sinhðω̃ðrÞ=2τÞ : ðE3Þ

Since

ω̃ðrÞ ≥ m; ω̃ðrÞ ≥ r; χ ≥ 2m; sinhðω̃ðrÞ=2τÞ ≥ sinhðm=2τÞ; ðE4Þ

we have

g̃ðrÞ4 ≤ e−r=2τ

sinhðm=2τÞ ;

and

Iþ ≤
π

m2 sinhðm=2τÞ
Z

∞

0

drr2e−r=2τ ¼ 16πτ3

m2 sinhðm=2τÞ < ∞: ðE5Þ

To prove the finiteness of I− we rationalize the denominator in the integrand. Using the definitions of χ and ω̃ðrÞ, we obtain

I− ¼ −π
Z

∞

0

dr
fðrÞ

ðr − aÞ ; fðrÞ ≔
�

r2e−ω̃ðrÞ=2τðχ þ 2ω̃ðrÞÞ
ω̃ðrÞðrþ aÞ sinhðω̃ðrÞ=2τÞ

�
: ðE6Þ

We prove the finiteness of I− by considering two cases: a ¼ 0 and a > 0. In the trivial case a ¼ 0, in which the incoming
particles are at rest in FCM, χ ¼ 2m, and we have

jI−j ¼ 2π

Z
∞

0

dr

�
e−ω̃ðrÞ=2τðmþ ω̃ðrÞÞ
ω̃ðrÞ sinhðω̃ðrÞ=2τÞ

�
¼ Ið1Þ− þ Ið2Þ− ;

Ið1Þ− ¼ 2πm
Z

∞

0

dr

�
e−ω̃ðrÞ=2τ

ω̃ðrÞ sinhðω̃ðrÞ=2τÞ
�
; Ið2Þ− ¼ 2π

Z
∞

0

dr

�
e−ω̃ðrÞ=2τ

sinhðω̃ðrÞ=2τÞ
�
:

Using the inequalities in (E4), we have
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Ið1Þ− ≤
2πm

m sinhðm=2τÞ
Z

∞

0

e−r=2τdr ¼ 4πmτ

m sinhðm=2τÞ < ∞;

Ið2Þ− ≤
2π

sinhðm=2τÞ
Z

∞

0

e−r=2τdr ¼ 4πτ

sinhðm=2τÞ < ∞:

Therefore, when a ¼ 0, we have jI−j ¼ Ið1Þ− þ Ið2Þ− < ∞.
Next, we consider the case a > 0. Using (E6), we set

NðrÞ ¼ r2e−ω̃ðrÞ=2τðχ þ 2ω̃ðrÞÞ; DðrÞ ¼ ω̃ðrÞðrþ aÞ sinhðω̃ðrÞ=2τÞ: ðE7Þ

Evaluating15 N0ðrÞ and D0ðrÞ, we see that

f0ðrÞ ¼ DðrÞN0ðrÞ − NðrÞD0ðrÞ
DðrÞ2

is continuous and bounded in ½a − ϵ; aþ ϵ� for any 0 < ϵ < a. We pick a small ϵ, satisfying 0 < ϵ < a and conclude, using
Lemma 1, in Appendix D, that

Iϵ ≔ −π
Z

aþϵ

a−ϵ

fðrÞ
r − a

dr < ∞: ðE8Þ

Using (E6) we can write I− as

I− ¼ IL þ Iϵ þ IR; IL ¼ −π
Z

a−ϵ

0

fðrÞ
r − a

dr; IR ¼ −π
Z

∞

aþϵ

fðrÞ
r − a

dr: ðE9Þ

We write fðrÞ as

fðrÞ ¼ f1ðrÞ þ f2ðrÞ;

f1ðrÞ ¼
r2e−ω̃ðrÞ=2τχ

ω̃ðrÞðrþ aÞ sinhðω̃ðrÞ=2τÞ ; f2ðrÞ ¼
2r2e−ω̃ðrÞ=2τ

ðrþ aÞ sinhðω̃ðrÞ=2τÞ : ðE10Þ

Using the bounds in (E4) and noting that jr2 − a2j ≥ ϵ2 in ½0; a − ϵ� and in ½aþ ϵ;∞Þ, we obtain

				 f1ðrÞr − a

				 ≤
�

χ

mϵ2 sinhðm=2τÞ
�
r2e−r=2τ;

				 f2ðrÞr − a

				 ≤
�

2

ϵ2 sinhðm=2τÞ
�
r2e−r=2τ: ðE11Þ

Using (E9)–(E11) and setting

ξ ¼
�

π

ϵ2 sinhðm=2τÞ
��

χ

m
þ 2

�
;

we obtain

15

N0ðrÞ ¼ e−ω̃ðrÞ=2τ½4τrω̃ðrÞðχ þ 2ω̃ðrÞÞ − r3ðχ þ 2ω̃ðrÞÞ þ 4r3τ�
2τω̃ðrÞ ;

D0ðrÞ ¼ sinhðω̃ðrÞ=2τÞf2τrðrþ aÞ þ 2τω̃ðrÞ2g þ rω̃ðrÞðrþ aÞ coshðω̃ðrÞ=2τÞ
2τω̃ðrÞ :
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jILj ≤ ξ

Z
a−ϵ

0

r2e−r=2τdr ≤ ξð16τ3Þ < ∞;

jIRj ≤ ξ

Z
∞

aþϵ
r2e−r=2τdr ≤ ξ½2τf8aτ þ 4a2 þ 8τ2g�

× e−ϵ=τ < ∞: ðE12Þ

From (E9), (E8), and (E12), it follows that I− is finite.
The finiteness of I then follows from (E2), (E5), and the
finiteness of I−.
Since gðkÞ ¼ gð−kÞ, changing the variable of integration

k → −k in the above argument, we get the following
corollary.
Corollary 3.

lim
ϵ→0

Z
d4k
ð2πÞ4

�
g2ðkÞg2ðp1 þ p2 − kÞ

ðk2 −m2 þ iϵÞððp1 þ p2 − kÞ2 −m2 þ iϵÞ
�

< ∞:

APPENDIX F: RENORMALIZATION
GROUP EQUATION

In this appendix, we present the calculations underlying
the derivation of (64) from (63). For convenience, Eq. (63)
is reproduced below:

d
dτ

½τ3n−4Z−n=2
φ GðnÞ

b ðτq1;…;τqn;ZλZ−2
φ λp;Z

1=2
m Z−1=2

φ τμp;τÞ�
¼ 0:

Differentiating in (63) and dividing throughout by
τ3n−5Z−n=2

φ , the equation becomes

ð3n− 4ÞGðnÞ
b − ðn=2Þτ

�
d lnZφ

dτ

�
GðnÞ

b þ τ
dGðnÞ

b

dτ
¼ 0: ðF1Þ

We change the set of independent variables from the
physical parameters ðλp; μp; τpÞ to the bare parameters
ðλb; mb; τbÞ. Although τp ¼ τb ¼ τ, we have used different
subscripts because different sets of variables are held
constant in ∂=∂τp and ∂=∂τb. In the above notation, the
τ occurring in (F1) is τb. Further, we use the following
definitions:

Kλ ¼ ZλZ−2
φ ¼ λb

λp
; Km ¼ Z1=2

m Z−1=2
φ ¼ mb

τμp
: ðF2Þ

Then, using the chain rule, we have

2
6664

∂

∂λp

∂

∂μp

∂

∂τp

3
7775 ¼

2
6664

∂λb
∂λp

∂mb
∂λp

∂τb
∂λp

∂λb
∂μp

∂mb
∂μp

∂τb
∂μp

∂λb
∂τp

∂mb
∂τp

∂τb
∂τp

3
7775

2
6664

∂

∂λb

∂

∂mb

∂

∂τb

3
7775

¼

2
6664
ðKλ;λpλp þ KλÞ Km;λpτpμp 0

Kλ;μpλp ðKm;μpμp þ KmÞτp 0

Kλ;τpλp ðKm;τpτp þ KmÞμp 1

3
7775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

2
6664

∂

∂λb

∂

∂mb

∂

∂τb

3
7775 ¼ A

2
6664

∂

∂λb

∂

∂mb

∂

∂τb

3
7775:

where we have used the notation Ka;b ≔
∂Ka
∂b .

Then, denoting the ði; jÞth element of the matrix A as Aij, and assuming that A is invertible,

B ≔ A−1 ¼ 1

Δ

2
664

A22 −A12 0

−A21 A11 0

ðA21A32 − A31A22Þ −ðA11A32 − A31A12Þ Δ

3
775;

Δ ¼ A11A22 − A21A12 ¼ τp½ðKλ;λpλp þ KλÞðKm;μpμp þ KmÞ − Kλ;μpλpKm;λpμp�;

and
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2
6664

∂

∂λb

∂

∂mb

∂

∂τb

3
7775 ¼ A−1

2
6664

∂

∂λp

∂

∂μp

∂

∂τp

3
7775 ¼

2
6664

B11
∂

∂λp
þ B12

∂

∂μp

B21
∂

∂λp
þ B22

∂

∂μp

B31
∂

∂λp
þ B32

∂

∂μp
þ ∂

∂τp

3
7775; ðF3Þ

where

B11 ¼
�ðKm;μpμp þ KmÞτp

Δ

�
; B12 ¼ −

�
Kmp;λpτpμp

Δ

�
;

B21 ¼ −
�
Kλ;μpλp

Δ

�
; B22 ¼

�ðKλ;λpλp þ KλÞ
Δ

�
;

B31 ¼
�
Kλ;μpλpðKm;ττp þ KmÞμp − Kλ;τpλpðKm;μpμp þ KmÞτp

Δ2

�
;

B32 ¼ −
�ðKλ;λpλp þ KλÞðKm;ττp þ KmÞμp − Kλ;τpλpKmp;λpτpμp

Δ2

�
: ðF4Þ

Inserting (F3) into (F1), we obtain�
ð3n − 4ÞGðnÞ

b − ðn=2Þτp
��

B31

∂

∂λp
þ B32

∂

∂μp
þ ∂

∂τp

�
lnðZφÞ

�
GðnÞ

b

þ τp

�
B31

∂

∂λp
þ B32

∂

∂μp
þ ∂

∂τp

�
GðnÞ

b

�
¼ 0:

We drop the subscript in τp, understanding that we are working in ðτp; λp; μpÞ coordinates hereafter. Defining

γa ≔ −τ
�
B31

∂

∂λp
þ B32

∂

∂μp
þ ∂

∂τ

�
lnðZφÞ; γλ ≔ τB31=λp; γμ ≔ τB32=μp; ðF5Þ

and recalling that mp ¼ τμp, we obtain the equation�
ð3n − 4Þ þ ðn=2Þγa þ γλλp

∂

∂λp
þ γμμp

∂

∂μp
þ τ

∂

∂τ

�
GðnÞ

b ðτq1;…; τqn;ZλZ−2
φ λp;Z

1=2
m Z−1=2

φ τμp; τÞ ¼ 0;

where Zλ; Zφ, and Zm are as defined in (53). We revert to the variables ki instead of qi, to obtain the renormalization group
equation, �

ð3n − 4Þ þ ðn=2Þγa þ γλλp
∂

∂λp
þ γμμp

∂

∂μp
þ kai

∂

∂kai
þ τ

∂

∂τ

�
GðnÞ

b ðk1;…; kn;Kλλp;Kmτμp; τÞ ¼ 0;

where Kλðλp; μp; τÞ and Kmðλp; μp; τÞ are defined in (F2).
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