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We derive a general expression for the fermion self-energy in a hot magnetized plasma by using the
Landau-level representation. In the one-loop approximation, the Dirac structure of the self-energy is
characterized by five different functions that depend on the Landau-level index n and the longitudinal
momentum pz. We derive general expressions for all five functions and obtain closed-form expressions for
their imaginary parts. The latter receive contributions from three types of on shell processes, which are
interpreted in terms of Landau-level transitions, accompanied by a single photon (gluon) emission or
absorption. By making use of the imaginary parts of the self-energy functions, we also derive the Landau-
level dependent fermion damping rates ΓnðpzÞ and study them numerically in a wide range of model
parameters. We also demonstrate that the two-spin degeneracy of the Landau levels is lifted by the one-loop
self-energy corrections. While the spin splitting of the damping rates is small, it may be important for some
spin and chiral effects. We argue that the general method and the numerical results for the rates can have
interesting applications in heavy-ion physics, astrophysics, and cosmology, where strongly magnetized
QED or QCD plasmas are ubiquitous.
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I. INTRODUCTION

The influence of magnetic fields on relativistic matter
has been a topic of continued investigations and interest
for decades. Strong magnetic fields appear and play an
important role in cosmology [1,2], astrophysics [3,4],
and heavy-ion collisions [5–8]. They can affect phys-
ics of magnetars [9], supernovae [10], and gamma ray
bursts [11]. Theoretical estimates show that extremely
strong magnetic fields up to jeBj ≃m2

π are produced in
high-energy noncentral heavy-ion collisions [12–16]. Of
course, the strength and temporal evolution of these fields
can be affected by many factors, including the collision
energy, the impact parameter, and the electrical conduc-
tivity of the plasma [17–22]. Even in condensed matter
physics, strong magnetic fields can trigger some relativis-
ticlike phenomena when topological features of the band
structure give rise to low-energy quasiparticles described
by Dirac and Weyl equations [23].
The groundwork for understanding relativistic systems

in the presence of a magnetic field was laid by Heisenberg

and Euler [24] and later by Schwinger [25]. Many field-
theoretical studies have been done over the years since. The
key developments and foundations can be found in many
books and reviews, e.g., see Refs. [26–28]. Despite broad
theoretical knowledge gained, surprisingly few quantitative
results are known about the Green functions and radiative
corrections for relativistic plasmas in background magnetic
fields beyond the two extremes of the lowest Landau level
approximation and the weak-field limit [29–31]. For some
of the recent developments, see Refs. [32–47].
In a uniform magnetic field, the usual transverse mom-

enta are not good quantum numbers for charged particles.
Instead, their eigenstates are given by the Landau-level
orbitals. This fact has profound implications on the field
theory formalism. The most natural form of the fermion
propagator is given in the Landau-level representation [28].
The inherent complexity of such a representation makes the
evaluation of Feynman diagrams difficult even at the lowest
one-loop order.
The main objective of this study is a rigorous derivation

of the fermion self-energy in a strongly magnetized hot
relativistic plasma. In particular, the emphasis will be
made on the proper treatment of the self-energy in the
Landau-level representation. We will follow the approach
developed previously in the context of the quantum Hall
effect in graphene [48,49]. Similar methodology was also
utilized in the studies of chiral asymmetry in magnetized
QED at nonzero density [50,51]. Here we will focus on the
fermion self-energy in the Landau-level representation
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and investigate in detail its imaginary part. Such an
imaginary part defines the fermion damping rate in the
plasma. It is also a critical input in determining the particle
mean free path and some transport properties. We will
derive explicit expressions for different components of the
self-energy and discuss their interpretation in terms of
underlying physical processes. We will also study the
quantitative dependence of the fermion damping rate on
the Landau level index and the longitudinal momentum.
Several attempts at studying the fermion self-energy in

strongly magnetized vacuum can be found in the literature
[52–56]. Most notably, the authors of Refs. [57–59] had
the most progress in recent years, where they calculated the
Fourier transform of the transitionary invariant part of the
self-energy but stopped short of projecting the results onto
the Landau levels. As we argue here, the latter procedure
is necessary in order to extract observable features of the
self-energy.
The paper is organized as follows. We start from the

definition of the fermion self-energy in coordinate space in
Sec. II. After removing the Schwinger phase and performing
a Fourier transform on the translation invariant part of the
self-energy, we derive a relation that resembles but is not the
usual momentum space representation. To extract physics
information, the corresponding result is mapped onto the
Landau levels in Sec. III A. The numerical results for the
imaginary parts of the functions, defining the Dirac structure
of the self-energy, are presented in Sec. III B. By utilizing the
imaginary part of the self-energy, we derive the fermion
damping rate and study its dependence on the Landau-level
index n and the longitudinal momentum pz in Sec. IV. Note
that we use two different methods in Secs. IVA and IVB,
but they give the same spin-averaged expression for the
damping rate. However, the use of the poles of the full
propagator in Sec. IV B reveals that the rates for the two spin
states of each Landau level are slightly different. Finally, we
summarize our main results and conclusions in Sec. V.
Several technical derivations and auxiliary results are given
in the Appendixes at the end of the paper.

II. FERMION SELF-ENERGY
IN MAGNETIZED PLASMA

To keep our analysis as simple as possible, we consider a
hot magnetized QED-like plasma with a single fermion
flavor of mass m̄0 and charge q. With minor adjustments,
accounting for a different coupling constant and the number
of gauge bosons, the one-loop expression for the self-
energy will be also valid for the QCD plasma. Without loss
of generality, we will assume that the background magnetic
field B points in the þz direction.
At the leading order in coupling, the coordinate space

representation of the fermion self-energy is given by

Σðu; u0Þ ¼ −4iπαγμSðu; u0ÞγνDμνðu − u0Þ; ð1Þ

where α ¼ q2=ð4πÞ in the coupling constant, Sðu; u0Þ is the
free fermion propagator, and Dμνðu − u0Þ is the photon
(gauge-field) propagator. Note that, by definition,
Σðu; u0Þ ¼ i½S−1ðu; u0Þ −G−1ðu; u0Þ�, where G−1ðu; u0Þ is
the inverse of the full fermion propagator (at the leading
one-loop order). In the case of the QCD plasma, one would
need to replace the coupling constant α with αsCF, where
αs ¼ g2s=ð4πÞ and CF ¼ ðN2

c − 1Þ=ð2NcÞ.
Because of the broken translation symmetry, the free

fermion propagator Sðu; u0Þ and, in turn, the self-energy
Σðu; u0Þ depend on spacetime coordinates u ¼ ðt; x; y; zÞ
and u0 ¼ ðt0; x0; y0; z0Þ as follows [25]:

Sðu; u0Þ ¼ eiΦðu⊥;u0⊥ÞS̄ðu − u0Þ; ð2Þ

Σðu; u0Þ ¼ eiΦðu⊥;u0⊥ÞΣ̄ðu − u0Þ; ð3Þ

where Φðu⊥; u0⊥Þ is the famous Schwinger phase.
Note that the translation-invariant parts S̄ðu − u0Þ and
Σ̄ðu − u0Þ depend on the difference u − u0 only. Assu-
ming the Landau gauge for the background field, i.e.,
A ¼ ð0; Bx; 0Þ, the explicit form of the Schwinger phase is
given by Φðu⊥; u0⊥Þ ¼ qB

2
ðxþ x0Þðy − y0Þ, where q is the

fermion charge.
For reference, we derive an explicit form of the fermion

propagator in a background magnetic field in Appendix A.
We make sure to emphasize its coordinate space depend-
ence and the Landau-level structure. Using the same
approach, we also obtain the inverse fermion propagator
in Appendix B. Note that both the propagator and its
inverse (and, by extension, the self-energy) have exactly the
same Schwinger phase. It is consistent with the structure of
Eq. (1) and the spacetime dependence in Eqs. (2) and (3).
After removing the Schwinger phase and performing the

Fourier transform on both sides of Eq. (1), we arrive at the
following expression for the self-energy function:

Σ̄ðpk;p⊥Þ ¼ −4iπα
Z

d2kkd2k⊥
ð2πÞ4 γμS̄ðkk;k⊥ÞγνDμνðp− kÞ;

ð4Þ

where pμ
k ¼ ðp0; pzÞ and pμ⊥ ¼ ðpx; pyÞ. Interestingly, this

expression coincides with the usual definition of the self-
energy in a theory without a background magnetic field.
Clearly, however, the vectorlike variable p⊥ cannot be
interpreted as a conserved transverse momentum in a
magnetized plasma. (In contrast, the two components of
pk, i.e., the energy p0 and the longitudinal momentum pz,
are conserved quantities in a uniform magnetic field.)
Despite the appearance, the functions S̄ðkk; k⊥Þ and
Σ̄ðpk; p⊥Þ are not the momentum-space representations
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of the fermion propagator and the self-energy, respectively.
Yet, they encode all information about the propagator and
self-energy.
The main advantage of the representation in Eq. (4) is its

simplicity. To extract its observable effects, however, we
will need to render it in the Landau-level basis. The
corresponding projection will be discussed and imple-
mented in Sec. III. While technically nontrivial, its outcome
is obvious in the diagrammatic form shown in Fig. 1.
At this point, we will proceed with the calculation of

the self-energy in Eq. (4). In the derivation, we will use
the following Feynman gauge for the free gauge-field
propagator:

Dμνðp − kÞ ¼ −i
gμν

ðp − kÞ2 ; ð5Þ

where gμν ¼ diagð1;−1;−1;−1Þ is the Minkowski metric.
We note that a more refined analysis of a hot magnetized
plasma may require using the hard-thermal [60] and hard-
magnetic loop [28] resummations. The corresponding
refinements are beyond the scope of the present explor-
atory study but should be undertaken in the future.
It is instructive to emphasize that the Feynman gauge

for the gauge-field propagator is convenient but not the
most general. In fact, it is well known that the fermion
self-energy depends on a gauge choice. In this study,
however, we will be concerned primarily with the imagi-
nary (dissipative) part of the self-energy and the fermion
damping rate. For these purposes, the simplest Feynman
gauge should be sufficient [61,62].
By substituting the free fermion propagator, whose

explicit form is given in Appendix A, and the photon
propagator in Eq. (5) into the expression for the self-energy
in Eq. (4), we obtain

Σ̄ðpk; p⊥Þ ¼ −4iπα
X∞
n0¼0

Z
d2kkd2k⊥
ð2πÞ4 e−k

2⊥l2γμ
ð−1Þn0Dð0Þ

n0 ðkk; k⊥Þ
k2k − m̄2

0 − 2n0jqBj γμ
1

q2k − q2⊥
: ð6Þ

Here qk ¼ pk − kk, q⊥ ¼ p⊥ − k⊥, and

Dð0Þ
n0 ðkk; k⊥Þ ¼ 2½ðkk · γkÞ þ m̄0�½PþLn0 ð2k2⊥l2Þ − P−Ln0−1ð2k2⊥l2Þ� þ 4ðk⊥ · γ⊥ÞL1

n0−1ð2k2⊥l2Þ; ð7Þ

where P� ¼ ð1� s⊥iγ1γ2Þ=2 are spin projectors, l ¼ 1=
ffiffiffiffiffiffiffiffiffijqBjp

is the magnetic length, s⊥ ¼ signðqBÞ, and Lα
nðzÞ are the

generalized Laguerre polynomials [63]. We assume that, by definition, Lα
−1ðzÞ ¼ 0.

To account for a nonzero temperature T, we use Matsubara’s formalism. In particular, we replace the fermion energies p0

and k0 with iωnp ≡ iπTð2np þ 1Þ and iωnk ≡ iπTð2nk þ 1Þ, respectively, and replace the integral over k0 with the
Matsubara sum, i.e.,

Z
dk0
2π

Fðp0; k0Þ → iT
X∞

nk¼−∞
Fðiωnp ; iωnkÞ: ð8Þ

Then, the self-energy (6) becomes

Σ̄ðiωnp ; pz; p⊥Þ ¼ 4παT
X∞
n0¼0

X∞
nk¼−∞

Z
dkzd2k⊥
ð2πÞ3

ð−1Þn0e−k2⊥l2D̃ð0Þ
n0 ðiωnk ; kz; k⊥Þ

ðω2
nk þ E2

n0;kz
Þ½ðωnp − ωnkÞ2 þ E2

q�
; ð9Þ

where we used the shorthand notations for the Landau-level energies En0;kz ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n0jqBj þ m̄2

0 þ k2z
p

and the gauge boson

energy Eq ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2⊥ þ q2z

p
, and introduced the following new function:

D̃ð0Þ
n0 ðiωnk ; kz; k⊥Þ≡ γμDð0Þ

n0 ðiωnk ; kz; k⊥Þγμ ¼ 4m̄0½Ln0 ð2k2⊥l2Þ − Ln0−1ð2k2⊥l2Þ�
− 4ðiωnkγ

0 − kzγ3Þ½P−Ln0 ð2k2⊥l2Þ − PþLn0−1ð2k2⊥l2Þ� − 8ðk⊥ · γ⊥ÞL1
n0−1ð2k2⊥l2Þ: ð10Þ

After performing the Matsubara sum, we obtain

FIG. 1. The leading order Feynman diagram for the fermion
self-energy in the Landau-level representation.
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Σ̄ðpk; p⊥Þ ¼ 4πα
X∞
n0¼0

X
s1¼�

X
s2¼�

ð−1Þn0
Z

dkzd2k⊥
ð2πÞ3 e−k

2⊥l2
s1s2½1 − nFðs1En0;kzÞ þ nBðs2EqÞ�
En0;kzEqðp0 − s1En0;kz − s2Eq þ iϵÞ

× fðs1En0;kzγ
0 − kzγ3Þ½P−Ln0 ð2k2⊥l2Þ − PþLn0−1ð2k2⊥l2Þ�

− m̄0½Ln0 ð2k2⊥l2Þ − Ln0−1ð2k2⊥l2Þ� þ 2ðk⊥ · γ⊥ÞL1
n0−1ð2k2⊥l2Þg; ð11Þ

where we used the standard Fermi-Dirac and Bose-Einstein distribution functions, nFðEÞ ¼ ðeE=T þ 1Þ−1 and
nBðEÞ ¼ ðeE=T − 1Þ−1, respectively. In the derivation, we used the following result for the Matsubara sum:

T
X∞

nk¼−∞

iωnkAþ B

ðω2
nk þ E2

aÞ½ðωnp − ωnkÞ2 þ E2
b�
¼ −

1

4

X
s1;s2¼�

ðs1EaAþ BÞ½1 − nFðs1EaÞ þ nBðs2EbÞ�
s1s2EaEbðiωnp − s1Ea − s2EbÞ

: ð12Þ

To separate the real and imaginary parts of the self-energy, we perform the analytical continuation iωnp → p0 þ iϵ and use
the Sokhotski formula,

1

p0 − s1En0;kz − s2Eq þ iϵ
¼ P

1

p0 − s1En0;kz − s2Eq þ iϵ
− iπδðp0 − s1En0;kz − s2EqÞ: ð13Þ

In the rest, we will concentrate on the imaginary (absorptive) part. The corresponding expression can be simplified by
taking into account that

δðp0 − s1En0;kz − s2EqÞ ¼
X
s0¼�

En0;kzEqδðkz − ks
0
z Þ

jðks0z − pzÞs1En0;kz þ ks
0
z s2Eqj

¼
X
s0¼�

2En0;kzEqδðkz − ks
0
z Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½q2⊥ − ðq−⊥Þ2�½q2⊥ − ðqþ⊥Þ2�
p ; ð14Þ

where q�⊥ ¼ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n0jqBj þ m̄2

0

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 − p2

z

p
j and the explicit expressions for the two solutions k�z to the energy-

conservation condition read as

k�z ¼ pz

2

�
1þ 2n0jqBj þ m̄2

0 − q2⊥
p2
0 − p2

z
� p0

pzðp2
0 − p2

zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½q2⊥ − ðq−⊥Þ2�½q2⊥ − ðqþ⊥Þ2�

q �
: ð15Þ

Note that, for the fermions on the mass shell, we should set p2
0 − p2

z ¼ 2njqBj þ m̄2
0, and the two thresholds will

become q�⊥ ¼ j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n0jqBj þ m̄2

0

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njqBj þ m̄2

0

p j.
By substituting the solutions of the energy-conservation condition (kz ¼ k�z ), we derive the following two expressions for

the particle energies:

En0;kz jkz→k�z ¼ s1p0

2

�
1þ 2n0jqBj þ m̄2

0 − q2⊥
p2
0 − p2

z
� pz

p0ðp2
0 − p2

zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½q2⊥ − ðq−⊥Þ2�½q2⊥ − ðqþ⊥Þ2�

q �
; ð16Þ

Eqjkz→k�z ¼ s2p0

2

�
1 −

2n0jqBj þ m̄2
0 − q2⊥

p2
0 − p2

z
∓ pz

p0ðp2
0 − p2

zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½q2⊥ − ðq−⊥Þ2�½q2⊥ − ðqþ⊥Þ2�

q �
: ð17Þ

Without loss of generality, below wewill concentrate on the
case of Landau-level states with positive energies, p0 > 0.
On the mass shell, they will be given by the Landau-level
energies, p0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njqBj þ m̄2

0 þ p2
z

p
. If needed, the self-

energy results for the Landau-level states with negative
energies could be obtained by using the charge-conjugation
symmetry.
By analyzing the solutions for energy-conservation

relation p0 ¼ s1En0;kz þ s2Eq with the assumption

p0 > 0, we identify the following three kinematic
cases:

s1 > 0; s2 > 0∶ 0 < q⊥ < q−⊥; ð18Þ

s1 > 0; s2 < 0∶ 0 < q⊥ < q−⊥; ð19Þ

s1 < 0; s2 > 0∶ qþ⊥ < q⊥ < ∞: ð20Þ
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The first one describes a transition to a lower energy
particle state with emission of a photon (ψn → ψn0 þ γ
with n > n0); see Fig. 2(a). The second one describes a
transition to a higher energy particle state with absorption
of a photon (ψn þ γ → ψn0 with n < n0); see Fig. 2(b).
Finally, the third one describes a transition to an anti-
particle state with emission of a photon (i.e., annihilation
process ψn þ ψ̄n0 → γ for any n and n0); see Fig. 2(c).
It is instructive to emphasize that the three processes in

Fig. 2 contribute to the fermion damping rate only when the

background magnetic field is nonzero. Without magnetic
field, these processes of order α are forbidden by the
energy-momentum conservation. Instead, the fermion
damping is dominated by diagrams of order α2 such as
two-to-two scattering and annihilation processes (i.e., ψk þ
γ → ψk0 þ γ and ψk þ ψ̄k0 → γ þ γ). Turning the argument
around, this also implies that contributions from higher-
order processes will compete with those in Fig. 2 when the
magnetic field is sufficiently weak.

The final expression for the imaginary part reads as

Im½Σ̄ðpk; p⊥Þ� ¼ −4πα
X∞
n0¼0

X
fsg

ð−1Þn0
Z

d2k⊥
ð2πÞ2 e

−k2⊥l2
1 − nFðs1En0;ks0z

Þ þ nBðs2EqÞ
s1s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½q2⊥ − ðq−⊥Þ2�½q2⊥ − ðqþ⊥Þ2�

p
×
n
ðs1En0;ks0z

γ0 − ks
0
z γ

3Þ½P−Ln0 ð2k2⊥l2Þ − PþLn0−1ð2k2⊥l2Þ�

− m̄0½Ln0 ð2k2⊥l2Þ − Ln0−1ð2k2⊥l2Þ� þ 2ðk⊥ · γ⊥ÞL1
n0−1ð2k2⊥l2Þ

o
; ð21Þ

where the shorthand notation
P

fsg represents the sum over
three signs, i.e., s1; s2; s0 ¼ �1. This expression for the
Fourier transform of the translation invariant part of the
self-energy, as defined in Eq. (3), does not reveal explicitly
the Landau-level structure. Indeed, as we show in
Appendix B 1, its Landau-level representation (B7) should
be given as an expansion in Laguerre polynomials
Lα
nð2p2⊥l2Þ, where p⊥ is the Fourier variable for the

external line. In the next section, we will use the properties

of the Laguerre polynomials to render the self-energy in
such a Landau-level form.

III. FERMION SELF-ENERGY IN LANDAU-LEVEL
REPRESENTATION

A. Analytical expressions for the self-energy functions

By making use of explicit wave functions for the
Landau-level orbitals in Appendix B 1, we find that the
self-energy must take the following general form:

Σ̄ðpk; p⊥Þ ¼ −2e−p2⊥l2
X∞
n¼0

ð−1Þn½δvk;nðpk · γkÞ þ iγ1γ2ðpk · γkÞṽn − δmn − iγ1γ2m̃n�½PþLnð2p2⊥l2Þ − P−Ln−1ð2p2⊥l2Þ�

− 4e−p
2⊥l2
X∞
n¼0

ð−1Þnδv⊥;nðγ⊥ · p⊥ÞL1
n−1ð2p2⊥l2Þ: ð22Þ

As is easy to verify, it contains all the same Dirac matrices
as the main expression for the one-loop self-energy
Σ̄ðpk; p⊥Þ in Eq. (11), or its imaginary part in Eq. (21).
Of course, it is not accidental since we made an educated
choice for a general form of the full propagator in

Appendixes A and B. In this connection, we should
mention that, if higher-order calculations would reveal
the need for additional Dirac structures (allowed by
symmetries), they could be easily incorporated into a
general ansatz for the full propagator.

q
(n,p  )z

(n ,k  )z

(a)

q

(n ,k  )z

(n,p  )z

(b)

q
(n,p  )z

(n ,k  )z
(c)

FIG. 2. Feynman diagrams for the three processes contributing to the fermion damping in the nth Landau-level state: (a) quantum
transition to a lower Landau level with emission of a photon ψn → ψn0 þ γ (n > n0), (b) quantum transition to a higher Landau level with
absorption of a photon ψn þ γ → ψn0 (n < n0), (c) particle-antiparticle annihilation ψn þ ψ̄n0 → γ.
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The physical meaning of δvk;n, δv⊥;n, and δmn is clear.
They represent the one-loop corrections to the maximum
spin-averaged particle speed (in the directions parallel and
perpendicular to the magnetic field) and the corrections to
the particle mass in the nth Landau level. As for the other
two functions, i.e., ṽn and m̃n, they determine the splitting
of the parallel velocities and masses of the two spin states.
The functional form of the self-energy dependence on

p⊥, obtained in the previous section, does not seem to
match the Landau-level representation in Eq. (22), which is
an expansion in the Laguerre polynomials Lα

nð2p2⊥l2Þ.
However, by making use of the orthogonality property of
the Laguerre polynomials, i.e.,

Z
∞

0

e−xxαLα
nðxÞLα

n0 ðxÞdx ¼ δnn0
Γðnþ αþ 1Þ

n!
; ð23Þ

it is straightforward to render the result in the form of such
an expansion.
In particular, after separating different Dirac structures,

we can match the self-energy functions δvk;n, δv⊥;n, δmn,
ṽn, and m̃n in the Landau-level representation to the
projection of function Σ̄ðpk; p⊥Þ onto the Landau-level
orbitals. The corresponding relations read as

δvþk;n ≡ δvk;n þ s⊥ṽn ¼ −
ð−1Þnl2

2πp2
k

Z
d2p⊥e−p

2⊥l2 tr½ðpk · γkÞPþΣðpk; p⊥Þ�Lnð2p2⊥l2Þ; ð24Þ

δv−k;n ≡ δvk;n − s⊥ṽn ¼
ð−1Þnl2

2πp2
k

Z
d2p⊥e−p

2⊥l2 tr½ðpk · γkÞP−Σðpk; p⊥Þ�Ln−1ð2p2⊥l2Þ; ð25Þ

δmþ
n ≡ δmn þ s⊥m̃n ¼

ð−1Þnl2

2π

Z
d2p⊥e−p

2⊥l2

tr½PþΣðpk; p⊥Þ�Lnð2p2⊥l2Þ; ð26Þ

δm−
n ≡ δmn − s⊥m̃n ¼ −

ð−1Þnl2

2π

Z
d2p⊥e−p

2⊥l2 tr½P−Σðpk; p⊥Þ�Ln−1ð2p2⊥l2Þ; ð27Þ

δv⊥;n ¼
ð−1Þnl4

4πn

Z
d2p⊥e−p

2⊥l2 tr½ðγ⊥ · p⊥ÞΣðpk; p⊥Þ�L1
n−1ð2p2⊥l2Þ: ð28Þ

Note that the self-energy component functions δv�k;n and

δm�
n have a simple meaning. They describe corrections to

the velocity and mass parameters for the two spin states in
the nth Landau level. Only two of such functions, namely
Eqs. (24) and (26), are defined for all the Landau levels,
n ≥ 0. The other three are defined only for the higher
Landau levels with n ≥ 1. This is related to the unique
property of the lowest Landau level, which has only one
spin polarization (i.e., pointing along the field direction if
the fermions carry a positive charge, or opposite to the field
if they carry a negative charge). As a result, the self-energy

in the lowest Landau level (n ¼ 0) is fully characterized by
the longitudinal velocity (or the wave-function renormal-
ization) vþk;n ¼ δvk;n þ s⊥ṽn and the mass renormaliza-

tion δmþ
n ¼ δmn þ s⊥m̃n.

By substituting the expression for the one-loop result
(11) into the above definitions (24) through (28), we will
have all Dirac components of the self-energy in the Landau-
level representation. Here we will concentrate on the
imaginary parts of the self-energy functions by using the
result in Eq. (21). The corresponding results read as

Im½δvþk;n� ¼
α

p2
k

X∞
n0¼0

X
fsg

Z
q⊥dq⊥In;n0−1

0

�
q2⊥l2

2

� ðs1En0;ks0z
p0 − ks

0
z pzÞ½1 − nFðs1En0;ks0z

Þ þ nBðs2EqÞ�
s1s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½q2⊥ − ðq−⊥Þ2�½q2⊥ − ðqþ⊥Þ2�

p ; ð29Þ

Im½δv−k;n� ¼
α

p2
k

X∞
n0¼0

X
fsg

Z
q⊥dq⊥In−1;n0

0

�
q2⊥l2

2

� ðs1En0;ks0z
p0 − ks

0
z pzÞ½1 − nFðs1En0;ks0z

Þ þ nBðs2EqÞ�
s1s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½q2⊥ − ðq−⊥Þ2�½q2⊥ − ðqþ⊥Þ2�

p ; ð30Þ

Im½δmþ
n � ¼ αm̄0

X∞
n0¼0

X
fsg

Z
q⊥dq⊥

�
In;n0
0

�
q2⊥l2

2

�
þ In;n0−1

0

�
q2⊥l2

2

��
1 − nFðs1En0;ks0z

Þ þ nBðs2EqÞ
s1s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½q2⊥ − ðq−⊥Þ2�½q2⊥ − ðqþ⊥Þ2�

p ; ð31Þ
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Im½δm−
n � ¼ αm̄0

X∞
n0¼0

X
fsg

Z
q⊥dq⊥

�
In−1;n0
0

�
q2⊥l2

2

�
þ In−1;n0−1

0

�
q2⊥l2

2

��
1 − nFðs1En0;ks0z

Þ þ nBðs2EqÞ
s1s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½q2⊥ − ðq−⊥Þ2�½q2⊥ − ðqþ⊥Þ2�

p ; ð32Þ

Im½δv⊥;n� ¼
α

2n

X∞
n0¼0

X
fsg

Z
q⊥dq⊥In−1;n0−1

2

�
q2⊥l2

2

�
1 − nFðs1En0;ks0z

Þ þ nBðs2EqÞ
s1s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½q2⊥ − ðq−⊥Þ2�½q2⊥ − ðqþ⊥Þ2�

p : ð33Þ

Here we introduced two unitless kernel functions that
depend on q2⊥l2=2. They are defined in Appendix C.
There we also prove that the kernels reduce to functions
In;n0
0 ðξÞ and In;n0

2 ðξÞ introduced previously in Ref. [44].
The explicit expressions for these functions are given in
Eqs. (C7) and (C8) of our Appendix C.
As expected, all parameters are Landau-level dependent

functions of the longitudinal momentum pz. We can further
simplify the integrand in Eqs. (29) and (30) by taking into
account the following relation:

s1En0;ks0z
p0 − ks

0
z pz ¼

1

2
ðp2

k þ 2n0jqBj þ m̄2
0 − q2⊥Þjm:s:

¼ ðnþ n0ÞjqBj þ m̄2
0 −

q2⊥
2
: ð34Þ

In the last expression, we used the mass-shell condition to
express the parallel components of the fermion momentum
in terms of the Landau-level index: p2

k ¼ 2njqBj þ m̄2
0. For

numerical calculations later, it will help that the result is
independent of the signs s1 and s0.
We should note that, despite the appearance, the combi-

nation of the Fermi-Dirac and Bose-Einstein distribution
functions, 1 − nFðs1En0;ks0z

Þ þ nBðs2EqÞ, is also indepen-

dent of the signs s1 and s2. Indeed, it is obvious after taking
into account the energy expressions in Eqs. (16) and (17),
which contain the overall factors of s1 and s2, respectively.
The only dependence of the integrands in Eqs. (29)

through (33) on the signs s1 and s2 comes from the overall
factor s1s2. It is instructive to recall that different sign
choices determine the process types contributing to the
imaginary part; see Eqs. (18)–(20). Therefore, up to overall
sign s1s2, the integrands are formally the same for all
processes. The contributions of quantum transitions of
fermions to lower Landau-level states (accompanied by
photon emission) come with a plus sign. The contributions
of transitions to higher Landau-level states (accompanied by
photon absorption) and the annihilation processes (accom-
panied by photon emission) come with a minus sign. While
the integrands are formally the same for all three processes
(up to a sign), the range of integration over q⊥ differs.
Namely, it is 0 < q⊥ < q−⊥ for transitions to lower/higher
Landau-level states and qþ⊥ < q⊥ < ∞ for the annihilation
processes.

By using the five functions in Eqs. (29) through (32), we
can obtain the spin-average Landau-level dependent values
of the parallel velocity and mass, i.e.,

Im½δvk;n� ¼
1

2
Im½δvþk;n þ δv−k;n�; ð35Þ

Im½δmn� ¼
1

2
Im½δmþ

n þ δm−
n �; ð36Þ

as well as the corresponding spin-splitting functions, i.e.,

Im½ṽn� ¼
s⊥
2
Im½δvþk;n − δv−k;n�; ð37Þ

Im½m̃n� ¼
s⊥
2
Im½δmþ

n − δm−
n �: ð38Þ

As expected, all of these parameters, as well as Im½δv⊥;n�,
are Landau-level dependent functions of the longitudinal
momentum pz.

B. Self-energy in QCD plasma

To demonstrate the proof of concept, here we study
numerically the imaginary part of the self-energy functions
in a hot magnetized QCD plasma. Keeping in mind their
potential applications to heavy-ion physics, we will
assume that the plasma temperature T is of the order of
200 MeV to 400 MeVand the magnetic field is of the order
of jqBj ∼m2

π , where mπ ¼ 135 MeV.
Because of different electric charges of the up and down

quarks (qu ¼ þ2e=3 and qd ¼ −e=3), the effect of a
background magnetic field on their self-energies differs.
Nevertheless, their dependence on jqBj will remain essen-
tially the same. (Strictly speaking, the roles of spin-up and
spin-down states in the lowest Landau level will be
interchanged because their charges have opposite signs.)
Instead of considering the cases of up- and down-quarks
separately, we will consider several fixed values of jqBj.
This will suffice to demonstrate the qualitative effects of the
magnetic field on the quark self-energy in the QCD plasma.
We will also assume that the quark mass is the same for
both flavors, i.e., m̄0 ¼ 5 MeV.
In the case of QCD plasma, the expressions for the self-

energy functions have the same form as in Eqs. (29)–(33),
but the coupling constant α should be replaced with αsCF,
where αs ¼ g2=ð4πÞ and CF ¼ ðN2

c − 1Þ=ð2NcÞ ¼ 4=3.
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To get an order of magnitude estimate, we will assume that
the strong coupling is αs ≃ 1=2. In this case, αsCF ¼ 2=3.
This choice is sufficient to get order of magnitude esti-
mates. One could try to improve the approximation, for
example, by incorporating the running of the coupling
constant at the scale of temperature or the momentum
transfer. For the purposes of the current proof-of-concept
study, however, it is unnecessary. In any case, the overall
benefit from this and other improvements is likely very
limited. Because of the strong coupling in QCD, the
quantitative validity of the one-loop correction will remain
questionable. Thus, our numerical result should be inter-
preted with great caution and, at best, viewed as reasonable
estimates rather than true quantitative results.
When calculating the self-energy functions defined in

Eqs. (29) through (33), one needs to add up contributions
from all three processes, sum over Landau level index n0,
and integrate over the transverse momentum q⊥ in the
appropriate kinematic range; see Eqs. (18)–(20). We will
limit the analysis to the first 50 Landau levels (i.e.,
n ≤ nmax ¼ 50). In this case, to achieve a good numerical
precision in calculations, we include all transitions to
Landau levels with the indices up to n0max ¼ 100.
The representative results for the imaginary parts of the

velocity and the mass as functions of the Landau-level
index n are shown in Fig. 3. Each panel displays numerical
data for three different temperatures, i.e., T ¼ 200 MeV
(blue lines), T ¼ 300 MeV (green lines), T ¼ 400 MeV
(red lines), and two different magnetic fields, i.e., jqBj ¼
ð75 MeVÞ2 (open circles), jqBj ¼ ð200 MeVÞ2 (filled
squares). The top three panels show the results for

pz ¼ 0, while the bottom three panels show the results
for pz ¼ 1000 MeV.
The multipanel Fig. 3 provides only a limited view of the

numerical data for two fixed values of the longitudinal
momentum. A large set of additional data for a wide range
of pz values is included as the Supplemental Material [64].
Overall, we find that the imaginary parts of the velocity and
mass functions tend to increase with the temperature and
decrease with the magnetic field. Beyond these general
tendencies, one finds that their dependence on the Landau-
level index is nonmonotonous in general and differs at
small and large values of pz.
Since the imaginary parts of the Landau-level dependent

velocity and mass functions have no clear physical meaning
by themselves, we will not be discussing them in more
detail. We note, however, that they are needed as an input to
calculate the fermion damping rate. The latter will be
discussed in the next section.

IV. DAMPING RATE

In quantum field theory without a background magnetic
field, the fermion damping rate is related to the imaginary
part of self-energy [65]. In some recent studies, e.g., see
Refs. [66–68], a similar formula was used rather heuris-
tically in the case of magnetized plasmas. It should be
noted, however, that no formal justification was given to
utilize the Fourier transform of the translation invariant part
of the self-energy in such calculations. Since the transverse
momenta are not good quantum numbers in the field theory
in a magnetic field, the underlying foundation of Weldon’s

FIG. 3. The dependence of the self-energy functions Im½δvk;n�, Im½δv⊥;n�, and Im½δmn�=m̄0 on the Landau-level index n for two fixed
values of the longitudinal momentum: pz ¼ 0 (top panels) and pz ¼ 1000 MeV (bottom panels). Each panel contains results for three
different temperatures: T ¼ 200 MeV (blue), T ¼ 300 MeV (green), and T ¼ 400 MeV (red); and two magnetic fields: jqBj ¼
ð75 MeVÞ2 (open circles) and jqBj ¼ ð200 MeVÞ2 (filled squares).
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arguments in Ref. [65] cannot be transferred to an unphys-
ical representation. Below we provide a more rigorous
derivation of the damping rate in terms of the self-energy in
the Landau-level representation.

A. Damping rate from the imaginary part of self-energy

Following the general approach of Ref. [65], we define
the damping rate using the wave functions in coordinate
space as follows:

ΓnðpzÞ ¼
1

2p0

Z
d4u0

Z
d4uTr

�
2πl2

V⊥

×
Z

dp
X
s

Ψ̄n;p;sðu0ÞImΣðu0; uÞΨn;p;sðuÞ
�
: ð39Þ

Note that 1=ð2πl2Þ is the number of degenerate states per
unit transverse area (excluding the spin degeneracy) and
V⊥ is the volume (area) of the transverse plane. Thus,
V⊥=ð2πl2Þ is the total number of such degenerate states.
By making use of the fermion wave functions in a

constant magnetic field, discussed in Appendix D, we then
derive

ΓnðpzÞ ¼
1

p0

�
δn;0
2

½p2
kImðδvk;n þ s⊥ṽnÞ

− m̄0Imðδmn þ s⊥m̃nÞ� þ ð1− δn;0Þ½p2
kImðδvk;nÞ

− m̄0ImðδmnÞ− 2njqBjImðδv⊥;nÞ�
�
; ð40Þ

where we used the result in Eq. (D10). In the final
expression, one should assume that the fermion is on the
mass shell, i.e., p0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njqBj þ m̄2

0 þ p2
z

p
.

By definition, the Landau-level dependent fermion
damping rate in Eq. (40) is a spin-averaged quantity.
Indeed, in the derivation, we summed up contributions
of the spin states indiscriminately. In the presence of a
nonzero magnetic field, however, the spin-degeneracy of
each Landau level is likely to be lifted. Thus, the damping
rates of the corresponding states are expected to be
different. As we show in the next subsection, it is indeed
the case. Moreover, we will be able to calculate the spin-
dependent damping rates from the imaginary part of the
one-loop self-energy.
By substituting the results in Eqs. (29) through (33) into

the general expression for the rate (40), we derive the
following damping rate in the zeroth Landau level:

Γ0ðpzÞ ¼
αjqBj
4p0

X∞
n0¼0

X
fsg

Z
dξ
	
n0I0;n0−1

0 ðξÞ − ðn0 þ m̄2
0l

2ÞI0;n0
0 ðξÞ


	
1 − nFðs1En0;ks0z

Þ þ nBðs2EqÞ



s1s2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðξ − ξ−Þðξ − ξþÞp ; ð41Þ

where we used the identity ξI0;n0−1
0 ðξÞ ¼ n0I0;n0

0 ðξÞ. The expression for the damping rate in the higher Landau levels (n ≥ 1)
reads as

ΓnðpzÞ ¼
αjqBj
4p0

X∞
n0¼0

X
fsg

Z
dξ
	
In;n0−1
0 ðξÞ þ In−1;n0

0 ðξÞ
 ðnþ n0Þ	1 − nFðs1En0;ks0z
Þ þ nBðs2EqÞ



s1s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðξ − ξ−Þðξ − ξþÞp
−

α

4p0

X∞
n0¼0

X
fsg

Z
dξ
	
In;n0
0 ðξÞ þ In−1;n0−1

0 ðξÞ
 ðnþ n0 þ m̄2
0l

2Þ	1 − nFðs1En0;ks0z
Þ þ nBðs2EqÞ



s1s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðξ − ξ−Þðξ − ξþÞp : ð42Þ

Here, we introduced shorthand notations ξ ¼ q2⊥l2=2 and ξ� ¼ ðq�⊥Þ2l2=2, and used Eq. (34) to simplify the integrands.
Also, to express In−1;n0−1

2 ðξÞ in terms of In;n0
0 ðξÞ, we used Eq. (C9) from Appendix C.

We can rewrite the above expressions for the damping rates in a form valid for all n ≥ 0 as follows:

ΓnðpzÞ ¼
αjqBj
4p0

X∞
n0¼0

X
fsg

Z
dξ

Mn;n0 ðξÞ½1 − nFðs1En0;ks0z
Þ þ nBðs2EqÞ�

s1s2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðξ − ξ−Þðξ − ξþÞp ; ð43Þ

where we introduced the following function:

Mn;n0 ðξÞ ¼ −ðnþ n0 þ m̄2
0l

2Þ	In;n0
0 ðξÞ þ In−1;n0−1

0 ðξÞ
þ ðnþ n0Þ	In;n0−1
0 ðξÞ þ In−1;n0

0 ðξÞ
: ð44Þ

As one can verify, the damping rate in Eq. (43) is a positive definite quantity. This is expected since Weldon’s method [65]
should produce a result proportionate to the squared amplitudes of the three underlying processes. As we show below, the
same expression (43) for the rate (after spin averaging) is also obtained from the poles of the propagator in Sec. IV B below.
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To further scrutinize the result in Eq. (43), we note that
photon emission in a strongly magnetized plasma must be
determined by the same squared amplitudes at the leading
order in coupling. By making use of the analytical expres-
sion in Ref. [44], we verified that the photon emission rate is
indeed determined by the same function Mn;n0 ðξÞ.
The numerical results for the fermion damping rate (43)

as a function of the Landau-level index n and the
longitudinal momentum are shown in Fig. 4. Note that
the values of the rate and the longitudinal momentum pz
are given in units of the pion massmπ ¼ 135 MeV. We use
the same value of the QCD coupling as in Sec. III B. Four
different panels display results for two different temper-
atures, i.e., T ¼ 200 MeV (left panels) and T ¼ 400 MeV
(right panels), and two different magnetic fields, i.e.,
jqBj ¼ ð75 MeVÞ2 (top panels) and jqBj ¼ ð200 MeVÞ2
(bottom panels).
By comparing the compilation of numerical data in the

four panels of Fig. 4, representing different temperatures
and magnetic fields, we see that both temperature and
magnetic field have a tendency to increase the damping
rates. Such an enhancement is not surprising since both
have the tendency to increase the phase space for tran-
sitions to other Landau levels. In connection to the
magnetic field, in particular, its presence is critical to
trigger the three processes responsible for the damping rate
at the leading order in coupling. In the absence of the field,
the only processes contributing to the fermion damping
rate are of the subleading order in coupling. The findings

are further reinforced by the numerical data for intermedi-
ate values of temperature, T ¼ 300 MeV, and magnetic
field, jqBj ¼ ð125 MeVÞ2, which are not shown in the
figures but included in the Supplemental Material [64].
A careful analysis shows that the enhancement factors,

resulting from increasing the temperatures and magnetic
field, are nonuniform functions of the Landau-level index n
and longitudinal momentum pz. For example, the increase
of temperature from T ¼ 200 MeV to T ¼ 400 MeV leads
to enhancement factors of the order of 2 to 4 in the
whole region of n and pz investigated. The largest increase
is seen in the low-lying Landau levels at small longitudinal
momenta.
The effect of the magnetic field is also nonuniform across

the whole range of n and pz values. Quantitatively, the
increase of the magnetic field from jqBj ¼ ð75 MeVÞ2 to
jqBj ¼ ð200 MeVÞ2 gives the largest enhancement factors
of the order of 5 to 6, which occurs at large values of pz and
small n. While, in absolute terms, the damping rates are the
highest at small values of pz, the increase due to the
magnetic field is moderate (of the order of 2 or less). In fact,
when both n and pz are small, we find that the rate can even
decrease by a factor of about 2 or less. We should note,
however, that this part of the parameter space must be
treated with great caution because of a limited validity of the
one-loop approximation.
Before proceeding further, it is instructive to investigate

the ratio of the damping rate and the real part of the fermion
energy, ΓnðpzÞ=En;pz

. Note that the knowledge of the real

FIG. 4. The fermion damping rate as a function of the longitudinal momentum pz and the Landau-level index n. The damping rate is
measured in units of the pion mass. Four separate panels display results for two different temperatures, T ¼ 200 MeV (left panels) and
T ¼ 400 MeV (right panels), and two magnetic fields, jqBj ¼ ð75 MeVÞ2 (top panels) and jqBj ¼ ð200 MeVÞ2 (bottom panels).
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part of particle energy at the zeroth order is sufficient for
calculating first-order corrections to ΓnðpzÞ=En;pz

. The
corresponding results are presented in Fig. 5. The four
panels correspond to the same choices of two temperatures
and two magnetic fields. In essence, this is the ratio of the
imaginary and real parts of the fermion energy that shows
whether the quantum state (with given n and pz) is a well-
defined quasiparticle. When the ratio value is comparable
to 1 or larger, the quasiparticle description is inapplicable.
Indeed, this is the case when the particle’s lifetime τn ¼
1=Γn is comparable to or shorter than the time needed to
measure its energy Δt≲ 1=En;pz

according to the uncer-
tainty principle. Alternatively, the uncertainty in particle’s
energy Γn is larger than the energy En;pz

itself.
As we see from Fig. 5, the ratio ΓnðpzÞ=En;pz

remains
small almost in the whole range of n and pz values.
However, the damping rate becomes very large in the
lowest few Landau levels (n ≲ 1) when the longitudinal
momentum pz is sufficiently small (pz ≲mπ). Formally,
these results indicate that the concept of well-defined
quasiparticles breaks down for the corresponding lowest
Landau level states. We believe this might be a premature
conclusion, however. It seems more likely that the validity
of the perturbative one-loop calculation breaks down in this
case. Because of the high degeneracy of the Landau levels,
it is plausible that the one-loop calculation breaks down,
especially in the region of small fermion energies.
As in the absence of a magnetic field, hard thermal loop

resummations might be very important in the strongly

magnetized QCD plasma [60]. Additionally, somewhat
similar hard magnetic loop resummation [28] may be
needed when there is a strong magnetic field. Both are very
likely to affect the self-energy at small energies. Therefore,
we reiterate that the large damping rates at small n and pz
should be accepted with great caution. Most likely, the
corresponding results are outside of the range of validity of
the approximations used. Qualitatively, however, it is
intriguing to think that the damping rates can be indeed
large in the low-lying Landau levels. They could dramati-
cally affect some observables in heavy-ion collisions, e.g.,
the electrical conductivity of plasma [66,69] and the
heavy-quark energy loss and dissipation rate [67,68].

B. Damping rates from the poles of the propagator

In the previous subsection, we used the definition of the
damping rate in terms of the imaginary part of the self-
energy by generalizing the general approach of Ref. [65] to
the case of quantum field theory in a quantizing magnetic
field. Here we consider an alternative definition that follows
from the structure of the full propagator, calculated in the
one-loop approximation.
When the full propagator is known, the fermion damping

rate can be also determined from the location of its poles in
the complex energy plane. At the leading order in coupling,
the explicit structure of the fermion propagator is derived in
Appendix A. As expected, the self-energy functions vk;n,
mn, v⊥;n, ṽn, and m̃n modify the fermion propagator; see
Eqs. (A9), (A15), and (A16). Most importantly for our

FIG. 5. The ratio of the fermion damping rate to its energy as a function of the longitudinal momentum pz and the Landau-level index
n. Four separate panels display results for two different temperatures, T ¼ 200 MeV (left panels) and T ¼ 400 MeV (right panels), and
two magnetic fields, jqBj ¼ ð75 MeVÞ2 (top panels) and jqBj ¼ ð200 MeVÞ2 (bottom panels).
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purposes here, one can extract the quasiparticle energies from the location of the poles in the propagator; see Eq. (A17).
Assuming that the self-energy corrections are small, the approximate expressions for the (positive) energies can be written as
follows:

pð�Þ
0 ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njqBj þ m̄2

0 þ p2
z

q  
1þ m̄0δmn − ð2njqBj þ m̄2

0Þδvk;n þ 2njqBjδv⊥;n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njqBj þ m̄2

0

p
ðm̄0ṽn − m̃nÞ

2njqBj þ m̄2
0 þ p2

z

!
: ð45Þ

Note that there are two different branches of solutions that
correspond to two spin states. Recall that the corresponding
two states were degenerate in the free propagator. However,
already at the leading order in coupling, the degeneracy is
lifted by the self-energy corrections ṽn and m̃n. Since we did
not calculate explicitly the real parts of the self-energy
functions vk;n,mn, v⊥;n, ṽn, and m̃n, we cannot quantify the

corresponding corrections to the real parts of particle
energies.
Nevertheless, using the imaginary parts of self-energy

functions [see Eqs. (29) through (33)], we can determine
leading-order corrections to the imaginary parts of particle

energies, i.e., Im½δpð�Þ
0;n �. Since the latter should coincide

with the damping rate up to an overall sign, we derive

Γð�Þ
n ≃

ð2njqBj þ m̄2
0ÞIm½δvk;n� − m̄0Im½δmn� − 2njqBjIm½δv⊥;n� ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njqBj þ m̄2

0

p ðm̄0Im½ṽn� − Im½m̃n�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njqBj þ m̄2

0 þ p2
z

p : ð46Þ

As expected, this result demonstrates that the two spin-split
Landau-level states have different damping rates. At the
same time, it is rewarding to see that the spin-averaged

damping rate, ΓðaveÞ
n ≡ ðΓðþÞ

n þ Γð−Þ
n Þ=2, agrees perfectly

with the result obtained by a very different method in the
previous subsection; see Eq. (40).
It is natural to ask how large the spin splitting effects on

the quasiparticle damping rate are. As we see from
Eq. (46), they are determined by the self-energy functions
Im½ṽn� and Im½m̃n�. The representative results for both, as
functions of the Landau-level index n, are shown in Fig. 6.
Each panel displays numerical data for three different
temperatures, i.e., T ¼ 200 MeV (blue lines), T ¼
300 MeV (green lines), T ¼ 400 MeV (red lines), and
two different magnetic fields, i.e., jqBj ¼ ð75 MeVÞ2
(open circles), jqBj ¼ ð200 MeVÞ2 (filled squares). The
top panels show the results for pz ¼ 0, while the bottom
panels show the results for pz ¼ 1000 MeV. Since the
imaginary parts of ṽn and m̃n themselves have no direct
physical meaning, there is no need to display more data
here. However, an interested reader could find a large set
of additional data for a wide range of pz values in the
Supplemental Material [64].
Let us now turn to the spin-splitting effects on the

damping rates. Two sets of representative results are shown
in Fig. 7. We display the difference between the rates of the
spin up and down states as functions of the Landau-level
index n. The two panels display the results for the same
(smallest) value of the magnetic field, jqBj ¼ ð75 MeVÞ2
but two different longitudinal momenta, pz ¼ 0 (left panel)

and pz ¼ 1000 MeV (right panel). The data for three
different temperatures are represented by different colors.
By comparing the magnitude of spin splitting with the
average damping rates in Fig. 4, we see that the effect of
spin splitting is really small. The same is true for other
values of the magnetic field. Quantitatively, a typical
difference between the rates of the spin up and down
states is of the order of a few percentages of the average rate
or less. However, it may reach up to about 10% in low-lying
Landau levels at small longitudinal momenta. In general,
we find that the relative spin splitting decreases with
increasing of the magnetic field. Therefore, one can argue
that, for most purposes, it is sufficient to use the spin-

averaged damping rate, ΓðaveÞ
n ≡ ðΓðþÞ

n þ Γð−Þ
n Þ=2, which

was investigated in detail in the previous subsection. This
argument can be further reinforced by the observation that
systematic uncertainties of the one-loop approximation
used in the study are probably larger than the effects of
spin splitting.
In conclusion of this section, let us emphasize that the

spin splitting is a qualitatively new feature that can play an
important role in strongly magnetized plasmas. While the
differences between the damping rates for spin-split states
in each Landau level remain quantitatively small, they may
affect some spin physics phenomena, chiral magnetic or
chiral separation effects. In this connection, it should be
emphasized that not only the imaginary parts of the
Landau-level energies but also their real parts will be spin
split. While we did not calculate the latter, such a
conclusion is supported by the general expression for the
self-energy derived.
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V. DISCUSSION AND SUMMARY

In this paper we derived a general expression for the
fermion self-energy in a hot and strongly magnetized plasma
by using the Landau-level representation. As we show, the
leading-order one-loop expression for the self-energy is

characterized by three velocity and two mass functions. The
velocity functions include a pair of spin-split parallel
components and a perpendicular component of the velocity.
The other two functions are the masses of the spin-split pair
of states in each Landau level. As we demonstrated, all of

FIG. 7. The spin-splitting of damping rates as functions of Landau-level index n for two fixed values of the longitudinal momentum:
pz ¼ 0 (left panel) and pz ¼ 1000 MeV (right panel). The magnetic field is jqBj ¼ ð75 MeVÞ2. Each panel contains results for three
different temperatures: T ¼ 200 MeV (blue), T ¼ 300 MeV (green), and T ¼ 400 MeV (red).

FIG. 6. The dependence of the self-energy functions Im½ṽn� and Im½m̃n�=m̄0 on the Landau-level index n for two fixed values of the
longitudinal momentum: pz ¼ 0 (top panels) and pz ¼ 1000 MeV (bottom panels). Each panel contains results for three different
temperatures: T ¼ 200 MeV (blue), T ¼ 300 MeV (green), and T ¼ 400 MeV (red); and two magnetic fields: jqBj ¼ ð75 MeVÞ2
(open circles) and jqBj ¼ ð200 MeVÞ2 (filled squares).
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these five functions have a nontrivial dependence on the
Landau-level index n and the longitudinal momentum pz.
Here we focused primarily on the imaginary (dissipative)

part of the fermion self-energy. We derived closed-form
expressions for the imaginary parts of all five functions that
define the Dirac structure of the self-energy. At the leading
order in coupling, the contributions to the imaginary parts
of the velocity and mass functions in the nth Landau level
come from the following three types of on shell processes:
(i) transitions to other Landau levels with lower indices n0
(ψn → ψn0 þ γ with n > n0), (ii) transitions to other Landau
levels with higher indices n0 (ψn þ γ → ψn0 with n < n0),
and (iii) transitions to Landau-level states with negative
energies (i.e., the annihilation process ψn þ ψ̄n0 → γ for
any n and n0).
We used the imaginary parts of the self-energy functions

to derive the Landau-level dependent fermion damping
rates ΓnðpzÞ. We employed two different methods to get the
corresponding results. On one hand, we obtain the damping
rate by utilizing the general approach of Weldon [65]. To
apply it to the case of hot plasma in a quantizing magnetic
field, first we had to modify the method to account for the
correct set of quantum numbers characterizing the Landau-
level states. As expected, the final result is expressed in
terms of the imaginary parts of the spin-averaged velocity
and mass functions; see Eq. (40).
The second method for extracting the damping rates used

the location of the poles in the full propagator. This
approach revealed that the two-spin degeneracy of the
Landau level states was lifted by radiative corrections.
Furthermore, by using the imaginary parts of particle
energies, we were able to extract the damping rates for

the spin-split states Γð�Þ
n ðpzÞ. It is important to note that the

spin-averaged rate, ΓðaveÞ
n ≡ ðΓðþÞ

n þ Γð−Þ
n Þ=2, agrees per-

fectly with the result obtained by Weldon’s method. Since
the effect of spin splitting on the rate is not large, one may
argue that the use of Weldon’s method might be sufficient
in most applications.
The analytical expression for the damping rate in

Eq. (43) is remarkable in many ways. It defines a positive
definite damping rate as a function of the Landau-level n
and the longitudinal momentum pz. We also showed that it
is determined by the same amplitudes that appear in photon
emission from a magnetized plasma.
To demonstrate the Landau-level dependent description

of the self-energy effects, we studied numerically the
fermion damping rates in a wide range of model parameters,
considering three different temperatures and three different
magnetic fields. The choice of model parameters, with
temperatures between 200 MeVand 400 MeVand magnetic
fields of the order of m2

π , were motivated by potential
applications in heavy-ion physics. The main results are
summarized in Figs. 4 and 5. In absolute terms, the largest
values of the rates are found for the low-lying Landau levels
and small values of the longitudinal momentum. In fact, in

some cases (at small n and pz), the damping rates appear to
be formally much larger than the real parts of the particle
energies. This suggests that the quasiparticle picture may
fail for such quantum states. These extreme cases should be
treated with great caution, however, since the one-loop
approximation may become particularly bad in those
regions of the parameter space.
Generally, we find that the rates have an overall

tendency to grow with increasing both temperature and
magnetic field. However, the enhancement is nonuniform
in the range of Landau-level indices n and longitudinal
momenta pz explored. The thermal effects are pronounced
the most in the region of small values of n. The magnetic
field enhancement, in contrast, is most prominent at large
values of pz. The latter may not be as surprising after one
recalls that the magnetic field is essential for allowing the
leading-order, one-photon processes (i.e., ψn → ψn0 þ γ,
ψn þ γ → ψn0 , and ψn þ ψ̄n0 → γ) to occur in the
first place.
We hope that the results for the fermion damping rates,

as well as the general method for calculating the self-energy
in the Landau-level representation, can be useful in a wide
range of studies of strongly magnetized relativistic plasma.
They can be useful in the calculation of transport properties
such as the electrical conductivity [66,69] and the particle
loss or dissipation rate [67,68]. In addition to heavy-ion
physics, our self-energy results can be useful in studies of
QED plasmas in astrophysics and cosmology.
While this study provides a clear proof of concept for

utilizing the Landau-level representation to describe self-
energy effects in strongly magnetized relativistic plasmas,
there are many theoretical issues left outstanding. The most
obvious of them is the calculation of the real part of the self-
energy. Unlike the imaginary part, the expression for the real
part contains ultraviolet divergences. Therefore, its evalu-
ation requires a careful renormalization procedure, which is
complicated by the Landau-level structure of the self-
energy. Despite these difficulties, we believe the problem
can be solved by using the general expression for the self-
energy derived here as the starting point. We plan to
consider this problem in the follow-up studies.
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APPENDIX A: FERMION PROPAGATOR
IN THE LANDAU-LEVEL REPRESENTATION

In this appendix, we derive an explicit form of the
fermion propagator in a magnetic field in the Landau-level
representation by using the method developed in Ref. [28].
By definition, the corresponding propagator in coordinate
space is given by the following matrix element:
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Gðu; u0Þ ¼ ihuj½ði∂tγ0 − π3γ3Þ − ðπ⊥ · γ⊥Þ − m̄0 − Σ�−1ju0i
¼ ihuj½vkði∂tγ0 − π3γ3Þ − v⊥ðπ⊥ · γ⊥Þ
þ iγ1γ2ṽði∂tγ0 − π3γ3Þ −m − iγ1γ2m̃�−1ju0i;

ðA1Þ

where π⊥ ¼ −ið∇ − iqAÞ and the vector potential in the
Landau gauge is used, i.e., A ¼ ð0; Bx; 0Þ. Here we took
into account all possible Dirac structures of the full
propagator at the leading order in coupling. In particular,
functions m, vk and v⊥ include radiative corrections to the
mass, the parallel and perpendicular components of the
velocity, respectively. The two additional functions ṽ and m̃
capture the effects of spin splitting corrections to the

parallel velocity and the mass. A self-consistency check
shows that there is no spin splitting correction to v⊥. Note
that, strictly speaking, all five are operator-valued func-
tions. When acting on the Landau-level orbitals (see
below), they will become functions of the Landau-level
index n and the longitudinal momentum pk. For example,
mn will be the mass function in the nth Landau level. (Note
that we use notation m̄0 for the tree-level mass to distin-
guish it from the mass in the lowest Landau level m0.)
Considering that translation symmetry remains intact in

the time and the z direction, it is convenient to switch
to the corresponding momentum subspace represented by
the longitudinal momentum pk ¼ ðp0; pzÞ. The resulting
propagator in a mixed representation reads as

Gðpk; u⊥; u0⊥Þ ¼ hu⊥j
	
vkðpk · γkÞ − v⊥ðπ⊥ · γ⊥Þ − iγ1γ2ṽðpk · γkÞ þm − iγ1γ2m̃



×
	ðv2k − ṽ2Þp2

k − v2⊥π2 −m2 þ m̃2 þ 2iγ1γ2ðmṽ − m̃vkÞðpk · γkÞ − iγ1γ2v2⊥qB


−1ju0⊥i: ðA2Þ

Here we took into account that −ðπ⊥ · γ⊥Þ2 ¼ π2⊥ − qBiγ1γ2. The eigenvalues of the operator π2⊥ are ð2nþ 1ÞjqBj, where
n ¼ 0; 1; 2;…, and the corresponding normalized eigenfunctions are given by the Landau orbitals, i.e.,

ψnpðu⊥Þ≡ hu⊥jnpi ¼
1ffiffiffiffiffiffiffiffi
2πl

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nn!

ffiffiffi
π

pp Hn

�
x
l
þ pl

�
e−

1

2l2
ðxþpl2Þ2e−is⊥py; ðA3Þ

where s⊥ ¼ signðqBÞ, l ¼ 1=
ffiffiffiffiffiffiffiffiffijqBjp

is the magnetic length, and HnðxÞ are the Hermite polynomials. It is useful to
note that

πxψn;pðu⊥Þ ¼ −i∂xψn;pðu⊥Þ ¼
i
2l

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnþ 1Þ

p
ψnþ1;pðu⊥Þ −

ffiffiffiffiffiffi
2n

p
ψn−1;pðu⊥Þ

�
; ðA4Þ

πyψn;pðu⊥Þ ¼ ð−i∂y − qBxÞψn;pðu⊥Þ ¼ −
s⊥
2l

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnþ 1Þ

p
ψnþ1;pðu⊥Þ þ

ffiffiffiffiffiffi
2n

p
ψn−1;pðu⊥Þ

�
; ðA5Þ

ðπ⊥ · γ⊥Þψn;pðu⊥Þ ¼
i
2l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnþ 1Þ

p
ψnþ1;pðu⊥Þðγ1 þ is⊥γ2Þ −

i
2l

ffiffiffiffiffiffi
2n

p
ψn−1;pðu⊥Þðγ1 − is⊥γ2Þ; ðA6Þ

where we took into account that H0
nðxÞ ¼ 2nHn−1ðxÞ and Hnþ1ðxÞ ¼ 2xHnðxÞ − 2nHn−1ðxÞ.

These wave functions satisfy the condition of completeness,

X∞
n¼0

Z
∞

−∞
dpψnpðu⊥Þψ�

npðu0⊥Þ ¼ δ2ðu⊥ − u0⊥Þ; ðA7Þ

which can be written in a compact form as
P

n;phu⊥jnpihpnju0i ¼ hu⊥ju0i.
By inserting the unit operator

P
n;p jnpihpnj in front of ju0⊥i on the right-hand side of Eq. (A2) and making use of the

properties in Eqs. (A4)–(A6), we derive the propagator in the following form:

Gðpk; u⊥; u0⊥Þ ¼ eiΦðu⊥;u0⊥ÞḠðpk; u⊥ − u0⊥Þ; ðA8Þ

where Φðu⊥; u0⊥Þ ¼ qB
2
ðxþ x0Þðy − y0Þ is the Schwinger phase, and
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Ḡðpk; u⊥Þ ¼ i
e−u

2⊥=ð4l2Þ

2πl2

X∞
n¼0

�
½vk;nðpk · γkÞ − iγ1γ2ṽnðpk · γkÞ þmn − iγ1γ2m̃n�

�
Ln

�
u2⊥
2l2

�
Pþ þ Ln−1

�
u2⊥
2l2

�
P−

�

− i
v⊥;n

l2
ðu⊥ · γ⊥ÞL1

n−1

�
u2⊥
2l2

��
1

Mn − 2nv2⊥;njqBj
; ðA9Þ

where Lα
nðzÞ are the Laguerre polynomials [by definition, Lα

−1ðzÞ≡ 0], P� ¼ ð1� s⊥iγ1γ2Þ=2 are spin projectors, and

Mn ¼ ðv2k;n − ṽ2nÞp2
k −m2

n þ m̃2
n þ 2iγ1γ2ðmnṽn − m̃nvk;nÞðpk · γkÞ: ðA10Þ

In derivation, we used the following relations:

Z
∞

−∞
dpψnpðu⊥Þψ�

npðu0⊥Þ ¼
e−ζ=2þiΦðu⊥;u0⊥Þ

2πl2
Ln

�ðu⊥ − u0⊥Þ2
2l2

�
; ðA11Þ

Z
∞

−∞
dpψnþ1;pðu⊥Þψ�

npðu0⊥Þ ¼
e−ζ=2þiΦðu⊥;u0⊥Þ

2πl2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnþ 1Þp x − x0 − is⊥ðy − y0Þ

l
L1
n

�ðu⊥ − u0⊥Þ2
2l2

�
; ðA12Þ

Z
∞

−∞
dpψn−1;pðu⊥Þψ�

npðu0⊥Þ ¼
e−ζ=2þiΦðu⊥;u0⊥Þ

2πl2
ffiffiffiffiffiffi
2n

p x0 − x − is⊥ðy − y0Þ
l

L1
n−1

�ðu⊥ − u0⊥Þ2
2l2

�
; ðA13Þ

where ζ ¼ ðu⊥ − u0⊥Þ2=ð2l2Þ. To obtain Eq. (A13), we used the following table integral 7.377 [63]:Z
∞

−∞
e−x

2

Hmðxþ yÞHnðxþ zÞdx ¼ 2n
ffiffiffi
π

p
m!zn−mLn−m

m ð−2yzÞ; ðA14Þ

which assumes m ≤ n.
Note that the last factor in Eq. (A9) is a matrix. It can be rendered in the following more convenient form:

1

Mn − 2nv2⊥;njqBj
¼ 1

Un

	ðv2k;n − ṽ2nÞp2
k − 2nv2⊥;njqBj −m2

n þ m̃2
n − 2iγ1γ2ðmnṽn − m̃nvk;nÞðpk · γkÞ



; ðA15Þ

where

Un ¼ ½ðv2k;n − ṽ2nÞp2
k − 2nv2⊥;njqBj −m2

n þ m̃2
n�2 − 4p2

kðmnṽn − m̃nvk;nÞ2: ðA16Þ

The poles of the full propagator are determined by setting Un ¼ 0. Its solutions determine the modified energies of the
Landau-level states, i.e.,

p2
0 ¼ p2

z þ
ðv2k;n − ṽ2nÞð2nv2⊥;njqBj þm2

n − m̃2
nÞ þ 2ðmnṽn − m̃nvk;nÞ2 � 2ðmnṽn − m̃nvk;nÞ

ffiffiffiffiffiffi
Vn

p

ðv2k;n − ṽ2nÞ2
; ðA17Þ

where

Vn ¼ ðv2k;n − ṽ2nÞð2nv2⊥;njqBj þm2
n − m̃2

nÞ þ ðmnṽn − m̃nvk;nÞ2: ðA18Þ

1. Fourier transform of the translation invariant part of the propagator

By performing the Fourier transform of the translation invariant part of the propagator in Eq. (A9), we derive

Ḡðpk; p⊥Þ ¼ ie−p
2⊥l2
X∞
n¼0

ð−1ÞnDnðpk; p⊥Þ
1

Mn − 2nv2⊥;njqBj
; ðA19Þ
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where the nth Landau level contribution is determined by

Dnðpk; p⊥Þ ¼ 2
	
vk;nðpk · γkÞ − iγ1γ2ṽnðpk · γkÞ þmn − iγ1γ2m̃n


	
PþLnð2p2⊥l2Þ − P−Ln−1ð2p2⊥l2Þ


þ 4v⊥;nðp⊥ · γ⊥ÞL1
n−1ð2p2⊥l2Þ: ðA20Þ

In derivation, we used the following table integrals:

Z
2π

0

e−iðk⊥·u⊥Þdϕ ¼ 2πJ0ðk⊥u⊥Þ; ðA21Þ

Z
2π

0

ðγ⊥ · û⊥Þe−iðk·u⊥Þdϕ ¼ 2iπðγ⊥ · k̂⊥ÞJ1ðk⊥u⊥Þ; ðA22Þ

Z
∞

0

rνþ1e−βr
2

Lν
nðαr2ÞJνðrkÞdr ¼

kν

ð2βÞ1þν

�
β − α

β

�
n
e−

k2
4βLν

n

�
αk2

4βðα − βÞ
�
: ðA23Þ

2. Free fermion propagator

The free fermion propagator is obtained from the full propagator by replacing vk;n, v⊥;n → 1,mn → m̄0, and setting zero
values to spin-splitting functions ṽn and m̃n. Then, the Fourier transform of the translation invariant part of the free
propagator takes the form

S̄ðpk; p⊥Þ ¼ ie−p
2⊥l2
X∞
n¼0

ð−1Þn Dð0Þ
n ðpk; p⊥Þ

p2
k − m̄2

0 − 2njqBj ; ðA24Þ

where

Dð0Þ
n ðpk; p⊥Þ ¼ 2

	ðpk · γkÞ þ m̄0


	
PþLnð2p2⊥l2Þ − P−Ln−1ð2p2⊥l2Þ
þ 4ðp⊥ · γ⊥ÞL1

n−1ð2p2⊥l2Þ: ðA25Þ

APPENDIX B: INVERSE FERMION PROPAGATOR IN THE LANDAU-LEVEL REPRESENTATION

By definition, the inverse of the full propagator is given by the following matrix element:

G−1ðpk; u⊥; u0⊥Þ ¼ −ihu⊥j
	
vkðpk · γkÞ − v⊥ðπ⊥ · γ⊥Þ þ iγ1γ2ðpk · γkÞṽ −m − iγ1γ2m̃


ju0⊥i: ðB1Þ

As in the derivation of the propagator in Appendix A, we insert the unit operator
P

n;p jnpihpnj in front of ju0⊥i to derive the
following representation for the inverse propagator:

G−1ðpk; u⊥; u0⊥Þ ¼ eiΦðu⊥;u0⊥ÞḠ−1ðpk; u⊥ − u0⊥Þ; ðB2Þ

where the translation invariant part of the propagator is given by a sum over Landau levels

Ḡ−1ðpk; u⊥Þ ¼ −i
e−u

2⊥=ð4l2Þ

2πl2

X∞
n¼0

�
½vk;nðpk · γkÞ þ iγ1γ2ðpk · γkÞṽn −mn − iγ1γ2m̃n�

�
PþLn

�
u2⊥
2l2

�
þ P−Ln−1

�
u2⊥
2l2

��

þ 1

l2
v⊥;nðu⊥ · γ⊥ÞL1

n−1

�
u2⊥
2l2

��
: ðB3Þ

Recall that, by definition, Lα
−1 ≡ 0.
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The corresponding Fourier transform reads as

Ḡ−1ðpk; p⊥Þ ¼ −2ie−p2⊥l2
X∞
n¼0

ð−1Þn	vk;nðpk · γkÞ þ iγ1γ2ðpk · γkÞṽn −mn − iγ1γ2m̃n


	
PþLnð2p2⊥l2Þ − P−Ln−1ð2p2⊥l2Þ


− 4ie−p
2⊥l2
X∞
n¼0

ð−1Þnv⊥;nðγ⊥ · p⊥ÞL1
n−1ð2p2⊥l2Þ: ðB4Þ

1. Self-energy in the Landau-level representation

By making use of the inverse full and free propagators, we derive

Σ̄ðpk; u⊥Þ ¼ iS̄−1ðpk; u⊥Þ − iḠ−1ðpk; u⊥Þ: ðB5Þ

By using the Landau-level representation for the inverse propagator, we obtain

Σ̄ðpk; u⊥Þ ¼ −
e−u

2⊥=ð4l2Þ

2πl2

X∞
n¼0

�
½δvk;nðpk · γkÞ þ iγ1γ2ðpk · γkÞṽn − δmn − iγ1γ2m̃n�

�
PþLn

�
u2⊥
2l2

�
þ P−Ln−1

�
u2⊥
2l2

��

þ δv⊥;n

l2
ðu⊥ · γ⊥ÞL1

n−1

�
u2⊥
2l2

��
; ðB6Þ

where δvk;n ¼ vk;n − 1, δv⊥;n ¼ v⊥;n − 1, and δmn ¼ mn − m̄0. The corresponding Fourier transform reads as

Σ̄ðpk; p⊥Þ ¼ −2e−p2⊥l2
X∞
n¼0

ð−1Þn	δvk;nðpk · γkÞ þ iγ1γ2ðpk · γkÞṽn − δmn − iγ1γ2m̃n


	
PþLnð2p2⊥l2Þ − P−Ln−1ð2p2⊥l2Þ


− 4e−p
2⊥l2
X∞
n¼0

ð−1Þnδv⊥;nðγ⊥ · p⊥ÞL1
n−1ð2p2⊥l2Þ: ðB7Þ

APPENDIX C: CALCULATION OF THE KERNELS

In the derivation of the Landau-level representation for the five component functions of the self-energy [see Eqs. (24)
through (28)], one encounters the two different types of kernel functions defined by the following expressions:

Kn;n0 ¼ ð−1Þnþn0 2l
2

π

Z
d2k⊥e−k

2⊥l2e−ðk⊥−q⊥Þ2l2Ln0 ð2k2⊥l2ÞLnð2ðk⊥ − q⊥Þ2l2Þ; ðC1Þ

K̄n;n0 ¼ ð−1Þnþn0 8l
4

π

Z
d2k⊥e−k

2⊥l2e−ðk⊥−q⊥Þ2l2ðk⊥ · ðk⊥ − q⊥ÞÞL1
n0−1ð2k2⊥l2ÞL1

n−1ð2ðk⊥ − q⊥Þ2l2Þ: ðC2Þ

To calculate the first kernel, it is convenient to start by noting the following Fourier transform:

1

4πl2

Z
d2u⊥e−u

2⊥=ð4l2ÞLn

�
u2⊥
2l2

�
e−ip⊥·u⊥ ¼ 1

4πl2

Z
∞

0

u⊥du⊥e−u
2⊥=ð4l2ÞLn

�
u2⊥
4πl2

�Z
2π

0

dϕe−ip⊥u⊥ cosϕ

¼ 1

2

Z
∞

0

r̄dr̄e−r̄
2=4Ln

�
r̄2

2

�
J0ðp⊥lr̄Þ ¼ ð−1Þne−p2⊥l2

Lnð2p2⊥l2Þ; ðC3Þ

where we introduced the following dimensionless variable r̄ ¼ u⊥=l and used table integral 7.419 1 in Ref. [63]. Similarly,
in the calculation of the second kernel, it is useful to utilize another Fourier transform,
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i
8πl4

Z
d2u⊥ðu⊥ · aÞe−u2⊥=ð4l2ÞL1

n

�
u2⊥
2l2

�
e−ip⊥·u⊥ ¼ ðp̂⊥ · aÞ

4l

Z
∞

0

r̄2dr̄e−r̄
2=4L1

n

�
r̄2

2

�
J1ðp⊥lr̄Þ

¼ ð−1Þnðp⊥ · aÞe−p2⊥l2L1
nð2p2⊥l2Þ; ðC4Þ

where a is an arbitrary transverse 2D vector. In the derivation, we used table integral 7.419 4 in Ref. [63].
By making use of the first result, we derive

Kn;n0 ¼
Z

d2k⊥
8π3l2

Z
d2u⊥e−u

2⊥=ð4l2ÞLn0

�
u2⊥
2l2

�
e−ik⊥·u⊥

Z
d2u0⊥e−ðu

0⊥Þ2=ð4l2ÞLn

�ðu0⊥Þ2
2l2

�
e−iðk⊥−q⊥Þ·u0⊥

¼
Z

d2u⊥
2πl2

e−u
2⊥=ð2l2ÞLn

�
u2⊥
2l2

�
Ln0

�
u2⊥
2l2

�
e−iq⊥·u⊥

¼ 1

l2

Z
∞

0

u⊥du⊥e−u
2⊥=ð2l2ÞLn

�
u2⊥
2l2

�
Ln0

�
u2⊥
2l2

�
J0ðq⊥u⊥Þ ¼ In;n0

0

�
q2⊥l2

2

�
: ðC5Þ

By making use of the second result, we derive

K̄n;n0 ¼ −
Z

d2k⊥
8π3l4

Z
d2u⊥e−u

2⊥=ð4l2ÞL1
n0−1

�
u2⊥
2l2

�
e−ik⊥·u⊥

Z
d2u0⊥ðu⊥ · u0⊥Þe−ðu

0⊥Þ2=ð4l2ÞL1
n−1

�ðu0⊥Þ2
2l2

�
e−iðk⊥−q⊥Þ·u0⊥

¼
Z

d2u⊥
2πl4

u2⊥e−u
2⊥=ð2l2ÞL1

n−1

�
u2⊥
2l2

�
L1
n0−1

�
u2⊥
2l2

�
e−iq⊥·u⊥

¼ 1

l4

Z
∞

0

u3⊥du⊥e−u
2⊥=ð2l2ÞL1

n−1

�
u2⊥
2l2

�
L1
n0−1

�
u2⊥
2l2

�
J0ðq⊥u⊥Þ ¼ In−1;n0−1

2

�
q2⊥l2

2

�
; ðC6Þ

where In;n0
0 ðξÞ and In;n0

2 ðξÞ are the same function that were introduced in Ref. [44], i.e.,

In;n0
0 ðξÞ ¼ ðn0Þ!

n!
e−ξξn−n

0 ðLn−n0
n0 ðξÞÞ2 ¼ n!

ðn0Þ! e
−ξξn

0−nðLn0−n
n ðξÞÞ2; ðC7Þ

In;n0
2 ðξÞ ¼ 2

ðn0 þ 1Þ!
n!

e−ξξn−n
0
Ln−n0
n0 ðξÞLn−n0

n0þ1
ðξÞ ¼ 2

ðnþ 1Þ!
ðn0Þ! e−ξξn

0−nLn0−n
n ðξÞLn0−n

nþ1 ðξÞ: ðC8Þ

Note that In;n0
2 ðξÞ can also be expressed in terms of In;n0

0 ðξÞ [44], i.e.,

In;n0
2 ðξÞ ¼ nþ n0 þ 2

2

	
In;n0
0 ðξÞ þ Inþ1;n0þ1

0 ðξÞ
 − ξ

2

	
Inþ1;n0
0 ðξÞ þ In;n0þ1

0 ðξÞ
: ðC9Þ

By definition, In;n0
0 ðξÞ and In;n0

2 ðξÞ vanish when either of their upper indices becomes negative.

APPENDIX D: WAVE FUNCTIONS FOR FERMIONS IN A MAGNETIC FIELD

Let us consider the spinor wave function in a given Landau (labeled by index n) level with a positive energy:

Ψn;pðuÞ ¼ e−ipk·uk ½ψn;pðu⊥ÞPþ þ iψn−1;pðu⊥ÞP−�v: ðD1Þ

Substituting it into the Dirac equation gives

ðiγμDμ − m̄0ÞΨn;pðuÞ ¼
	ðpk · γkÞ − ðπ⊥ · γ⊥Þ − m̄0



Ψn;pðuÞ

¼ e−ipk·uk
	
ψn;pðu⊥ÞPþ þ iψn−1;pðu⊥ÞP−


	ðpk · γkÞ þ γ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njqBj

p
− m̄0



v; ðD2Þ

where we used the property in Eq. (A6). The spinor v must satisfy the equation
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½ðpk · γkÞ þ γ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njqBj

p
− m̄0�v ¼ 0: ðD3Þ

It has a nonzero solution when

Det½ðpk · γkÞ þ γ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njqBj

p
− m̄0�

¼ ½p2
k − 2njqBj − m̄2

0�2 ¼ 0: ðD4Þ

Using the following representation of Dirac matrices,

γ0 ¼
�
I2 0

0 −I2

�
; γi ¼

�
0 σi

−σi 0

�
; ðD5Þ

where σi are the Pauli matrices, we derive explicit solutions
for spinor v, i.e.,

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̄0 þ En;pz

q
0
BBBBBBB@

a1
a2

pza1−
ffiffiffiffiffiffiffiffiffiffi
2njqBj

p
a2

m̄0þEn;pz

−
ffiffiffiffiffiffiffiffiffiffi
2njqBj

p
a1þpza2

m̄0þEn;pz

1
CCCCCCCA
: ðD6Þ

These spinor are similar but different from those in
Ref. [70]. However, here we use a slightly different ansatz
for the wave function (D1) and a different normalization
convention for the spinors, i.e.,

v̄v ¼ 2m̄0ða21 þ a22Þ: ðD7Þ

Therefore, the final spinor wave function reads as

Ψn;pðuÞ ¼ e−ipk·uk

0
BBBBBBBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̄0þEn;pz

p
ψn;pðu⊥Þa1

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̄0þEn;pz

p
ψn−1;pðu⊥Þa2

pza1−
ffiffiffiffiffiffiffiffiffiffi
2njqBj

p
a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m̄0þEn;pz

p ψn;pðu⊥Þ

−i
ffiffiffiffiffiffiffiffiffiffi
2njqBj

p
a1þpza2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m̄0þEn;pz

p ψn−1;pðu⊥Þ

1
CCCCCCCCA
; ðD8Þ

where we set s⊥ ¼ 1 for simplicity. Note that ψn;pðu⊥Þ and
iψn−1;pðu⊥Þ switch places when s⊥ ¼ −1. Two indepen-
dent states Ψn;p;sðuÞ are obtained by setting either
(i) a1 ¼ 1, a2 ¼ 0 or (ii) a1 ¼ 0, a2 ¼ 1. Then, we check
that the sum over both spin states gives

X
s

Ψn;p;sðuÞΨ̄n;p;sðu0Þ ¼
e−ipk·ðuk−u0kÞ

2

	ðψn;pðu⊥Þψ�
n;pðu0⊥Þ þ ψn−1;pðu⊥Þψ�

n−1;pðu0⊥ÞÞðEn;pz
γ0 − pzγ

3 þ m̄0Þ

þ iγ1γ2ðψn;pðu⊥Þψ�
n;pðu0⊥Þ − ψn−1;pðu⊥Þψ�

n−1;pðu0⊥ÞÞðEn;pz
γ0 − pzγ

3 þ m̄0Þ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njqBj

p
ðiγ1 þ γ2Þψn−1;pðu⊥Þψ�

n;pðu0⊥Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njqBj

p
ð−iγ1 þ γ2Þψn;pðu⊥Þψ�

n−1;pðu0⊥Þ


: ðD9Þ

Finally, when also integrated over the quantum number p, we obtain

Z
dp
X
s

Ψn;p;sðuÞΨ̄n;p;sðu0Þ ¼ e−ipk·ðuk−u0kÞ e
−ðu⊥−u0⊥Þ2=ð2l2ÞþiΦðu⊥;u0⊥Þ

2πl2

×

�
ðEn;pz

γ0 − pzγ
3 þ m̄0Þ

	
PþLnðζÞ þ P−Ln−1ðζÞ


þ ðu⊥ · γ⊥Þ
l2

L1
n−1ðζÞ

�
; ðD10Þ

where we used the shorthand notation ζ ¼ ðu⊥ − u0⊥Þ2=ð2l2Þ. By making use of this result, the expression for the fermion
damping rate (39) becomes

ΓnðpzÞ ¼
1

2p0

Z
d2u⊥e−ζ
2πl2

Tr

��
½ðpk · γkÞ þ m̄0�½PþLnðζÞ þ P−Ln−1ðζÞ� þ

ðu⊥ · γ⊥Þ
l2

L1
n−1ðζÞ

�

×
X∞
n0¼0

�
½Imδvk;n0 ðpk · γkÞ þ iγ1γ2ðpk · γkÞImṽn0 − Imδmn0 − iγ1γ2Imm̃n0 �½PþLn0 ðζÞ þ P−Ln0−1ðζÞ�

þ Imδv⊥;n0

l2
ðu⊥ · γ⊥ÞL1

n0−1ðζÞ
��

: ðD11Þ

After integrating over ζ, this reduces to the final expression for the spin-averaged damping rate, which is given in Eq. (40) in
the main text.
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