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Entanglement distribution in Bhabha scattering with an entangled spectator particle
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We analyze how entanglement is generated and distributed in a Bhabha scattering process (e~ e —
e~e™) at tree level. In our setup an electron A scatters with a positron B, which is initially entangled with
another electron C (spectator), that does not participate directly to the process. We find that the QED
scattering generates and distributes entanglement in a nontrivial way among the three particles; the
correlations in the output channels AB, AC, and BC are studied in detail as functions of the scattering
parameters and of the initial entanglement weight. Although derived in a specific case, our results exhibit
some general features of other similar QED scattering processes, for which the extension of the present

analysis is straightforward.
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I. INTRODUCTION

The role of entanglement in high-energy physics has
recently become a very active research area [1-63]. Much
attention has been devoted to the study of quantum
correlations in neutrino oscillations [7-33], since neutrinos
are regarded as possible alternative carriers of quantum
information with respect to photons. Various aspects of
entanglement in scattering processes have been investigated
in the context of different fundamental interactions [34—63].
In Refs. [40—42] entanglement and other types of quantum
correlations have been studied in top-antitop quark pairs,
using the experimental data from proton-proton and proton-
antiproton collision at the LHC.

In Refs. [47,48] maximal entanglement generated at the
fundamental level in QED by studying correlations between
helicity states at tree-level for various scattering processes is
analyzed. In particular, the authors describe the mechanisms
that generate maximal entanglement and its relation with the
scattering amplitudes in the high-energy regime. An exten-
sion of this work is given in Ref. [50], where the entangle-
ment generation was analyzed at all energies for pure and
mixed final states for arbitrary initial mixtures of helicity
states. It was shown that maximal entanglement can
originate in all situations where one dominating channel
leads to balanced superpositions of helicity states. It was
also argued that loop corrections do not significantly alter
the results obtained at tree level.

An interesting extension of these studies is given in
Refs. [51,52]. In Ref. [51] it is considered a QED scattering
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of two particles A and B, in which B is initially entangled
with a third particle C that does not participate directly in the
process. The authors investigate the effects of the scattering
both on the particle C and in the bipartite channels. In
Ref. [52] the model is extended by considering a general
three-partite entangled state in input and applied to the case
of QED inelastic tree-level process e”e™ — u~u™". Further
extensions of these works are given in Refs. [53,54].

In this work, starting from the same framework used in
Ref. [51], we study in detail the case of Bhabha scattering,
describing how entanglement is generated and distributed
in the three bipartite subsystems AB, AC, and BC after the
scattering as represented in Fig. 1. This process depends on
the value of the initial entanglement weight 7 and of the
scattering parameters @ (scattering angle) and u (the ratio
between p the incoming momentum of e~ and e* in the
center of mass (COM) reference frame and m the particles
mass). For incoming momenta of the order of the mass, the
entanglement has a nontrivial distribution in the three
output channels. On the other hand, in the relativistic
regime, the interaction behaves like a perfect quantum gate;
for specific values of parameters, the entanglement trans-
fers completely from the BC bipartition (where was initially
present) to the AC bipartition.

The paper is organized as follows. In Sec. II we set up the
problem and analyze the density matrix structure for the C
subsystem, relative to the spectator particle, before and after
the scattering. In Sec. III we study the entanglement
generation in the scattering between A and B, taking B
as a superposition of helicity states. The study of such a
reference state is useful for the analysis carried out in
Sec. IV, where we consider the entanglement generation and
distribution in the presence of a spectator particle C.
Section V is devoted to conclusions and outlook.

© 2024 American Physical Society
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FIG. 1. Schematic representation of the process considered in
this work. Particles A and B scatter through a QED process at tree
level. Particle C (spectator) does not participate to the scattering
and is initially entangled to particle B. The ellipses AB, AC, and
BC represent the bipartitions for which we calculate the entan-
glement.

The initial state is taken to be

li) = |p1,a), ® (cosn|pr, 1)p ®

whose final state, is given by

d*p3d’py
= 10 J”Z/(zn 52E, 2E,,

Airs)|p3r)s @ |pa.s)p ®

W (py+ pa—

+ e sinnM(a

The partial trace operation is given by

Trxlp] = 2/ 32E

where I, denotes the identity operation in the remaining
subspaces, k and ¢ are the 4-momentum and spin indices as
before and X is the generic space with respect to which we
calculate the trace.

In Eq. (3), M(a, 1;r, s) represents the scattering ampli-
tude M(py,a,pr, 1 p3, 7 psys) and the same for
M(a,|;r,s), where we have omitted initial and final
momenta for brevity. We can describe the final states in
terms of the density matrix as

(I, ® x (k.o)p(I, ® |k.0)x). (4)

Phac = 310U 0

— p4)[cosnM(a

II. ENTANGLEMENT IN QED SCATTERING
WITH SPECTATOR PARTICLES

In this section we briefly recall the setup used in
Ref. [51], in which it is considered a general QED
scattering process at tree level involving two particles
(AB — AB), where B, before the interaction, is entangled
in spin with a third particle C that does not participate to the
process, as schematically shown in Fig. 1. For simplicity,
we perform our calculations in the COM reference frame
for particles A and B and assume that the spectator
momentum ¢ is aligned in the same direction of the
incoming momenta of A and B.

The internal product of fermion states is defined as

(k.a|p.b) = 2E(27)*6®) (k = P)J, . (1)

where k and p are the 4-momenta and @ and b are the spin
indices.

)c)s (2)

e+ e’ sinn|py, |)p ®

1 8)|P3 A ® pass)p @ )c

)cl- 3)

where A is the normalization constant. Using Eq. (4) and
applying the following relations:

7/2

2780(E; — E,) = / GEENg ()

-T/2

(27)°55) (k = p) = Véyp, (7)

which imply that (27)6%(0) = T and (22)36(0) =V,
we can easily compute the normalization constant A/,

N =TralTrs[Trcllf) (] = 2E,,2E,,2E,V?
+2E,T?V?A, (8)
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where

d3P3

A= / (2ﬂ)32E 2FE Z(cosziﬂ_/\/l(a, T; r S)lz + sin211|J\/l(a, ‘l’; r s)|2)|P4:P3—P1—Pz' (9)
P3—P1—P2 rs

A. Effects of scattering on spectator particle

We now investigate the effects of the scattering over the
spectator particle C. To this aim, we consider the reduced
density matrix,

pc = Tra[Trglpasclls (10)

relative to the C subsystem, both for the initial and the final
states.

By using Eq. (4) to calculate the reduced density matrix
for C from the initial state Eq. (2), we get

The reduced density matrix of the final state for C reads,

PRPK

pe= NZ/ 27)°2E 2Ey
1 .

:N{2EP12Esz2(COSZ’1|T>CC<T|+Sm2’7|¢>CC<¢|)

3
+T2V/ 3 d'p3
(27)°2E,,2F,

PitP2—P3 L rs

T e cosnsingM(a. bir.s) M (a,1:r.5) e (1 +sin2n|M<a,¢;r,s>|2|¢>cc<¢|>} } ®|d)ccldl

This, in matrix form as before, looks like

(ZEplepz V2 + fpg Z'M(a7 T; r, S)|2)C08217
rs

1
F_ b
Pe= N e cosnsinnfp3 SMla, ir,s)M(a, 151, 5)
rs
where we have defined the shorthand notation,
) d*ps
f =T Vf (27)32E, 32Ep +py-p3

Now, fixing the incoming momentum, we can study the
system in terms of the helicity states. Using the spinors
reported in Appendix A and considering the specific case of
Bhabha scattering, we calculate the scattering amplitude
and the elements of the matrix pfc, with an arbitrary initial
polarized state for e and e.

P =2E, 2E, (cos?n|1)cc (] + sin*n|{) e (L))

® la)cclal- (11)
From now on, as the entanglement is consider over the spin
degrees of freedom, we omit the factorized part |g) ~~(g| of
the spectator momentum subspace. The initial C-density
matrix can be express in matrix form as

. cos’n 0
[ . 12
= (0" ) (12)

(1, ® p(K'd’| s (ke )| 1) (fI([ko) s [K'o") p ®T,)

{Z(COS%IM(& 1ir.8)P D ec(tl+e P eosysinpM(a. tir.s) M (a. Lir.5)[1) o (U]

(13)

e P cosysing fp3 SMla, tsr,s)M(a, |;r,s)

2E, 2E, V> MlaLiroPsin |7 Y
(2Ep2E,, V? + [, >IM(a. |7, 5)[)sin’y

The off-diagonal terms in Eq. (14) vanish identicallyl;
the expression ., M(a, t;r,s)M'(a,};r,s) is an odd
function of the scattering angle 6.

'In Ref. [54], in the context of Compton scattering, by
resorting to unitarity and to the optical theorem, a similar
conclusion is obtained.
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The diagonal terms turn out to be the same of those of
p. Thus, we have

2
i (cosTn 0 > 15
Pe=re ( 0 sin?p/ (15)

The same conclusion holds for the unpolarized case and
for other QED scattering processes. This ensures that if C is
out of the light cone of the scattering event, no superluminal
communication can occur; as a consequence, the C observer
cannot get any information about the scattering process,
whatever the observable he/she measures. This result is in
agreement with an observation in Ref. [52], correcting a
previous statement reported in Ref. [51].

III. ENTANGLEMENT MEASURE
AND REFERENCE SYSTEM

In Refs. [47,48] QED scattering processes at tree-level
are considered with disentangled incoming particles A and
B in both cases with RR and RL initial helicity states.
Then, after the scattering, the generated entanglement is
quantified by using concurrence. In our setup, represented
in Fig. 1, the scattering involves an electron A that collides
with an entangled state formed by a positron B and an
electron C. The scattering amplitudes and the spinors are
described as functions of the scattering angle 6 (see
Appendixes A and B).

In order to better understand the generation and distri-
bution of the entanglement, mediated by the QED inter-
action, we preliminary analyze the case of the (Bhabha)
scattering of an electron A and a positron B in which the
latter is in a superposition of helicity states [see Eq. (18)
below]. This system will be used as a benchmark in Sec. IV
to compare the generation and transfer of the entanglement
in the various channels when the spectator particle C
is added.

To calculate the concurrence, we use the definition as in
Ref. [64],

C(p) = max(0,4) — 4y — 43 — A4), (16)

where the 4;, in decreasing order, are the square root of the
eigenvalues of the matrix,

R :pslszﬁslsp (17)

with p; ¢, = (6, ® 6,)p5 ,(0, ® 6,), Where o, is a Pauli
matrix and s;, s, are indices running in the bipartition
subspaces.

Following the above discussion, we define our initial

reference state as

i)rer = [R)4 ® (cosn|R)p + P siny|L)g). (18)

After the scattering, if we limit our attention to a selection of results at a fixed angle 6 # 0,27 we can express, up

to a normalization factor,2 the final reference state as

|f)RER = Z [coqu(RR;rs)|r>A|s)B+e"ﬁsinn/\/l(RL;rs)|r>A|s)B], (19)

r.s=R.L

where the M (RR: rs) are the scattering amplitudes as reported in Appendix B. These correspond to the amplitudes given in

Refs. [47,48].

By using Egs. (18) and (19), we obtain the density matrices of initial and final reference state (omitting normalization

factors),

Pf{EF = [0052’7|R>A|R>BB<R|A<R| + e sinncosn|R),|R) pp(L|A(R]|

+ e sinncosn|R) 4|L) g (R, (R| + sin*n|R) 4|L) g (L] 4 (R

] (20)

Pher = ) [COSZWM(RRJS)MT(RR, r's)|r)als) s (8’4 (F]

r.s,r s

+ e~ sinncosnM(RR, rs)MT(RL, ¥'s")|r) 415) g5 (s'| 4 {¥']
+ e sinncos M (RL, rs) M (RR, ¥'s")|r) 418) g (s’ (|

+ sin’pM(RL, rs) M (RL, r’s’)|r>A|s>BB<s’|A<r’|} . (21)

*The normalization can be fixed after the operation of momentum filtering (i.e., selection of the measurements relative to a specific
scattering angle @) that is formally described by applying a Positive-Operator Valued Measurement (POVM) as discussed in Ref. [50].
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FIG. 2. Concurrence of reference state Eq. (21) from low momenta range shown in (a), (b), and (c), to high momenta range shown in
(d), (f), and (g). Black lines correspond to the case reported in Ref. [47].

By using Eqs. (16) and (17) we calculate the amount of
entanglement in the states pk . and pfeEF. For simplicity,
we take the phase f = 0. The concurrence of the initial
reference state vanishes, as expected. On the other hand, the
concurrence of the final state is a cumbersome expression
and it is not reported here. However, in the relativistic limit
we obtain a simple form,

2sin’ysin®(0/2)cos*(0/2)
lHim C(ph o) = (22
e (Prer) 1 — (1 — §sin?@)sin?sin’y (22)

The fact that concurrence before the scattering is zero,
means that the entanglement after the scattering is com-
pletely generated in the process. Some representative plots
are reported in Fig. 2.

For the plots in Figs. 2(a)-2(f) we have chosen the
following parameters; n = {0,7/8,z/4} and p = {u,=

% vV =-3++17,1,2,5,10, 100}. The value of = p,, is the
one for which the concurrence in the case of RR incoming
particles (y = 0) is maximal. For this case we reproduce the
results given in Refs. [47,48]. The other values of x4 have
been chosen to show the entanglement behavior from the
nonrelativistic regime to the relativistic one (u = 1 corre-
sponds to the characteristic scale for |p| = m,). On the other
hand, # = z/8 and n = n/4 represent the cases in which the
main features of the entanglement distribution for 8 € [0, 27]
become evident.

By increasing the momentum, for # # 0, the concur-
rence of our reference state shows a shift of its peak and an
asymmetry with respect to € =z emerges due to the

interference terms in the associated density matrix.
Moreover, from Figs. 2(a)-2(f) we can see that the
concurrence value for 7 = 0 decreases and tends to zero
in the relativistic limit, while for the other two cases n =
/8 and 7 = x/4, it increases and in the relativistic limit
stabilizes its maxima at = z/2 and @ = 3z /2. These two
values of 7 correspond to a change in the entanglement
weight towards the case of n = z/2. In fact, by setting
n =r/2 [see Fig. 3(a)], we recover the other case in
Refs. [47,48] with R and L helicities for the incoming
particles in which in the high-energy limit maximal
entanglement emerges in 6 = z/2 and 0 = 3z/2. In the
same limit, the other cases (7 # 0, 7/2) show that the
asymmetry in concurrence with respect to 8 = z is sup-
pressed. We remark that this asymmetry, as shown in
Figs. 3(b)-3(c), is due to the choice of initial polarizations;
for different incoming helicity states, the amplitudes
M(RR,rs) and M(RL,rs) carry different weights to
the final concurrence. Choosing the opposite polarizations
for A and B, we recover the reflected plot with respect
to 6 = 7.

In order to better understand the generation of entangle-
ment and its dependence on the scattering angle 8, we can
look at the relation between concurrence and the proba-
bilities associated to the four output helicity states; when,
for some parameter configurations, one of these probabil-
ities is equal to 1, no entanglement can be generated. On the
other hand, the concurrence is maximal in correspondence
of equal output probabilities of two of the four final states.
These cases correspond to the possible Bell states that
can be formed only in the special cases fory =0, y = u,,,
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(a) Concurrence of reference state Eq. (21) for incoming RL helicities and different values of y with = z/2. In the high-

energy limit maximal entanglement is generated for @ = z/2,37/2 (see also Ref. [47]). (b) Concurrence of reference state Eq. (21).
(c) Concurrence of reference state Eq. (21) with opposite helicities for incoming particles.

0 =x and for n=x/2, u=oc0, 0 =n/2,37/2. Other
situations, corresponding to different parameter configura-
tions, are the consequence of the interplay between the
n =0 and = /2 initial states.

IV. ENTANGLEMENT DISTRIBUTION
IN BIPARTITE SUBSYSTEMS

Eq. (18). Now we come back to the original system, where
a spectator particle C (electron) is entangled with the
positron B which scatters with the electron A as represented
pictorially in Fig. 1. The states before and after the
scattering are expressed by

i) = |R)4 ® (cosn|R)p|R)c + e”sinp|L)g|L)c).  (23)
In Sec. IIl we studied an extension of the setup
considered in Refs. [47,48,50], in which we have consid-
ered the positron B in a superposition of helicity states asin ~ and
|
f) = [cosnM(RR;rs)|r)als)lR)c + e singM(RL; rs)[r)]5) gIL) ] (24)
r,s=R,L

From Egs. (23) and (24) we can calculate the density matrices of the system. We obtain (omitting normalization factors),

Papc = o8’ R) a|R) 5 R) cc(Rlp (R4 (R| + e~ sinncosn|R)4|R) | R) oo (L5 (L], (R]

+ e Sinﬂcos’?|R>A|L>B|L>Cc<R|B<R|A<R| + Sin2’7|R>A|L>B|L>Cc<L|B<L|A<R|»

(25)

Phac =D [cosnM(RR, rs) M (RR,7's')|r)4s) 5| R) cc(R|5 (s’ 4 ("

rs,r.s

+ e P sinncos pM(RR, rs) M (RL. 7's')|r) 515) 5| R) cc (L 5 (5|4 (7|
+ e sinncospM(RL, rs) M (RR. r's")|r) sls) 5| L) c o (R s ('] o (7]

+sin?nM(RL, rs)MT(RL. 7's')|r) 4] s) g L) oo (LI (8|1 (']

(26)

By tracing with respect to A, B, C, the resulting reduced density matrices are

Pap = oS’ N|R) 4| R) g (R| o (R| + sin*y|R) 4 |L) g (L4 (R].

Pac = COS’NR)oR) ¢ (R| (R + sin®y| R) o |L) . (L4 (R

(27)

, (28)

Pisc = cos’f|R) g|R) cc(R|5(R| + e~ siny cos n|R) p|R) e (L|p(L]|

+ e sinncosn|L)p|L)cc(RIp(R| + sin’y|L) g|L)cc(LIp (LI,

(29)
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Phe = Y [cossnM(RR; rs) M (RR; r's') 1) 4]5) 5 (|1 (|

rs.r s

+ sin®nM(RL; rs) MT(RL; F's")|r) 4| 8) g (s 4 ('

] (30)

Phe =D [cosPnM(RR; rs) M (RR; r's)| 1) IR) (Rl (|

r.r.s

+ e Vsinncos pM(RR; rs) M (RL; 1'5)|r) 4| R) ¢ (L] 4 (r'|
+ e sinycos g M(RL; rs) M (RR; 1'5)|r) 4 |L) e o (R| 4 (']
+ sin?nM(RL; rs) MY (RL; r's)|r) 4 |L) e (L] 1 ("] (31)

Ppe = _[cos?nM(RR; rs) M (RR; rs') 5) 5| R) (R 5 (s'|

rr,s'

+ e # sinycos pM(RR; rs)MT(RL; rs')|s) | R) ¢ (L| (5’|
+ €' sinncos pM(RL; rs) M (RR; rs')|s) g|L) cc(R| (5]
+ sin®nM(RL; rs) M (RL; rs')|s) g|L) ¢ (L | (s'|]- (32)

Using Egs. (16) and (17) we calculate the concurrence
associated to each of the six bipartite systems (27)—(32).
As before, we take # = 0. For the bipartitions of the initial
state, we obtain C(pi,z) =0, C(p},-) =0 and C(pi.) =
| sin(27)|. On the other hand, the expressions of concur-
rence for the bipartitions of the final states are very lengthy
and they are not reported here except for those in the
relativistic limit, that we list below:

2sin’ysin® (6/2)cos*(6/2)
lim C(p} ) = . (33
e (Pis) 1 — (1 — §sin%@)sin*Osin’y (33)

. sin(2n) sin*(6/2)
lim C(p)yc) = . (34
Pt (Pac) 1 — (1 —¢sin®0) sin® @ sin’ 5 (34)
. sin(2) cos*(0/2)
lim C(pje) = . (35
ﬂggo (Psc) 1 — (1 —4sin?0) sin? @sin? (35)

Some representative plots of concurrences numerically
evaluated are reported in Figs. 4-6. For each set of plots, we
have chosen four values of u: {4,,1,5,100} and #n:
{0,7/8,7/4,37x/8}, which are sufficient to clearly re-
present the generation and distribution of the entanglement
in the three channels AB, AC, and BC. The plots (a)—(f) in
each figure represent the concurrence as a function of the
scattering angle 6.

In each set corresponding to n = /8 and n = z/4 in
Figs. 4-5, the concurrence in the BC channel decreases
with respect to its initial value while in the AC channel

increases. On the other hand, in the same range of
parameters, concurrence in the AB channel has a nontrivial
behavior, which however stabilizes in the relativistic limit
for =1z and 0 = 3x, where it is maximal as for the
(initial) disentangled case n = z/2 (i.e. with RL incoming
polarization particles) as reported in [47] and in Sec. III. We
find remarkable that the correlation between the two
particles A and C that not interact directly increases as a
consequence of the scattering between A and B.

On the other hand, when we consider the cases for 7 >
/4 up ton= %ﬂ', entanglement in the BC channel may
also increase with respect to its initial value. This is clear
from Fig. 6(c) and Fig. 6(f) which show the particular
case 7 = 3 7.

Let us consider now the relativistic limit, in which the
analytic expressions Eqgs. (33)—(35) for the concurrences are
available. We observe that in such a limit, the entanglement
in the AB channel Eq. (33) is identical to the one for the
reference state Eq. (22); thus, it appears to be completely
generated in the scattering process.

We now further specialize to the particular case of
n = r/4, corresponding to maximal entanglement for the
initial state BC. From Eq. (34), we see that at 0 = 7z, the
entanglement in the AC output channel is maximal, while it
vanishes in the BC output channel. Thus the QED scatter-
ing between A and B acts as a quantum gate for the
complete transfer of the entanglement between AC and BC.

We also notice that correspondingly, the entanglement
generated in the scattering assumes low values, thus
entanglement transfer is a dominant and stable mechanism
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around @ = r in the relativistic limit and for entanglement
weight 1 = z/4.

Finally, we comment on the interpretation of these
results in terms of output probabilities, in a similar way
as done in Sec. III. Here we note that the presence of the
spectator implies the suppression of interference terms in
the expressions for probabilities and concurrence: this is
the reason for the symmetry of the plots Figs. 4-6 with
respect to those in Figs. 2-3. Also, we observe that a Bell

state cannot be generated in the AB channel, due to the fact
that n # 0, x/2.

V. CONCLUSIONS AND OUTLOOK

In this work, we have studied entanglement in the
context of QED processes. In particular, we have consid-
ered Bhabha scattering at tree-level in which a positron B,
that scatters with an electron A, is entangled in spin with
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FIG. 6. Concurrence of final bipartitions for n = 37/8.

another electron C that does not participate directly in the
process. We found that two effects occur; the entanglement
generation at the interaction vertex and the distribution of
the initial entanglement among the three channels.

By using the concurrence, we have quantified the
entanglement in the three bipartitions of the system: AB,
AC, and BC—before and after the scattering. The corre-
lations depend on the value of the entanglement weight 7,
the scattering angle 6, and the ratio between the incoming
momentum and the mass u. The interplay between gen-
eration and transfer of entanglement among the three
channels is very complex in the nonrelativistic regime,
namely for y ~ 1. On the other hand, for some configura-
tions of parameters, the entanglement tends to concentrate
in some bipartitions.

Especially interesting is the relativistic regime y = co. In
such a limit, we were able to calculate the analytic
expressions for the concurrences and found that the entan-
glement in the AB output channel is not affected by the
presence of the entangled spectator particle, thus being
completely generated in the scattering. On the other hand,
for n = n/4, we observe a complete transfer of entangle-
ment from the BC channel to the AC channel in a neighbor
of 8 = . In this situation, the QED scattering between A
and B acts as a quantum gate for such a transfer between AC
and BC. It is an intriguing question if such a mechanism
could be useful for quantum information tasks.

This work represents a contribution towards a better
understanding of the underlying mechanisms in the gen-
eration and distribution of the entanglement in the frame-
work of fundamental interactions. A first extension of the

present analysis, which is in progress, is represented by the
detailed study of other basic QED scattering processes
(Moller, Compton). We also plan to carry out the same
investigation in different reference frames, also to test the
Lorentz invariance of our results. Another important issue,
which we have not considered in this work, is the study of
tripartite entanglement in the output state; this will be also
useful to understand the balance in the generation and
transfer of the entanglement in the process, which does not
appear to satisfy a simple sum rule.

ACKNOWLEDGMENTS

M. B. wishes to thank Francesco Romeo for illuminating
discussions. B. M. is grateful to Cristina Matrella, Gennaro
Zanfardino, Pasquale Bosso, and Gaetano Luciano for
fruitful conversations on many topics related to the paper.

APPENDIX A:

1. Weyl representation of y-matrices

01 . 0 of -1 0
0 _ , i__ ' , S5 . Al
g <ﬂ 0> g <—a’ 0> g (o ﬂ) (A1)

Dirac spinors, as in Ref. [65], correspond to the particle
and antiparticle solutions of the Dirac equations,

(" py —mu(p,s) =0, (A2)
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(7’” P+ m)@( 12 s) =0. (A3) where the & are the two component spinors eigenstates
of helicity operator, ¢ = (1,5), 6 = (1,—06) in which
¢ represents the Pauli matrices and p = (w, p) is the

They can be written as 4-momentum vector. The spinors below are expressed in
terms of an arbitrary direction in which p = (sin @ cos ¢,
sin@sin g, cos ), with 6,¢ the polar angles, and the

— s — subscripts R and L represent respectively the positive
u(p,s)= p'of' . v(p,s)= poe ], (A4) (+1) and negative (—1) eigenvalues of the helicity
Vp-o& —Vp-o¢& operator.

2. Helicity spinors

Vo —=pcos(9) —V@ + psin(§)

o | e || e -
i VoFpeos®) | g —Jo=psin(9)
V¥ petsin() o= cos(t)
—/@ + psin($) Vo —=pcos(%)
” (ﬁ) _ \/mei‘f’ cos(%) ) (['5) _ \/a)Tpe"‘ﬁ Sin(g) (A6)
' vo=psin@) " —Va T peos()
—/® _—peid) cos (g) _ \/anei‘/’ sin (g)
—/@=psin(§) Vo F peos(f)
B s I e e -
! —o T psin(9) - Vo= pcos(9
Vo £ pe't cos(§) Jo=pei®sin(%)
Vo T peos(f) —/@=psin())
wiepy = | YOTPNmG) )y | Ve petesl) (A8)
—v/@=p cos(3) Va T psin(9)
—/@—=pe' sin(§) —V@ F pe cos(f)

APPENDIX B: BHABHA SCATTERING AMPLITUDES

The scattering amplitudes are calculated in the COM reference frame of particles A and B. In the following, p; =
(@,0,0,|p|) and p, = (@0,0,0,—|p|) are the incoming 4-momenta that liec along the z-axis, while p; =
(w,|p|sin®,0,|p|cosh) and p, = (w, —|p|sinH,0,—|p| cosh)) are the outgoing 4-momenta lying along a direction that
form an angle 6 with respect to z-axis. a, b, r, s are the spin indices,

_ 1 _ _ 1 _
M Bhabha = €2 (U(byl’z)y"”(a,Pl)izu(’ﬁpz.)?’u”(&m) - 0(57172)7””(&174)72”0%3)}’”“(%171)) . (B1)
(P14 p2) (p3=p1)
Defining y = L%l’ where |p| is the incoming momentum in the COM reference frame and m, the electron mass, the explicit

expressions for the polarized amplitudes result,
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(2 + 11p? + 8u* + 2 cos 6 4 p? cos 20)csc?(§)

M(RR;RR) = M(LL;LL) =

M(RR;[%) = ~M(LL:[% ) =

M(RR; LL) = M(LL;RR) =

M(FRRR) = -M({R; LL) =

M(RL;RL) = M(LR;LR) =

42 (1 + ) ’ >
(i cosd) o)
w2 T+42 >
1+ 4%(1 4+ cos )
P +p?) (B4)
(1+ p;z cos®) Czot(%) (B5)
w\/1+u
2 cos@))cot* (¢
(14pu (1+ﬂ2 9)) cot (2)’ (B6)
(B7)

1
M(RL;LR) = M(LR;RL) =1 —cos@ ——.
7
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