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We compute the bound state properties of three-dimensional scalar ϕ4 theory in the broken phase. To this
end, we extend the recently developed technique of spectral Dyson-Schwinger equations to solve the Bethe-
Salpeter equation and determine the bound state spectrum. We employ consistent truncations for the two-,
three- and four-point functions of the theory that recover the scaling properties in the infinite coupling limit.
Our result for themass of the lowest-lying bound state in this limit agrees verywellwith lattice determinations.
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I. INTRODUCTION

The study of bound states with functional methods
requires the resummation of a large set of diagrams in a
nonperturbative manner. The standard tool for computing
such properties in continuum formulations of quantum field
theory (QFT) is the Bethe-Salpeter equation (BSE) [1,2].
Direct extraction of the physical spectrum in terms of the
corresponding poles and cuts requires to solve the BSE and,
in consequence, knowing the input correlation functions in
the timelike domain. This entails additional computational
complexity in comparison to calculations in the spacelike
domain.
This intricacy has been treatedwithin different approaches.

Important examples are direct calculations in the complex
momentum plane below the onset of singularities [3–7],
Cauchy integration [8–13] and contour deformation tech-
niques [14–29], or the Nakanishi method [30–35]. Other
works employ reconstructions from Euclidean space data,
for example with Padé approximants or the Schlessinger-
point method [24,27,36–45], or Machine Learning (ML)-
inspired reconstructions [46–56]. These methods have been
successful in extracting physical spectra, but do not fully
recover the analytic structure of correlation functions.
In this work, we introduce the spectral BSE approach,

allowing for an efficient solution in the timelike domain
by making use of spectral representations for the input

correlation functions. Their corresponding spectral func-
tions are accessible via the recently developed spectral
functional approach [57], which has found application
to QCD in the context of Dyson-Schwinger equations
(DSEs) [49,58–61], and was extended to the functional
renormalization group in [62], with applications to scalar
theories [63] and gravity [64]. This enables the direct
computation of physical masses of bound states and
resonances from the corresponding spectral BSE, while
also opening the door to investigating the analytic structure
of Bethe-Salpether wave functions [3,4,7,32,34,65–72].
The spectral BSE is set up at the example of a scalar ϕ4

theory in three spacetime dimensions. The theory exhibits a
second order phase transition and belongs to the Ising
model universality class. In the vicinity of the phase
transition, the emergence of a two-particle bound state
with mass M ∼ 1.8m, where m is the mass gap of the
theory, has been observed in several works [37,73–77]. The
aim of the present study is to approach this bound state
from the symmetry-broken phase by considering the
infinite coupling limit λ → ∞.
Our work is outlined as follows. In Sec. II we set up the

spectral BSE-DSE system for the scalar ϕ4 theory and
discuss the suitable truncations for the infinite coupling
limit. We present our numerical results for the correlation
functions and the bound state position in Sec. III, and
conclude in Sec. IV. Details on the spectral DSE, the BSE
and the numerical implementation can be found in the
Appendixes.

II. SPECTRAL DSES AND BSES

In this section, we discuss the spectral BSE-DSE system
used in this work. We briefly introduce the spectral DSE
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approach in Sec. II A, and discuss the employed expansion
of our effective potential in Sec. II B. Section II C is
dedicated to a detailed discussion of our systematics
relevant for the systematic error control. Finally, in
Sec. II D we discuss the BSE implementation in the present
spectral approach.

A. Dyson-Schwinger equations

The classical Euclidean action of the scalar ϕ4 theory in
d ¼ 3 dimensions reads,

S½φ� ¼
Z

d3x

�
1

2
φð−∂2 þm2

0Þφþ λϕ
4!

φ4

�
; ð1Þ

where λϕ is the bare four-point coupling, andm0 is the bare
mass of the scalar field. Because the coupling constant λϕ
carries a dimension of mass, all quantities can only depend
on the dimensionless ratio λϕ=m0. In the following, we
switch to dimensionless parameters by considering all
dimensionful parameters in units of the pole mass m.
The quantum analogue of the classical action (1) is the

quantum effective action Γ½ϕ�, see e.g. [78]. This is
formalized through the master Dyson-Schwinger equation,

δΓ½ϕ�
δϕ

¼
�
δS½φ�
δφ

�
; ð2Þ

stating that the quantum equation of motion of the scalar
field φ is obtained by varying the quantum effective action
with respect to the mean field ϕ ¼ hφi. Functional relations
for all one-particle irreducible (1PI) correlation functions,

ΓðnÞ½ϕ�ðp1;…; pnÞ ¼
δnΓ½ϕ�

δϕðp1Þ…δϕðpnÞ
; ð3Þ

are obtained from (2) by the respective ϕ-derivatives.
Generally, the DSE for ΓðnÞ depends on Γðnþ2Þ, leading
to an infinite tower of coupled equations. A closed system
of DSEs is achieved by truncating this tower, e.g., by
approximating correlation functions by their classical
counterpart from some order n on, Γðm>nÞ ≈ SðmÞ.
The central object in any functional application is the full

propagator G which can be obtained from the DSE for its
inverse Γð2Þ. The corresponding diagrammatic representa-
tion of the latter is shown in the top panel of Fig. 1,
containing a tadpole, polarization, squint and sunset dia-
gram. Apart from the classical vertices, these diagrams also
involve the full three- and four-point vertices (marked by
blue blobs). The corresponding DSE for the three-point
function is depicted in the bottom panel of Fig. 1.
We employ the spectral DSE framework developed in

[57]. Accordingly, we make use of the Källén-Lehmann
representation for the full propagator,

GðpÞ ¼
Z

∞

0

dλ
π

λρðλÞ
p2 þ λ2

; ð4Þ

in the diagrams of the gap equation. Within a suitable
truncation, the DSE can then be solved directly for timelike
momenta due to the resulting perturbative form of the
momentum loop integrals. This yields direct access to the
spectral function,

ρðωÞ ¼ 2ImGð−iðωþ i0þÞÞ; ð5Þ

where we dropped the spatial momentum due to Lorentz
covariance.
The spectral function ρ represents the distribution of the

physical states in the full quantum theory, and can be
generally parametrized as

ρðλÞ ¼ π

λ

X
i

Ziδðλ −miÞ þ ρ̃ðλÞ: ð6Þ

FIG. 1. Dyson-Schwinger equations for the two- and three-point functions; the latter contains further two-loop terms which are not
shown. The full propagator is represented by a simple line, classical vertices are represented by small black dots and full vertices by large
blue dots, see also Fig. 2.

FIG. 2. Diagrammatic notation used throughout this work;
small black dots stand for classical vertices, larger blue dots
stand for full vertices and lines stand for full propagators.
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The mi are the propagator pole positions for stable one-
particle states with residues Zi, whereas the continuum tail
ρ̃ðλÞ of the scattering states starts at λ ¼ 2mi, appearing as a
branch cut in the propagator.
In an s-channel approximation p2 ¼ s and t ¼ u ¼ 0, a

similar spectral representation can be devised for the four-
point function,

Γð4ÞðpÞ ¼ λϕ þ
Z

∞

0

dλ
π

λρ4ðλÞ
p2 þ λ2

: ð7Þ

The ϕ4 theory in three dimensions is super-renormalizable.
The only two superficially divergent diagrams in the
propagator DSE are the tadpole and sunset diagrams in
Fig. 1, carrying a linear (respectively logarithmic) diver-
gence. We employ the spectral renormalization scheme
devised in [57]. By choosing an on shell renormalization
condition, the physical scales of our theory are fixed by the
pole position of the propagator; see Appendix A for details.

B. Effective potential

Instead of resolving the full field dependence of the
correlation functions, it is convenient to work on the
physical solution to the quantum equation of motion (EoM)

δΓ½ϕ�
δϕðxÞ ¼ 0: ð8Þ

The symmetry-broken regime of the scalar theory is
signaled by a nonvanishing and constant vacuum expect-
ation value ϕ0 ¼ hφi, giving rise to a nonvanishing three-
point interaction already at the classical level. For this
reason, we solve the Dyson-Schwinger equations in the
background of the nonvanishing condensate ϕ0. The
classical vertices SðnÞ½ϕ0� in the Dyson-Schwinger equa-
tions are given by

Sð3Þ½ϕ0� ¼ λϕϕ0; Sð4Þ½ϕ0� ¼ λϕ: ð9Þ

To determine ϕ0 in the broken phase dynamically, we
expand the effective potential around the solution of the
equation of motion,

Veff ½ϕ� ¼
X∞
n¼2

vn
ð2nÞ! ðϕ

2 − ϕ2
0Þn: ð10Þ

The n-point vertices at vanishing momenta, which we
abbreviate by Γn, are then obtained from

Γn ¼ ΓðnÞ½ϕ0�ðpn ¼ 0Þ ¼ ∂
nVeff ½ϕ�
ð∂ϕÞn

����
ϕ¼ϕ0

; ð11Þ

with pn ¼ ðp1;…; pnÞ. We assume that higher orders in the
mean field ϕ0 are subleading and truncate the series at

second order, thus parametrizing Veff ½ϕ� by its second and
third moments v2 and v3. Accordingly, the two-, three- and
four-point vertices at zero momentum are given by

Γ2 ¼
1

3
v2ϕ2

0;

Γ3 ¼ v2ϕ0 þ
1

15
v3ϕ3

0;

Γ4 ¼ v2 þ
2

5
v3ϕ2

0: ð12Þ

By inverting (12), one obtains ϕ0, v2 and v3 from the zero-
momentum correlations functions as

ϕ0 ¼
3Γ3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9Γ2

3 − 15Γ2Γ4

p
Γ4

; ð13Þ

and

v2 ¼
6Γ3 − Γ4ϕ0

5ϕ0

; v3 ¼
3ðΓ4ϕ0 − Γ3Þ

ϕ3
0

: ð14Þ

The minus sign in front of the square root in (13) is
determined by the limit λϕ=m → 0, where the full vertices
approach their classical values.

C. Systematics and truncations

Without approximations, theDSE of the inverse two-point
function carries the full nonperturbative structure of the
propagator. In practice, truncations are necessary to deal with
the higher correlation functions, which correspond to a
certain resummation structure. We are particularly interested
in the scaling limit λϕ=m → ∞, where the two-, three- and
four-point functions should follow the scaling relations,

Γð2Þ ∼ p2−η; Γð3Þ ∼ p3ð1−ηÞ=2; Γð4Þ ∼ p1−2η: ð15Þ

The anomalous dimension η is known to be η ≈ 0.0360 for
the Ising universality class in three dimensions [79–81]. This
imposes tight constraints on the approximation scheme. To
ensure the correct scaling behavior of the diagrams, we
employ a skeleton expansion of the propagator DSE. To that
end, we convert the classical three- and four-point vertices
into full ones. This procedure introduces additional diagrams
which have to be subtracted to remain consistent at a given
loop order. For simplicity, we truncate the expansion of the
DSE at two-loop order, leading to the DSE in the skeleton
expansion depicted in Fig. 3. Note the changed prefactor of
the sunset diagram, stemming from the additional contribu-
tions to the tadpole diagram with a full four-point function.
The squint diagram is fully absorbed in the now fully dressed
polarization diagram. The latter also produces the double
polarization and the kite, which have to be subtracted. Both
of them will be ignored in the present work since the kite
corresponds to higher-order terms in ϕ0 and the double
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polarization does not add qualitatively to the analytic
structure of the propagator DSE.
To close our approximation, we need to specify the

higher-order correlation functions. We generally perform a
zero-momentum vertex approximation for all dressed
vertices. Nevertheless, since we have argued that the
tadpole produces also the sunset topology, we have to
include the relevant momentum structure of the four-point
function in this diagram. For simplicity, we start from an
inhomogeneous BSE, which is shown in Fig. 4 and reads,

Γð4Þðq1; q2; pÞ

¼ λϕ þ
Z
k
Kðq1; k; pÞGðkþÞGðk−ÞΓð4Þðk; q2; pÞ: ð16Þ

Here, p is the total momentum, q1 and q2 are relative
momenta, K is the two-particle interaction kernel, G is the
full propagator with k� ¼ k� p=2, and

R
k ¼

R
d3k=ð2πÞ3.

If we retain only the classical vertex in the kernel,
Kðq1; k; pÞ ¼ −λϕ=2, the equation amounts to a bubble
resummation in the s-channel approximation,

Γð4ÞðpÞ ¼ λϕ
1þ λϕΠfishðpÞ

: ð17Þ

Equation (17) is also readily derived from the DSE of the
four-point function in the s-channel approximation with
ϕ ¼ 0, also dropping the two-loop terms in the DSE.
The structure of the “fish diagram” in (17) is the same as

that of the polarization diagram and reads,

ΠfishðpÞ ¼
1

2

Z
k
GðkþÞGðk−Þ; ð18Þ

it corresponds to the spectral integral (A2) with gfish ¼ 1=2
in Appendix A. In the limit λϕ=m → 0, i.e., for a classical
propagator GðkÞ ¼ 1=ðk2 þm2Þ, the integral reduces to

ΠfishðpÞ →
arctan

ffiffiffi
x

p
16πm

ffiffiffi
x

p ; Πfishð0Þ →
1

16πm
; ð19Þ

with x ¼ p2=ð4m2Þ. The spectral function of the resummed
s-channel four-point function is extracted by inverting (7)
in analogy to the propagator spectral function (A1). In this
manner, the tadpole with a dressed four-point vertex can be
computed in the form of a polarization diagram with the
insertion of this spectral function.
For the three-point vertex we consider its DSE up to one-

loop terms as shown in Fig. 1. For simplicity we restrict
ourselves to vertices at zero momentum, i.e., we assume

Γð3Þðp1; p2; p3Þ ≈ Γ3; Γð4ÞðpÞ ≈ Γ4: ð20Þ

With the classical three-point function Sð3Þ½ϕ0� ¼ λϕϕ0, the
DSE reduces to the algebraic equation,

Γ3 ¼ ϕ0λϕ − 2λϕΓ3Πfishð0Þ − ϕ0λϕΓ4Πfishð0Þ
þ ϕ0λϕΓ2

3Πtrð0Þ: ð21Þ

Hereby, the triangle diagram

ΠtrðpÞ ¼
Z
k
GðkÞGðkþÞGðk−Þ ð22Þ

corresponds to the spectral integral (A2) in Appendix A
with a prefactor gtr ¼ 1. For a classical propagator it
reduces to

ΠtrðpÞ →
1

8πm3

1

x3=2
arctan

�
x3=2

4þ 3x

	
; ð23Þ

with x ¼ p2=ð4m2Þ and Πtrð0Þ → 1=ð32πm3Þ. One can
further eliminate ϕ0 by combining (13) and (21), which
results in a quartic equation for Γ3 and yields,

ðΓ3Þ2 ¼
5Γ4

6λϕ

6aþ b


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 12

5
a

q
− c

�

Πtrð0Þð2b − 5aÞ ; ð24Þ

with the coefficients,

a ¼ λϕΓ2Πtrð0Þ;
b ¼ 1þ 2λϕΠfishð0Þ;

c ¼ 1 −
2

5
λϕΠfishð0Þ: ð25Þ

This closes our approximation for the DSE system. For the
respective results, see Sec. III and especially Fig. 6.

FIG. 3. The skeleton expansion for the propagator employed in this work. The full propagator is represented by a simple line, classical
vertices are represented by small black dots and full vertices by large blue dots, see also Fig. 2.

FIG. 4. Inhomogeneous BSE for the four-point vertex. The
BSE kernel is denoted with a gray box, for the full propagators
and vertices see Fig. 2.
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D. Bethe-Salpeter equation

For the calculation of scalar two-particle bound states,
we consider the homogeneous BSE shown in Fig. 5,

Ψðq; PÞ ¼
Z
k
Kðq; k; PÞGðkþÞGðk−ÞΨðk; PÞ: ð26Þ

Its structure is analogous to that in Fig. 4 except for the
inhomogeneous term: Ψðq; PÞ is the Bethe-Salpeter ampli-
tude, K is the two-particle irreducible kernel, and Gðk�Þ
with k� ¼ k� P=2 are the dressed propagators. The total
momentum is on shell, i.e., P2 ¼ −M2, where M is the
mass of the bound state.
Even though the homogeneous and inhomogeneous

equations share the same structure, we note that in our
setup they are not directly connected. We employed (16) as
an ingredient to generate a minimal four-point vertex that is
consistent with scaling, whereas the kernel of the homo-
geneous BSE is related to the self-energy through a
functional derivative with respect to the propagator. A
possible alternative would be to consider a 4PI system
[82–84], which automatically generates a consistent trun-
cation for the two-, three- and four-point vertices together
with the BSE kernel, but this is beyond the scope of the
present work. Here we restrict ourselves to the contribu-
tions originating from the one-loop terms in the self-
energy, which are the tadpole and polarization diagrams.

The former generates a scalar four-point vertex and the
latter t- and u-channel exchanges in the BSE kernel. Thus,
up to two-loop terms the kernel takes the form,

Kðq; k; PÞ ¼ Gðq − kÞ þGðqþ kÞ
2

Γ2
3 −

Γ4

2
; ð27Þ

where Γ3 and Γ4 are the three- and four-point vertices at
zero momentum. Note also that the inhomogeneous BSE
(16) does not support bound states since its kernel −λϕ=2
carries a negative sign, whereas the additional t- and
u-channel exchanges in the homogeneous BSE change
the sign of the kernel to be positive.
Each dressed propagator can then be computed by means

of its spectral representation (4) via the assignment of a
unique spectral mass. Thus, aside from the spectral inte-
grals over λ1 and λ2 which are performed numerically, the
two internal propagators in the BSE take the form

1

k2þ þ λ21

1

k2− þ λ22
¼ 1

Q4
1 −Q4

2

; ð28Þ

and the sum of the t- and u-channel contributions in the
kernel is

1

ðq − kÞ2 þ λ23
þ 1

ðqþ kÞ2 þ λ23
¼ 2Q2

3

Q4
3 − 4ðq · kÞ2 ; ð29Þ

with

Q2
1 ¼ k2 þ P2=4þ ðλ21 þ λ22Þ=2;

Q2
2 ¼ k · Pþ ðλ21 − λ22Þ=2;

Q2
3 ¼ q2 þ k2 þ λ23: ð30Þ

Apart from the spectral representation, we solve the BSE
using standard methods, see e.g. [7,85]. By expressing the
amplitude Ψðq; PÞ in terms of spherical coordinates and

FIG. 5. Homogeneous Bethe-Salpeter equation, derived from
the inhomogeneous one in Fig. 4. The BSE kernel is denoted with
a gray box, the BSE wave function with a orange circle and the
lines are full propagators.

FIG. 6. Left: real (blue) and imaginary (red) part of the two-point function obtained in the skeleton expansion, plotted for real
frequencies and different values of λϕ=m. Right: spectral function ρðωÞ. All quantities given in mass units.
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discretizing the momentum grid (see Appendixes B and C
for details), the BSE turns into an eigenvalue equation for a
kernel matrix M,

MΨi ¼ ηiΨi; ð31Þ
whose eigenvalues ηi correspond to the ground and excited
states and their eigenvectors Ψi encode the respective
Bethe-Salpeter amplitudes. Apart from the dependence
on the parameter λϕ=m, the eigenvalues depend on the
bound state mass ratio M=m through the total momentum
P. We then numerically find the value of M=m for which
the relation,

ηi



Mi

m
;
λϕ
m

�
¼ 1; ð32Þ

holds. This is the on shell solution for a given state. The
largest eigenvalue corresponds to the ground state, which is
the focus of this work.

III. RESULTS

Following the discussion of our setup in the previous
section, we now present our results. The left panel of Fig. 6
shows the fully dressed inverse propagator for real frequen-
cies ω. It exhibits an imaginary part, starting at the
threshold ω ¼ 2m, which marks the onset of two-particle
production.
The right panel of Fig. 6 shows respective spectral

function ρðωÞ It is visible how the peak of the spectral
tail increases with the coupling, which implies an increas-
ing dominance of the scattering states. The peak saturates at
around λϕ=m ∼ 100 in favor of a broader UV tail.
The set of RG-independent zero-momentum vertices Γ̄2,

Γ̄3 and Γ̄4 are presented in Fig. 7 as functions of the
coupling λϕ=m. These are given by

Γ̄n ≡ Γn=Z
n=2
ϕ ; ð33Þ

where Zϕ ¼ 1=Z is the wave function renormalization
given at the pole mass as the inverse of the residue. This
divides out the RG-running of the external legs, which
otherwise leads to a power-law divergence (for further
discussions see Appendix A 1).
In the limit λϕ=m → 0, quantum corrections become

negligible and the vertices reduce to their tree-level values,

Γ2

m2
→ 1;

Γ3

m3=2 →

ffiffiffiffiffiffiffi
3λϕ
m

r
;

Γ4

m
→

λϕ
m

: ð34Þ

In turn, for asymptotically large couplings λϕ=m → ∞ we
expect a scaling behavior as in this limit we approach the
phase transition with m=λϕ → 0. One can clearly see the
deviation from the tree-level behavior for increasing values
of the coupling. With the curvature mass m2

cur ¼ Γ̄2, the
ratiom2

cur=m2 deviates from unity, as is also visible in Fig. 6
at vanishing momentum. The RG-independent three- and
four-point vertices saturate in the large coupling limit. The
right panel of Fig. 7 shows the evolution of the (dimen-
sionless) vacuum condensate ϕ0=m1=2, which starts from its
classical result

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3m=λϕ

p
and eventually saturates at a

nontrivial value as well.
In summary we find that the dressed RG-invariant

vertices calculated from their DSEs eventually saturate,
in contrast to their respective tree-level counterparts. This
has important consequences for the properties of bound
states obtained from the BSE, as it leads to a physical
bound state mass in the scaling limit. To see this, suppose
we drop the term −Γ4=2 from the BSE kernel (27)
and solve the BSE with classical (free) propagators only.
This yields the massive Wick-Cutkosky model [30,86,87]
which has been frequently studied in the literature, see

FIG. 7. Zero momentum RG-invariant vertices Γ̄n=m3−n=2 with Γ̄n in (33), and of the vacuum expectation value ϕ0=m1=2 as functions
of the coupling λϕ=m. The dotted gray lines are the tree-level values from (34). All quantities saturate for large couplings.
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e.g. [24,31–34,88]. If we pull out the dimensionless factor
c ¼ Γ2

3=m
3 from the kernel, the BSE (31) takes the form

cM0Ψi ¼ cη0iΨi: ð35Þ

The dimensionless remainderM0 does not depend on λϕ=m
and neither do its eigenvalues η0i. Thus, if we plot the
eigenvalue spectrum over the bound state mass, as sketched
in Fig. 8, the on shell solution can be read off from the
intersection 1=η0i ¼ c. The “coupling” c in front of the BSE
kernel is now a free parameter that can be tuned arbitrarily;
e.g., for the tree-level vertex in (34) it rises linearly with
λϕ=m. In particular, if c is large enough the intersection
1=η0i ¼ c occurs at spacelike values P2 ¼ −M2 > 0, so that
with increasing coupling one generates tachyonic solutions.
Such a behavior does not happen if the RG-invariant

vertices saturate with λϕ=m, as they do in our system; if the
coupling does not exceed a certain maximum value, then
the mass of the bound state is bounded from below and the
system cannot become tachyonic. If in addition the propa-
gators are dressed, as in our case, then the BSE eigenvalues
η0i themselves also depend on λϕ=m. Finally, if we put the
four-point vertex back into the kernel there is no longer an
overall coupling that can be pulled out since all propagators
and vertices appearing in the BSE kernel are determined
from their DSEs.
The resulting evolution of the bound state mass ratio

M=mwith λϕ=m is shown in Fig. 9. At λϕ=m ≈ 5 the bound
state mass is at the threshold M ¼ 2m. For smaller
couplings one might expect either a virtual state like in
the massive Wick-Cutkosky model [24] or a resonance on
the second Riemann sheet. For larger values of λϕ=m, the
bound state mass decreases and eventually saturates.
Numerical instabilities prohibited us to go beyond
λϕ=m≳ 103. However, as the bound state mass already
starts to saturate at this scale, an extrapolation allows us to
estimate the mass ratio in the scaling limit,

M
m

≈ 1.85 for
λϕ
m

→ ∞: ð36Þ

This is close to the upper range of lattice values M=m ¼
1.82ð2Þ [37,73–77]. The deviation is of the order of our
numerical error of about 1%, cf. Appendix C. We note
again that this result is only possible through a consistent
solution for the n-point functions, which underlines the
need for systematic truncations with functional methods.

IV. CONCLUSIONS

In this work we studied scalar ϕ4 theory in three
spacetime dimensions. We determined the mass of the
lowest-lying scalar bound state from its Bethe-Salpeter
equation, whose value in the scaling limit λϕ=m → ∞ is
predicted to be M=m ≈ 1.80…1.84 from lattice studies
[37,73–77]. We argued that such a saturation cannot even
be achieved qualitatively if the Bethe-Salpeter equation
only features tree-level propagators and interactions.
Instead, it requires a consistent truncation of the Dyson-
Schwinger equations where not only the propagators but
also the vertices acquire a nonperturbative dressing.
To this end, we constructed truncations for the two-,

three- and four-point functions where such an internal
consistency is explicitly built in. To solve the system
numerically, we employed the spectral DSE approach
which allows us to access the timelike behavior of the
correlation functions directly. Up to an anomalous dimen-
sion, we find that the three- and four-point vertices saturate
in the large coupling limit λϕ=m → ∞, and so does the
resulting mass of the bound state. Our resultM=m ≈ 1.85 in
that limit lies within 1% of the lattice prediction.
In conclusion, the combination of spectral Dyson-

Schwinger and Bethe-Salpeter equations is a powerful tool
that also allows one to access the resonance spectrum above
physical thresholds, or the evolution and melting of bound

FIG. 8. Sketch of the eigenvalue spectrum for a Bethe-Salpeter
equation of the form (35). The masses of the ground and excited
states are determined from the condition 1=η0i ¼ c. If c saturates
for λϕ=m → ∞, the bound state mass has a lower bound Mmin.

FIG. 9. Evolution of the bound state massM=m as a function of
λϕ=m calculated from the BSE, with propagators and vertices
determined from their DSEs.
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states with temperature. We hope to report on respective
results in the near future.
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APPENDIX A: SPECTRAL DSE

In this appendix we provide details on the spectral DSE
solution. Our starting point is the spectral representation
(4), which allows one to compute the full propagator from
the spectral function. This relation can be inverted by
analytic continuation to real frequencies,

ρðω; jpjÞ ¼ 2ImGð−iðωþ i0þÞ; jpjÞ: ðA1Þ

The spectral representation allows one to determine the
complete analytic structure of Feynman diagrams contain-
ing full propagatorsGiðpÞ, since one only needs to perform
the Euclidean loop integrals Ijðp; λiÞ with classical propa-
gators but different spectral masses λi. These integrals
absorb the full momentum dependence so that one can
perform an analytic continuation into real time.
The self-energy integrals with full propagators are then

given by

ΠjðpÞ ¼ gj
YNj

i¼1


Z
∞

0

dλi
π

λiρðλiÞ
�
Ijðp; λiÞ; ðA2Þ

where
R
∞
0 dλiλi=π ¼ R

λi
is the spectral integral and gj the

prefactor of the particular diagram. In practice, these
integrals are performed numerically since also the spectral
function is usually computed numerically. Because the
complex structure of the integrand is fully contained within
the known functions Ijðp; λiÞ and only enters in the
complex structure of the full diagram ΠjðpÞ via its spectral
weight ρðλiÞ, these computations are numerically stable.
The computation of real-time Feynman diagrams with

full vertices also requires a spectral representation of the
latter and possesses is own technical limitations [89–92]. In
this work we ignore the momentum structure of the vertices

by approximating them at zero momentum. The DSE can
then be put in the general form,

Γð2ÞðpÞ ¼ p2 þm2 þ
X
j

ΠjðpÞ; ðA3Þ

where m is the bare mass in the classical action and ΠjðpÞ
are the spectral integrals (A2) corresponding to the dia-
grams Ijðp; λiÞ with j ¼ ftad; pol; squint; sung, whose
prefactors gj come from the combinatorial prefactors in
the DSE and the vertices in the diagrams. We importantly
remark that these constants are not trivial, as they include
the action of the full vertices in the diagrams and thus may
also depend on the spectral function itself by means of the
corresponding DSE of each vertex.
As the full analytical structure of the diagrams Ijðp; λiÞ

can be computed, the equation can also be represented in
real time as

Γð2ÞðωÞ ¼ −ω2 þm2 þ
X
j

ΠjðωÞ; ðA4Þ

where ΠjðωÞ is computed over the analytically continued
diagram Ijðω; λiÞ according to (A1) and carries its own real
and imaginary component.
The explicit form of the diagrams is known [93]. We

collect them below alongside their analytical continuation,

p → −iðωþ i0þÞ; ðA5Þ

where the generated branch cuts are in accordance with
Mathematica conventions. We abbreviate λ12 ¼ λ1 þ λ2,
λ123 ¼ λ1 þ λ2 þ λ3, etc., and we also list the limits at zero
momentum, if they are used in the computations:

1. Polarization:
The polarization diagram Ipol is given by

Ipolðp; λ1; λ2Þ ¼
1

4πp
arctan

p
λ12

;

Ipolð0; λ1; λ2Þ ¼
1

4πλ12
: ðA6Þ

With (A5) we are led to

Ipolðω;λ1;λ2Þ¼
1

4πω

�
arctanh

ω

λ12
þ iarg



1−

ω

λ12

�	
:

2. Sunset:
The sunset diagram Isun is given by

Isunðp;λ1; λ2; λ3Þ

¼ 1

ð4πÞ2
�
1

2
ln

1

λ2123 þp2
−
λ123
p

arctan
p
λ123

	
. ðA7Þ
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With (A5) we are led to

Isunðω; λ1; λ2; λ3Þ ¼
1

ð4πÞ2
�
1

2
ln

1

λ2123 − ω2
−
λ123
ω

�
arctanh

ω

λ123
þ i arg



1 −

ω

λ123

�		
. ðA8Þ

3. Squint:
The squint diagram Isquint is given by

Isquintðp; λ1; λ2; λ3; λ4Þ ¼
1

ð8πÞ2λ4p
�
2 ln



λ234

λ23 − λ4

�
arctan

p
λ14

þ i

�
Li2



ip − λ14
λ23 − λ4

�
− Li2



−ip − λ14
λ23 − λ4

�

þ Li2



−ip − λ1 þ λ4

λ234

�
− Li2



ip − λ1 þ λ4

λ234

�	�
. ðA9Þ

With (A5) we are led to

Isquintðω; λ1; λ2; λ3; λ4Þ ¼
ReF − iθðω − jλ14jÞImF

ð8πÞ2λ4ω
; ðA10Þ

with

F ¼ 2 ln



λ234

λ23 − λ4

�
arctanh

ω

λ14
− Li2



ω − λ14
λ23 − λ4

�
þ Li2



−ω − λ14
λ23 − λ4

�
− Li2



−ω − λ1 þ λ4

λ234

�
þ Li2



ω − λ1 þ λ4

λ234

�
:

ðA11Þ

Finally, the triangle at zero momentum is given by

ItrðP ¼ p1 ¼ p2 ¼ 0; λ1; λ2; λ3Þ ¼
1

4π

1

λ12λ23λ31
: ðA12Þ

The tadpole and sunset diagram in the propagator DSE are
divergent and need a subtraction. We choose an on shell
renormalization condition Γð2Þðω ¼ mpoleÞ ¼ 0 such that
the renormalized mass is the pole mass mpole. The renor-
malized DSE thus acquires the form,

Γð2ÞðωÞ ¼ −ω2 þm2
pole þ

X
j

½ΠjðωÞ − ΠjðmpoleÞ�: ðA13Þ

We note that no renormalization of the coupling λϕ is
necessary due to the super-renormalizability of ϕ4-theory
in three dimensions. Furthermore, the DSE can easily be
made dimensionless when dividing by m2

pole, thus explicitly
recovering the fact that the theory is determined by the
dimensionless ratio λϕ=mpole only. From now on we denote
the pole mass by m for simplicity, as also done in the
main text.
The spectral DSE (A13) constitutes a nonlinear coupled

system of integral equations for the spectral function ρðλÞ.
The spectral integrals on the rhs contain the full vertices,
which implicitly also depend on ρðλÞ through their own

DSEs. In practice we solve the spectral DSE by iteration;
we first introduce a reasonable guess for ρðλÞ and compute
the prefactors and diagrams according to our truncation
scheme. We then compute the full propagator via the DSE
of the two point function and extract ρðλÞ from the lhs of
(A1), which we introduce again in the spectral DSE. The
three- and four-point vertices along with the condensate ϕ0

are computed in parallel. We repeat the process until
convergence is achieved.
According to the general form (6), one obtains the mass

mi of each stable one-particle state by computing the zeros
of the two-point function and determine their residue as

Zi ¼ −
2mi

∂ωΓð2ÞðωÞ

����
ω¼mi

: ðA14Þ

In our case we only find one root coming from the original
one-particle state. The corresponding residue is bounded by
1, being exactly 1 for the noninteracting theory and
expected to decrease as dispersive states become more
relevant in the interacting theory. The continuous tail from
these dispersive states can be computed from (A1). This tail
starts at the two-particle threshold 2m and goes to zero in
the UV, although it also has successive tails at every
subsequent n-particle threshold which are suppressed by
their corresponding mass.
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1. Scaling limit

For the (dimensionless) zero-momentum vertices, the
scaling relations suggest,

Γ2

m2
∼
�
λϕ
m

	
η

;
Γ3

m3=2 ∼
�
λϕ
m

	3η
2

;
Γ4

m
∼
�
λϕ
m

	
2η

; ðA15Þ

where η is the anomalous dimension and λϕ=m takes the
role of the momentum in (15) in Sec. II C. With (A15) we
can infer a scaling exponent η from converging results of
the RG-variant correlation functions displayed in Fig. 10.
The left panel shows the set of zero-momentum vertices Γ2,
Γ3 and Γ4 as functions of the coupling λϕ=m. These
approach their tree-level values (dotted lines) for small
couplings, whereas for larger couplings they asymptotically
approach a scaling behavior which matches (A15). By
applying a logarithmic derivative, we obtain the associated
scaling exponent η. This is shown in the right panel of
Fig. 10, where it is visible how all three vertices approach a
common scaling exponent η ≈ 0.11, which is in agreement
with fRG calculations on the Keldysh contour in the broken
phase [94]. The authors find a deviation between the broken
and symmetric phase which might point towards an inter-
play of η and ν in the broken phase. However, fRG results
in the symmetric phase in a similar truncation point towards
a very small scaling region, where momentum scaling of

the vertices and in particular the two-point function emerge
[95], which is by no means reached in the present work.

2. Modified skeleton expansion

To estimate the relevance of the resummed 4-point
function, we devise another approximation scheme, where
we drop the full vertex in the tadpole. The diagrammatic
depiction of the gap equation is provided in Fig. 11. The
readjusted prefactor of the sunset diagram guarantees two-
loop consistency, and hence both approximations agree at
two loop, but not beyond.
The respective DSE results are presented in Fig. 12. In

comparison to the full results, the modified skeleton
approximation does not exhibit scaling. All quantities
approach a finite large coupling value, including the residue
of the mass pole of the spectral function. The reason for this
is that the zero-momentum approximation of all of the
vertices in this expansion fails to correctly represent the
approaching quadratic divergence which is supposed to be
present in the scaling limit. This nevertheless means that
this DSE system is numerically stable, allowing us to solve
for arbitrary values of the coupling.
We see that the full momentum dependence of the

tadpole in the skeleton expansion of the main text is the
reason for successfully achieving a scaling behavior.
Furthermore, this scaling behavior is also what produces
the numerical instabilities that prohibit us from obtaining
solutions for λϕ=m≳ 103.

FIG. 10. Left: dimensionless zero momentum vertices Γn=m3−n=2 as a function of the coupling λϕ=m. The dotted gray lines are the
tree-level values from (34), whereas the dashed gray lines are the asymptotic curves which follow the scaling limit (A15). Right: scaling
exponent of each vertex, extrapolated from (A15) for each value of the coupling. All vertices approach the same scaling exponent
η ≈ 0.11. The best theoretical prediction of the scaling exponent η ¼ 0.0360 is represented with the dashed line for comparison.

FIG. 11. The modified skeleton expansion.
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We show the corresponding bound state mass in Fig. 13
for which we also made use of the scaling Kernel (27). This
was devised in order to compare the differences coming
solely from the changes in the self-energy of each approxi-
mation. We see that, just as with the RG invariant vertices,
the bound state mass of both approximations is in very
good agreement even when close to the phase transition.
This allows us to confidently extrapolate the limiting bound
state mass of the skeleton expansion at the given
value M=m ≈ 1.85.

3. Spectral convolution

Here we describe a method used to effectively compute
spectral integrals even in the large coupling limit where one
has an increased weight of the spectral tail.
Suppose one has a two-dimensional spectral integral over

two spectral functions which are not necessarily the same,

ΠjðωÞ ¼
Z

∞

0

Z
∞

0

dλ1dλ2
π2

λ1λ2ρ1ðλ1Þρ2ðλ2ÞIjðω; λ1; λ2Þ;

ðA16Þ

but with a diagram (such as the polarization diagram) which
solely depends on the sum of the spectral weights:
Ijðω; λ1; λ2Þ ¼ Ijðω; λ1 þ λ2Þ. Then, a change of variables
η ¼ λ1 þ λ2 and a reparametrization of the region of inte-
gration transforms this into a one-dimensional spectral
integral,

ΠjðωÞ ¼
Z

∞

0

dη
π
ηρ12ðηÞIjðω; ηÞ; ðA17Þ

over a new spectral function, which is given by the
convolution of the two initial spectral functions,

ρ12ðηÞ ¼
π

η

Z
η

0

dλ2
π2

ðη − λ2Þλ2ρ1ðη − λ2Þρ2ðλ2Þ: ðA18Þ

This transforms a two-dimensional spectral integral into a
one-dimensional integral over a convolution of the spectral
function constituents, which we call spectral convolution.
The convolution of spectral functions inherits all of the basic
properties of the convolution. For a basic decomposition of
the form,

ρiðλiÞ ¼
π

λi
Ziδðλi −miÞ þ ρ̃iðλiÞ; ðA19Þ

the spectral convolution results in

FIG. 12. Evolution of the dimensionless zero momentum RG-independent vertices (33) and of the vacuum expectation value ϕ0=m1=2

with the coupling λϕ=m compared for the two DSE truncations: Solid curves come from the skeleton expansion of the main text, and the
dashed lines correspond to the modified skeleton expansion of this appendix. The dotted gray lines are the tree-level values from (34).
All quantities saturate for large couplings.

FIG. 13. Evolution of the bound state mass M=m as a function
of λϕ=m calculated from the BSE, with propagators and vertices
determined from their DSEs.
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ρ12ðηÞ ¼
π

η
Z1Z2δðη −m1 −m2Þ þ

η −m1

η
Z1ρ̃2ðη −m1Þ

þ η −m2

η
Z2ρ̃1ðη −m2Þ þ ρ̃12ðηÞ; ðA20Þ

where ρ̃12ðηÞ is the convolution of the tails following from
(A18). Thus, the spectral convolution has the same decom-
position of the initial spectral functions in a way which
compactifies all of the information of contributing to the
spectral integral of its constituents.
The spectral convolution can be easily generalized for

three-dimensional spectral integrals of diagrams which
depend on the sum of the three spectral weights (such as
the sunset) by the repeated convolution of spectral func-
tions, or partially implemented in a diagram which depends
on the sum of only some of the spectral weights (such as the
squint).
The advantage of this method is that the convolution of

the spectral functions does not depend on the diagrams.
Thus, it is an integral over smooth functions which can be
precomputed and reutilized for any diagram whose com-
ponents also depend on the sum of two spectral weights.
But most importantly, it considerably optimizes the numeri-
cal implementation of the spectral integrals, because the
resolution of the curve of poles in two dimensions, usually
given by the equation ω ¼ λ1 þ λ2, simplifies to the
resolution of a pole at a point ω ¼ η.

APPENDIX B: BETHE-SALPETER EQUATION

Here we give details on the BSE solution discussed in
Sec. II D. According to the spectral decomposition (4), the
BSE kernel reads,

Kðq; k; PÞ ¼ Γ2
3

Z
∞

0

dλ3
π

λ3ρðλ3ÞK −
Γ4

2
;

K ¼ 1

2

�
1

ðq − kÞ2 þ λ23
þ 1

ðqþ kÞ2 þ λ23

	
; ðB1Þ

where K comes from the t- and u-channel contributions in
the kernel.
For the explicit coordinate representation we follow the

conventions of [24] and express the momenta in three-
dimensional Euclidean spherical coordinates,

q
m

¼
ffiffiffiffi
X

p
0
B@

0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

p

Z

1
CA;

k
m

¼ ffiffiffi
x

p
0
B@

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
sinφffiffiffiffiffiffiffiffiffiffiffiffi

1 − z2
p

cosφ

z

1
CA; ðB2Þ

with P ¼ 2m
ffiffi
t

p ð0; 0; 1Þ, where at the end of the calcu-
lations we take

ffiffi
t

p ¼ iM=ð2mÞ. This implies

q2 ¼ m2X; q · P ¼ 2m2
ffiffiffiffiffi
Xt

p
Z;

k2 ¼ m2x; k · P ¼ 2m2
ffiffiffiffi
xt

p
z;

P2 ¼ 4m2t ¼ −M2; q · k ¼ m2
ffiffiffiffiffiffi
xX

p
Ω; ðB3Þ

with Ω ¼ zZ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

p
cosφ. The integral mea-

sure then takes the form

Z
d3k ¼ m3

2

Z
∞

0

dx
ffiffiffi
x

p Z
1

−1
dz

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p Z
2π

0

dφ: ðB4Þ

Equation (28) turns into

1

k2þ þ λ21

1

k2− þ λ22
¼ 1

m4

1

Q̃4
1 − Q̃4

2

; ðB5Þ

with

Q̃2
1 ¼ xþ tþ λ21 þ λ22

2m2
;

Q̃2
2 ¼ 2

ffiffiffiffi
xt

p
zþ λ21 − λ22

2m2
; ðB6Þ

and the t- and u-channel exchange kernel K reads

K ¼ 1

m2

X þ xþ λ23=m
2

ðX þ xþ λ23=m
2Þ2 − 4XxΩ2

: ðB7Þ

The total bound state momentum P is evaluated in the
timelike region, but this analytic continuation is trivial
within our spectral decomposition. Despite the imaginary
term ∼

ffiffi
t

p
in the denominator of (B5), the product of the

dressed propagators is real because its imaginary part is odd
in ðλ1; λ2Þ and integrates to zero in the spectral integrals.
Furthermore, because the spectral variables λ1 and λ2 only
take values at m and above 2m, (B5) is finite for all masses
M < 2m below the two-particle threshold. Finally, the
integration over φ in (B7) can also be done analytically
using

Z
2π

0

dφ
1 − ðaþ b cosφÞ2 ¼

X
χ¼�1

πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ χaÞ2 − b2

p : ðB8Þ

APPENDIX C: NUMERICS

Let us finally discuss the numerical details in the DSE
and BSE solution. In every computation, the spectral
integrals were performed with an adaptive quadrature
routine with error equal to 1 × 10−8 via the spectral
convolution method. The diagrams and spectral functions
were computed for a finite sampling of points on two
intervals: One small interval ð0; bÞ for a medium sized b
which gave us the momentum features in detail, and
another bigger interval ðb; cÞ which gave us the correct
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weight of the corresponding UV tail. The sampling on the
first interval was performed with an adaptive parallel
function evaluation algorithm [96], whereas the sampling
of the UV tail was performed on a logarithmic grid. We
generally chose the values b ¼ 20m and c ¼ 10λϕ þ
1000m, forwhich an accurate interpolationof themomentum
features and the UV tail was obtained. The only exception
was the spectral function of the 4-point function, for which
b ¼ maxð20m; λϕ=2Þ needed to be taken while still leaving
the samevalue forc. For the first intervalwe chose a sampling
of 200 points for both spectral functions, 120 for the
polarization and 100 for the sunset and tadpole diagrams.
For the second interval we used 100 points for all of the
objects.With the aforementioned sampling, all of the objects
were interpolated with a piecewise cubic Hermite interpolat-
ing polynomial which both ensures smoothness and a
monotonous tail for monotonous data, which is important
in the UV with a logarithmic spacing.
The process of iterating the spectral function and vertices

back into the DSE was made until all of the parameters
(Z, mcur=m, Γ4=m, Γ3=m3=2 and ϕ0=

ffiffiffiffi
m

p
) had a relative

change no greater than 0.2 × 10−3 between iterations. This
leads to our conservative estimate for the numerical error of
the order of 10−2 for our results.
The computation of the BSE matrix was performed on a

discretized momentum grid of ðNX;NZ; Nx; NzÞ ¼
ð40; 40; 40; 40Þ points. The root finding algorithm for
solving (32) was implemented with an accuracy of
1 × 10−3 for M=m. The use of finer grids for the BSE

matrix did not change the value of the resulting mass within
this level of accuracy. Nevertheless, coming from the
estimated numerical error of our DSE computations, we
expect our final results to have an error of 10−2.
As a consistency check we computed the sum rule

(integral of the spectral function) for each value of the
coupling and each DSE truncation; this is shown in Fig. 14.
We obtain deviations no bigger than 3 × 10−3 from the
theoretical result, which means that the spectral sum rule is
satisfied within the estimated numerical error of 10−2.
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