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We derive the equations of motion of relativistic magnetohydrodynamics, as well as microscopic
expressions for all of its transport coefficients, from the Boltzmann equation using the method of moments.
In contrast to G. S. Denicol et al. [Phys. Rev. D 98, 076009 (2018).], where a single component gas was
considered, we perform our derivation for a locally neutral fluid composed of two massless particle species
with opposite charges. We demonstrate that the magnetohydrodynamical equations of motion become
dramatically different for this more realistic system. The shear-stress tensor no longer obeys a single
differential equation; it breaks into three nondegenerate components with respect to the magnetic field,
each evolving according to different dynamical equations. For large magnetic fields, we further show that
the solution of this theory displays oscillatory behavior that can no longer be described by an Israel-
Stewart-like theory. Finally, we investigate the derived equations in a Bjorken flow scenario.
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I. INTRODUCTION

Relativistic magnetohydrodynamics (RMHD) is a theo-
retical framework that describes the dynamics of relativistic
fluids in the presence of magnetic fields. Powerful mag-
netic fields are produced in nature and in experiment,
playing crucial roles in high-energy heavy-ion collisions
[1–3], astrophysics [4], and the early Universe [5]. For
instance, in the early stages of heavy-ion collisions, nuclei
beams generate intense magnetic fields, reaching peaks
of ∼1019 gauss (RHIC) and ∼1020 gauss (LHC) [2,6–13].
These extreme electromagnetic fields that are created
during the initial stages of heavy-ion collisions, may
significantly impact the dynamics of the quark-gluon
plasma (QGP), also formed at the early stages of the
reaction [14–22]. The framework of relativistic hydro-
dynamics [23] is quite successful in explaining the dynami-
cal evolution of heavy-ion collisions [24–26] but, so far,
these state of the art models do not include the effects of
magnetic fields. Including these effects requires the deri-
vation of causal relativistic magnetohydrodynamic equa-
tions, which do not display the unphysical features of
relativistic Navier-Stokes theory [27,28].
The derivation of causal formulations of relativistic

magnetohydrodynamics has been addressed by several
authors [29–38]. In principle, most candidates for relativ-
istic magnetohydrodynamics correspond to extensions of
the traditional Israel-Stewart theory [39–42] for plasmas,
by coupling it to the Maxwell equations. In general, the

presence of a magnetic field can considerably modify the
structure of the equations of motion due to the spatial
anisotropy introduced by the magnetic field [43–46]: this
anisotropy breaks down the degeneracy of several dissipative
quantities, leading to the emergence of additional transport
coefficients that display distinct values with respect to the
direction of the magnetic field [30–33,47–51]. In particular,
relativistic magnetohydrodynamics has been derived in a
kinetic theory framework [30,31] using the traditional
method of moments [52].
In the context of kinetic theory, magnetohydrodynamics

has only been derived considering single-component gases
[30–33,53]. However, a fluid consisting of a single type
of point-like charged particles is inherently unstable and
incapable of reaching equilibrium. Consequently, such
systems may lack the capacity to offer even a qualitative
understanding of the problem. The goal of this paper is to
address this severe limitation and derive magnetohydrody-
namic from kinetic theory considering the simple, yet more
realistic system, of a gas made of two massless particles
species with opposite charges, with no dipole moment or
spin. We find that the theory derived for this system is
qualitatively different from those obtained for a single-
component gas. In our case, different components of the
shear-stress tensor with respect to the magnetic field obey
distinct equations of motion—a departure from the single-
particle fluid scenario, where the presence of a magnetic
field simply leads to the inclusion of additional transport
coefficients [30–33]. Another distinctive aspect of our
calculations is that, when the system is subjected to a
relatively strong magnetic field, the shear-stress tensor
displays oscillatory behavior as it approaches its asymptotic
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equilibrium state. This is a drastic deviation from the
typical exponential decay to equilibrium observed for the
shear-stress tensor in conventional hydrodynamics and
magnetohydrodynamics approaches. Due to these oscilla-
tions, we find that the system can no longer be accurately
described by a standard Israel-Stewart-like theory.
This paper is organized as follows: in Secs. II and III, we

discuss the Boltzmann equation in the presence of eletro-
magnetic fields. In Sec. IV we derive the fluid-dynamical
equations in the presence of magnetic fields using the
14-moment approximation [41,54] and a power-counting
scheme. In particular, in Sec. IV D we discuss the tensor
decomposition of the shear-stress tensor with respect to the
direction of the magnetic field. In Sec. V, we solve the
derived equations assuming the highly symmetric flow
configuration given by Bjorken flow [55] and analyze the
effects that the magnetic field can have on the dynamics of
the shear-stress tensor. Lastly, in Sec. VI, we summarize
our results and make our concluding remarks.

II. BOLTZMANN EQUATION

We consider a relativistic dilute gas of charged particles.
The state of this system is described by the single particle
momentum distribution function of each particle species,
fik, whose time evolution is described by the Boltzmann
equation. The Boltzmann equation is an integro-differential
equation of the following form [56],

kμ∂μfik þ qFμνkν
∂

∂kμ
fik ¼

X
j

C
�
fik; f

j
k

�
; ð1Þ

where C½fik; fjk� is the collision term, Fμν is the electro-
magnetic field tensor and kμ is the particle 4-momentum.
The collision term is nonlinear and contains integrals over
momentum of the distribution function of all particle
species, rendering the equation challenging to solve.
The energy-momentum tensor and net-charge (electric)

four-current are expressed as the following momentum
integrals of the single-particle distribution function

Tμν ¼
X
i

hkμi kνi ii ≡
X
i

Tμν
i ;

Nμ ¼
X
i

qihkμi ii ≡
X
i

Nμ
i

where the summations above are over all particle species
and we have used the following notation,

h…ii ≡ g
Z

d3k
ð2πÞ3k0 ð…Þfik: ð2Þ

Here g is the degeneracy factor and k0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

0

p
is the

on-shell energy. These current are associated to conserved
quantities and satisfy the continuity equations (in the
absence of electromagnetic fields),

∂μTμν ¼ 0; ∂μNμ ¼ 0: ð3Þ

It is convenient to decompose Tμν and Nμ in terms of the
fluid’s collective 4-velocity field, uμ. These currents are
then reexpressed as [56–58]

Tμν ¼ ϵuμuν − ΔμνðP0 þ ΠÞ þ πμν;

Nμ ¼ nuμ þ Vμ; ð4Þ

where we introduced the energy density ϵ, the thermo-
dynamic pressure P0, the bulk viscous pressure Π, the
shear-stress tensor πμν, the net-charge density n, and the
net-charge diffusion current Vμ. We also defined the spatial
projector Δμν ¼ gμν − uμuν and employed Landau’s defi-
nition [59] of the fluid velocity as an eigenvector of Tμν

with eigenvalue ϵ, that is, Tμνuν ¼ ϵuμ. In this scheme,
each new variable introduced is expressed by a given
contraction/projection of the currents with uμ and Δμν [39],

ϵ≡ uμuνTμν; P0 þ Π≡ −
1

3
ΔμνTμν; πμν ≡ Thμνi;

n≡ uμNμ; Vμ ≡ Nhμi:

For convenience, we adopt the notation

Ahμi ≡ Δμ
νAν;

Ahμνi ≡ Δμν
αβA

αβ:

The latter definition used the double, traceless, symmetric
projection operator,

Δμν
αβ ¼

1

2

�
Δμ

αΔν
β þ Δν

αΔ
μ
β −

2

3
ΔμνΔαβ

�
: ð5Þ

Since our goal requires focusing on the equation of motion
for the shear-stress tensor, most of the dissipative currents
introduced above will play no role in our calculation.
Nevertheless, we introduced them above for the sake of
completeness.

III. THE MAXWELL’S EQUATION AND THE
ELECTROMAGNETIC TENSOR

The evolution of Electric and magnetic fields are given
by Maxwell’s equations,

∂μFμν ¼ Nν;

∂μF̃μν ¼ 0; ð6Þ

where the Faraday tensor, Fμν, is decomposed with respect
to the fluid velocity in the following form [57,60]

Fμν ¼ Eμuν − Eνuμ þ ϵμναβuαBβ; ð7Þ
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and its Hodge dual is

F̃μν ¼ 1

2
ϵμναβFαβ ¼ Bμuν − Bνuμ − ϵμναβuαEβ: ð8Þ

This rank-two, antisymmetric tensor is composed of the
electric field 4-vector, Eμ, and the magnetic field 4-vector,
Bμ, which are orthogonal to the fluid 4-velocity, Eμuμ ¼ 0

and Bμuμ ¼ 0. Moreover, in the local rest frame of the
fluid, these 4-vectors coincide with usual electric and
magnetic fields, i.e., Eμ

LR ¼ ð0; E⃗ÞT and Bμ
LR ¼ ð0; B⃗ÞT

with the following definitions,

Ei ¼ Fi0; Bi ¼ −
1

2
ϵijkFjk:

In a covariant form, we also have

Eμ ¼ uνFμν; Bμ ¼ 1

2
ϵμναβFναuβ:

Further, Nμ is accurately characterized by Eq. (4) as the
electric charge four-current. It also serves as a source for the
electromagnetic field. The conservation of the total energy
and momentum of the gas is disrupted by the presence
of the fields, which can exchange energy and momentum
with the system. The conservation laws (3) are now
reexpressed as,

∂μTμν ¼ −FνλNλ: ð9Þ

Naturally, the electric charge four-current of the fluid
remains conserved, i.e., ∂μNμ ¼ 0. For simplicity, we shall
consider a locally neutral fluid and will disregard any
contribution from the electric field 4-vector, Eμ, throughout
this work. In absence of Eμ, Eqs. (7) and (8) simplify as
follows

Fμν → Bμν ¼ ϵμναβuαBβ; ð10Þ

F̃μν → B̃μν ¼ Bμuν − Bνuμ: ð11Þ

IV. EQUATIONS OF MOTION

Our goal is to find the equations of motion for the shear-
stress tensor, πμν, in the presence of a moderately large
magnetic field. We consider a locally neutral fluid com-
posed of two types of massless classical particles with
opposite electric charges and vanishing dipole moment or
spin, so that the fluid has vanishing magnetization and
polarization. For this system the Boltzmann equation reads,

kμ∂μf−k þ q−kνFμν ∂

∂kμ
f−k ¼ C½f−; fþ�; ð12aÞ

kμ∂μf
þ
k þ qþkνFμν ∂

∂kμ
fþk ¼ C½fþ; f−�; ð12bÞ

where we consider only elastic collisions (for supporting
derivation see [61]),

C½f−; fþ�≡ 1

2

Z
dK0dPdP0W−−

KK0↔PP0
�
f−pf−p0 − f−k f

−
k0
�

þ
Z

dK0dPdP0W−þ
KK0↔PP0

�
f−pf

þ
p0 − f−k f

þ
k0
�
;

ð13Þ

C½fþ; f−�≡ 1

2

Z
dK0dPdP0Wþþ

KK0↔PP0
�
fþp fþp0 − fþk f

þ
k0
�

þ
Z

dK0dPdP0W−þ
KK0↔PP0

�
fþp f−p0 − fþk f

−
k0
�
:

ð14Þ

In this section, the index � refers to the respective particle
species. The transition rate can be defined in terms of the
total cross section, σT , as [56]

Wþ−
kk0→pp0 ¼ sσþ−

T ð2πÞ5δð4Þ�kμ þ k0μ þ pμ þ p0μ�: ð15Þ

Above, we assumed that the cross sections are constant.
In the following, we shall further assume that, σþþ

T ¼
σ−−T ≡ σT , which will simplify the derivation of the fluid
dynamical equations.
For the sake of convenience, we introduce the energy

momentum tensor, Tμν
� , and the net-charge current, Nμ

�, of
each particle species. As done in Sec. II, we decompose
these tensors in terms of the fluid 4-velocity,

Tμν
� ¼ ϵ�uμuν − ΔμνP� þ hμ�u

ν þ hν�u
μ þ πμν� ;

Nμ
� ¼ n�uμ þ Vμ

�: ð16Þ

Here we have used the same notation as above, with the
indices “�” indicating the respective particle species.
Therefore, ϵ�, P�, hμ�, π

μν
� , n� and Vμ

� are the energy
density, the isotropic pressure, the energy diffusion
4-current, the shear-stress tensor, the net-charge density,
and the net-charge diffusion 4-current for the correspond-
ing � particle species, respectively. In this scheme, each
new variable introduced is expressed by a given contrac-
tion/projection of the currents with uμ and Δμν,

ϵ� ≡ uμuνT
μν
� ; P� þΠ� ≡−

1

3
ΔμνT

μν
� ; πμν� ≡ Thμνi

� ;

hμ� ≡ uαT
hμiα
� ; n� ≡ uμN

μ
�; Vμ

� ≡Nhμi
� :

A. Matching conditions

We now introduce a reference local equilibrium state and
decompose the energy density, isotropic pressure, and the
net-charge density (for “plus” and “minus” particles) as
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ϵ� ≡ ϵ�0 þ δϵ�;

P� ≡ P�
0 þ Π�;

n� ≡ n�0 þ δn�; ð17Þ

where ϵ�0 , P
�
0 , and n�0 are energy density, pressure, and

net-charge density of the “�” particles of the system at
equilibrium, respectively. The corresponding δϵ� and δn�
are nonequilibrium corrections to the energy density, and
net-charge density, respectively, for� particles andΠ� is the
bulk viscous pressure. We note that since we are considering
a system composed of massless particles, δϵ� ¼ 3Π�.
In this work, we impose Landau matching conditions

which fixes the 4-velocity as an eigenvector of Tμν in such a
way that

uμðTμν
þ þ Tμν

− Þ ¼ ϵ0ðμ; TÞuν; ð18Þ

uμðNμ
þ − Nμ

−Þ ¼ n0ðμ; TÞ: ð19Þ

This implies that the total energy density and, in our case,
the electric net-charge density are given by their respective
equilibrium value,

ϵþ þ ϵ− ≡ ϵ0ðμ; TÞ ⇒ δϵþ þ δϵ− ¼ 0; ð20Þ

nþ − n− ≡ n0ðμ; TÞ ⇒ δnþ − δn− ¼ 0: ð21Þ

Finally, Eq. (18) imposes that the total energy diffusion
4-current vanishes,

hμþ þ hμ− ¼ 0;

nevertheless the energy diffusion 4-current of individual
particle species does not necessarily vanish.
Equations (20) and (21) define the electric charge chemi-

cal potential, μ, and a local temperature, T. This matching
condition will guarantee that the bulk viscous pressure
completely vanishes. We note that the dissipative currents
of each species δϵ�, Π� and δn� are not necessarily zero.
Nevertheless since we are considering massless particles,
these fields will be at least of second order in gradients and
thus, will be neglected in our derivation [62].

Finally, we further assume that the chemical potential is
zero,

μ ¼ 0 ⇒ n0ðTÞ ¼ 0: ð22Þ

This assumption also implies that the net-charge diffusion
4-current can be neglected. The energy diffusion 4-current
of each particle species will not disappear, but will become
at least second order in gradients and, thus, will also be
neglected in our calculations. Consequently, we are only
required to derive the equations of motion for the shear-
stress tensor.

B. Exact equations of motion

We directly calculate the time derivative of the shear
stress tensor of each particle species following the pro-
cedure outlined in Ref. [61],

π̇μν� ≡ d
dτ

πμν� ¼ d
dτ

Z
dkkhμkνif�k : ð23Þ

For a fluid consisting of two particle species, Eq. (23) can
be reexpressed as

Δμν
αβπ̇

αβ
þ ¼ π̇hμνiþ ¼

Z
dkkhμkνi

d
dτ

fþ − 2u̇hμhνiþ ;

Δμν
αβπ̇

αβ
− ¼ π̇hμνi− ¼

Z
dkkhμkνi

d
dτ

f− − 2u̇hμhνi− ; ð24Þ

where the comoving derivative of the single particle
distribution function is calculated from the Boltzmann
equation in the following form

Ek
d
dτ

f� ¼ −kμ∇μf� ∓ jqjkνBμν ∂

∂kμ
f� þ C½fþ; f−�:

ð25Þ

Here we defined Ek ¼ kμuμ, the energy of a particle in the
local rest frame of the fluid. By replacing Eq. (25) into
Eq. (24), we obtain an equation for the shear-stress tensor
of each particle species,1

π̇hμνiþ ¼ −Δμν
αβ∇λhE−1

k khαkβkλiiþ þ 2

5
Δμν

αβ∇αhE−1
k khβiiþ − Δμν

αβ∇λuκhE−2
k khαkβkλkκiiþ −

4

3
πhμνiþ θ þ 8

15
σμνϵþ

−
10

7
Δμν

αβσ
α
λπ

βλ
þ − 2Δμν

αβωλ
βπαλþ − 2jqjΔμν

αβBbλ
αhE−1

k khβkλiiþ þ 2jqjEhμnνiþ − 2u̇hμhνiþ þ Chμνi
þ ;

π̇hμνi− ¼ −Δμν
αβ∇λhE−1

k khαkβkλii− þ 2

5
Δμν

αβ∇αhE−1
k khβii− − Δμν

αβ∇λuκhE−2
k khαkβkλkκii− −

4

3
πhμνi− θ þ 8

15
σμνϵ−

−
10

7
Δμν

αβσ
α
λπ

βλ
− − 2Δμν

αβωλ
βπαλ− þ 2jqjΔμν

αβBbλ
αhE−1

k khβkλii− − 2jqjEhμnνi− − 2u̇hμhνi− þ Chμνi
− ; ð26Þ

1Analogous to the equations derived in [30] for a single-component gas.
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where we have introduced a dimensionless antisymmetric
tensor bμν ≡ −Bμν=B, with BμνBμν ¼ 2B2, and the irreduc-
ible tensors khμ1 � � � kμli ≡ Δμ1…μl

ν1…νl k
ν1 � � � kνl , with Δμ1…μl

ν1…νl
being a 2l-rank symmetric and traceless projection oper-
ator orthogonal to uμ [52,56]. Additionally, we have also
defined the shear tensor, σμν ≡∇hμuνi, the expansion
scalar, θ≡∇μuμ and the vorticity tensor, ω ¼
ð∇μuν −∇νuμÞ=2. Finally, we defined the following mo-
ments of the collision term,

Chμνi
þ ¼

Z
dKE−1

k khμkνiC½fþ; f−�; ð27Þ

Chμνi
− ¼

Z
dKE−1

k khμkνiC½f−; fþ�: ð28Þ

The equations derived above are exact but are not closed in
terms of the fluid-dynamical fields. In order to obtain a
closed set of equations we need to impose some approx-
imations that will simplify the moments of the collision
term and the term that couples these moment equations
with the magnetic field.

C. 14 moment approximation

In this section, we discuss the 14-moment approximation
for the single-particle distribution function of each species,
which will be used to close the moments equations (12a)
and (12b). We follow the original procedure constructed by
Israel and Stewart [41,42] and express the single-particle
distribution function of each particle species as,

f�k ¼ expðy�k Þ: ð29Þ

Next, the field yk is expanded in momentum space around
its local-equilibrium value, y0k ¼ α − βuμkμ, with α ¼
μ=T being the thermal potential and β ¼ 1=T the inverse
temperature. This is a series in terms of Lorentz-tensors
formed from 4-momentum kμ,

δy�k ≡ yk − y0k ¼ ε� þ kμε�μ þ kμkνε�μν þ kμkνkλϵ�μνλ þ � � � :
ð30Þ

To first order in δyk, we obtain

f�k ¼ f�0k þ f�0kδy
�
k þOðδy2kÞ: ð31Þ

In the 14-moment approximation, the expansion of the
nonequilibrium correction δy�k in powers of 4-momentum
is truncated at second-order [41,54]. That is, we only
include the tensors 1, kμ, and kμkν in the expansion,

δy�k ≈ ε� þ kμε�μ þ kμkνε�μν: ð32Þ

Without loss of generality, we can assume ε�μν to be
symmetric and traceless,2 thus leaving only 14 independent
degrees of freedom in the expansion coefficients ε�, ε�μ ,
and ε�μν. These 14 degrees of freedom are usually matched
to the degrees of freedom of Nμ

� and Tμν
� . Here, since we

consider a system of massless particles and vanishing
chemical potential, all scalar and 4-vector dissipative
currents either vanish or are of a higher order, and thus
are not considered in our analyses. This implies that only
ε�μν is not zero in the truncated expansion above and this
coefficient can be directly matched to πμν� . This leads to the
well-known expression [41,54],

δf� ¼ f0ðπ�μνkμkνÞ
2ðϵ�0 þ P�

0 ÞT2
: ð33Þ

When expanding the distribution function in powers of δyk,
only the leading term of the expansion was retained. In
order to be consistent, the same approximation must be
applied to the collision term and all terms of order Oðδy2kÞ
and higher are omitted. Then, using the 14-moment
approximation, the collision term takes the following form

Cμν
− ¼ −

6

5
σ−−T n−0 π

μν
− þ 2

5
σþ−
T

�
n−0 π

μν
þ − 4nþ0 π

μν
−
�
;

Cμν
þ ¼ −

6

5
σþþ
T nþ0 π

μν
þ þ 2

5
σ−þT

�
nþ0 π

μν
− − 4n−0 π

μν
þ
�
; ð34Þ

where nþ0 and n−0 correspond to the particle densities of
species plus and minus in equilibrium, respectively. Since
we assume that the electric-charge chemical potential
vanishes, nþ0 ¼ n−0 ≡ n̂0. Using the 14-moment approxi-
mation, we can also demonstrate that,

hEr
kk

hμii� ¼ 0;

hE−1
k khβkλii� ¼ πβλ�

5T
;

hE−1
k khαkβkλii� ¼ 0;

hE−2
k khαkβkλkκii� ¼ 0: ð35Þ

In the first equation, r is an arbitrary constant that
satisfies, r > −2.
We then replace these results into Eqs. (26) and rewrite

them in terms of the total shear stress tensor, πμν ¼
πμνþ þ πμν− , and a relative shear-stress tensor, δπμν≡
πμνþ − πμν− . The result is,

2The trace of ε�μν can always be incorporated into the scalar
expansion coefficient ε�.
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Δμν
αβπ̇

αβ þ Σπμν þ 2jqjB
5T

bλhμδπνiλ

¼ 8

15
ϵσμν −

4

3
πμνθ −

10

7
σλhμπνiλ − 2ωλhνπμiλ ; ð36Þ

Δμν
αβδπ̇

αβ þ Σ0δπμν þ 2jqjB
5T

bλhμπνiλ

¼ −
4

3
δπμνθ −

10

7
σλhμδπνiλ − 2ωλhνδπμiλ : ð37Þ

Above, we defined two transport coefficients,

Σ¼ 3n̂0
5

�
σþ−
T þ σT

�
and Σ0 ¼ n̂0

5

�
5σþ−

T þ 3σT
�
: ð38Þ

In the absence of a magnetic field, Σ can be immediately
identified as the inverse relaxation time of this fluid and can
be related to the shear viscosity, η, as,

Σ ¼ 1

τπ
¼ ϵþ P0

5η
: ð39Þ

We observe that the equations of motion for πμν and δπμν

are coupled due to the presence of a magnetic field.3

A closed set of equations for πμν can be obtained in some
limits, as will be discussed in the remainder of this paper.
Nevertheless, before we implement this procedure, we
shall discuss how the dissipative currents can be tensor-
decomposed with respect to the magnetic field—a pro-
cedure that will be required in order to simplify the
coupling term that appeared in equations above by the
existence of a magnetic field.

D. New projections and definitions

We introduce a normalized 4-vector, bμ, defined such
that

bμ ≡ Bμ

B
; where − BμBμ ≡ B2 ⇒ bμbμ ¼ −1:

Now we proceed to decompose a traceless second-rank
tensor that is orthogonal to uμ, e.g., the shear-stress tensor
πμν, with respect to the direction of the magnetic field, bμ.
That is,

πμν ¼ πk

�
bμbν þ 1

2
Ξμν

�
þ 2πðμ⊥bνÞ þ πμν⊥⊥;

here; πk ≡ bαbβπαβ; πμ⊥ ≡ −Ξμ
αbβπαβ; πμν⊥⊥ ≡ Ξμν

αβπ
αβ; ð40Þ

where we defined the following projection operators onto
the subspace orthogonal to uμ and bμ,

Ξμν ≡ gμν − uμuν þ bμbν ¼ Δμν þ bμbν; ð41Þ

Ξμν
αβ ≡ 1

2

�
Ξμ
αΞν

β þ Ξμ
βΞν

α − ΞμνΞαβ

�
: ð42Þ

For the sake of convenience, we further parametrize

bμν ≡ −ϵμναβuαbβ: ð43Þ

Lets now consider the following complete, normalized, and
orthogonal basis ðuμ; bμ; xμ; yμÞ in such a way that, in the
local rest frame, if we define bμ to be in the longitudinal
direction, we have that

uμ ¼ ð1; 0; 0; 0Þ; xμ ¼ ð0; 1; 0; 0Þ;
yμ ¼ ð0; 0; 1; 0Þ; bμ ¼ ð0; 0; 0; 1Þ: ð44Þ

Or, in other words, xμ and yμ describe the plane orthogonal
to the magnetic field in the local rest frame of the fluid. For
the sake of convenience, we further define a new basis
4-vector,

lμ
� ≡ 1ffiffiffi

2
p ðxμ � iyμÞ; ð45Þ

which satisfy the conditions,

l�
μ l

μ
� ¼ 1

2
ðxμ � iyμÞðxμ � iyμÞ ¼ 0; ð46Þ

l∓
μ l

μ
� ¼ 1

2
ðxμ ∓ iyμÞðxμ � iyμÞ ¼ −1: ð47Þ

These new basis vectors are useful since they satisfy the
relation,

bμν ¼ xμyν − yνxμ; ð48Þ

which further implies that l�
ν are the eigenvectors of bμν ,

with eigenvalues �i,

bμνl�
ν ¼ ðyμxν − xμyνÞ 1ffiffiffi

2
p ðxν � iyνÞ ¼ �ilμ

�: ð49Þ

We can then decompose a 4-vector that is orthogonal to
both uμ and bμ in the following way

3This is due to our assumption σþþ
T ¼ σ−−T .
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Aμ
⊥ ≡ Aþ⊥l

μ
þ þ A−⊥lμ

−; A�⊥ ≡ −l∓
μ A

μ
⊥; ð50Þ

For a traceless, symmetric, second-rank tensor, that is
orthogonal to both uμ and bμ, we have that

Aμν
⊥⊥ ≡ Aþ⊥⊥l

μ
þlνþ þ A−⊥⊥lμ

−lν
−; A�⊥⊥ ≡ l∓

μ l∓
ν A

μν
⊥⊥:
ð51Þ

Thus, after implementing this tensor decomposition, πμν

will be expressed in terms of 5 scalar independent degrees
of freedom, πk, π�⊥, and π�⊥⊥. We shall derive the equations
of motion for each of these components. An important

observation is that now the � index no longer denotes the
particles species but rather our convention for the projec-
tions into the subspace orthogonal to the magnetic field and
fluid 4-velocity.

1. Scalar component

We contract (36) and (37) with bμbν and use the tensor
decomposition introduced in (40) to obtain the equations
of motion for the longitudinal component of the total and
relative shear-stress tensor, πk and δπk, respectively. The
resulting equations are,

π̇k þ πμ⊥ḃμ þ Σπk ¼
8

15
ϵσk −

4

3
πkθ −

10

7

�
−
1

2
πkσk þ

1

3
σμ⊥π⊥μ þ

1

3
π⊥⊥αβσ

αβ
⊥⊥

�
−
2

3

�
ωμ
⊥π⊥μ þ ωαβ

⊥⊥π⊥⊥αβ

�
; ð52Þ

δπ̇k þ δπμ⊥ḃμ þ Σ0δπk ¼ −
4

3
δπkθ −

10

7

�
−
1

2
δπkσk þ

1

3
σμ⊥δπ⊥μ þ

1

3
δπ⊥⊥αβσ

αβ
⊥⊥

�
−
2

3

�
ωμ
⊥δπ⊥μ þ ωαβ

⊥⊥δπ⊥⊥αβ

�
: ð53Þ

We observe that both equations are decoupled, since the
term proportional to B vanishes. The only coupling to the
magnetic field appears in the term proportional to ḃμ.
Furthermore, due to our assumption of a vanishing chemi-
cal potential, the equation of motion for δπk does not
contain a Navier-Stokes-like term, i.e., a term that is
proportional to the shear tensor. This implies that δπk is
at least of second-order in an asymptotic gradient expan-
sion and, for this reason, will not contribute in the

derivation of a second-order theory of fluid dynamics.
We will come back to this point later in this paper.

2. Vector component

Next, we project Eqs. (36) and (37) with bμΞλ
ν, resulting

in an equation of motion for the partially transverse
component of the total and relative shear-stress tensor,
πν⊥ and δπν⊥, respectively,

Ξλ
νπ̇

ν⊥ þ
�
3

2
πkΞλν þ πλν⊥⊥

�
ḃν þ Σπλ⊥ þ Bjqj

5T
bλνδπ⊥ν ¼

8

15
ϵσλ⊥ −

4

3
πλ⊥θ þ

5

14

�
πλ⊥σk þ σλ⊥πk

�
−
5

7

�
σ⊥νπ

λν⊥⊥ þ π⊥νσ
λν⊥⊥

�

þ 1

2
πkωλ⊥ − πλ⊥⊥νω

ν⊥ − π⊥νω
λν⊥⊥; ð54Þ

Ξλ
νδπ̇

ν⊥ þ
�
3

2
δπkΞλν þ δπλν⊥⊥

�
ḃν þ Σ0δπλ⊥ þ Bjqj

5T
bλνπ⊥ν ¼ −

4

3
δπλ⊥θ þ

5

14

�
δπλ⊥σk þ σλ⊥δπk

�
−
5

7

�
σ⊥νδπ

λν⊥⊥ þ δπ⊥νσ
λν⊥⊥

�

þ 1

2
δπkωλ⊥ − δπλ⊥⊥νω

ν⊥ − δπ⊥νω
λν⊥⊥: ð55Þ

In this case, the equations for πμ⊥ and δπμ⊥ are coupled due
to the presence of a magnetic field. We also observe the
presence of nonlinear terms that couple the semitransverse
projections of the shear-stress tensor with its scalar and
tensor components.
We see that the term proportional to ∼bλνπ⊥ν (∼bλνδπ⊥ν)

is a first order term that couples different components of πμ⊥

(δπμ⊥), which is an inconvenient feature that renders
deriving the Navier-Stokes limit of the equations more
complicated. We can eliminate this unpleasant feature
by further contracting the above equations with l�

λ ,
which are the eigenvectors of bμν, leading to linearly
independent equations for each semitransverse components
of π�⊥ (δπ�⊥),
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π̇∓⊥ þ π∓⊥lν∓l̇�
ν −

�
3

2
πklν

� − π∓⊥⊥lν∓
�
ḃν þ Σπ∓⊥ ∓ iBjqj

5T
δπ∓⊥

¼ 8

15
ϵσ∓⊥ −

4

3
π∓⊥θ þ

5

14

�
π∓⊥σk þ πkσ

∓
⊥
�þ 5

7

�
π�⊥σ

∓
⊥⊥ þ π∓⊥⊥σ�⊥

�þ 1

2
πkω∓ þ ω�⊥π

∓
⊥⊥ þ ω∓

⊥⊥π�⊥: ð56Þ

δπ̇∓⊥ þ δπ∓⊥lν∓l̇�
ν −

�
3

2
δπklν

� − δπ∓⊥⊥lν∓
�
ḃν þ Σ0δπ∓⊥ ∓ iBjqj

5T
π∓⊥

¼ −
4

3
δπ∓⊥θ þ

5

14

�
δπ∓⊥σk þ δπkσ

∓
⊥
�þ 5

7

�
δπ�⊥σ

∓
⊥⊥ þ δπ∓⊥⊥σ�⊥

�þ 1

2
δπkω∓ þ ω�⊥δπ

∓
⊥⊥ þ ω∓

⊥⊥δπ�⊥: ð57Þ

Naturally, the resulting equations of motion still display a coupling between π∓⊥ and δπ∓⊥ , due to the magnetic field.

3. Tensor component

Finally, we project Eqs. (36) and (37) with Ξλρ
μν to obtain the equations of motion for the transverse components of the

total and relative shear-stress tensor, παβ⊥⊥ and δπαβ⊥⊥, respectively,

Ξλρ
αβπ̇

αβ
⊥⊥ þ 2Ξλρ

αβπ
α⊥ḃβ þ Σπλρ⊥⊥ þ Bjqj

5T

�
bαλδπρ⊥⊥α þ bαρδπλ⊥⊥α

�

¼ 8

15
ϵσλρ⊥⊥ −

4

3
πλρ⊥⊥θ −

5

7

�
πkσ

λρ
⊥⊥ þ σkπ

λρ
⊥⊥

�
−
5

7

�
πλ⊥⊥ασ

ρα
⊥⊥ þ πρ⊥⊥ασ

λα⊥⊥ − πλ⊥σ
ρ
⊥ − πρ⊥σλ⊥ þ Ξλρ

�
π⊥ασ

α⊥ − π⊥⊥αβσ
αβ
⊥⊥

��
− πkω

λρ
⊥⊥ þ πλ⊥ω

ρ
⊥ þ πρ⊥ωλ⊥ − πλ⊥⊥αω

ρα
⊥⊥ − πρ⊥⊥αω

λα⊥⊥ − Ξλρ
�
π⊥αω

α⊥ − π⊥⊥αβω
αβ
⊥⊥

� ð58Þ

Ξλρ
αβδπ̇

αβ
⊥⊥ þ 2Ξλρ

αβδπ
α⊥ḃβ þ Σ0δπλρ⊥⊥ þ Bjqj

5T

�
bαλπρ⊥⊥α þ bαρπλ⊥⊥α

�

¼ −
4

3
δπλρ⊥⊥θ −

5

7

�
δπkσ

λρ
⊥⊥ þ σkδπ

λρ
⊥⊥

�
−
5

7

�
δπλ⊥⊥ασ

ρα
⊥⊥ þ δπρ⊥⊥ασ

λα⊥⊥ − δπλ⊥σ
ρ
⊥ − δπρ⊥σλ⊥ þ Ξλρ

�
δπ⊥ασ

α⊥ − δπ⊥⊥αβσ
αβ
⊥⊥

��
− δπkω

λρ
⊥⊥ þ δπλ⊥ω

ρ
⊥ þ δπρ⊥ωλ⊥ − δπλ⊥αω

ρα
⊥⊥ − δπρ⊥⊥αω

λα⊥⊥ − Ξλρ
�
δπ⊥αω

α⊥ − δπ⊥⊥αβω
αβ
⊥⊥

� ð59Þ

Once again, we observe that the equations of motion for πμν⊥⊥ and δπμν⊥⊥ are coupled due to the presence of a magnetic field.
Similar to its vector component, the equation of motion for the tensor component also contains nonlinear terms that couples
it to the scalar and semitransverse projections of the shear-stress tensor.
In order to simplify the coupling between different components of πμν⊥⊥ (δπμν⊥⊥) arising from the first-order term

proportional to ∼bαλπρ⊥⊥α (bαλδπρ⊥⊥α), we further project the above equations with l�
λ l

�
ρ . This projection allows us to

obtain linearly independent equations for each transverse component π�⊥⊥ (δπ�⊥⊥), making subsequent calculations simpler.
The result is,

π̇∓⊥⊥ þ 2π∓⊥⊥l
β∓l̇�

β − 2π∓⊥l�
β ḃ

β þ Σπ∓⊥⊥ � i
2Bjqj
5T

δπ∓⊥⊥ ¼ 8

15
ϵσ∓⊥⊥ −

4

3
π∓⊥⊥θ −

5

7

�
πkσ

∓
⊥⊥ þ σkπ

∓
⊥⊥

�

þ 10

7
π∓⊥σ

∓
⊥ − πkω

∓
⊥⊥ þ 2π∓⊥ω

∓
⊥ ð60Þ

δπ̇∓⊥⊥ þ 2δπ∓⊥⊥l
β∓l̇�

β − 2δπ∓⊥l�
β ḃ

β þ Σ0δπ∓⊥⊥ � i
2Bjqj
5T

π∓⊥⊥ ¼ −
4

3
δπ∓⊥⊥θ −

5

7

�
δπkσ

∓
⊥⊥ þ σkδπ

∓
⊥⊥

�

þ 10

7
δπ∓⊥σ

∓
⊥ − δπkω

∓
⊥⊥ þ 2δπ∓⊥ω

∓
⊥ ð61Þ

The coupling between π∓⊥⊥ and δπ∓⊥⊥ persists due to the presence of a magnetic field.

E. Linear regime

Up to this point, we have obtained a theory describing the dynamics of the total and relative shear-stress tensor of a
system composed of two particle species. Before explaining how we can obtain a closed set of fluid-dynamical equations for
the total shear-stress tensor, we discuss some basic features of the coupled equations derived in the previous section. For this
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purpose, we consider the linearized equations of motion
around a static equilibrium state with temperature, T, and
a constant magnetic field, B. In the linear regime, the
equations of motion for the semi-transverse total and
relative shear-stress tensors are

π̇∓⊥ þ Σπ∓⊥ ∓ iBjqj
5T

δπ∓⊥ ¼ 8

15
ϵσ∓⊥ ; ð62Þ

δπ̇∓⊥ þ Σ0δπ∓⊥ ∓ iBjqj
5T

π∓⊥ ¼ 0; ð63Þ

while the linearized equations for the transverse compo-
nents take the following form,

π̇∓⊥⊥ þ Σπ∓⊥⊥ � i
2Bjqj
5T

δπ∓⊥⊥ ¼ 8

15
ϵσ∓⊥⊥; ð64Þ

δπ̇∓⊥⊥ þ Σ0δπ∓⊥⊥ � i
2Bjqj
5T

π∓⊥⊥ ¼ 0: ð65Þ

The longitudinal component of the shear-stress tensor will
not be discussed here, since it does not couple to the
magnetic field and does not exhibit any novel features,
when compared to traditional fluid-dynamical formulations.
Differentiating Eq. (62) with respect to time, and utiliz-

ing Eq. (63), we obtain an equation of motion for the
semitransverse component of the total shear-stress tensor. A
similar procedure can also be applied to the transverse
components, resulting in a reduction of the equations to the
following form,

π̈∓⊥ þ ðΣþ Σ0Þπ̇∓⊥ þ ðΣΣ0 þ Ω2Þπ∓⊥
¼ 8

15
ϵΣ0σ∓⊥ þ 8

15
ϵσ̇∓⊥ ; ð66Þ

π̈∓⊥⊥ þ ðΣþ Σ0Þπ̇∓⊥⊥ þ ðΣΣ0 þ 4Ω2Þπ∓⊥⊥

¼ 8

15
ϵΣ0σ∓⊥⊥ þ 8

15
ϵσ̇∓⊥⊥: ð67Þ

Above, we defined the following quantity,

Ω≡ jqjB
5T

; ð68Þ

which has dimension of frequency. It is evident that these
equations are equivalent to the equations of motion of a
forced damped harmonic oscillator. The only difference
between the equations of motion for the semitransverse and
transverse components is how the magnetic field contrib-
utes to the natural frequency of oscillation of the system.
We now determine the dispersion relation for these linear

equations in the homogeneous limit, in which all terms
proportional to the shear tensor vanish. In this case, the
dispersion relation resulting from the equation of motion
for the semitransverse component is,

−ω2 þ iωðΣþ Σ0Þ þ ðΣΣ0 þ Ω2Þ ¼ 0; ð69Þ

with solutions,

ω ¼ i
2

h
Σþ Σ0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΣ − Σ0Þ2 − 4Ω2

q i
: ð70Þ

In the limit of a vanishing magnetic field, B → 0, the
solution reduces to ω ¼ iΣ and ω ¼ iΣ0 and the system
relaxes exponentially to equilibrium, within timescales
determined by the inverse of Σ and Σ0—as expected of a
dilute gas.
In the presence of a finite magnetic field, the dynamics of

the system qualitatively changes when, 4Ω2 > ðΣ − Σ0Þ2.
In this case, the system no longer solely relaxes exponen-
tially to equilibrium but also displays an oscillatory
dynamics. Using the microscopic expressions for Σ and
Σ0, the condition for the onset of oscillatory dynamics is,

Ω >
Σ0 − Σ

2
⇒

jqjB
T

> n̂0σ
þ−
T : ð71Þ

Here we recall that Σ ¼ 3n̂0
5
ðσþ−

T þ σTÞ and Σ0 ¼
n̂0
5
ð5σþ−

T þ 3σTÞ. Thus, the value of the total cross section
for interspecies scattering determines if the system will
oscillate back to equilibrium or not. For smaller values of
the magnetic field, the system will relax exponentially back
to equilibrium, but the relaxation timescales will depend on
the value of the magnetic field.
The dispersion relation for the transverse components are

obtained by changing Ω → 2Ω. Then, we obtain

ω ¼ i
2

h
Σþ Σ0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΣ − Σ0Þ2 − 16Ω2

q i
: ð72Þ

In this case, these modes will approach equilibrium with
oscillations when the magnetic becomes larger than,

Ω >
Σ0 − Σ

4
⇒

2jqjB
T

> n̂0σ
þ−
T : ð73Þ

Thus, the onset of oscillatory dynamics occurs for smaller
values of magnetic field for the transverse components.
One crucial question is whether or not a typical Israel-

Stewart fluid-dynamical theory can capture the basic
features of these solutions in the oscillatory limit. We shall
investigate this in the following section, where we will
derive second-order fluid dynamics using the order of
magnitude approach [52]. Furthermore, we shall later
discuss if this oscillatory dynamics survives for a rapidly
expanding fluid, with a dynamics analogous to that of the
quark-gluon plasma produced in ultrarelativistic heavy ion
collisions.
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F. Truncation scheme

In this subsection we will derive a second-order fluid-
dynamical theory from the equations of motion obtained in
the previous subsections. The main idea is to estimate the
magnitude of each term in the equations of motion for the
relative and total shear-stress tensor using the leading term
in an asymptotic gradient expansion solution [23]. We shall
demonstrate that, up to second-order in this power-counting
scheme, it is possible to re-express the relative shear-stress
tensor solely in terms of the total shear-stress tensor and its
derivatives.
We start by analyzing the leading term in an asymptotic

gradient expansion of solutions of Eqs. (57) and (61). To
first order in gradients, we have that the relative compo-
nents of the shear-stress tensor can be expressed as

δπ∓⊥ ¼ �iφπ∓⊥ þOð2Þ; ð74Þ

δπ∓⊥⊥ ¼ �2iφπ∓⊥⊥ þOð2Þ; ð75Þ

where Oð2Þ denotes terms that are of second-order or
higher in powers of gradients or in powers of the dissipative
currents. We further defined a new variable φ≡
Bjqj=ð5TΣ0Þ for the sake of brevity. We then iterate these
first-order solutions back into Eqs. (57) and (61) and re-
express all the remaining terms of the equations up to third
order. In this case, we obtain that the semitransverse

components of the relative shear-stress tensor can be
approximated as,

Σ0δπ∓⊥ ¼ ∓iφπ∓⊥
�
4θ

3
−

5

14
σk

�
∓ 5i

7
φ
�
π�⊥σ

∓
⊥ þ 2π∓⊥⊥σ�⊥

�

∓ iφπ∓⊥lν∓l̇�
ν � 2iφπ∓⊥⊥lν∓ḃν � iφΣ0π∓⊥ ∓ iφπ̇∓⊥

∓ iφ
�
2ω�⊥π

∓
⊥⊥ þ ω∓

⊥⊥π�⊥
�þOð3Þ: ð76Þ

While the fully transverse components of the relative shear-
stress tensor can be approximated as,

Σ0δπ∓⊥⊥ ¼�4

3
2iφπ∓⊥⊥θ�

5

7
2iφπ∓⊥⊥σk �

10

7
iφπ∓⊥σ

∓
⊥

∓ 2iΩπ∓⊥⊥ � 2iφπ̇∓⊥⊥ � 2iπ∓⊥⊥φ̇� 4iφπ∓⊥⊥l
β∓l̇�

β

� 2iφπ∓⊥l�
β ḃ

β � 2iφπ∓⊥ω
∓
⊥ þOð3Þ: ð77Þ

Similarly, Oð3Þ denotes terms that are of third-order or
higher in powers of gradients or in powers of the dissipative
currents.
A closed set of second-order equations of motion for

each component of the total shear-stress tensor can then be
obtained by substituting the results above into Eqs. (56)
and (60), and disregarding all terms of Oð3Þ. Then, the full
second-order equations for the semitransverse shear-stress
tensor are,

ð1 − φ2Þπ̇∓⊥ þ ðΣþ φ2Σ0Þπ∓⊥ ¼ 8

15
ϵσ∓⊥ −

	
ð1 − φ2Þ

�
lν∓l̇�

ν þ 4θ

3
−

5

14
σk

�
þ φφ̇



π∓⊥ þ ð1þ φ2Þ

	
ω∓
⊥⊥ þ 5

7
σ∓⊥⊥



π�⊥

þ ð1þ 2φ2Þ
	
−lν∓ḃν þ ω�⊥ þ 5

7
σ�⊥



π∓⊥⊥ þ

�
3

2
lν
�ḃν þ

ω∓
⊥
2

þ 5

14
σ∓⊥

�
πk: ð78Þ

While the full second-order equations for the fully-transverse shear-stress tensor are,

ð1 − 4φ2Þπ̇∓⊥⊥ þ ðΣþ 4Σ0φ2Þπ∓⊥⊥ ¼ 8

15
ϵσ∓⊥⊥ −

	
ð1 − 4φ2Þ

�
2lβ∓l̇�

β þ 4

3
θ þ 5

7
σk

�
− 4φφ̇



π∓⊥⊥ −

�
5

7
σ∓⊥⊥ þ ω∓

⊥⊥
�
πk

þ ð1þ 2φ2Þ
�
2l�

β ḃ
β þ 10

7
σ∓⊥ þ 2ω∓

⊥
�
π∓⊥ : ð79Þ

We note that the equations for the longitudinal components
of the total shear-stress tensor were already independent from
the relative longitudinal shear-stress tensor and, thus, did not
have to be simplified using any power-counting scheme.
Another novel feature of this theory is that the semitransverse
and transverse components display different relaxation times,
i.e., they have their own dynamical equations of motion that
cannot be trivially recombined into an unique equation of
motion for the complete shear-stress tensor.
A shear viscosity can be identified for the longitudinal,

semitransverse and transverse components of the shear-
stress tensor. They are,

ηk ¼
4ϵ

15Σ
¼ η; η⊥ ¼ 4ϵ

15ðΣþ φ2Σ0Þ ;

η⊥⊥ ¼ 4ϵ

15ðΣþ 4φ2Σ0Þ : ð80Þ

These coefficients are positive definite, with η⊥ and η⊥⊥
displaying a significant dependence on the magnetic field.
Similar to Ref. [30], the longitudinal shear viscosity dis-
plays no dependence on the magnetic field and has the
same value of the shear viscosity in the absence of a
magnetic field. We recall that,
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φ ¼ Bjqj
5TΣ0 ; Σ ¼ 3n̂0

5
ðσþ−

T þ σTÞ;

Σ0 ¼ n̂0
5
ð5σþ−

T þ 3σTÞ: ð81Þ

Similarly, a relaxation time for the longitudinal, semi-
transverse, and transverse components can be respectively
identified as,

τk ¼
1

Σ
¼ τπ; τ⊥ ¼ 1 − φ2

Σþ φ2Σ0 ; τ⊥⊥ ¼ 1 − 4φ2

Σþ 4φ2Σ0 :

ð82Þ

Note that, in the limit of vanishing magnetic field, φ ⟶ 0,
all the relaxation times become identical and match the
usual relaxation time derived for Israel-Stewart theory, τπ .
Nevertheless, in the limit of moderately large magnetic
fields, these relaxation times can differ significantly. In
particular, we can see that if, 4φ2 > 1, the relaxation time
of the transverse component of the shear-stress tensor will
even become negative. Further increasing φ, such that
φ2 > 1, will also render the relaxation time for the semi-
transverse component negative. This behavior is expressed
in Fig. 1, where we denote the ratio between the cross
sections as, r≡ σþ−

T =σþþ
T . Negative relaxation times are

unphysical and lead to linear instabilities of the global
equilibrium state. This indicates that the truncated theory
derived in this section breaks down for such values of
magnetic fields (or for such values of φ). We note that φ is
proportional to Ωτπ and, thus, if this quantity is larger than
one, it indicates that the frequency of oscillation emerging
due to the magnetic field is of the same order as the inverse
(longitudinal) relaxation time. In other words, this implies
that the period of oscillation is not large relative to the
relaxation timescale and oscillation phenomena cannot be
neglected.

In the following section, we shall investigate this physics
in a simple dynamical model, Bjorken flow [55]. In this
case, we shall verify that oscillations do indeed become
important when the frequency of oscillations Ω becomes
large with respect to the inverse relaxation timescale. Thus,
the breakdown of this Israel-Stewart-like theory for each
component of the shear-stress tensor does occur when
oscillatory phenomena emerge.

V. BJORKEN FLOW

So far, we have obtained the equations of motion for the
5 components of the shear-stress tensor, decomposed with
respect to the direction of the magnetic field. In our
simplified kinetic description, we found that three of these
components evolve independently. Furthermore, we have
identified that, in the presence of relatively large magnetic
fields, the relaxation times appearing in the equations of
motion for the transverse components of the shear-stress
tensor become negative—a clearly unphysical feature. We
further argued that this unphysical scenario may be con-
nected to the emergence of oscillatory dynamics for the
shear-stress tensor that cannot be captured by the Israel-
Stewart-like equations derived so far. Our next step is to
investigate the emergence of such oscillatory behavior
using a simplified solution for expanding plasmas:
Bjorken flow [55].
Bjorken flow is a toy model for the longitudinal fluid-

dynamical expansion that takes place in ultrarelativistic
heavy-ion collisions. It describes a boost-invariant, longi-
tudinally (with respect to the beam direction) expanding
medium. The system is also traditionally assumed to be
isotropic and homogeneous in the transverse place (relative
to the beam axis)—we note that we will break the first
assumption by introducing a magnetic field in the trans-
verse plane.
Thus, Bjorken flow is a highly symmetric flow configu-

ration, making it possible to solve the equations of motion

FIG. 1. Relaxation times for the (a) semitransverse and (b) transverse components of the shear-stress tensor as a function of Ω, for
different values of r ¼ σþ−

T =σþþ
T .
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for the shear-stress tensor with simple numerical schemes
and gain insights into the theory beyond just linear
approximations. In this scenario, the spacetime is conven-
iently described using hyperbolic coordinates, τ, ξ, x and y,

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
; ξ ¼ 1

2
ln

�
tþ z
t − z

�
: ð83Þ

where τ is the proper time, ξ is the spacetime rapidity, with
ðt; x; y; zÞ being the usual Cartesian coordinates. In this
coordinate system, the metric tensor is given by

gμν ¼ diagðgττ; gxx; gyy; gξξÞ ¼ diagð1;−1;−1;−τ2Þ; ð84Þ

with the only nonzero Christoffel symbols being

Γτ
ξξ ¼ τ; Γξ

τξ ¼ Γξ
ξτ ¼

1

τ
: ð85Þ

Naturally, in this coordinate system all space-time deriv-
atives appearing in the equations of motion must be
replaced by covariant derivatives, i.e., ∂μ → Dμ.
In Bjorken flow, the fluid 4-velocity is static uμ ¼

ð1; 0; 0; 0Þ and our basis elements can be expressed as:

xμ ¼ ð0; 0; 1; 0Þ;

yμ ¼
�
0; 0; 0;

1

τ

�
;

bμ ¼ ð0; 1; 0; 0Þ;

where the magnetic field, bμ, was chosen to be in the
transverse direction relative to the beam axis. The shear
tensor in Bjorken flow is given by the covariant derivatives
of the 4-velocity and can be calculated to be [52],

σμν ¼ Δαβ
μνDαuβ ¼ diag

�
0;

1

3τ
;
1

3τ
;−

2τ

3

�
: ð86Þ

Its different components with respect to the direction of the
magnetic field are,

σk ¼ bμbνσμν ¼
1

3τ
; ð87aÞ

σ�⊥ ¼ l∓
μ bνσμν ¼ 0; ð87bÞ

σ�⊥⊥ ¼ l�
μ l�

ν σ
μν
⊥⊥ ¼ l�

μ l�
ν σ

μν ¼ 1

2τ
: ð87cÞ

Finally, the expansion rate is given by, θ ¼ Dμuμ ¼ 1=τ.
Further, the shear-stress tensor in Bjorken flow is
expressed as

πμν ¼ πkbμbν þ
�
πþþ⊥⊥ þ π−−⊥⊥ − πk

2

�
xμxν

−
�
πþþ⊥⊥ þ π−−⊥⊥ þ πk

2

�
yμyν; ð88Þ

with the magnetic field pointing in the x–direction breaking
the degeneracy between the shear-stress tensor components
in the transverse plane relative to the beam axis.4 Given that
σ�⊥ ¼ 0, we can remove this component of the shear-stress
tensor by setting its initial value to zero—this is why this
component is not included in the decomposition (88).
Finally, we consider the following equation of state (for
2 types of particles having 3 quarks each with two spins),

ϵ ¼ 3 × 2 × 2 × 3

π2
T4: ð89Þ

Using the results outlined above, the relevant fluid-
dynamical equations reduce to,

dϵ
dτ

¼ πk
2τ

þ π⊥⊥
2τ

−
4ϵ

3τ
; ð90Þ

d
dτ

�
πk
ϵ

�
þ 1

τπ

πk
ϵ
¼ 8

45τ
þ 5

21τ

πk
ϵ
−

5

21τ

π⊥⊥
ϵ

−
πk
ϵ2

�
πk þ π⊥⊥

2τ

�
; ð91Þ

d
dτ

�
π⊥⊥
ϵ

�
þ 1

τ⊥⊥
π⊥⊥
ϵ

¼ 1

1 − 4φ2

8

15τ
−

5

21τ

π⊥⊥
ϵ

−
1

1 − 4φ2

5

7τ

πk
ϵ
þ 4φφ̇

1 − 4φ2

π⊥⊥
ϵ

−
π⊥⊥
ϵ2

�
πk þ π⊥⊥

2τ

�
; ð92Þ

where we defined the variable π⊥⊥ ≡ π−⊥⊥ þ πþ⊥⊥. It is
useful to note that,

φ̇ ¼ −φ
�
1

τ
þ 2

Ṫ
T

�
;

Ṫ
T
¼ 1

4τ

�
πk þ π⊥⊥

2ϵ
−
4

3

�
:

Equation (90) corresponds to the continuity equation
related to energy conservation, while Eqs. (91) and (92)
correspond to Eqs. (52) and (79), respectively. We will
solve Eqs. (90)–(92), considering a choice of cross section
that satisfies Σ0 ¼ 4Σ=3, i.e., we considered r≡
σþ−
T =σT ¼ 1. We further assume that the system is initially

at equilibrium, at an initial time of τ0 ¼ 0.1 fm and an
initial energy density of ϵ0ðτ0Þ ¼ 1000 fm−4. The equation

4In the absence of a magnetic field in the transverse plane, the
shear-stress tensor in Bjorken flow has the following general form
πμν ¼ diag(0,π=2,π=2,-π=τ2).
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of motion for the magnetic field is taken from Maxwell’s
equations [31],

Ḃþ Bθ ¼ 0 ⇒ B ∼
�
τ0
τ

�
: ð93Þ

We shall consider simulations with various initial values of
the magnetic field.
We fix the value of Σ so that the shear viscosity to

entropy density ratio in the absence of a magnetic is given
by η=s ¼ 1, cf. Eq. (39). Our numerical solutions for the
longitudinal (left panel) and transverse (right panel) com-
ponents of the shear-stress tensor are depicted in Fig. 2. For
the value of shear viscosity considered, we observe that the
Israel-Stewart-like theory derived to describe each of these
components is only effective in the region where the
magnetic field is smaller than B0 ∼ 15 fm−2—otherwise

the transverse relaxation time becomes negative. For larger
values of shear viscosity, the relaxation time becomes
negative for even smaller values of the magnetic field.
This is an extreme restriction on the applicability of this
theory. Nevertheless, in Fig. 2 we see a moderate effect
of the magnetic on the magnitude of the shear-stress tensor
at the early stages of the evolution, τ ∼ τR. When τ ≫ τR,
the effect of the magnetic field completely disappears.
Hence, to attain an accurate depiction of the system

under larger magnetic fields, it is necessary to go back to
the more fundamental coupled equations [Eqs. (52), (53),
(60), and (61)], where no truncation scheme has been
imposed. In principle, these equations still capture the
oscillatory dynamics that we anticipate but are absent when
employing truncated equations. The above mentioned set of
equations takes following form in Bjorken flow:

dϵ
dτ

¼ πk
2τ

þ π⊥⊥
2τ

−
4ϵ

3τ
; ð94Þ

d
dτ

�
πk
ϵ

�
þ Σ

πk
ϵ
¼ 8

45τ
þ 5

21τ

πk
ϵ
−

5

21τ

π⊥⊥
ϵ

−
πk
ϵ2

�
πk þ π⊥⊥

2τ

�
; ð95Þ

d
dτ

�
π⊥⊥
ϵ

�
þ Σ

π⊥⊥
ϵ

−
2jqjB
5T

δπ̂⊥⊥
ϵ

¼ 8

15τ
−

5

7τ

πk
ϵ
−

5

21τ

π⊥⊥
ϵ

−
π⊥⊥
ϵ2

�
πk þ π⊥⊥

2τ

�
; ð96Þ

d
dτ

�
δπ̂⊥⊥
ϵ

�
þ Σ0 δπ̂⊥⊥

ϵ
þ 2jqjB

5T
π⊥⊥
ϵ

¼ −
5

21τ

δπ̂⊥⊥
ϵ

−
δπ̂⊥⊥
ϵ2

�
πk þ π⊥⊥

2τ

�
; ð97Þ

where we defined the following variables π⊥⊥≡π−⊥⊥þπþ⊥⊥,
δπ⊥⊥ ≡ δπ−⊥⊥ − δπþ⊥⊥, and δπ⊥⊥ ¼ iδπ̂⊥⊥. We again con-
sider Σ0 ¼ 4Σ=3.
Our objective is to solve (94)–(97) to investigate the

behavior of the longitudinal and transverse components
of the shear-stress tensor. Maxwell’s equations remain

unaltered, and consequently, the evolution of B follows
from Eq (93). As before, we assume that the system is
at equilibrium at an initial time of τ0 ¼ 0.1 fm, with an
initial energy density of ϵ0ðτ0Þ ¼ 1000 fm−4. This time, we
enforce the presence of stronger magnetic fields, while also
considering different η=s values.

FIG. 2. Time evolution of the (a) longitudinal and (b) transverse components of the shear-stress tensor for several values of the initial
magnetic field, B0. All simulations were performed for η=s ¼ 1.

RELATIVISTIC DISSIPATIVE MAGNETOHYDRODYNAMICS … PHYS. REV. D 109, 096021 (2024)

096021-13



In Fig. 3 we show our results for the longitudinal (left
panel) and transverse (right panel) components of the
shear-stress tensor for η=s ¼ 1 and an initial magnetic
field of B0 ¼ 0, 50, 100 fm−2. In 4, we show the same
quantities for a larger value of shear viscosity η=s ¼ 10.
Indeed, we do observe the appearance of oscillatory
dynamics for the transverse component of the shear-stress
tensor—it no longer simply relaxes exponentially to zero.
As expected, this oscillatory behavior only emerges for
larger values of the magnetic field, that could not be
probed in our previous simulations, for the truncated
second-order equations. We note that as the value of η=s
increases, the oscillations become more pronounced. This
phenomenon can be attributed to the faster changes in the
source term, i.e., the respective components of σμν, when
η=s is smaller. Larger η=s values correspond to longer
relaxation times, allowing the magnetic field sufficient
time to induce prominent oscillations in the system. On the
other hand, with smaller η=s values, relaxation times are

shorter and oscillations do not have sufficient time to
develop.
The oscillatory dynamics can also be better compre-

hended by analysing the magnitude of the parameter φ in
our simulations. For the transverse component, we expect
that oscillatory dynamics occurs when the transverse
relaxation time is negative, which happens when
φ > 0.5. In Fig. 5 we show φ as a function of τ=τR for
the simulations depicted in Figs. 3 and 4. For η=s ¼ 1 and
B ∼ 100 fm−2, φ only exceeds 0.5 at the early stages of the
evolution. Consequently, we observe only subtle hints of
oscillations in this scenario. In contrast, when η=s ¼ 10 and
B ∼ 100 fm−2, φ remains significantly above 0.5 during
almost all the time evolution. As a result, this leads to the
prominent oscillations observed for the transverse compo-
nent of the shear-stress tensor in Fig. 4.
Due to the rapid decay of magnetic fields, the system is

expected to ultimately approach the conventional Navier-
Stokes limit at later times. In Fig. 6 we confirm this

FIG. 3. Time evolution of the (a) longitudinal and (b) transverse components of the shear-stress tensor for several values of the initial
magnetic field, B0. All simulations were performed for η=s ¼ 1.

FIG. 4. Time evolution of the (a) longitudinal and (b) transverse components of the shear-stress tensor for several values of the initial
magnetic field, B0. All simulations were performed for η=s ¼ 10.
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behavior by comparing our numerical solutions for the
longitudinal (left panel) and transverse (right panel) com-
ponents of the shear-stress tensor to their corresponding
asymptotic Navier-Stokes values (blue line). For the sake
of simplicity, we show our results only for the case of
η=s ¼ 1. We note that when the magnetic field is suffi-
ciently large, the transverse components relax to their
Navier-Stokes limit displaying oscillatory behavior.
After examining this basic model in an expanding

scenario, it becomes apparent that Israel-Stewart-like the-
ories effectively work only when the quantity φ is suffi-
ciently small, with such threshold depending on the value
of the shear viscosity of the gas. In other words, it is
applicable primarily to lower magnetic field values that, in
practical terms, exert little to no impact on the system’s
dynamics. For those wishing to investigate the effects of
moderately stronger magnetic fields, it becomes necessary
to resort to the fundamental coupled equations where no
second-order truncation scheme has been implemented.

VI. CONCLUSIONS

We derived the equations of motion of relativistic
magnetohydrodynamics, as well as microscopic expres-
sions for all of its transport coefficients, from the
Boltzmann equation using the method of moments. In
contrast to Refs. [30,31], where a single component gas
was considered, we perform our derivation for a locally
neutral fluid composed of two particle species with
opposite charges. For the sake of simplicity, the particles
are assumed to be massless and have vanishing dipole
moment or spin. Furthermore, we focus solely on under-
standing how the equations of motion for the shear-stress
tensor are modified by the presence of a magnetic field.
The magnetohydrodynamic equations derived here are

qualitatively different to the traditional Israel-Stewart
theory. In our case, the longitudinal, semitransverse and
transverse components of the shear-stress tensor, with
respect to the direction of the magnetic field, obey distinct
equations of motion, with different relaxation times and

FIG. 6. Longitudinal and transverse components as function of τ=τR, compared to their respective Navier-Stokes values, for η=s ¼ 1
and several values of B0.

FIG. 5. The dimensionless variable φðΩÞ and a function of τ=τR for different η=s ¼ 1 (left) and η=s ¼ 10 (right).
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viscosities. We have derived the microscopic expressions
for these transport coefficients and shown how each of
them is affected by the magnetic field. In particular, we
found that the relaxation time appearing in the equations of
motion for the longitudinal component of the shear-stress
tensor displays no dependence on the magnetic field. On
the other hand, the remaining relaxation times display a
strong dependence on the magnetic field, being reduced as
the magnetic field increases.
We further demonstrate that the relaxation-type equa-

tions of motion derived for the semitransverse and trans-
verse components of πμν break down at sufficiently large
magnetic fields, due to the fact that the relaxation times
become negative. This departure from conventional expect-
ations, with occurrence of negative relaxation times,
challenges the applicability of standard relaxation-type
equations to our system. For instance, we demonstrate
that, when the magnetic oscillation frequency is of the same
order as the inverse relaxation time, the system exhibits
intrinsic oscillatory dynamics as it approaches its asymp-
totic Navier-Stokes regime and such behavior can never
be described with relaxation-type equations of motion. A
similar behavior is also observed for the transient dynamics
of conformal fluids described using holography via the
AdS/CFT correspondence [63].
For the simple two-component gas considered in this

work, it was possible to describe this novel oscillatory
dynamics by including one additional dynamical variable:
the dissipative dynamics of the fluid was described in terms

of the total shear-stress tensor (πμν ¼ πμνþ þ πμν− ) and its
relative value (δπμν ¼ πμνþ − πμν− ). Nevertheless, it is not
clear at this point how this oscillatory dynamics can be
described when more complicated systems, with more
particle species and realistic cross sections, are considered.
These issues will be discussed in future works, where we
shall also include the effects of electric conductivity, finite
electric chemical potential and finite particle masses.
Our work addressed some of the theoretical challenges in

deriving relativistic magnetohydrodynamics and motivates
for further exploration. Our analyses into the nuanced
behavior of magnetohydrodynamics in stronger magnetic
fields, suggests the need for more comprehensive theoreti-
cal frameworks to capture the dynamics of relativistic
fluids in the presence of powerful magnetic fields. In
particular, we advocate for the development of a more
robust theoretical framework capable of capturing and
incorporating the oscillatory dynamics that appear at strong
magnetic fields, even for more general fluids.
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