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Relativistic dissipative magnetohydrodynamics from the Boltzmann
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We derive the equations of motion of relativistic magnetohydrodynamics, as well as microscopic

expressions for all of its transport coefficients, from the Boltzmann equation using the method of moments.
In contrast to G. S. Denicol et al. [Phys. Rev. D 98, 076009 (2018).], where a single component gas was
considered, we perform our derivation for a locally neutral fluid composed of two massless particle species

with opposite charges. We demonstrate that the magnetohydrodynamical equations of motion become

dramatically different for this more realistic system. The shear-stress tensor no longer obeys a single

differential equation; it breaks into three nondegenerate components with respect to the magnetic field,

each evolving according to different dynamical equations. For large magnetic fields, we further show that

the solution of this theory displays oscillatory behavior that can no longer be described by an Israel-

Stewart-like theory. Finally, we investigate the derived equations in a Bjorken flow scenario.

DOI: 10.1103/PhysRevD.109.096021

I. INTRODUCTION

Relativistic magnetohydrodynamics (RMHD) is a theo-
retical framework that describes the dynamics of relativistic
fluids in the presence of magnetic fields. Powerful mag-
netic fields are produced in nature and in experiment,
playing crucial roles in high-energy heavy-ion collisions
[1-3], astrophysics [4], and the early Universe [5]. For
instance, in the early stages of heavy-ion collisions, nuclei
beams generate intense magnetic fields, reaching peaks
of ~10" gauss (RHIC) and ~10%° gauss (LHC) [2,6-13].
These extreme electromagnetic fields that are created
during the initial stages of heavy-ion collisions, may
significantly impact the dynamics of the quark-gluon
plasma (QGP), also formed at the early stages of the
reaction [14-22]. The framework of relativistic hydro-
dynamics [23] is quite successful in explaining the dynami-
cal evolution of heavy-ion collisions [24-26] but, so far,
these state of the art models do not include the effects of
magnetic fields. Including these effects requires the deri-
vation of causal relativistic magnetohydrodynamic equa-
tions, which do not display the unphysical features of
relativistic Navier-Stokes theory [27,28].

The derivation of causal formulations of relativistic
magnetohydrodynamics has been addressed by several
authors [29-38]. In principle, most candidates for relativ-
istic magnetohydrodynamics correspond to extensions of
the traditional Israel-Stewart theory [39-42] for plasmas,
by coupling it to the Maxwell equations. In general, the
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presence of a magnetic field can considerably modify the
structure of the equations of motion due to the spatial
anisotropy introduced by the magnetic field [43-46]: this
anisotropy breaks down the degeneracy of several dissipative
quantities, leading to the emergence of additional transport
coefficients that display distinct values with respect to the
direction of the magnetic field [30-33,47-51]. In particular,
relativistic magnetohydrodynamics has been derived in a
kinetic theory framework [30,31] using the traditional
method of moments [52].

In the context of kinetic theory, magnetohydrodynamics
has only been derived considering single-component gases
[30-33,53]. However, a fluid consisting of a single type
of point-like charged particles is inherently unstable and
incapable of reaching equilibrium. Consequently, such
systems may lack the capacity to offer even a qualitative
understanding of the problem. The goal of this paper is to
address this severe limitation and derive magnetohydrody-
namic from kinetic theory considering the simple, yet more
realistic system, of a gas made of two massless particles
species with opposite charges, with no dipole moment or
spin. We find that the theory derived for this system is
qualitatively different from those obtained for a single-
component gas. In our case, different components of the
shear-stress tensor with respect to the magnetic field obey
distinct equations of motion—a departure from the single-
particle fluid scenario, where the presence of a magnetic
field simply leads to the inclusion of additional transport
coefficients [30-33]. Another distinctive aspect of our
calculations is that, when the system is subjected to a
relatively strong magnetic field, the shear-stress tensor
displays oscillatory behavior as it approaches its asymptotic
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equilibrium state. This is a drastic deviation from the
typical exponential decay to equilibrium observed for the
shear-stress tensor in conventional hydrodynamics and
magnetohydrodynamics approaches. Due to these oscilla-
tions, we find that the system can no longer be accurately
described by a standard Israel-Stewart-like theory.

This paper is organized as follows: in Secs. II and III, we
discuss the Boltzmann equation in the presence of eletro-
magnetic fields. In Sec. IV we derive the fluid-dynamical
equations in the presence of magnetic fields using the
14-moment approximation [41,54] and a power-counting
scheme. In particular, in Sec. IV D we discuss the tensor
decomposition of the shear-stress tensor with respect to the
direction of the magnetic field. In Sec. V, we solve the
derived equations assuming the highly symmetric flow
configuration given by Bjorken flow [55] and analyze the
effects that the magnetic field can have on the dynamics of
the shear-stress tensor. Lastly, in Sec. VI, we summarize
our results and make our concluding remarks.

II. BOLTZMANN EQUATION

We consider a relativistic dilute gas of charged particles.
The state of this system is described by the single particle
momentum distribution function of each particle species,
fi, whose time evolution is described by the Boltzmann
equation. The Boltzmann equation is an integro-differential
equation of the following form [56],

woufl + abk, s A= S Clf Al ()
J

where C[f, fi] is the collision term, F* is the electro-
magnetic field tensor and k* is the particle 4-momentum.
The collision term is nonlinear and contains integrals over
momentum of the distribution function of all particle
species, rendering the equation challenging to solve.

The energy-momentum tensor and net-charge (electric)
four-current are expressed as the following momentum
integrals of the single-particle distribution function

™ = Z (k'K ZT
N+ = Zq, = ZN’:

where the summations above are over all particle species
and we have used the following notation,

3
(=0 [ G @

Here g is the degeneracy factor and k° = /k? + mj3 is the
on-shell energy. These current are associated to conserved
quantities and satisfy the continuity equations (in the
absence of electromagnetic fields),

9,T" = 0; d,N* = 0. (3)

It is convenient to decompose 7% and N* in terms of the
fluid’s collective 4-velocity field, u*. These currents are
then reexpressed as [56—58]

" = eutu’ — A (Py + 1) + 7,
NF = nut + VH, (4)

where we introduced the energy density ¢, the thermo-
dynamic pressure P, the bulk viscous pressure II, the
shear-stress tensor z#*, the net-charge density n, and the
net-charge diffusion current V#. We also defined the spatial
projector A¥ = ¢g" — y*u* and employed Landau’s defi-
nition [59] of the fluid velocity as an eigenvector of T
with eigenvalue e, that is, T*“u, = eu”. In this scheme,
each new variable introduced is expressed by a given
contraction/projection of the currents with u# and A** [39],

1
€= u,u,T", Py+1I= _gAﬂ”TW’ o = T,

n=u,N",

For convenience, we adopt the notation
Al = AP AV,
AW = AZAY,

The latter definition used the double, traceless, symmetric
projection operator,

1 2
Ny =5 (AzA; + ALAY — gN‘”Aaﬂ> . (5)

Since our goal requires focusing on the equation of motion
for the shear-stress tensor, most of the dissipative currents
introduced above will play no role in our calculation.
Nevertheless, we introduced them above for the sake of
completeness.

III. THE MAXWELL’S EQUATION AND THE
ELECTROMAGNETIC TENSOR

The evolution of Electric and magnetic fields are given
by Maxwell’s equations,

0,F* = N*,
0,F" =0, (6)

where the Faraday tensor, F*¥, is decomposed with respect
to the fluid velocity in the following form [57,60]

F* = Ery¥ — EVy# + e"”“ﬂuaBﬂ, (7)
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and its Hodge dual is
- 1
FH = 3 ””"/”Faﬂ = B*u* — BYut — e”"“/"u(,E/,v. (8)

This rank-two, antisymmetric tensor is composed of the
electric field 4-vector, E¥, and the magnetic field 4-vector,
B*, which are orthogonal to the fluid 4-velocity, E"uﬂ =0
and B"u, = 0. Moreover, in the local rest frame of the
fluid, these 4-vectors coincide with usual electric and
magnetic fields, i.c., E%, = (0,E)” and BY, = (0,B)"
with the following definitions,

. N
E'=F°  B'=—clFy.

In a covariant form, we also have

E* = u,F*,  B'= %eﬂ“’f”qu,j.

Further, N* is accurately characterized by Eq. (4) as the
electric charge four-current. It also serves as a source for the
electromagnetic field. The conservation of the total energy
and momentum of the gas is disrupted by the presence
of the fields, which can exchange energy and momentum
with the system. The conservation laws (3) are now
reexpressed as,

0,T" = —F“N,. 9)

Naturally, the electric charge four-current of the fluid
remains conserved, i.e., d,N* = 0. For simplicity, we shall
consider a locally neutral fluid and will disregard any
contribution from the electric field 4-vector, E*, throughout
this work. In absence of E¥, Eqgs. (7) and (8) simplify as
follows

FHv — B — eﬂ”aﬂuaBﬂ, (10)

FH — B — BHy* — BYyM, (11)

IV. EQUATIONS OF MOTION

Our goal is to find the equations of motion for the shear-
stress tensor, 7#*, in the presence of a moderately large
magnetic field. We consider a locally neutral fluid com-
posed of two types of massless classical particles with
opposite electric charges and vanishing dipole moment or
spin, so that the fluid has vanishing magnetization and
polarization. For this system the Boltzmann equation reads,

0

WOuf7 + kP f7 = Clf L (120)
0

WOuff +q kY= ff = ClFFLf). (12b)

where we consider only elastic collisions (for supporting
derivation see [61]),

1

Clf. 1= [ ARAPAP Wiz oy (F3 5 = £57)

+ / dK'dPAP'W ik pp (Fpf b = Fifi)s

(13)
1
Clft.fl=5 / dK'dPAP' Wi, o (f3fy = FLFE)

+ / dK'dPAP'W ks ppr (Ff o = FLFi0)-
(14)

In this section, the index = refers to the respective particle
species. The transition rate can be defined in terms of the
total cross section, o7, as [56]

+_
Wkk/ﬁpp/

= so7~ (22)38W) (k* + k¥ + p* + p™).  (15)
Above, we assumed that the cross sections are constant.
In the following, we shall further assume that, o " =
o7~ = o7, which will simplify the derivation of the fluid
dynamical equations.

For the sake of convenience, we introduce the energy
momentum tensor, 7%, and the net-charge current, N’ , of
each particle species. As done in Sec. II, we decompose
these tensors in terms of the fluid 4-velocity,

T = e*utu? — A PE + Wu’ + hiu” + o,
N, = n*u' + V. (16)

Here we have used the same notation as above, with the
indices “+” indicating the respective particle species.
Therefore, e+, P*, B, 7y, n* and V/, are the energy
density, the isotropic pressure, the energy diffusion
4-current, the shear-stress tensor, the net-charge density,
and the net-charge diffusion 4-current for the correspond-
ing + particle species, respectively. In this scheme, each
new variable introduced is expressed by a given contrac-
tion/projection of the currents with u* and A*,

1
F=uu Ty, PELIF=—A, T A= T,
W = uaTi’Oa nF=u,N, Vi= N<if>.

A. Matching conditions

We now introduce a reference local equilibrium state and
decompose the energy density, isotropic pressure, and the
net-charge density (for “plus” and “minus” particles) as
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et = eg + Se*,
Pt = P% + I1+,
n* = ng + on*, (17)

where €3, PF, and ni are energy density, pressure, and
net-charge density of the “+” particles of the system at
equilibrium, respectively. The corresponding de* and Sn*
are nonequilibrium corrections to the energy density, and
net-charge density, respectively, for 4 particles and IT* is the
bulk viscous pressure. We note that since we are considering
a system composed of massless particles, de* = 3IT*.

In this work, we impose Landau matching conditions
which fixes the 4-velocity as an eigenvector of 7" in such a
way that

uy (T + TH) = eo(u, T)u, (18)

u, (N, = NE) = no(u, T). (19)
This implies that the total energy density and, in our case,
the electric net-charge density are given by their respective
equilibrium value,

€ +e =ey(u,T) = St + e~ =0, (20)
nt—n"=ny(u.T) = én" —én~ = 0. (21)

Finally, Eq. (18) imposes that the total energy diffusion
4-current vanishes,

Wy +h =0,

nevertheless the energy diffusion 4-current of individual
particle species does not necessarily vanish.

Equations (20) and (21) define the electric charge chemi-
cal potential, y, and a local temperature, 7. This matching
condition will guarantee that the bulk viscous pressure
completely vanishes. We note that the dissipative currents
of each species de*, I1* and én* are not necessarily zero.
Nevertheless since we are considering massless particles,
these fields will be at least of second order in gradients and
thus, will be neglected in our derivation [62].

J

v v 2 v —
A = — AV EC KR D) |+ gAgﬂva<Ekli<<ﬂ>>+ - A"

10

Finally, we further assume that the chemical potential is
zZero,

p=0= ny(T) =0. (22)

This assumption also implies that the net-charge diffusion
4-current can be neglected. The energy diffusion 4-current
of each particle species will not disappear, but will become
at least second order in gradients and, thus, will also be
neglected in our calculations. Consequently, we are only
required to derive the equations of motion for the shear-
stress tensor.

B. Exact equations of motion

We directly calculate the time derivative of the shear
stress tensor of each particle species following the pro-
cedure outlined in Ref. [61],

d d
it = aﬂﬂ; = / dkk¥ i) £ (23)

T

For a fluid consisting of two particle species, Eq. (23) can
be reexpressed as

d
AvaY =l = / ki) 2 f 200",
T

A/;Z,';gﬁ = zlw) — /dkk<”k”> %f‘ —2ilpY, (24)

where the comoving derivative of the single particle
distribution function is calculated from the Boltzmann
equation in the following form

d . 2
— = —kH + v + + -
Edef KV, f* F |q|k,B akﬂf + Clft, f7].

(25)

Here we defined E} = k*u,, the energy of a particle in the
local rest frame of the fluid. By replacing Eq. (25) into
Eq. (24), we obtain an equation for the shear-stress tensor
of each particle species,1

4 8
T PR, ~ Sl 1 o

15

— = Aol — 20w P 2lq| Ay B, (B KPRY) . +2]g|EVnt) — 2dn?) + €1,

2 4 8
7 = — NV (B K, RD) - + S NENVAEZ D)) — AUV u (EZ KR I )_ — gnﬂwm +sote
10
- 7A’;;agn@ — 20w, % + 2| q| Ay BD,* (Ep ' kP kM) _ = 2|q|EVn¥) — 2ahY) 4 CW), (26)

' Analogous to the equations derived in [30] for a single-component gas.
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where we have introduced a dimensionless antisymmetric
tensor b** = —B" /B, with B*B,,, = 2B2, and the irreduc-
ible tensors k1 ...kl = ALl kv ke with AL
being a 2¢/-rank symmetric and traceless projection oper-
ator orthogonal to u* [52,56]. Additionally, we have also
defined the shear tensor, ¢** = V</‘u”>, the expansion
scalar, 6= Vﬂu" and the wvorticity tensor, ® =
(VAu? — V¥u#) /2. Finally, we defined the following mo-
ments of the collision term,

c = / dKEZ' K“k) CIf+, 7). (27)

c) :/dKE e Clf~, £ (28)

The equations derived above are exact but are not closed in
terms of the fluid-dynamical fields. In order to obtain a
closed set of equations we need to impose some approx-
imations that will simplify the moments of the collision
term and the term that couples these moment equations
with the magnetic field.

C. 14 moment approximation

In this section, we discuss the 14-moment approximation
for the single-particle distribution function of each species,
which will be used to close the moments equations (12a)
and (12b). We follow the original procedure constructed by
Israel and Stewart [41,42] and express the single-particle
distribution function of each particle species as,

f = exp(yi)- (29)

Next, the field y is expanded in momentum space around
its local-equilibrium value, yo, = a — fu,k*, with a =
u/T being the thermal potential and # = 1/T the inverse
temperature. This is a series in terms of Lorentz-tensors
formed from 4-momentum k*,

SV =Yk — Yok = € + ke + kK e, + Kk ke, + -
(30)

To first order in dyy, we obtain
fv = fox + Foxdyi + O(6y)- (31)

In the 14-moment approximation, the expansion of the
nonequilibrium correction Syi in powers of 4-momentum
is truncated at second-order [41,54]. That is, we only
include the tensors 1, k#, and k*k” in the expansion,

Syp m et + kep + KMk e, (32)

Without loss of generality, we can assume slﬁ to be
symmetric and traceless, * thus leaving only 14 1ndependent
degrees of freedom in the expansion coefficients e*, e,jf,
and &,. These 14 degrees of freedom are usually matched
to the degrees of freedom of N, and 7. Here, since we
consider a system of massless particles and vanishing
chemical potential, all scalar and 4-vector dissipative
currents either vanish or are of a higher order, and thus
are not considered in our analyses. This implies that only
sﬂiy is not zero in the truncated expansion above and this
coefficient can be directly matched to #*". This leads to the
well-known expression [41,54],

fo(mu k')

R T -

When expanding the distribution function in powers of dy,
only the leading term of the expansion was retained. In
order to be consistent, the same approximation must be
applied to the collision term and all terms of order O(8y3)
and higher are omitted. Then, using the 14-moment
approximation, the collision term takes the following form

%0?‘ (ngat! — 4nn),

6
Y :—§0T+n6r7r””—|— o7 (ngm —4ngrt), (34)

6
cw = —ga}_naﬂ’i’“ +

where nj and ng correspond to the particle densities of
species plus and minus in equilibrium, respectively. Since
we assume that the electric-charge chemical potential
vanishes, nj = ny = . Using the 14-moment approxi-
mation, we can also demonstrate that,

<El:k<ﬂ>>i =0,
2

E-KPEAY, ==
(B KO, =

(EC'K )i, =0,
(ECK )ik, = 0. (35)

In the first equation, r is an arbitrary constant that
satisfies, r > —2.

We then replace these results into Eqgs. (26) and rewrite
them in terms of the total shear stress tensor, 7#¥ =
7 + 7", and a relative shear-stress tensor, Szt'=
7Y — 7. The result is,

*The trace of e can always be incorporated into the scalar
expansion coefﬁc1ent et
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Voa . 2lq|B v
N + Za 4+ = bHusg)
8 4 10 v
T ect? — gﬂ””g - U’Wﬂ/l) - 2w’1<’“7r‘j>, (36)

2|g|B y
A’;Zéfraﬂ + X6 + —|5q| g ﬁ>
4 10 Y ’
= - g(wve - 0"1(”5751) - 2(1)“’“571';). (37)

Above, we defined two transport coefficients,

3

2:? (56¥_ +30'T). (38)

w|>

(67" +07) and ¥ =

In the absence of a magnetic field, ¥ can be immediately
identified as the inverse relaxation time of this fluid and can
be related to the shear viscosity, #, as,

1 €+PO
3=—=T-0 39
o= (39)

We observe that the equations of motion for z#* and é#**
are coupled due to the presence of a magnetic field.?
A closed set of equations for 7#* can be obtained in some
limits, as will be discussed in the remainder of this paper.
Nevertheless, before we implement this procedure, we
shall discuss how the dissipative currents can be tensor-
decomposed with respect to the magnetic field—a pro-
cedure that will be required in order to simplify the
coupling term that appeared in equations above by the
existence of a magnetic field.

D. New projections and definitions

We introduce a normalized 4-vector, b#, defined such
that

p=B"
B

where — B,B* = B> = b,b* = —1.
Now we proceed to decompose a traceless second-rank
tensor that is orthogonal to u”, e.g., the shear-stress tensor

7", with respect to the direction of the magnetic field, b*.
That is,

1

here,
where we defined the following projection operators onto
the subspace orthogonal to u* and b*,

T = g — DB = A bR, (41)

B =5 (B6EY + B4R, — BByp). (42)
For the sake of convenience, we further parametrize

b = —etval Ugbg. (43)
Lets now consider the following complete, normalized, and
orthogonal basis (u*, b*, x*,y*) in such a way that, in the

local rest frame, if we define b* to be in the longitudinal
direction, we have that

w = (1,0,0,0),
yﬂ - (0707 170>9

X = (0,1,0,0),
b* = (0,0,0,1). (44)

Or, in other words, x* and y* describe the plane orthogonal
to the magnetic field in the local rest frame of the fluid. For
the sake of convenience, we further define a new basis
4-vector,

7 = bebyn”, @ = -Eabyn®,

o = EZZﬂaﬁ , (40)

/= \% (v + i), (45)

which satisfy the conditions,

ity == (x, £iy,)(x* £iy*) =0, (46)

N[ =

Gt == (x, Fiy,) (£ iy*) = —1. (47)

| =

These new basis vectors are useful since they satisfy the
relation,

b = X'y — yat, 48
W=y

which further implies that #; are the eigenvectors of b,
with eigenvalues =i,

1
bEE = (yx¥ — xtyY) 7 (x, £iy,) =+i. (49)

We can then decompose a 4-vector that is orthogonal to
both #* and b* in the following way

B e - . .
This is due to our assumption o7+ = 677.
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Al = AYO + AT AT = 5 A (50)

For a traceless, symmetric, second-rank tensor, that is
orthogonal to both #* and b*, we have that

A = AT OO AT O, AT = ETETAY

(51)

Thus, after implementing this tensor decomposition, 7+*
will be expressed in terms of 5 scalar independent degrees
of freedom, 7z, #7, and 7 | . We shall derive the equations
of motion for each of these components. An important
|

8
7'1'” —|—7rﬂb —|—27IH GGH

. 4 10 1
57'Z'H +57T/ibﬂ +2/5n’H = —3571'“9—7 < 5571'”0'“ + 36/i

We observe that both equations are decoupled, since the
term proportional to B vanishes. The only coupling to the
magnetic field appears in the term proportional to h*.
Furthermore, due to our assumption of a vanishing chemi-
cal potential, the equation of motion for 6z does not
contain a Navier-Stokes-like term, i.e., a term that is
proportional to the shear tensor. This implies that éx| is
at least of second-order in an asymptotic gradient expan-
sion and, for this reason, will not contribute in the
|

observation is that now the + index no longer denotes the
particles species but rather our convention for the projec-
tions into the subspace orthogonal to the magnetic field and
fluid 4-velocity.

1. Scalar component

We contract (36) and (37) with b*b* and use the tensor
decomposition introduced in (40) to obtain the equations
of motion for the longitudinal component of the total and
relative shear-stress tensor, 7| and 6z, respectively. The
resulting equations are,

4 10/ 1 1 1 . 2 .
ﬂHe - 7 <—§ﬂ'“0 + gG’j_ﬂ'Lﬂ ‘|‘ gﬂLLaﬁO-J_ﬁJ_> - g (a)liﬂ'Lﬂ + wj_ﬂj_ﬂLlaﬁ)’ (52)

1 (0] 2 Q)
57[J_ﬂ + 55”1405/3011) - g (0)’15711” + Cl)LﬁL(sﬂ'J_J_aﬂ). (53)

[

derivation of a second-order theory of fluid dynamics.
We will come back to this point later in this paper.

2. Vector component

Next, we project Egs. (36) and (37) with bﬂE,’}, resulting
in an equation of motion for the partially transverse
component of the total and relative shear-stress tensor,
74 and 67", respectively,

—1 - 3 B . |q| ) 8 4 5 5 ) )
:.ﬁﬂL—l—(zﬂJ +7FJ_J_>by+Zﬂ' . b*on J_U—Bedﬁ_—gﬂig—f—ﬁ(ﬂiﬁ“—FﬁiﬂH)—?(GLyﬂil +7,0%))
1
+omel -0t - aLel, (54)
=ASY § =i P j ) |Q| W ﬂ 5 A 5 s
ELoa + (J0mEY +ont, )b, + Xomh + b ort 10+ (5 ‘o + ok om) — (amgﬂu +611,0%))

In this case, the equations for 7/ and 67| are coupled due
to the presence of a magnetic field. We also observe the
presence of nonlinear terms that couple the semitransverse
projections of the shear-stress tensor with its scalar and
tensor components.

We see that the term proportional to ~b* 7 |, (~b*ém )

is a first order term that couples different components of 7/

+ 25”\\0)L

ont | @t — om0 . (55)

|
(67")), which is an inconvenient feature that renders
deriving the Navier-Stokes limit of the equations more
complicated. We can eliminate this unpleasant feature
by further contracting the above equations with 77,
which are the eigenvectors of b*¥, leading to linearly
independent equations for each semitransverse components
of z% (677),
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3
b —|—7L'J_fl/fi <2ﬂ|f ﬂ'J_J_f )b +Znt :F% ont

8 4 5 5 1
15603F - 57@6’ + = (JTIO'H +mo]) + 2 (5ol +al,0T)+ 571'”0):': + wirl, + ol 7. (56)
SiT F v pt 3 v F oo )i /s F |q|
T +on |l — Eéﬂ\\?’ﬂi_5”LLf:F b”+25ﬂL:‘:5—T
4 5 5 1
367@9 + = (57'L'J_6H +6myo ) + 7 (6ntoT, +6nT 07) + 5 omjo® + wiénl, +wl ont. (57)

Naturally, the resulting equations of motion still display a coupling between zT and 577, due to the magnetic field.

3. Tensor component

Finally, we project Egs. (36) and (37) with 2 _ﬂ,, t0 obtain the equations of motion for the transverse components of the
total and relative shear-stress tensor, 7’| L l and 577 i l, respectively,

Hi@”iﬂj_ + 2::11/;”J_bﬂ + 2 5’q| (balaﬂlj_J_a + 0% 5ﬂﬁ_la)
8 ip 4 Ap 0— 5 Ap Ap 5 77;)“ s s 0_,1 ﬂ_}L 0/1 v Uﬂ —=Ap a af
15 gﬂJ_J_ 7 (”IIGJ_J_ + GIIHJ_J_) 7 [ 11a011 T 711407 10 t= (”L(IUJ_ - ”Ll(llfGJ_J_)]
0 —_ af
- ﬂlleL +ldf + 7w - ”’lmw{fi - ”/imw/ﬁ — % (”Laa’i - ”lLaﬂwi/L) (58)

monl + 25 ont b + Tonl| + 5"" (b%r" |, + b )

4 A 5 A A4 5 a a ) a a
= gaﬂflg 7 (6myof\ +oyérY)) — 7 (67 1,07\ +6n') 1,07 = 6nl ol — én ol + B (671407 ~ 5”llaﬁ6J_ﬂJ_>]
—om Ha’ill +érial] +ér o - om0l —on | 0l — BV (6m ) ,0f — 5"7Liaﬁw(ﬁ) (59)

Once again, we observe that the equations of motion for #/|") and 6’| are coupled due to the presence of a magnetic field.
Similar to its vector component, the equation of motion for the tensor component also contains nonlinear terms that couples
it to the scalar and semitransverse projections of the shear-stress tensor.

In order to simplify the coupling between different components of #/°, (67')) arising from the first-order term
proportional to ~b®z | , (b7, ), we further project the above equations with £5¢;. This projection allows us to
obtain linearly independent equations for each transverse component 7 | (577 | ), making subsequent calculations simpler.
The result is,

. . Blq| 8 4 5
at, +2nl hlE 2ﬂlfibﬂ+ZﬂILﬂ:l T onl, = ISGUIL—gﬂILe—?(ﬂ'HﬁfL—FGHHIL)
10
+ o alo] —mwl, + 27w} (60)
ST, +26nT Ly - 26 ]Ffibﬁ Yéri, £ 2Bla| = _ ié T.0-=(6moT onT
AN ANy 7T +2om | i 5T ”J_J___3 n _7( mjol, +oyéni,)
10
+7 ﬂLGL (Sﬂ'leL‘i‘z(‘)‘ﬂlwI (61)

The coupling between z7 | and 6z, persists due to the presence of a magnetic field.

E. Linear regime

Up to this point, we have obtained a theory describing the dynamics of the total and relative shear-stress tensor of a
system composed of two particle species. Before explaining how we can obtain a closed set of fluid-dynamical equations for
the total shear-stress tensor, we discuss some basic features of the coupled equations derived in the previous section. For this

096021-8



RELATIVISTIC DISSIPATIVE MAGNETOHYDRODYNAMICS ...

PHYS. REV. D 109, 096021 (2024)

purpose, we consider the linearized equations of motion
around a static equilibrium state with temperature, 7', and
a constant magnetic field, B. In the linear regime, the
equations of motion for the semi-transverse total and
relative shear-stress tensors are

iB 8
it +Zn] F 5|Tq| ont = Beaj, (62)
B
51T +YonT F %‘Tq'ﬁ —0, (63)

while the linearized equations for the transverse compo-
nents take the following form,

. . 2Bl4]
al, +Zat, £ ST 5”IJ_ZE€O-IJ_’ (64)
2B
onl +X6nt i 5;6]| ni, =0. (65)

The longitudinal component of the shear-stress tensor will
not be discussed here, since it does not couple to the
magnetic field and does not exhibit any novel features,
when compared to traditional fluid-dynamical formulations.

Differentiating Eq. (62) with respect to time, and utiliz-
ing Eq. (63), we obtain an equation of motion for the
semitransverse component of the total shear-stress tensor. A
similar procedure can also be applied to the transverse
components, resulting in a reduction of the equations to the
following form,

AT+ E+2)ET + (Z + Q)T

8 8
= EGZ/UT + BE‘UI, (66)
A7)+ (E+ )T, + (B 4-4Q%)aT,)
8 8
:EGZ/GIL +Beafl. (67)

Above, we defined the following quantity,

_lq/B
Q= ST (68)
which has dimension of frequency. It is evident that these
equations are equivalent to the equations of motion of a
forced damped harmonic oscillator. The only difference
between the equations of motion for the semitransverse and
transverse components is how the magnetic field contrib-
utes to the natural frequency of oscillation of the system.

We now determine the dispersion relation for these linear
equations in the homogeneous limit, in which all terms
proportional to the shear tensor vanish. In this case, the
dispersion relation resulting from the equation of motion
for the semitransverse component is,

-0 + io(Z+Y) + (T + Q%) =0, (69)

with solutions,

w:é{mz’i\/(z—yy—m?]. (70)

In the limit of a vanishing magnetic field, B — 0, the
solution reduces to @ = iX and @ = iY and the system
relaxes exponentially to equilibrium, within timescales
determined by the inverse of ¥ and X'—as expected of a
dilute gas.

In the presence of a finite magnetic field, the dynamics of
the system qualitatively changes when, 4Q? > (X — X/)2.
In this case, the system no longer solely relaxes exponen-
tially to equilibrium but also displays an oscillatory
dynamics. Using the microscopic expressions for X and
3/, the condition for the onset of oscillatory dynamics is,

¥ -X B
2 = % > floG;_. (71)

Q>

Here we recall that T=2%(¢;"+o07) and X =

% (567~ + 307). Thus, the value of the total cross section
for interspecies scattering determines if the system will
oscillate back to equilibrium or not. For smaller values of
the magnetic field, the system will relax exponentially back
to equilibrium, but the relaxation timescales will depend on
the value of the magnetic field.

The dispersion relation for the transverse components are
obtained by changing Q — 2Q. Then, we obtain

a):é[2+2’i\/(2—2’)2—1692] (72)

In this case, these modes will approach equilibrium with
oscillations when the magnetic becomes larger than,

Y -3  2|q|B
N 4 - h

Q> 2 noo} . (73)

Thus, the onset of oscillatory dynamics occurs for smaller
values of magnetic field for the transverse components.

One crucial question is whether or not a typical Israel-
Stewart fluid-dynamical theory can capture the basic
features of these solutions in the oscillatory limit. We shall
investigate this in the following section, where we will
derive second-order fluid dynamics using the order of
magnitude approach [52]. Furthermore, we shall later
discuss if this oscillatory dynamics survives for a rapidly
expanding fluid, with a dynamics analogous to that of the
quark-gluon plasma produced in ultrarelativistic heavy ion
collisions.
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F. Truncation scheme

In this subsection we will derive a second-order fluid-
dynamical theory from the equations of motion obtained in
the previous subsections. The main idea is to estimate the
magnitude of each term in the equations of motion for the
relative and total shear-stress tensor using the leading term
in an asymptotic gradient expansion solution [23]. We shall
demonstrate that, up to second-order in this power-counting
scheme, it is possible to re-express the relative shear-stress
tensor solely in terms of the total shear-stress tensor and its
derivatives.

We start by analyzing the leading term in an asymptotic
gradient expansion of solutions of Eqgs. (57) and (61). To
first order in gradients, we have that the relative compo-
nents of the shear-stress tensor can be expressed as

ol = xipn + O(2), (74)

onl | = 2ipnT | + O(2), (75)
where O(2) denotes terms that are of second-order or
higher in powers of gradients or in powers of the dissipative
currents. We further defined a new variable ¢ =
B|q|/(5TY") for the sake of brevity. We then iterate these
first-order solutions back into Eqs. (57) and (61) and re-
express all the remaining terms of the equations up to third
order. In this case, we obtain that the semitransverse
|

. 8 ,
(1= T + (2 + 2)aT = reo - |(1- %) (32

. 5 3 . 5
+ (14 2¢?) [—f;by + o7 +§af] T+ (fftby +%+ﬁaI>n”.

components of the relative shear-stress tensor can be
approximated as,

40 5
3147
Fipn [ 50F £2ipn] | O4b, L ipZn] Fipr]
FipwiaT, +of 2T) +0O(3). (76)

: 5i
YénT = :Fzgoﬂf( ) F= (,a(zrlo'L + 277 07)

While the fully transverse components of the relative shear-
stress tensor can be approximated as,

4 5
Yont, = :|:§2i(p7rIL9:|:§

F2iQnT | £ 2ipiT | +2inT ¢ +dipn] LlF
+ 2ipn 50 £ 2ipr 0T +O(3). (77)

. 10
2ipnT, o £ = ipnlo]

Similarly, O(3) denotes terms that are of third-order or
higher in powers of gradients or in powers of the dissipative
currents.

A closed set of second-order equations of motion for
each component of the total shear-stress tensor can then be
obtained by substituting the results above into Egs. (56)
and (60), and disregarding all terms of O(3). Then, the full
second-order equations for the semitransverse shear-stress
tensor are,

460 5 , 5
+3 145>+(pgo}zf+(1+(p2)[w1+701]ﬂf

-
(78)

While the full second-order equations for the fully-transverse shear-stress tensor are,

. 8 . 4 5 ) 5
(1—4¢*)if | + (Z+4¥*)n], = ]SGUJ_J_ [(1 —4¢ )<2f/if/)j’t +§9+7”> _4¢$]”IJ_ - <7UIL +C"IL>”

. 10
+ (14 2¢?) <2f§bﬁ +7af + 2wf)nf

We note that the equations for the longitudinal components
of the total shear-stress tensor were already independent from
the relative longitudinal shear-stress tensor and, thus, did not
have to be simplified using any power-counting scheme.
Another novel feature of this theory is that the semitransverse
and transverse components display different relaxation times,
i.e., they have their own dynamical equations of motion that
cannot be trivially recombined into an unique equation of
motion for the complete shear-stress tensor.

A shear viscosity can be identified for the longitudinal,
semitransverse and transverse components of the shear-
stress tensor. They are,

(79)

[

4de de

n :15—2277, ﬂ¢:—15(2+¢22,),

de

15(Z 4 4¢°%Y)" (80)

Ny =

These coefficients are positive definite, with , and 7, |
displaying a significant dependence on the magnetic field.
Similar to Ref. [30], the longitudinal shear viscosity dis-
plays no dependence on the magnetic field and has the
same value of the shear viscosity in the absence of a
magnetic field. We recall that,
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T./Tr
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Q (tr)

(a) T, assuming negative values for ©(€2) > 0.5.

FIG. 1.
different values of r = o}~ /o™,

Blq| 3fg,
= Z = — +
7 STZ/ ’ 5 (UT + O-T)’
Y = —50 (567~ + 307). (81)

Similarly, a relaxation time for the longitudinal, semi-
transverse, and transverse components can be respectively
identified as,

1 1—(p2 1_4(p2

T ===1,, T =—F—, T
=== SRR X4’y
(82)

Note that, in the limit of vanishing magnetic field, ¢ — O,
all the relaxation times become identical and match the
usual relaxation time derived for Israel-Stewart theory, 7.
Nevertheless, in the limit of moderately large magnetic
fields, these relaxation times can differ significantly. In
particular, we can see that if, 4¢? > 1, the relaxation time
of the transverse component of the shear-stress tensor will
even become negative. Further increasing ¢, such that
@*> > 1, will also render the relaxation time for the semi-
transverse component negative. This behavior is expressed
in Fig. 1, where we denote the ratio between the cross
sections as, r = o7~ /oy . Negative relaxation times are
unphysical and lead to linear instabilities of the global
equilibrium state. This indicates that the truncated theory
derived in this section breaks down for such values of
magnetic fields (or for such values of ). We note that ¢ is
proportional to Qz, and, thus, if this quantity is larger than
one, it indicates that the frequency of oscillation emerging
due to the magnetic field is of the same order as the inverse
(longitudinal) relaxation time. In other words, this implies
that the period of oscillation is not large relative to the
relaxation timescale and oscillation phenomena cannot be
neglected.

-0.25

—0.50 1

-0.75

0.00 0.é5 0.50 0.75 1.00 1.25 150 1.75
Q (tr)

(b) 7y assuming negative values for ©(2) > 1.

Relaxation times for the (a) semitransverse and (b) transverse components of the shear-stress tensor as a function of Q, for

In the following section, we shall investigate this physics
in a simple dynamical model, Bjorken flow [55]. In this
case, we shall verify that oscillations do indeed become
important when the frequency of oscillations € becomes
large with respect to the inverse relaxation timescale. Thus,
the breakdown of this Israel-Stewart-like theory for each
component of the shear-stress tensor does occur when
oscillatory phenomena emerge.

V. BJORKEN FLOW

So far, we have obtained the equations of motion for the
5 components of the shear-stress tensor, decomposed with
respect to the direction of the magnetic field. In our
simplified kinetic description, we found that three of these
components evolve independently. Furthermore, we have
identified that, in the presence of relatively large magnetic
fields, the relaxation times appearing in the equations of
motion for the transverse components of the shear-stress
tensor become negative—a clearly unphysical feature. We
further argued that this unphysical scenario may be con-
nected to the emergence of oscillatory dynamics for the
shear-stress tensor that cannot be captured by the Israel-
Stewart-like equations derived so far. Our next step is to
investigate the emergence of such oscillatory behavior
using a simplified solution for expanding plasmas:
Bjorken flow [55].

Bjorken flow is a toy model for the longitudinal fluid-
dynamical expansion that takes place in ultrarelativistic
heavy-ion collisions. It describes a boost-invariant, longi-
tudinally (with respect to the beam direction) expanding
medium. The system is also traditionally assumed to be
isotropic and homogeneous in the transverse place (relative
to the beam axis)—we note that we will break the first
assumption by introducing a magnetic field in the trans-
verse plane.

Thus, Bjorken flow is a highly symmetric flow configu-
ration, making it possible to solve the equations of motion
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for the shear-stress tensor with simple numerical schemes
and gain insights into the theory beyond just linear
approximations. In this scenario, the spacetime is conven-
iently described using hyperbolic coordinates, 7, &, x and y,

r=VE -2, é—lln<t+—z). (83)

2 r—z

where 7 is the proper time, £ is the spacetime rapidity, with
(t,x,y,z) being the usual Cartesian coordinates. In this
coordinate system, the metric tensor is given by

Guv = diag(g‘[‘[’ Yxxs Gyy» 955) = dlag(l’ —-1,-1, _TZ)’ (84)

with the only nonzero Christoffel symbols being

1
=7, T5=TI;= pt (85)
Naturally, in this coordinate system all space-time deriv-
atives appearing in the equations of motion must be
replaced by covariant derivatives, i.e., d, = D,,.
In Bjorken flow, the fluid 4-velocity is static u* =
(1,0,0,0) and our basis elements can be expressed as:

¥ = (0,0,1,0),
1

yﬂ - (090305_)’
T

b =(0,1,0,0),

where the magnetic field, b*, was chosen to be in the
transverse direction relative to the beam axis. The shear
tensor in Bjorken flow is given by the covariant derivatives
of the 4-velocity and can be calculated to be [52],

. , 11 20
ij = AﬂfDauﬂ = dlag (O,g,g, —?> . (86)

Its different components with respect to the direction of the
magnetic field are,

O'H = bﬂbl/()'”b = % s (87&)

ot =¢ibo" =0, (87b)
1

0T =CilEd | = Ciliot = — (87¢)

T

Finally, the expansion rate is given by, 6 = D,u" = 1/z.
Further, the shear-stress tensor in Bjorken flow is
expressed as

++ —
n| t+n| -«
11 11
o = ﬂ“b”b” + <—|>x"x”

2

++ —
- v, 88
( 5 Yy (88)

with the magnetic field pointing in the x—direction breaking
the degeneracy between the shear-stress tensor components
in the transverse plane relative to the beam axis.* Given that
af = 0, we can remove this component of the shear-stress
tensor by setting its initial value to zero—this is why this
component is not included in the decomposition (88).
Finally, we consider the following equation of state (for
2 types of particles having 3 quarks each with two spins),

3x2x2x3
e 3X2x2x3,, (89)
T

Using the results outlined above, the relevant fluid-
dynamical equations reduce to,

de m 7w, 4e
oA AL e 0
dr 21+ 2t 37’ (90)

d(m\ Im_8 Sm_ 5z,
dr \ e 7, ¢ 457 2lre 2l €
N
-5 - A 9’ 91
€2< 21. ) ( )
dfr, 1z, 1 8 5my
dr \ € 7., € 1—4¢*15c 27 €
_ 1 iﬂ ¢ T
1—4¢*Tte  1-4¢* ¢
|| ﬂ'H‘i‘ﬂ'J_J_
- (). 92
€2( 21. ) ( )

where we defined the variable 7, | =#7, +#,. It is

useful to note that,
1 T T 1 (m+7ra 4
¢ (”<T+ T)’ T 4T< 2e 3>

Equation (90) corresponds to the continuity equation
related to energy conservation, while Egs. (91) and (92)
correspond to Egs. (52) and (79), respectively. We will
solve Eqgs. (90)—(92), considering a choice of cross section
that satisfies X =4%/3, ie., we considered r=
63~ /or = 1. We further assume that the system is initially
at equilibrium, at an initial time of 75 = 0.1 fm and an
initial energy density of €y(zy) = 1000 fm~*. The equation

*In the absence of a magnetic field in the transverse plane, the
shear-stress tensor in Bjorken flow has the following general form
" = diag(0,7/2,7/2,-x/7°).
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(a) Longitudinal component.

—— Bo=0fm2
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(b) Transverse component.

FIG. 2. Time evolution of the (a) longitudinal and (b) transverse components of the shear-stress tensor for several values of the initial

magnetic field, By. All simulations were performed for n/s = 1.

of motion for the magnetic field is taken from Maxwell’s
equations [31],

(93)

B+BO=0 = B~ <TT°>
We shall consider simulations with various initial values of
the magnetic field.

We fix the value of X so that the shear viscosity to
entropy density ratio in the absence of a magnetic is given
by n/s = 1, cf. Eq. (39). Our numerical solutions for the
longitudinal (left panel) and transverse (right panel) com-
ponents of the shear-stress tensor are depicted in Fig. 2. For
the value of shear viscosity considered, we observe that the
Israel-Stewart-like theory derived to describe each of these
components is only effective in the region where the
magnetic field is smaller than B, ~ 15 fm~>—otherwise

|

the transverse relaxation time becomes negative. For larger
values of shear viscosity, the relaxation time becomes
negative for even smaller values of the magnetic field.
This is an extreme restriction on the applicability of this
theory. Nevertheless, in Fig. 2 we see a moderate effect
of the magnetic on the magnitude of the shear-stress tensor
at the early stages of the evolution, 7 ~ 7p. When 7 > 7y,
the effect of the magnetic field completely disappears.
Hence, to attain an accurate depiction of the system
under larger magnetic fields, it is necessary to go back to
the more fundamental coupled equations [Egs. (52), (53),
(60), and (61)], where no truncation scheme has been
imposed. In principle, these equations still capture the
oscillatory dynamics that we anticipate but are absent when
employing truncated equations. The above mentioned set of
equations takes following form in Bjorken flow:

() e () 09
()t e e (), v

where we defined the following variables 7, | =z7 | + 77 |,
om,, =6n], —6n,, and Sz, = iS&, . We again con-
sider ¥/ = 4%/3.

Our objective is to solve (94)—(97) to investigate the
behavior of the longitudinal and transverse components
of the shear-stress tensor. Maxwell’s equations remain

[
unaltered, and consequently, the evolution of B follows
from Eq (93). As before, we assume that the system is
at equilibrium at an initial time of 7y = 0.1 fm, with an
initial energy density of y(zy) = 1000 fm~*. This time, we
enforce the presence of stronger magnetic fields, while also
considering different 7/s values.
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(a) Longitudinal component.

FIG. 3.
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(b) Transverse component.

Time evolution of the (a) longitudinal and (b) transverse components of the shear-stress tensor for several values of the initial
magnetic field, B,. All simulations were performed for 5/s = 1.
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:=(
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(b) Transverse component

FIG. 4. Time evolution of the (a) longitudinal and (b) transverse components of the shear-stress tensor for several values of the initial

magnetic field, By. All simulations were performed for /s = 10.

In Fig. 3 we show our results for the longitudinal (left
panel) and transverse (right panel) components of the
shear-stress tensor for #/s =1 and an initial magnetic
field of B, = 0, 50, 100 fm~2. In 4, we show the same
quantities for a larger value of shear viscosity /s = 10.
Indeed, we do observe the appearance of oscillatory
dynamics for the transverse component of the shear-stress
tensor—it no longer simply relaxes exponentially to zero.
As expected, this oscillatory behavior only emerges for
larger values of the magnetic field, that could not be
probed in our previous simulations, for the truncated
second-order equations. We note that as the value of #/s
increases, the oscillations become more pronounced. This
phenomenon can be attributed to the faster changes in the
source term, i.e., the respective components of ¢**, when
n/s is smaller. Larger /s values correspond to longer
relaxation times, allowing the magnetic field sufficient
time to induce prominent oscillations in the system. On the
other hand, with smaller /s values, relaxation times are

shorter and oscillations do not have sufficient time to
develop.

The oscillatory dynamics can also be better compre-
hended by analysing the magnitude of the parameter ¢ in
our simulations. For the transverse component, we expect
that oscillatory dynamics occurs when the transverse
relaxation time is negative, which happens when
@ > 0.5. In Fig. 5 we show ¢ as a function of 7/z for
the simulations depicted in Figs. 3 and 4. For /s = 1 and
B ~ 100 fm™2, ¢ only exceeds 0.5 at the early stages of the
evolution. Consequently, we observe only subtle hints of
oscillations in this scenario. In contrast, when7/s = 10 and
B ~ 100 fm™2, ¢ remains significantly above 0.5 during
almost all the time evolution. As a result, this leads to the
prominent oscillations observed for the transverse compo-
nent of the shear-stress tensor in Fig. 4.

Due to the rapid decay of magnetic fields, the system is
expected to ultimately approach the conventional Navier-
Stokes limit at later times. In Fig. 6 we confirm this
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FIG. 5. The dimensionless variable ¢(Q) and a function of z/7; for different /s = 1 (left) and 5/s = 10 (right).
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FIG. 6. Longitudinal and transverse components as function of z/7g, compared to their respective Navier-Stokes values, for /s = 1

and several values of B,.

behavior by comparing our numerical solutions for the
longitudinal (left panel) and transverse (right panel) com-
ponents of the shear-stress tensor to their corresponding
asymptotic Navier-Stokes values (blue line). For the sake
of simplicity, we show our results only for the case of
n/s = 1. We note that when the magnetic field is suffi-
ciently large, the transverse components relax to their
Navier-Stokes limit displaying oscillatory behavior.

After examining this basic model in an expanding
scenario, it becomes apparent that Israel-Stewart-like the-
ories effectively work only when the quantity ¢ is suffi-
ciently small, with such threshold depending on the value
of the shear viscosity of the gas. In other words, it is
applicable primarily to lower magnetic field values that, in
practical terms, exert little to no impact on the system’s
dynamics. For those wishing to investigate the effects of
moderately stronger magnetic fields, it becomes necessary
to resort to the fundamental coupled equations where no
second-order truncation scheme has been implemented.

VI. CONCLUSIONS

We derived the equations of motion of relativistic
magnetohydrodynamics, as well as microscopic expres-
sions for all of its transport coefficients, from the
Boltzmann equation using the method of moments. In
contrast to Refs. [30,31], where a single component gas
was considered, we perform our derivation for a locally
neutral fluid composed of two particle species with
opposite charges. For the sake of simplicity, the particles
are assumed to be massless and have vanishing dipole
moment or spin. Furthermore, we focus solely on under-
standing how the equations of motion for the shear-stress
tensor are modified by the presence of a magnetic field.

The magnetohydrodynamic equations derived here are
qualitatively different to the traditional Israel-Stewart
theory. In our case, the longitudinal, semitransverse and
transverse components of the shear-stress tensor, with
respect to the direction of the magnetic field, obey distinct
equations of motion, with different relaxation times and
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viscosities. We have derived the microscopic expressions
for these transport coefficients and shown how each of
them is affected by the magnetic field. In particular, we
found that the relaxation time appearing in the equations of
motion for the longitudinal component of the shear-stress
tensor displays no dependence on the magnetic field. On
the other hand, the remaining relaxation times display a
strong dependence on the magnetic field, being reduced as
the magnetic field increases.

We further demonstrate that the relaxation-type equa-
tions of motion derived for the semitransverse and trans-
verse components of 7#* break down at sufficiently large
magnetic fields, due to the fact that the relaxation times
become negative. This departure from conventional expect-
ations, with occurrence of negative relaxation times,
challenges the applicability of standard relaxation-type
equations to our system. For instance, we demonstrate
that, when the magnetic oscillation frequency is of the same
order as the inverse relaxation time, the system exhibits
intrinsic oscillatory dynamics as it approaches its asymp-
totic Navier-Stokes regime and such behavior can never
be described with relaxation-type equations of motion. A
similar behavior is also observed for the transient dynamics
of conformal fluids described using holography via the
AdS/CFT correspondence [63].

For the simple two-component gas considered in this
work, it was possible to describe this novel oscillatory
dynamics by including one additional dynamical variable:
the dissipative dynamics of the fluid was described in terms

of the total shear-stress tensor (7#¥ = /' + 7**) and its
relative value (67#* = 7", — 7**). Nevertheless, it is not
clear at this point how this oscillatory dynamics can be
described when more complicated systems, with more
particle species and realistic cross sections, are considered.
These issues will be discussed in future works, where we
shall also include the effects of electric conductivity, finite
electric chemical potential and finite particle masses.

Our work addressed some of the theoretical challenges in
deriving relativistic magnetohydrodynamics and motivates
for further exploration. Our analyses into the nuanced
behavior of magnetohydrodynamics in stronger magnetic
fields, suggests the need for more comprehensive theoreti-
cal frameworks to capture the dynamics of relativistic
fluids in the presence of powerful magnetic fields. In
particular, we advocate for the development of a more
robust theoretical framework capable of capturing and
incorporating the oscillatory dynamics that appear at strong
magnetic fields, even for more general fluids.
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