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We compute the suppression of ϒð1SÞ, ϒð2SÞ, and ϒð3SÞ states in p-Pb collisions relative to pp
collisions, including nuclear parton distribution function (nPDF) effects, coherent energy loss, momentum
broadening, and final-state interactions in the quark-gluon plasma. We employ the EPPS21 nPDFs and
calculate the uncertainty resulting from variation over the associated error sets. To compute coherent energy
loss and momentum broadening, we follow the approach of Arleo, Peigne, and collaborators. The 3þ 1D
viscous hydrodynamical background evolution of the quark-gluon plasma is generated by anisotropic
hydrodynamics. The in-medium suppression of bottomonium in the quark-gluon plasma is computed using
a next-to-leading-order open quantum system framework formulated within potential nonrelativistic
quantum chromodynamics. We find that inclusion of all these effects provides a reasonable description of
experimental data from the ALICE, ATLAS, CMS, and LHCb Collaborations for the suppression ofϒð1SÞ,
ϒð2SÞ, and ϒð3SÞ as a function of both transverse momentum and rapidity.
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I. INTRODUCTION

The theoretical and experimental study of heavy quar-
konium suppression in AA and pA collisions can be used to
understand the role of both cold and hot nuclear matter
effects on strongly bound states. Because both cold and hot
suppression mechanisms can be relevant, it is necessary to
have a comprehensive model of both in order to draw
quantitative conclusions about the different sources of
heavy quarkonium suppression in such collisions.
Almost forty years ago, Matsui and Satz proposed that

suppression of heavy quarkonium production in AA
collisions relative to their production in pp collisions
could be used to assess whether or not a deconfined quark-
gluon plasma (QGP) was created in such collisions [1].
Their predictions were based on the expectation that the
production of a QGP would reduce the binding energy of
heavy quarkonium states through the color Debye screen-
ing of the interaction between quarks and antiquarks in the
deconfined phase of quantum chromodynamics (QCD)
[2]. In the Matsui-Satz picture, excited states would
experience higher suppression than the ground state,
and this effect would provide a way to gauge whether
or not a QGP had been formed and infer the temperature of
the produced QGP [3,4].
In recent years, however, there has been a paradigm shift

in our understanding of the temperature dependence
of the heavy quark-antiquark potential, indicating that

color screening may not be the driving force behind the
breakup of heavy quarkonium in the QGP. The widths of
the heavy quarkonium states were determined to be large at
temperatures above the deconfinement temperature, caus-
ing the breakup of these states at temperatures below their
naive dissociation temperatures [5–13]. These large in-
medium widths were reflected by the emergence of
imaginary-valued contributions to the heavy quark-anti-
quark potential. Resummed perturbative and effective field
theory calculations of the imaginary part of the heavy-
quark potential have been confirmed by first-principles
nonperturbative Euclidean lattice QCD and classical real-
time lattice QCD calculations [14–19]. The most recent
lattice QCD calculations indicate that heavy quarkonium
bound states possess large widths and that there is very little
modification of the real part of the potential [20,21]. This
result provides a fundamental challenge to the original
Matsui-Satz picture and forces us to consider the QGP-
induced breakup of heavy quarkonium states at temper-
atures lower than their naive dissociation temperatures, for
example, at temperatures generated in pA collisions.
Recent theoretical and phenomenological studies have

provided a self-consistent quantum mechanical description
of heavy quarkonium evolution in the QGP in terms of an
open quantum system (OQS) in which the heavy-quark
bound state is coupled to a fluctuating thermal medium
[22–41]. One of the conceptual issues brought forth by such
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studies was how to formulate the time evolution of the
reduced density matrix of the heavy quark-antiquark pairs
in a manner that preserved unitary and positivity. The
solution to this problem came through the formulation of
the problem as an OQS in which heavy-quark-antiquark
pairs are described in terms of a reduced density matrix that
is obtained by integrating over the medium degrees of
freedom. For recent reviews, see Refs. [32,42,43].
Because heavy quarkonium widths can be on the order of

a few hundred MeV, QGP-induced heavy quarkonium
breakup can occur on timescales that are short compared
to the QGP lifetime and, therefore, must be taken into
account in phenomenological applications. This under-
standing has been used in many phenomenological studies
of heavy quarkonium suppression in the QGP generated in
AA collisions [28,31,35,44–52].
Despite the concerted effort to understand heavy quarko-

nium suppression in the QGP, key theoretical uncertainties
related to the role of cold nuclear matter (CNM) effects,
such as the modification of parton distribution functions in
nuclear environments (nPDFs) [53–56], energy loss and
momentum broadening of the produced quarkonia [57–60],
and interactions with comoving hadrons [61–72] remain
[73]. To have a firm quantitative understanding of the role
played by both cold and hot nuclear matter effects, it is
necessary to systematically analyze heavy quarkonium
suppression in both AA and pA collisions. In the former,
CNM effects are expected to be subleading, resulting in a
suppression on the order of 20%–30% compared to pp
collisions (RAA ∼ 70–80%), which is insufficient to explain,
for example, the large suppression of bottomonium produc-
tion observed at the Large Hadron Collider (LHC) [75–82].
However, at lower collision energies, it may be necessary

to include CNM effects in order to quantitatively under-
stand the experimental observations made at Brookhaven
National Laboratory’s Relativistic Heavy Ion Collider
[51,83–85]. Additionally, in pA collisions at LHC energies,
the suppression of ϒð1SÞ production is understood to
come primarily from nPDF, energy loss, and momentum-
broadening effects. This makes it critical to include these
effects to understand the transverse momentum and rapidity
dependence of the suppression observed in such collisions.
Experimental observations of excited bottomonium states
such as the ϒð2SÞ and ϒð3SÞ indicate that these states are
more suppressed than the ground state. This differential
suppression cannot be understood solely in terms of nPDF
and energy loss and momentum broadening. Typically,
final-state interactions in the framework of comover models
are invoked to explain the greater suppression of heavy
quarkonium excited states relative to the ground state
[64,66–72]; however, this is not the only possible final-
state interaction that must be taken into account. One must
also consider the possibility that there is a short-lived QGP
created in p-Pb collisions [86,87], which can cause final-
state suppression of heavy quarkonium [88].

This possibility has previously been explored in the
literature. In Ref. [89], the authors considered a combina-
tion of EPS09 nPDF modifications and hot QGP effects on
J=ψ and ψð2SÞ production using a transport model that
included regeneration effects. The dynamical background
was calculated using a 2þ 1D fireball model with a first-
order phase transition applied in different rapidity intervals,
assuming different initial temperatures in each interval. In
Ref. [90], the authors considered the effect of both cold and
hot nuclear matter effects on ϒ suppression. They consid-
ered nPDF effects and coherent energy loss and used 2þ
1D ideal hydrodynamics for the background evolution. In
Ref. [91], the authors considered EPS09 nPDFs and hot
QGP effects on J=ψ and ψð2SÞ production using a complex
potential model that included screening and in-medium
decays. They coupled the quantum mechanical evolution
to a 2þ 1D ideal hydrodynamics background with a first-
order phase transition. Similarly to the first model, they
applied their 2þ 1D background in separately tuned
rapidity intervals. In Ref. [92], the authors considered
only hot QGP effects on ϒðnSÞ production in a wide
variety of systems, including pp, p-Pb, p-O, and O-O.
The underlying model was based on transport theory
without regeneration, with dissociation rates calculated
assuming gluodissociation and inelastic parton scatter-
ing. The hydrodynamic background used was provided
by event-by-event 2þ 1D viscous hydrodynamics gen-
erated by the SONIC code [93]. Finally, in Ref. [94], the
authors combined EPS09 nPDFs and hot QGP effects on
ϒðnSÞ production using transport theory and 2þ 1D
ideal hydrodynamics applied only at central rapidity. In
all the references listed above, the authors found that
there could be important final-state effects on heavy
quarkonium states arising from propagation through a
short-lived QGP.
In this paper, we present a comprehensive calculation of

cold and hot nuclear matter effects on bottomonium
production in minimum-bias (min-bias) p-Pb collisions.
We employ a three-stage model that takes into account
nPDF effects on initial bottomonium production using
EPPS21 nPDF sets [54]; coherent energy loss and trans-
verse momentum broadening following the formalism of
Refs. [57–60]; and the real-time evolution of bottomo-
nium states in the QGP produced in p-Pb collisions using
an OQS Lindblad equation solver formulated within the
potential nonrelativistic QCD (pNRQCD) effective theory
[38]. Our work goes beyond previous studies of botto-
monium suppression in p-Pb collisions by including state-
of-the-art calculations of all three effects in combination.
In addition, we use a 3þ 1D dissipative hydrodynamic
background with a realistic equation of state when
computing QGP-induced suppression. Based on this,
we can systematically compute the magnitude of each
effect as a function of transverse momentum and rapidity,
individually and in combination, allowing comparisons
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with experimental data collected in different rapidity
intervals by the ALICE, ATLAS, CMS, and LHCb
Collaborations in a manner consistent with the transverse
momentum and rapidity dependence of soft-hadron pro-
duction in p-Pb collisions [95–98].
We find that the inclusion of these three effects allows for

a quite reasonable description of available data given
current experimental and theoretical uncertainties. Final-
state effects on the ϒð1SÞ represent a small correction
relative to the effects of nPDFs, coherent energy loss, and
transverse momentum broadening. However, final-state
effects on ϒð2SÞ and ϒð3SÞ production are necessary to
obtain agreement with the available data. This necessity
provides further evidence for the production of a hot, but
short-lived, QGP being generated in p-Pb collisions. This
conclusion supports previous studies of quarkonium sup-
pression in p-Pb collisions [89–92,94] that found that
inclusion of final-state interactions in the QGP resulted in
increased suppression of excited heavy quarkonium states
relative to their ground states.
The structure of our paper is as follows. In Sec. II, we

provide details concerning nPDF effects on bottomonium
production. In Sec. III, we discuss the effects of energy loss
and transverse momentum broadening. In Sec. IV, we
provide details of the OQSþ pNRQCD framework and
the 3þ 1D hydrodynamical evolution used as the back-
ground for computing bottomonium suppression in the
QGP. In Sec. V, we discuss how initial- and final-state
effects are combined. In Sec. VI, we describe how late-time
feed down of bottomonium excited states is included. In
Sec. VII, we present our final results compared to exper-
imental data from the ALICE, ATLAS, CMS, and LHCb
Collaborations. In Sec. VIII, we present our conclusions
and an outlook for the future. Finally, in the Appendix, we
provide details concerning the dependence of all effects
on

ffiffiffiffiffiffiffiffi
sNN

p
.

II. NUCLEAR PARTON DISTRIBUTION
FUNCTION EFFECTS

We begin by presenting the calculation of ϒ production
within the color evaporation model [99]. This model,
together with the improved color evaporation model
[100], can describe the ϒ rapidity and transverse momen-
tum distributions, including at rather low pT.
The color evaporation model (CEM) assumes that some

fraction, FC, of the bb̄ pairs produced with a pair mass
below the BB̄ pair mass threshold will go on mass shell as
an ϒ state,

σCEMðppÞ ¼ FC

X
i;j

Z
4m2

H

4m2

dŝ
Z

dx1dx2

× Fp
i ðx1; μ2F; kT1

ÞFp
j ðx2; μ2F; kT2

Þσ̂ijðŝ; μ2F; μ2RÞ;
ð1Þ

where ij ¼ gþ g; qþ q̄, or qðq̄Þ þ g and σ̂ijðŝ; μ2F; μ2RÞ is
the partonic cross section for initial state ijwith the qðq̄Þ þ
g process appearing at next-to-leading order (NLO) in αs.
The cross section and parton distribution functions are
calculated at factorization scale μF and renormalization
scale μR. The NLO heavy-flavor cross section is obtained
using the HVQMNR code [101]. The values for the bottom
quark mass, M, and the scales μF and μR, are determined
from a fit to the total bb̄ cross section at NLO:
ðm;μF=mT;μR=mTÞ¼ð4.65�0.09GeV;1.40þ0.77

−0.59 ;1.10
þ0.22
−0.20Þ.

The scales are defined relative to the transverse mass of
the pair, μF;R ∝ mT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2

T

p
, where the pT is the bb̄

pair pT, p2
T ¼ 0.5ðp2

T;Q þ p2
T;Q̄Þ. The normalization factor

FC is obtained by fitting the energy dependence of the
summed ϒðnSÞ cross sections at y ¼ 0, multiplied by the
branching ratio to muon pairs. The normalizations of
individual states are determined based on the individual
branching ratios and feed down.
The parton densities in Eq. (1) include intrinsic kT ,

required to keep the pair cross section finite as pT → 0.
They are assumed to factorize into the normal collinear
parton densities and a kT-dependent function,

Fpðx; μ2F; kTÞ ¼ fpðx; μ2FÞGpðkTÞ: ð2Þ

The CT10 proton parton distribution functions (PDFs)
[102] are employed in the calculations of fpðx; μ2FÞ.
At leading order (LO) in the CEM, the QQ̄ pair pT is

zero. Thus, kT broadening is required to keep the pT
distribution finite as pT → 0. Broadening has typically
been modeled by intrinsic transverse momentum, kT , added
to the parton densities and playing the role of low trans-
verse momentum QCD resummation [103].
In the HVQMNR code, an intrinsic kT is added to each

final state bottom quark, rather than to the initial state, as
in the case of Drell-Yan production [103]. In the initial
state, the intrinsic kT function multiplies the parton
distribution functions for both hadrons, assuming the x
and kT dependencies factorize, as in Eq. (2). At LO, there
is no difference between an initial-state (on the partons) or
final-state (on the produced bottom quarks) kT kick.
However, at NLO, when there is a light parton in
the final state, the correspondence can be inexact. The
difference between the two implementations is small if
hk2Ti ≤ 2–3 GeV2 [104].
A Gaussian distribution is employed for GpðkTÞ in

Eq. (2) [104],

GpðkTÞ ¼
1

πhk2Tip
expð−k2T=hk2TipÞ: ð3Þ

The rapidity distributions are independent of the intrin-
sic kT .
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The broadening is applied by boosting the transverse
momentum of the bb̄ pair (plus light parton at NLO) to its
rest frame from the longitudinal center-of-mass frame. The
transverse momenta of the incident partons, k⃗T1 and k⃗T2, or,
in this case, the final-state b and b̄ quarks, are redistributed
isotropically with unit modulus, according to Eq. (3),
preserving momentum conservation. Once boosted back
to the initial frame, the transverse momentum of the bb̄ pair
changes from p⃗T to p⃗T þ k⃗T1 þ k⃗T2 [105].
The broadening effect decreases as

ffiffiffiffiffiffiffiffi
sNN

p
increases

because the perturbatively calculated average pT of the
pair bb̄ also increases with

ffiffiffiffiffiffiffiffi
sNN

p
. The value of hk2Tip is

assumed to increase with
ffiffiffiffiffiffiffiffi
sNN

p
so that the effect is non-

negligible for low pT heavy-flavor production at higher
energies. The energy dependence of hk2Tip in Ref. [106] is

hk2Tip ¼
�
1þ 1

n
ln

� ffiffiffiffiffiffiffiffi
sNN

p ðGeVÞ
20 GeV

��
GeV2; ð4Þ

with n ¼ 3 for ϒ production. Thus, hk2Tip increases rather
slowly with energy. At the LHC pA energies, hk2Tip ¼
2.84 GeV2 and 3 GeV2 for

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 and 8.16 TeV,
respectively. The values of hk2Tip are approximately within
the range of applicability proposed in Ref. [104].
The nuclear modifications of the parton densities

are included in the calculation of ϒ production in pA
collisions as

σCEMðpAÞ ¼ FC

X
i;j

Z
4m2

H

4m2

dŝ
Z

dx1dx2

× Fp
i ðx1; μ2F; kTÞFA

j ðx2; μ2F; kTÞσ̂ijðŝ; μ2F; μ2RÞ;
ð5Þ

where

FA
j ðx2; μ2F; kTÞ ¼ Rjðx2; μ2F; AÞFp

j ðx2; μ2F; kTÞ: ð6Þ

The kT broadening in the nuclear target is implemented in
the final state according to the method described in the next
section. No nuclear absorption is assumed for ϒ suppres-
sion at the LHC.
The factor Rjðx2; μ2F; AÞ represents the nuclear modifi-

cation of the parton distributions. A number of global
analyses have been made to describe the modification as a
function of x and the factorization scale μF, assuming
collinear factorization and starting from a minimum scale,
μ0F. The nPDF effects generated in this scheme are gen-
erally implemented by a parametrization as a function of x,
μF, and A.
The NLO EPPS21 [54] nPDF parametrization is used in

our calculations. EPPS21 has 24 fit parameters, for 49 total
sets: one central set and 48 error sets. The error sets are

determined by individually varying each parameter within
1 standard deviation of its best-fit value. The uncertainties
on Rjðx2; μ2F; AÞ are calculated by summing the excursions
of each of the error sets from the central value in
quadrature.
The nPDF uncertainties on the ϒ distributions are

obtained by calculating the perturbative cross sections at
the central values assumed for the bottom mass and the
factorization and renormalization scales employing the
central EPPS21 set as well as the 48 error sets and summing
the differences in quadrature. The deviations of the result-
ing uncertainty bands from the central cross section are on
the order of 20%.
The EPPS21 ratios for gluons are shown at the ϒ mass

scale in Fig. 1. The central sets, along with the uncertainty
bands, are shown for Pb (A ¼ 208) targets. The antisha-
dowing peak around x ∼ 0.05 is at backward rapidity in
p-Pb collisions, while low-x shadowing is manifested at
forward rapidity.

III. ENERGY LOSS AND MOMENTUM
BROADENING

Quarkonium states can also undergo an elastic scatter-
ing, thereby exchanging a gluon with cold nuclear matter
or the nuclear target, and this scattering can induce
radiation. The medium-induced radiation spectrum caused
by the gluon radiation is coherent. This coherent energy
loss is different from the gluon radiation resummed in
leading-twist parton distribution and fragmentation func-
tions and should also be considered [57,59]. Taking into
account coherent parton energy loss ε in cold nuclear

FIG. 1. The EPPS21 ratios, with uncertainties, are shown at the
scale of the ϒð1SÞ mass for gluons as a function of momentum
fraction x. The central set is denoted by the solid curve, while the
dashed curves give the upper and lower limits of the uncertainty
bands.
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matter and transverse-momentum broadening δpT , the
quarkonium double differential cross section in pA
collisions can be written in terms of the pp quarkonium
production cross section [58],

1

A

dσϒpA
dyd2p⃗T

ðy; p⃗TÞ

¼
Z
φ

Z
εmaxðyÞ

0

dεPðε; EðyÞ;l2Þ

×
�

EðyÞ
EðyÞ þ ε

�
dσϒpp

dyd2p⃗T
ðyðEþ εÞ; jp⃗T − δp⃗T jÞ; ð7Þ

where y is the momentum rapidity, p⃗T is the transverse
momentum, and

R
φ ¼ R

2π
0 dφ=ð2πÞ. In Eq. (7), E is the

quarkonium energy and ε is the energy loss experienced
by the state as it propagates through the nucleus in the
nuclear rest frame. The quenching weight, P, is the
probability density for the energy loss as a function of
the radiated energy and the energy of the radiating
particle. The upper limit on the integral over ε is given
by εmax ¼ minðEp − E;EÞ where Ep ≃ s=ð2mpÞ is the
proton energy in the nuclear rest frame [57], s is the
Mandelstam variable, and mp is the mass of the proton.
The magnitude of the transverse momentum broadening

in pA collisions can be expressed as δpT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
A − l2

p

q
,

where lA and lp are the transverse momentum broadening
due to the traversal of the quarkonium state through
a nucleus or a proton, respectively. The nuclear momentum
broadening is given in terms of the transport coefficient q̂
times the effective path length LA through the target
nucleus A, i.e., l2

A ¼ q̂LA, with q̂ depending on the
kinematics, as specified below.
In Eq. (7), the integral over the azimuthal angle is the

integral over the azimuthal angle φ of δp⃗T , which is
assumed to be uniformly distributed in the transverse
plane. In this case, the transverse momentum p⃗T can be
taken along the x axis by choosing a coordinate system
such that p⃗T ¼ ðpT; 0Þ and δp⃗T ¼ δpTðcosφ; sinφÞ, giv-
ing jp⃗T − δp⃗T j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpT − cosφδpTÞ2 þ ðsinφδpTÞ2

p
.

We note that, by making a change of variables, one can
rewrite Eq. (7) in terms of the rapidity shift δy defined as

EðyÞ þ ε≡ Eðyþ δyÞ ¼ EðyÞeδy; ð8Þ

which gives

1

A

dσϒpA
dyd2p⃗T

ðy; p⃗TÞ ¼
Z
φ

Z
δymaxðyÞ

0

dδyP̂ðeδy − 1;l2Þ

×
dσϒpp

dyd2p⃗T
ðyþ δy; jp⃗T − δp⃗T jÞ; ð9Þ

with δymax ¼ minðln 2; ymax − yÞ, where ymax ¼
lnð ffiffiffiffiffiffiffiffi

sNN
p

=mT;ϒÞ is the maximum bottomonium rapidity
in the proton-nucleon center-of-momentum frame and

mT;ϒ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þM2

ϒ

q
is the transverse mass of the botto-

monium state.

A. The coherent energy loss quenching weight

The quenching weight P can be obtained from the
radiation spectrum dI=dω. The fully coherent energy loss
result is [57]

Pðε; E;l2
AÞ ¼

dI
dε

exp

�
−
Z

∞

ε
dω

dI
dω

�

¼ ∂

∂ε
exp

�
−
Z

∞

ε
dω

dI
dω

�
; ð10Þ

with

dI
dω

¼ Ncαs
πω

�
ln

�
1þ l2

AE
2

m2
T;ϒω

2

�
− ln

�
1þ Λ2

pE2

m2
T;ϒω

2

��

× Θðl2
A − Λ2

pÞ: ð11Þ

The quantity Λ2
p ¼ maxðΛ2

QCD;l
2
pÞ is the quarkonium

momentum broadening experienced when traversing
a proton, with QCD scale parameter ΛQCD. Above, Nc

is the number of colors and αs is the QCD coupling
constant evaluated at the average scale of the momentum
transfer.
From the above expression, one finds that EPðε; E;l2

AÞ
scales as a function of x≡ ε=E and l2

A. This allows one to
introduce a scaled function P̂ defined as P̂ðx;l2

AÞ≡
EPðε; E;l2

AÞ, which can be expressed in terms of the
dilogarithm function Li2ðxÞ as [58]

P̂ðx;l2
AÞ ¼

∂

∂x
exp

�
Ncαs
2π

�
Li2

�
−l2

A

x2m2
T;ϒ

�

− Li2

�
−Λ2

p

x2m2
T;ϒ

���
: ð12Þ

We take Nc ¼ 3 and use the four-loop running for the
strong coupling constant αs, with the scale given by lA and
ΛQCD¼0.308GeV. This value ofΛQCD givesαsð1.5GeVÞ¼
0.326, which is the value extracted from lattice QCD
calculations of the static energy [107]. We take M ¼
9.95 GeV, which is the average of the ϒð1SÞ, ϒð2SÞ, and
ϒð3SÞ masses [108].
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Based on fits to HERA data [109], we assume

q̂ ¼ q̂0

�
10−2

xA

�
0.3

;

xA ¼ minðx0; x2Þ;
x0 ¼ 1=ð2mpLAÞ;
x2 ¼

mTffiffiffiffiffiffiffiffi
sNN

p e−y: ð13Þ

The parameter q̂0 ¼ q̂ðx ¼ 10−2Þ is fixed to experimental
data. We follow Arleo and Peigne [57] and use

q̂0 ¼ 0.075 GeV2=fm: ð14Þ

To compute the effect of momentum broadening, an
estimate of the effective path length traversed by the parton
through the nucleus is required. We use [57]

LA ¼ Lp þ
A − 1

A2ρ0

Z
d2b⃗T2

Aðb⃗Þ; ð15Þ

where TA is the nuclear thickness function for A ¼ 208 and
b⃗ is the impact parameter. To compute TA, we assume a
Woods-Saxon distribution for the nucleon density with
ρ0 ¼ 0.17 fm−3, d ¼ 0.54 fm, and RPb ¼ 6.49 fm. The
effective path length for the proton is taken to be Lp ¼
1.5 fm [57]. The effective path length for Pb is calculated
using Eq. (15), giving LPb ¼ 10.41 fm.

B. Parametrization of the pp cross section

The double differential cross section of the prompt
quarkonia entering into Eqs. (7) and (9) can be para-
metrized as [58]

dσϒpp
dyd2p⃗T

¼ N
�

p2
0

p2
0 þ p2

T

�
υ
�
1 −

2mTffiffiffiffiffiffiffiffi
sNN

p cosh y

�
β

: ð16Þ

Here, the normalization N is irrelevant since we consider
only cross section ratios. The other constants are
p0 ¼ 6.6 GeV, υ ¼ 2.8, and β ¼ 13.8, which are obtained
from a global fit of ϒ production data [58]. We have
explicitly verified that this fit is in good agreement with the
CEM pp cross section introduced in Sec. II. Here, we use
this analytic form because it is more efficient in numerical
calculations. In addition, we will use this form when
sampling bottomonium transverse momenta and rapidities
for propagation through the QGP.

IV. QUARKONIUM SUPPRESSION IN THE
QUARK-GLUON PLASMA

To understand how heavy quarkonium pairs evolve in the
QGP, we use numerical solutions to a Lindblad equation
obtained within the pNRQCD effective field theory. The

Lindblad equation describes changes in the reduced density
matrix of heavy quarkonium in an OQS approach. The
results presented here are based on NLO evolution equa-
tions, which were obtained by expanding the quantum
master equation obeyed by the reduced density matrix to
NLO in the binding energy over the temperature [35].

A. NLO pNRQCD+OQS

In order to model the final-state interactions experi-
enced by produced bottomonium states, we use a non-
equilibrium master equation that can be derived using
pNRQCD and OQS methods. We assume the following
hierarchy of scales M ≫ 1=a0 ≫ πT ∼mD ≫ Eb, where
M is the heavy quark mass, a0 is the Bohr radius of the
quarkonium state, T is the temperature of the medium,
mD ∼ gT is the Debye mass, and Eb is the binding energy
of the quarkonium state [23,24]. At NLO in the binding
energy over temperature (Eb=T), the resulting Lindblad
equation can be written as [35,38,51]

dρðtÞ
dt

¼ −i½H; ρðtÞ�

þ
X1
n¼0

�
Cn
i ρðtÞCn†

i −
1

2
fCn†

i Cn
i ; ρðtÞg

�
; ð17Þ

with the reduced density matrix and Hamiltonian given by

ρðtÞ ¼
�
ρsðtÞ 0

0 ρoðtÞ

�
ð18Þ

and

H ¼
�
hs þ ImðΣsÞ 0

0 ho þ ImðΣoÞ

�
: ð19Þ

The subscripts s and o above refer to singlet and octet
states respectively. The NLO singlet and octet self-
energies are given by

ImðΣsÞ ¼
r2

2
γ þ κ

4MT
fri; pig; ð20Þ

ImðΣoÞ ¼
N2

c − 2

2ðN2
c − 1Þ

�
r2

2
γ þ κ

4MT
fri; pig

�
; ð21Þ

where, in both expressions above, the first terms are LO in
Eb=T and the second terms are NLO in Eb=T. The
resulting collapse operators, which encode singlet-octet,
octet-singlet, and octet-octet transitions, are
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C0
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ

N2
c − 1

r �
0 1

0 0

��
ri þ

ipi

2MT
þ ΔVos

4T
ri

�

þ ffiffiffi
κ

p �
0 0

1 0

��
ri þ

ipi

2MT
þ ΔVso

4T
ri

�
; ð22Þ

C1
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κðN2

c − 4Þ
2ðN2

c − 1Þ

s �
0 0

0 1

��
ri þ

ipi

2MT

�
; ð23Þ

where ΔVos¼Vo−Vs is the difference between the octet
and singlet potentials, with Vs¼−CFαs=r and Vo¼
CFαs=8r. Here, the bottom quark mass is taken to be
the 1S-mass, M ¼ 4.73 GeV, and the strong coupling
constant αs ¼ g2=4π is evaluated using one-loop running
at the scale of the inverse Bohr radius, giving αs ¼ 0.468,
following Ref. [35].
The transport coefficients κ and γ are given by the

chromoelectric correlators

κ ¼ g2

18

Z
∞

0

dthfẼa;iðt; 0⃗Þ; Ẽa;ið0; 0⃗Þgi; ð24Þ

γ ¼ −i
g2

18

Z
∞

0

dth½Ẽa;iðt; 0⃗Þ; Ẽa;ið0; 0⃗Þ�i; ð25Þ

where Ẽ is a chromoelectric field sandwiched between two
links in the fundamental representation, i.e., Ẽa;iðt; 0⃗Þ ¼
ΩðtÞ†Ea;iðt; 0⃗ÞΩðtÞ, with

ΩðtÞ ¼ exp

�
−ig

Z
t

−∞
dt0A0ðt0; 0⃗Þ

�
: ð26Þ

The Lindblad equation expressed formally in Eq. (17),
with the collapse operators given in Eqs. (22) and (23)
describes the evolution of the heavy quarkonium reduced
density matrix at NLO in Eb=T [35]. We refer the reader to
Ref. [35] for details concerning the derivation of these
equations.
The transport coefficients κ̂ ¼ κ=T3 and γ̂ ¼ γ=T3 can be

fixed from direct and indirect lattice calculations. In
Ref. [38] it was found that the values of κ̂¼ 4 and γ̂ ¼ 0
resulted in a good description of ground- and excited-state
bottomonium suppression as a function of the number of
participants and transverse momentum in

ffiffiffiffiffiffiffiffi
sNN

p ¼5.02TeV
Pb-Pb collisions. Later, for

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV Au-Au
collisions, larger values of κ̂ ∼ 5 were found to be preferred
due to the lower temperatures generated at relativistic
heavy ion collider (RHIC) energies [51]. This change in
κ̂ is consistent with observations that κ̂ increases as the
temperature approaches the QGP phase transition temper-
ature from above [110].
Here, we allow κ̂ to take even larger values because the

average temperature generated in
ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV and
8.16 TeV p-Pb collisions is lower than that generated in

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV Au-Au collisions. Again, this is con-
sistent with lattice calculations of the heavy-quark
momentum diffusion coefficient in the fundamental repre-
sentation, which increases in magnitude as the temperature
approaches the QGP transition temperature from above
[110]. The code used to solve the Lindblad equation, QTraj,
makes use of the quantum trajectories algorithm and is
publicly available [111]. Detailed documentation and code
benchmarks are available in Ref. [112].

B. 3 + 1D anisotropic hydrodynamics background

To model heavy-ion collisions, one must obtain evolu-
tion equations for the resulting 3þ 1D configurations and
include the nonconformality of the QGP consistent with a
realistic lattice-based equation of state. Here, we consider
min-bias p-Pb collisions, where the lifetime of the QGP is
rather short, on the order of 3 to 4 fm=c. Due to the short
lifetime of the QGP generated in such events, there can be
significant deviations from isotropic equilibrium, and
therefore one must take care with both the nonequilibrium
evolution and freeze-out [113,114].
We, therefore, use a far-from-equilibrium formulation

of hydrodynamics called anisotropic hydrodynamics
[114–117], specifically quasiparticle anisotropic hydro-
dynamics (aHydroQP), in which one assumes that the
nonequilibrium QGP consists of massive relativistic
quasiparticles with temperature-dependent masses mðTÞ
to take into account the nonconformal nature of the QGP
[118]. The system is assumed to obey a relativistic
Boltzmann equation with mðTÞ determined from lattice
QCD calculations of QCD thermodynamics. Since the
masses are temperature dependent, the Boltzmann equa-
tion contains an additional force term on the left-hand side
related to temperature gradients

pμ
∂μf þ 1

2
∂im2

∂
i
ðpÞf ¼ C½f�; ð27Þ

where

C½f� ¼ −
p · u
τeqðTÞ

½f − feqðTÞ� ð28Þ

is the collisional kernel in the relaxation time approxi-
mation. Above, uμ is the four-velocity associated with the
fluid local rest frame (LRF) of the matter, and Latin
indices such as i∈ fx; y; zg are spatial indices.
Assuming a gas of massive quasiparticles, the relaxation

time is given by τeqðTÞ ¼ η̄ðϵþ PÞ=I3;2ðm=TÞ, where η̄ ¼
η=s is the specific shear viscosity, ϵ is the energy density,
and P is the pressure [113]. The special function I3;2 is
defined in Ref. [113]. The effective temperature TðτÞ is
determined by requiring that the nonequilibrium kinetic
energy density calculated from f be equal to the equilib-
rium kinetic energy density calculated from feqðT;mÞ.
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We assume the nonequilibrium distribution function is
given by the leading-order aHydroQP form, parametrized by
a diagonal anisotropy tensor in the fluid LRF

fLRFðx; pÞ ¼ feq

�
1

λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

p2
i

α2i
þm2

s �
: ð29Þ

As indicated above, in the LRF, the argument of the
distribution function can be expressed in terms of three
independent momentum-anisotropy parameters αi and a
scale parameter λ, which are space-time dependent fields.
We assume that feq is given by a Boltzmann distribution.
To determine the space-time evolution of the fields u⃗, α⃗,

and λ one must obtain and then solve seven dynamical
equations. The first aHydroQP equation of motion is
obtained from the first moment of the left-hand side of
the quasiparticle Boltzmann equation, Eq. (27), which
reduces to ∂μTμν. In the relaxation time approximation,
however, the first moment of the collision kernel on the
right-hand side results in a constraint that must be satisfied
in order to conserve energy and momentum. This con-
straint can be enforced by expressing the effective temper-
ature in terms of the microscopic LRF parameters λ and α⃗.
As a consequence, computing the first moment of the
Boltzmann equation gives energy-momentum conserva-
tion, ∂μTμν ¼ 0.
The second equation of motion required is obtained from

the second moment of the quasiparticle Boltzmann equa-
tion [113,119]

∂αIανλ − Jðν∂λÞm2 ¼ −
Z

dPpνpλC½f�; ð30Þ

with Iμνλ ¼ R
dPpμpνpλf and Jμ ¼ R

dPpμf, whereR
dP ¼ R

d3p⃗=ðð2πÞ3EÞ.

1. The equation of state for aHydroQP

The equilibrium kinetic (kin) energy density, pressure,
and entropy density for a system of constant-mass particles
obeying Boltzmann statistics are given by

ϵkinðT; m̂eqÞ ¼ N̂T4m̂2
eq½3K2ðm̂eqÞ þ m̂eqK1ðm̂eqÞ�;

PkinðT; m̂eqÞ ¼ N̂T4m̂2
eqK2ðm̂eqÞ;

skinðT; m̂eqÞ ¼ N̂T3m̂2
eq½4K2ðm̂eqÞ þ m̂eqK1ðm̂eqÞ�; ð31Þ

where m̂eq ¼ m=T, Ki are modified Bessel functions of the
second kind, and N̂ ¼ Ndof=2π2, whereNdof is the effective
number of degrees of freedom present in the theory under
consideration.
In the quasiparticle approach, one assumes that the

mass is temperature dependent. This results in a change
in the bulk variables in Eqs. (31). When the mass of the
quasiparticle depends on the temperature, one cannot

simply insert mðTÞ into the bulk variables, since this will
not be thermodynamically consistent. This is because the
entropy density can be obtained in two ways: seq ¼ ðϵeq þ
PeqÞ=T and seq ¼ ∂Peq=∂T. In order to guarantee that both
result in the same expression for the entropy density, the
energy-momentum tensor definition must include a back-
ground field, i.e., Tμν ¼ Tμν

kin þ gμνB, where B is an addi-
tional nonequilibrium background contribution.
As a result, in an equilibrium Boltzmann gas of massive

quasiparticles, the bulk thermodynamic variables for the
gas become

ϵeqðT; m̂eqÞ ¼ ϵkin þ Beq;

PeqðT; m̂eqÞ ¼ Pkin − Beq;

seqðT; m̂eqÞ ¼ skin; ð32Þ

where Beq is the equilibrium limit of B.
To determine the temperature dependence of Beq we

require thermodynamic consistency,

ϵeq þ Peq ¼ T
∂Peq

∂T
; ð33Þ

which provides a first-order differential equation that can
be used to determine BeqðTÞ once mðTÞ is specified [118].
The quasiparticle mass itself can be determined from the

entropy density since it is independent of Beq,

ϵeq þ Peq ¼ Tseq ¼ N̂T4m̂3
eqK3ðm̂eqÞ: ð34Þ

In practice, one can determine mðTÞ from the sum of the
equilibrium energy density and pressure determined from
lattice QCD calculations [118]. The resulting effective
mass, scaled by T, extracted from the continuum extrapo-
lated Wuppertal-Budapest lattice data [120] can be found in
Refs. [118,121]. At high temperatures, T ≳ 500 MeV, the
mass is proportional to T, in agreement with the expected
high-temperature behavior of QCD quasiparticles and, at
low temperatures, T ≲ 100 MeV, the extracted mass is
consistent with a pion gas [121]. Plots of mðTÞ and BeqðTÞ
can be found in Fig. 2 of Ref. [118].

2. Evolution equations in aHydroQP

The evolution equations for u⃗, λ, and α⃗ are obtained from
moments of the quasiparticle Boltzmann equation. These
can be expressed compactly by introducing a timelike
vector uμ, which is normalized as uμuμ ¼ 1 and three
spacelike vectors Xμ

i , which are individually normalized as
Xμ
i Xμ;i ¼ −1 [122,123]. These vectors are mutually

orthogonal and obey uμX
μ
i ¼ 0 and Xμ;iX

μ
j ¼ 0 for i ≠ j.

The four equations resulting from the first moment of the
quasiparticle Boltzmann equation are
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Duϵþ ϵθu þ
X
j

PjuμDjX
μ
j ¼ 0; ð35Þ

DiPi þ Piθi − ϵXμ;iDuuμ þ PiXμ;iDiX
μ
i

−
X
j

PjXμ;iDjX
μ
j ¼ 0; ð36Þ

where Du ≡ uμ∂μ and Di ≡ Xμ
i ∂μ. The expansion scalars

are θu ¼ ∂μuμ and θi ¼ ∂μX
μ
i . Explicit expressions for all

basis vectors, derivative operators, and expansion scalars
can be found in Refs. [118,124–126]. The quantities ϵ
and Pi are the kinetic energy density and pressures obtained
using the anisotropic hydrodynamics ansatz for the one-
particle distributions function corrected by the background
contribution B necessary to enforce thermodynamic
consistency,

ϵ ¼ ϵkinðλ; α⃗; mÞ þ Bðλ; α⃗Þ; ð37Þ

Pi ¼ Pi;kinðλ; α⃗; mÞ − Bðλ; α⃗Þ: ð38Þ

The three equations resulting from the second moment of
the Boltzmann equation are

DuIi þ Iiðθu þ 2uμDiX
μ
i Þ ¼

1

τeq
½IeqðT;mÞ − Ii�; ð39Þ

where Ii ¼ uμXν
i X

λ
i Iμνλ ¼ αα2i Ieqðλ; mÞ with Ieqðλ; mÞ ¼

N̂λ2m3K3ðm=λÞ and α ¼ Q
j αj [124].

Equations (35), (36), and (39) provide seven partial
differential equations for u⃗, α⃗, and λ which we solve
numerically. To determine the local effective temperature,
we make use of the constraint requiring that the equilibrium
and nonequilibrium energy densities in the LRF be equal
(Landau matching). The resulting system of partial differ-
ential equations is evolved until the effective temperature in
the entire simulation volume falls below a given freeze-out
temperature, Tfo.

3. Initial transverse and longitudinal profiles

The initial distribution of the energy density in the
transverse plane is computed from a “tilted” profile
[127–130]. The distribution used is a linear combination
of optical Glauber wounded nucleon and binary collision
density profiles, with a binary collision mixing factor of
χ ¼ 0.15 taken from previous studies [126,131,132]. We
assume that the inelastic nucleon-nucleon scattering cross
section is 67.6 mb and 71 mb at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 and
8.16 TeV, respectively. We use an impact parameter of b ¼
4.70 fm and 4.71 fm at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 and 8.16 TeV,
respectively. Both values for the impact parameter were
obtained by determining the min-bias impact parameter in
the optical Glauber model. The corresponding number
of participant nucleons in min-bias collisions is 9.45 and

9.98, respectively. In the longitudinal direction, we use a
profile with a tilted central plateau and Gaussian tails in the
fragmentation region, resulting in a longitudinal profile
function of the form

ρðςÞ≡ exp ½−ðς − ΔςÞ2=ð2σ2ςÞΘðjςj − ΔςÞ�; ð40Þ

where ς ¼ arctanhðz=tÞ is the spatial rapidity. We fit the
central width Δς to the pseudorapidity distribution of
charged hadron production, finding Δς ¼ 1.8 for

ffiffiffiffiffiffiffiffi
sNN

p ¼
5.02 TeV collisions and Δς ¼ 2.1 for

ffiffiffiffiffiffiffiffi
sNN

p ¼ 8.16 TeV
collisions. We note that the width of the Gaussian tails, σς,
is largely unconstrained based on available p-Pb data. As a
result, we have used σς ¼ 1.6, which was used previously
in Pb-Pb collisions at both

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV and
2.76 TeV [126,131,132].
The resulting initial energy density at a given transverse

position x⃗⊥ and spatial rapidity ςwas computed using [127]

ϵðx⃗⊥; ςÞ ∝ ð1 − χÞρðςÞ½Wpðx⃗⊥ÞgðςÞ þWAðx⃗⊥Þgð−ςÞ�
þ χρðςÞCðx⃗⊥Þ; ð41Þ

whereWAðx⃗⊥Þ is the wounded-nucleon density for nucleus
A [133], Cðx⃗⊥Þ is the binary collision density [133], and
gðςÞ is the tilt function. To computeWp, we parametrize the
proton overlap function as [134,135]

Tpðb⃗Þ ¼
n

2πr2pΓð2=nÞ
exp ½−ðb=rpÞn�; ð42Þ

with n ¼ 1.85 and rp ¼ 0.975 fm.
The tilt function is defined as [127]

gðςÞ ¼

8>><
>>:

0 ς < −yN;
ðςþ yNÞ=ð2yNÞ −yN ≤ ς ≤ yN;

1 ς > yN;

ð43Þ

where yN ¼ logð2 ffiffiffiffiffiffiffiffi
sNN

p
=ðmp þmnÞÞ is the nucleon

rapidity.

4. Freeze-out and hadronic decays

We extract a three-dimensional freezeout hypersurface at
fixed energy density (temperature) corresponding to Tfo ¼
130 MeV from the aHydroQP evolution. We assume that the
fluid anisotropies α⃗ and scale parameter λ are the same for
all hadron species. We also assume that all hadrons are
created in chemical equilibrium. With the use of an
extended Cooper-Frye prescription [114], the underlying
hydrodynamic values for the flow velocity, the anisotropy
parameters, and scale parameter can be translated into
primordial hadron distributions on this hypersurface.
The values of the aHydroQP parameters on the freezeout

hypersurface are processed by a modified version of
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Therminator 2 that generates hadronic configurations using
Monte Carlo sampling [136]. After sampling the primordial
hadrons, hadronic decays are taken into account using the
built-in routines in Therminator 2. The source code for
aHydroQP and the custom version of Therminator 2 used are
publicly available [137].

5. Comparisons with experimental data

Previously, the aHydroQP formalism has been used to
describe Pb-Pb collisions at the LHC and Au-Au colli-
sions at RHIC for energies of 2.76 TeV, 5.02 TeV, and
200 GeV, respectively. It was found that the observed
spectra of identified hadrons, charged particle multiplic-
ities, elliptic flow, Hanbury-Brown-Twiss radii, etc. were
well reproduced [126,131,132,138–140]. Additionally,
we note that aHydroQP has been used as the hydrodynamic
background for many previous calculations of bottomo-
nium suppression and elliptic flow in AA collisions
[28,31,35,38,47,48,51,141,142].
Here we apply aHydroQP to min-bias p-Pb collisions at

both
ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV and 8.16 TeV to use it as a
hydrodynamic background in the calculation of QGP-
induced bottomonium suppression. The same simulation
volume was used for both energies: L⊥ ¼ 32 fm in the
transverse direction and 20 units of spatial rapidity in the
longitudinal direction. The box size is taken to be rather
large to ensure that our results are not affected by the
boundaries. We used 80 grid points in each of the transverse
directions and 33 grid points in the longitudinal direction.
The coordinate system for the simulation was centered on
the proton in the transverse plane, with the Pb nucleus
shifted to the left by the min-bias impact parameter
appropriate for each collision energy.
An initialization time of τ0 ¼ 0.25 fm=c was used for

both collision energies. At this proper time, the initial
transverse momentum anisotropies were taken to be
αx;0 ¼ αy;0 ¼ 1, and the initial longitudinal momentum
anisotropy was taken to be αz;0 ¼ 0.2. The initial longi-
tudinal momentum anisotropy used was chosen to reflect
the high degree of early-time momentum anisotropy in the
fluid LRF [143]. We assumed that the initial fluid flow
velocity was zero in the transverse directions and boost-
invariant Bjorken flow in the longitudinal direction. The
best fit initial temperatures at τ0 ¼ 0.25 fm=c, x⃗ ¼ 0, and
ς ¼ 0 are T0 ¼ 480 MeV at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV and T0 ¼
496 MeV at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 8.16 TeV. In the simulations per-
formed, we assumed a temperature-independent shear
viscosity to entropy density ratio, with the temperature
dependence of the bulk viscosity determined self-consis-
tently using the massive quasiparticle model [126,131]. Our
best fits to the charged particle multiplicities and identified
particle spectra were obtained with η=s ¼ 0.32 at both
collision energies.
In Fig. 2 we present the temperature evolution of the

aHydroQP runs used for the p-Pb background at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV. The top and bottom panels show the
spatial rapidity, ς, and transverse coordinate, x, dependence
of the temperature obtained from the aHydroQP evolution. As
can be seen from the top panel of Fig. 2, the tilted initial
conditions result in a temperature profile that is peaked on
the Pb-going side (negative spatial rapidity). This panel
also shows how the temperature decreases at large spatial
rapidity. As we show below, this decrease in temperature at
high rapidity results in a small QGP-induced suppression at
large rapidity. In addition, in the central rapidity region,
jyj≲ 3, we find that the tilted initial conditions lead to
stronger QGP-induced suppression on the Pb-going side
than on the p-going side. Finally, we note that due to the
lower initial temperature compared to Pb-Pb collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV, on average, the lifetime of the QGP
generated in p-Pb collisions is shorter than that in Pb-Pb
collisions where the min-bias lifetime is on the order of
10 fm. This shorter lifetime results in much smaller
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FIG. 2. Evolution of the temperature obtained using aHydroQP
for

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV p-Pb collisions. The top panel shows the
temperature as a function of spatial rapidity ς and the bottom
panel shows the temperature as a function of the transverse
position x. In both panels, the solid, dashed, and dot-dashed
curves show the temperature profile at τ ¼ 0.6 fm, 1.2 fm, and
2.4 fm, respectively.
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QGP-induced bottomonium suppression than is found in
Pb-Pb collisions at the same

ffiffiffiffiffiffiffiffi
sNN

p
.

To assess our tuning of the aHydroQP p-Pb background
evolution, in Figs. 3–5 we present comparisons of our
aHydroQP p-Pb results with standard soft hadron observables
measured at LHC energies. In Figs. 3 and 4 we present our
aHydroQP results for the charged particle multiplicity as a
function of the pseudorapidity, η≡ 1

2
lnððpþpzÞ=ðp−pzÞÞ,

at
ffiffiffiffiffiffiffiffi
sNN

p ¼5.02TeV and
ffiffiffiffiffiffiffiffi
sNN

p ¼ 8.16 TeV, respectively.
In these figures, we compare to data from the ALICE
[144,145] and CMS [146] Collaborations. In both figures,
the top panel shows the model results compared to ALICE
and CMS data while the bottom panel shows the relative
error (data/model) of the aHydroQP results. As can be seen
from these figures, our aHydroQP evolution reproduces the
measurements of the ALICE and CMS Collaborations to
within approximately 5% in the reported pseudorapidity
range. This level of agreement is comparable to or better
than all model comparisons shown in Refs. [144–146].
In order to demonstrate the predictive power of the

aHydroQP model, in Fig. 5 we present comparisons of the
computed transverse momentum spectra in p-Pb collisions
at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV for pions, kaons, and protons with
data from the ALICE [145] and CMS Collaborations [146].
In the left panel, we show comparisons of the identified

spectra obtained using aHydroQP with experimental data, and
in the three right panels we plot the relative error (data/
model). As can be seen from this figure, aHydroQP can
reproduce the experimental observations for pT ≲ 1.5 GeV
reasonably well. The differences that remain are compa-
rable to those found using the other models presented in
Refs. [145,146], providing confidence that the aHydroQP

background provides a reasonable background for comput-
ing QGP-induced bottomonium suppression.
We note that at high transverse momentum, it is expected

that hard processes play an important role, and as a result,
viscous hydrodynamics is not expected to accurately
reproduce the data. Again, we emphasize that the agree-
ment of our aHydroQP model predictions with available data
is comparable to other state-of-the-art models in the
literature. Since pions represent the vast majority of
produced particles, our agreement with dN=dη and the
pion spectra implies that the hydrodynamical background is
sufficiently accurate to estimate the effect of QGP-induced
bottomonium suppression in p-Pb collisions.

C. Coupling bottomonium suppression to aHydroQP

Having obtained good agreement with soft-hadron
observables, we now turn to the use of the generated
aHydroQP evolution as the hydrodynamic background for
computing bottomonium suppression. The evolution of the
hydrodynamic background is carried out in Milne coor-
dinates x̃μ ¼ ðτ; x⃗⊥; ςÞ instead of Minkowski coordinate
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FIG. 3. Min-bias charged particle multiplicity dN=dη forffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV p-Pb collisions. ALICE and CMS collabo-
ration data are from Refs. [144,147], respectively. The top panel
compares the results of the aHydroQP model to the experimental
data while the bottom panel shows the relative error. In both
panels, the shaded regions indicate the reported experimental
uncertainty.
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FIG. 4. Min-bias charged particle multiplicity dN=dη forffiffiffiffiffiffiffiffi
sNN

p ¼ 8.16 TeV p-Pb collisions. ALICE and CMS Collabo-
ration data are from Refs. [147,148], respectively. The panels are
the same as in Fig. 3.
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xμ ¼ ðt; x⃗⊥; zÞ, with longitudinal proper time τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
and space-time rapidity ς ¼ arctanhðz=tÞ. Therefore, we
need to express bottomonium spacetime positions in the
Milne coordinates through the transformation t ¼ τ cosh ς,
z ¼ τ sinh ς and vz ¼ tanh y, where y is the momentum
rapidity and vz is the velocity of the particle along the beam
axis. Here, we assume that the bottomonium states travel
along eikonal trajectories after their initial production.
In Minkowski coordinates, we assume that the bottomo-
nium states move at a constant velocity such that
x⃗ ¼ x⃗0 þ v⃗ðt − t0Þ, where x⃗0 is the position of the state

at t0 and v⃗ ¼ p⃗0=E with E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þM2

ϒ

q
. Expressing this

in terms of Milne coordinates, we obtain

x⃗⊥ ¼ x⃗⊥;0 þ v⃗⊥ðτ cosh ς − τ0 cosh ς0Þ;
τ sinh ς ¼ τ0 sinh ς0 þ tanh yðτ cosh ς − τ0 cosh ς0Þ; ð44Þ

where ς0 is the spatial rapidity at initial proper time τ0 and
v⃗⊥ is the transverse velocity. Using these equations, one
can obtain the Milne coordinates of a bottomonium state
based on its initially sampled momentum and position.
Equation (44) can be solved for ς giving ς ¼ yþ logðGÞ
with

G≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinh2ðς0 − yÞ

τ̄2

s
þ sinhðς0 − yÞ

τ̄
; ð45Þ

and τ̄≡ τ=τ0. As τ̄ → ∞, G → 1, and when τ̄ → 1,
one obtains G → expðς0 − yÞ. Note that ς ¼ ς0 ¼ y at

all times in the limit that all production occurs at
τ0 → 0. In the limitMϒ → ∞, all bottomonium production
occurs at τ0 ¼ 0.
Here, we sample 3D trajectories for bottomonium states

and use the background temperature evolution generated by
the tuned 3þ 1D aHydroQP runs. The initial transverse
positions for the bottomonium production in p-Pb colli-
sions are Monte Carlo sampled on the basis of the binary
collision overlap profile of the proton and Pb nucleus
calculated from the Glauber model. We sample the initial
transverse momenta and momentum rapidities from a
distribution of the form given in Eq. (16) using the average
mass of the ϒð1SÞ, ϒð2SÞ, and ϒð3SÞ states. Finally, we
sample the initial azimuthal angle ϕ of the produced
bottomonium uniformly in the range ½0; 2πÞ.
We use NLO QTraj [111] to simulate the quantum

dynamics of each sampled physical trajectory for the
bottomonium states in the QGP. After the evolution is
complete, the survival probabilities of each bottomonium
state are computed as the ratio of the modulus squared of
each eigenstate’s overlaps with the final and initial wave
functions, respectively. The final observables are then
averaged over a large set of physical trajectories.
The QTraj calculations use a one-dimensional lattice

size L ¼ 40 GeV−1 with 2048 points. In our calculations,
we averaged over 160,000 physical trajectories such
that the statistical error was much smaller than the
systematic error resulting from varying the heavy quar-
konium transport coefficient κ̂. We used a decoupling
temperature of TF ¼ 180 MeV. We varied the heavy
quarkonium momentum diffusion constant, κ̂, in the
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FIG. 5. Min-bias identified particle spectra of pions, kaons, and protons in p-Pb collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV compared to aHydroQP
predictions. Experimental data from the ALICE and CMS Collaborations are from Refs. [145,146], respectively. The left panel shows
model comparisons to the data, and the three right panels show the relative error. In both panels, the shaded regions indicate the reported
experimental uncertainty.
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range κ̂∈ f5; 6; 7g and assumed that γ̂ ¼ 0, consistent
with recent observations that the bottomonia mass shift in
the QGP is very small [20]. This latter assumption is also
consistent with Ref. [38] where γ̂ ¼ 0 was found to give
the best description of the available ground- and excited-
state bottomonium suppression data in

ffiffiffiffiffiffiffiffi
sNN

p ¼
5.02 TeV Pb-Pb collisions at the LHC. Due to the
computational cost, we ignored the effect of quantum
jumps (quantum regeneration) since this effect is sub-
leading at small Npart. We have verified this statement by
explicit calculations that include quantum jumps in the
case of min-bias p-Pb collisions and found that the
corrections coming from jumps were on the 2% level
for all states and therefore subleading compared to the
uncertainties associated with varying the heavy quarko-
nium transport coefficient κ̂.
In Fig. 6 we present our results for the suppression

obtained by folding the QTraj evolution of the quantum
wave function together with our tuned

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV
aHydroQP hydrodynamical background. The shaded bands
indicate the results obtained when varying our QTraj

model parameters in the ranges described above. As this
figure demonstrates, we find that all states experience
increased suppression on the Pb-going side (y < 0)
because the temperature on the Pb-going side is higher,
as shown in Fig. 2. We also see that the excited states
experience stronger suppression with RHNM

pA ð1SÞ >
RHNM
pA ð2SÞ > RHNM

pA ð3SÞ, because the decay widths of
the excited states are ordered with Γð1SÞ < Γð2SÞ <
Γð3SÞ. Finally, we see that, when the magnitude of the
rapidity is large in either the forward- or backward-going
direction, QGP-induced suppression decreases because
the temperature decreases rapidly at forward and back-
ward spatial rapidity, as shown in Fig. 2.

V. COMBINING NPDF EFFECTS, ENERGY LOSS,
MOMENTUM BROADENING, AND

FINAL STATE EFFECTS

Having calculated the bottomonium suppression due to
cold and hot nuclear matter effects, we can now combine all
effects to obtain the total nuclear modification factor for the
quarkonium state in p-Pb collisions. We obtain the total
quarkonium suppression in pA collisions relative to pp
collisions due to cold nuclear matter (CNM) and hot
nuclear matter (HNM) as

Rϒ
pA ¼ RCNM

pA × RHNM
pA ; ð46Þ

where

RCNM
pA ¼ RnPDF

pA × Reloss;broad
pA ð47Þ

is the nuclear modification factor due to cold nuclear
matter effects. Above, RnPDF

pA is the suppression due to
nPDF effects in p-Pb collisions relative to pp collisions as
described in Sec. II and Reloss;broad

pA is the suppression due to
coherent energy loss and momentum broadening of botto-
monium described in Sec. III. The effect of HNM on
bottomonium propagation through the QGP is encoded in
the factor RHNM

pA detailed in Sec. III. Finally, we implement
the effect of excited-state feed down as described in the
next section.

VI. EXCITED STATE FEED DOWN

After emerging from the QGP, the feed down of
bottomonium excited states must be taken into account.
We employ a feed-down matrix, denoted as F, which
establishes an empirical relationship between experimen-
tally observed and directly produced pp cross sections,
represented as σ⃗exp ¼ Fσ⃗direct. The vectors σ⃗direct and σ⃗exp
contain the scattering cross sections for the ϒð1SÞ, ϒð2SÞ,
χb0ð1PÞ, χb1ð1PÞ, χb2ð1PÞ, ϒð3SÞ, χb0ð2PÞ, χb1ð2PÞ, and
χb2ð2PÞ states before and after feed down, respectively. The
feed-down matrix, F, is a square matrix with values set by
the experimentally determined branching fractions of
bottomonium excited states into lower-lying states. In
general, the entries in the feed down matrix F are

Fij ¼

8>><
>>:

branching fraction j to i; for i < j;

1; for i ¼ j;

0; for i > j;

ð48Þ

where the branching fractions are taken from the Particle
Data Group [149] (see Appendix A of Ref. [150] for all
elements of Fij).
The final nuclear modification factor RpA in min-bias p-

Pb collisions for bottomonium state i is computed using

QTraj + aHydro (1S)

QTraj + aHydro (2S)

QTraj + aHydro (3S)
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FIG. 6. Hot QGP induced ϒð1SÞ (solid blue), ϒð2SÞ (dashed
orange), and ϒð3SÞ (long dashed green) RHNM

pA as a function of y
at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV. The shaded bands correspond to the
theoretical uncertainty associated with varying κ̂∈ f5; 6; 7g.
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Ri
pAðpT; y;ϕÞ ¼

ðF · Rϒ
pAðpT; y;ϕÞ · σ⃗directÞi

σ⃗iexp
; ð49Þ

where Rϒ
pAðpT; y;ϕÞ is the total suppression computed

from the sequence of initial- and final-state effects
described above, pT is transverse momentum, y is the
momentum rapidity, and ϕ is the azimuthal angle. In the
results reported below, we integrate over the azimuthal
angle and bin Ri

pA in pT and y. The pp cross sections are
σ⃗exp ¼f57.6;19;3.72;13.69;16.1;6.8;3.27;12.0;14.15g nb
for

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV collisions. These were obtained
from the experimental measurements presented in
Refs. [76,151], as explained in Sec. 6.4 of Ref. [28].
The cross sections at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 8.16 TeV are obtained by
uniformly scaling the

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV cross sections by
8.16=5.02 ¼ 1.63. Since the scaling is independent of pT ,
y, ϕ, and the state under consideration, it cancels in the
ratio Ri

pA.

VII. RESULTS

We now turn to our final results, which combine the
effects of nPDFs, energy loss, momentum broadening, and
final state QGP-induced suppression. We present compar-
isons of our model predictions with data obtained atffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 and 8.16 TeV [95–98]. It is important to
note that there are only small differences between the
modifications to bottomonium production induced by all
effects at these two collision energies. In order to quantify
the impact of the different collision energies, in the
Appendix we present comparisons of the rapidity depend-
ence of bottomonium suppression obtained at both collision
energies, indicating the effect each of the main components
in the calculation has on our results. The results reported in
this Appendix demonstrate that there are only small
differences found when considering the two collision
energies; however, since some subset of the data we will
compare to was collected at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV (ATLAS
and CMS) and some at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 8.16 TeV (ALICE and
LHCb), we have made separate computations at each
collision energy in order to make appropriate comparisons.
In Fig. 7 we present our results for Rϒ

pA for ϒð1SÞ (top),
ϒð2SÞ (middle), and ϒð3SÞ (bottom) as a function of
rapidity y. In all panels, the dashed gray line is the result
obtained when including nPDF effects, coherent energy
loss, and momentum broadening. The solid green line is the
result obtained when including the suppression experienced
by bottomonium as it traverses the QGP. The gray shaded
bands indicate the uncertainties associated with varying
over the nPDF error sets. The green-shaded bands indicate
the combined effects of varying over the nPDF error sets
and our assumed ranges for the heavy quarkonium trans-
port coefficient κ̂.

Because the experimental collaborations report data at
different collision energies, in all panels of Fig. 7, at
jyj < 2, we show our results for

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV p-Pb
collisions, and at jyj ≥ 2, results are shown for

ffiffiffiffiffiffiffiffi
sNN

p ¼
8.16 TeV p-Pb collisions. This matches the rapidity
intervals of the observations of the ATLAS/CMS and
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FIG. 7. ϒð1SÞ (top), ϒð2SÞ (middle), and ϒð3SÞ (bottom) RpA
as a function of y. At jyj < 2 and jyj ≥ 2, the model results shown
are for

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV and
ffiffiffiffiffiffiffiffi
sNN

p ¼ 8.16 TeV p-Pb colli-
sions, respectively. Horizontal error bars indicate the width of the
reported rapidity bins. The data from the ALICE, ATLAS, CMS,
and LHCb Collaborations are from Refs. [95–98], respectively.
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ALICE/LHCb Collaborations, respectively. As can be seen
from this figure, the addition of the effect of propagation of
bottomonium states through the QGP allows one to
quantitatively understand the increased suppression of
the ϒð2SÞ and ϒð3SÞ states, particularly at central rapidity.
At the same time, the predictions for ϒð1SÞ suppression
remain consistent with the experimental data. All the states
exhibit some tension with the experimental data at back-
ward rapidity. However, there are large experimental
uncertainties in this region. At forward rapidity, there is
good agreement between our results and experimental data
forϒð1SÞ suppression; however, there is some tension with
existing experimental data for the excited states. Once
again, however, we point out that there are large exper-
imental uncertainties in this rapidity range. The difference
between our results and the experimental data could
indicate the need to include additional suppression mech-
anisms or to make further improvements to the underlying
model for QGP-induced suppression.
Turning next to the transverse momentum dependence,

in Fig. 8 we present comparisons of our results for RpA inffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV p-Pb collisions with experimental data
from the ATLAS and CMS Collaborations. In the top,
middle, and bottom panels, we show the results obtained
for ϒð1SÞ, ϒð2SÞ, and ϒð3SÞ, respectively. The line styles
and shading are the same as in Fig. 7. We note that the
theoretical calculation uses the CMS rapidity interval of
jyj < 1.93, while the ATLAS rapidity interval for their
ϒð1SÞ results shown in the top panel of Fig. 8 is slightly
different. That said, the rapidity intervals are not dramati-
cally different, which makes such a comparison mean-
ingful, especially considering the reported experimental
and theoretical uncertainties. As can been seen from Fig. 8,
our results are in excellent agreement with the experimental
data for the transverse momentum dependence of ϒð1SÞ
and ϒð2SÞ suppression. Additionally, we see from the
bottom two panels of Fig. 8 that inclusion of QGP-induced
suppression is necessary to understand the experimental
data. The central values of our results forϒð3SÞ are slightly
above the experimental data. Nonetheless, they are con-
sistent with observations given current theoretical and
experimental uncertainties.
Next, in Fig. 9 we present comparisons of our results

for ϒð1SÞRpA in
ffiffiffiffiffiffiffiffi
sNN

p ¼ 8.16 TeV p-Pb collisions with
experimental data from the ALICE and LHCb
Collaborations. The line styles and shading are the same
as in the previous two figures. In the top and bottom panels,
we show results obtained at backward and forward rap-
idities, respectively. The theoretical calculations at
backward rapidity are in the interval −5 < y < −2.5,
and those at forward rapidity are in the range 1.5 <
y < 4. Both cases correspond to the intervals used by
the LHCb Collaboration. Once again, although the rapidity
intervals used by the ALICE Collaboration are slightly
different, this comparison is still meaningful. As can be

seen from the top panel of Fig. 9, inclusion of QGP-induced
suppression brings our results into better agreement with
experimental data collected at backward rapidity; however,
there are indications that in this kinematic region there may
be additional suppression not accounted for by our calcu-
lations. In the bottom panel, we find quite reasonable
agreement between our results and the experimental
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FIG. 8. ϒð1SÞ (top), ϒð2SÞ (middle), and ϒð3SÞ (bottom) RpA
as a function of pT for

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV for p-Pb collisions.
Horizontal error bars indicate the width of the reported transverse
momentum bins. The CMS data points are shifted to the average
momentum in each bin. The ATLAS and CMS data are from
Refs. [96,97], respectively.
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data for the transverse momentum dependence of ϒð1SÞ
suppression.
Finally, in Fig. 10 we present comparisons of our results

for ϒð2SÞRpA in
ffiffiffiffiffiffiffiffi
sNN

p ¼ 8.16 TeV p-Pb collisions with
experimental data from the LHCb Collaboration. The line
styles and shading are the same as in the previous three
figures. As before, in the top and bottom panels, we show
results obtained at backward and forward rapidities,
respectively. The top panel shows that inclusion of final-
state effects brings the results into better agreement with
LHCb data; however, there are indications that for back-
ward rapidity, we slightly underestimate the observed
suppression. The bottom panel shows that inclusion of
final-state effects results in better agreement with exper-
imental data at forward rapidity; however, our results are
slightly above the experimental observations at low trans-
verse momentum. This is to be contrasted with the results
shown in Fig. 8 for central rapidities which seem to explain
the CMS ϒð2SÞ suppression data very well. As stated
above, this implies that there could be additional suppres-
sion mechanisms, such as hadronic comovers or corrections

beyond NLO in the OQSþ pNRQCD treatment that are
important in the far-backward or far-forward rapidity
regions.

VIII. CONCLUSIONS AND OUTLOOK

In this paper we considered the suppression of botto-
monium in min-bias

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV and 8.16 TeV p-Pb
collisions, taking into account nPDF effects, coherent
energy loss, momentum broadening, and final-state inter-
actions of bottomonium with the QGP. We found that
incorporation of all of these effects provides a reasonably
accurate description of available experimental data, given
the current experimental and theoretical uncertainties.
Specifically, for ϒð1SÞ, final-state interactions with the
QGP represent a small correction to the effects of nPDFs,
coherent energy loss, and transverse momentum broad-
ening. However, for ϒð2SÞ and ϒð3SÞ, including QGP-
induced suppression is essential to achieve agreement with
the available data. This further supports the idea that a hot,
short-lived, QGP is created in min-bias p-Pb collisions.
This conclusion is consistent with previous studies of
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FIG. 9. ϒð1SÞRpA as a function of pT for
ffiffiffiffiffiffiffiffi
sNN

p ¼ 8.16 TeV.
Horizontal error bars indicate the width of the reported transverse
momentum bins. All data points are shifted to the average
momentum in each bin. The ALICE and LHCb data are from
Refs. [95,98], respectively.
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FIG. 10. ϒð2SÞRpA as a function of pT for
ffiffiffiffiffiffiffiffi
sNN

p ¼ 8.16 TeV.
Horizontal error bars indicate the reported transverse momentum
bins. All data points are shifted to the average momentum in each
bin. The LHCb Collaboration data are from Ref. [98].
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charmonium suppression [89,91,94], where including
QGP-induced suppression was necessary to understand
the increased suppression of ψð2SÞ compared to J=ψ .
Looking to the future, there are many avenues for

improving the work presented in this paper. First, one may
consider varying the different model components, includ-
ing using different nPDF sets, considering different
models of the QGP-induced suppression such as transport
models including regeneration or phenomenological com-
plex-potential models, including a more realistic under-
lying potential model in the OQSþ pNRQCD calculation
of quarkonium suppression [152], and/or taking into
account the effects of comoving hadrons in the kinematic
and spatiotemporal regions where it is called for.
Additionally, the centrality dependence of a limited
number of bottomonium observables is available in p-
Pb collisions, so one may also consider the centrality
dependence in these cases. Another avenue for future
research includes the application of our methodology to
the suppression of charmonium. In this case, regeneration
will need to be considered in order to quantitatively assess
its impact on QGP-induced suppression. Finally, we note
that there exists a straightforward means of applying the
methods employed here to AA collisions in order to
understand the interplay of cold and hot nuclear matter
effects in such collisions and draw firmer conclusions
concerning the phenomenological extraction of heavy
quarkonium transport coefficients in hot QCD from
experimental observations.
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APPENDIX: COMPARISONS OF RESULTS AT
5.02 TEV AND 8.16 TEV

In this Appendix we present comparisons of all effects
considered on the ϒð1SÞ, ϒð2SÞ, and ϒð3SÞ at

ffiffiffiffiffiffiffiffi
sNN

p ¼
5.02 TeV and

ffiffiffiffiffiffiffiffi
sNN

p ¼ 8.16 TeV. While these results are
combined in Fig. 7, here they are shown separately so that
the reader can see the effect of varying the collision energy
on each effect considered. In Fig. 11 we show our results
for the ϒð1SÞRpA resulting from energy loss and pT

broadening (dashed orange line), nPDF effects (dot dashed

blue line), the combination of energy loss plus momentum
broadening plus nPDF effects (dashed red line), and finally
all effects combined including QGP-induced suppression
(solid green line). The top panel contains the results obtained
at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV, and the bottom panel contains the
results obtained at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 8.16 TeV. The shaded bands
indicate the theoretical uncertainties associatedwith varying
over the nPDF error sets on the results with the nPDFs alone
and those including energy loss andmomentumbroadening.
In the complete result (solid green line), the bands indicate
the combined uncertainty resulting from varying over both
the nPDF error sets and the assumed range of the QTraj

transport coefficient κ̂ (see Fig. 6 for typical uncertainties
associated with this variation).
Figure 12 shows the same for theϒð2SÞ (left) andϒð3SÞ

(right) states. As can be seen in Figs. 11 and 12, there are
only small differences in the suppression computed at each
collision energy. In the main body of the text we have
merged the results at the different collision energies in
Fig. 7, with jyj < 2 corresponding to our results obtained atffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV and jyj ≥ 2 corresponding to our results
obtained at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 8.16 TeV.
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FIG. 11. Different effects contributing to ϒð1SÞRpA as a
function of y for

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV (top) and
ffiffiffiffiffiffiffiffi
sNN

p ¼
8.16 TeV (bottom).
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