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A qualitative calculation and discussion of two-vortex-state collisions are given in the scalar ϕ4 model.
Three kinds of vortex states—Bessel, general monochromatic, and Laguerre-Gaussian—are considered. It
is found that the total final-momentum distribution in the collision of physical vortex states displays general
topological structures, which depend on the initial vortex states’ topological charges, which are
proportional to the orbital angular momenta. This peculiar matching provides a novel observable, the
topological number of momentum distribution, and it may represent a new fascinating research direction in
particle physics. We also find that the situation when the angular momenta of the two colliding Laguerre-
Gaussian states combine to zero can be recognized by the total final-momentum distribution close to the
collision axis. Both features can be used to measure the orbital angular momentum of vortex states.

DOI: 10.1103/PhysRevD.109.096015

I. INTRODUCTION

In the vast majority of cases, it is enough to calculate
particle interactions using the plane-wave approximation.
Nevertheless, many studies have shown that the non-plane-
wave nature of particles plays an important role in physical
processes. For example, the so-called MD effect, which
reveals the importance of the impact parameter, can only be
explained when describing particles as wave packets rather
than plane waves [1,2]. The so-called “beam size effect”
reveals that the size of the particles cannot be neglected when
it is comparable to or smaller than the particle Compton
wavelength [3–6]. Also, vortex particle collisions exhibit
peculiar features which cannot be found in the plane-wave
approximation [7,8]. In this paper, we will demonstrate yet
another special feature arising in two-vortex-state collisions
which has no counterpart for plane-wave scattering.
Vortex states have quantized intrinsic angular momen-

tum, which is different from spin. They are characterized by
a spiral phase front which is described by the extra phase
factor eilφ, where l is called the topological charge and
is proportional to the orbital angular momentum. Several
kinds of particles prepared in such a state have been experi-
mentally produced: photons [9], electrons [10], neutrons [11],
and small atoms [12]. They have found applications in
fields such as manipulation of atoms [13–15], quantum
communication [16–19], microscopy [20], and so on.

Along with the generation of vortex particles, the study of
particle interactions involving vortex states attracts a lot of
attention [8]. Many processes involving vortex particles have
been studied—for example, vortex particle propagation in
electromagnetic fields [21–23], vortex particle scattering by a
target [24–26], decay of the vortex muons [27,28], photo-
induced processes initiated byvortex photons [29–31], and so
on. There are also several studies focusing on the collision of
two vortex particles [32–34]. A key characteristic of two-
vortex-particle collisions is a peculiar oscillatory dependence
of the differential cross section on the transverse momentum.
This sort of oscillation depends on the topological charges of
the initial vortex states. However, so far, this dependence has
only been discussed with Bessel vortex states, which are not
physical because they cannot be normalized in the transverse
space. A physical vortex state can have longitudinal momen-
tum uncertainty and an energy spread. Thus, the physical
vortex states collision may result in special longitudinal
momentum or energy distributions. The dependence of
these distributions on the topological charge is not immedi-
ately clear.
In this paper,we clarify this issue. To this end,we study the

collisions of two vortex particles in three different cases:
when they are prepared in theBessel vortex state, in a general
monochromatic vortex state, and in the Laguerre-Gaussian
vortex state. Transverse, longitudinal, and energy distribu-
tions are calculated. We compare the three cases and find
general topological featureswhich depend on the topological
charges of the two initial vortex states. To keep the discussion
clear, we consider collisions in the scalar ϕ4 theory.
The paper is organized as follows: In Sec. II, we present

calculations of the transition amplitude S for the three
different cases. In Sec. III, we discuss and compare the
resulting total final-momentum distributions. In Sec. IV, we
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draw conclusions. In this paper, all the three-dimensional
vectors are expressed using bold letters.

II. COLLISION OF TWO VORTEX STATES

In this study, we only consider central collisions of
vortex states that carry quantized orbital angular momenta
along their propagation direction, which we label as the
z axis. This means that the vortex states are eigenstates of
the z component of the angular momentum operator.
Central collisions of these eigenstates must produce the
total final-momentum distribution, which is rotational-
symmetric around the axis z, if we measure the final states
in 3-momentum basis—i.e., plane-wave basis. In this kind
of distribution, we have the freedom to choose the trans-
verse axes; we select the axis x along the transverse part of
the total final momentum.

A. Bessel vortex collision

A Bessel vortex state is characterized by three quantum
numbers: the energy E, the longitudinal momentum pz, and
the topological charge l, which can only be an integer. The
Bessel state cannot be normalized in the transverse plane.
The momentum-space distribution of this state is just a
circle orthogonal to the axis z. The momenta of all the
plane-wave components inside the Bessel state form a
cone, whose base is just this circle. The state propagating
along the z direction is described by the wave function

ψB
E;pz;l

ðx; tÞ ¼
Z

d3k
ð2πÞ3 a

B
pzl

ðkÞ expðikx − iEtÞ;

aBpzl
ðkÞ ¼ NBδðk⊥ − κÞδðkz − pzÞ expðilφkÞ; ð1Þ

where E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
is the energy of the plane wave with

momentum k and mass m, κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − p2

z

p
is the modulus

of the transverse momentum, and φk is the azimuthal angle
of this plane wave. NB is the normalization coefficient, but
we will not need its explicit expression.
Being different from the plane-wave particle inter-

actions, the collisions of two Bessel vortex states show
some new features that can be observed, including non-
constant total transverse momentum and the oscillatory
transverse momentum distribution [8,34]. The new distri-
butions represent new physical observables which are
absent in traditional collision kinematics. The momne-
tum-space oscillations appear because of interference
between different plane-wave components present in the
initial vortex states. For non-plane-wave-state collisions,
“interference”means that we can find multiple initial plane-
wave combinations which lead to the same final state. For
Bessel vortex state collisions, this interference involves
only two isolated points in momentum space, as shown in
Fig. 1. In this figure, we draw the interference scheme in
the transverse plane of momentum space at fixed total

final transverse momentum, since the total longitudinal
momentum is fixed by itself. q⃗⊥ is the total final transverse
momentum, while k⃗1⊥ and k⃗2⊥ label the transverse
momenta of plane-wave components in the two initial
vortex states. Two circles with centers located at the end
points of vector q⃗⊥ are drawn in the figure. The upper green
circle with radius κ2 is the momentum distribution of all
ðq⃗⊥ − k⃗2⊥Þ’s, and the lower blue circle with radius κ1 is the
momentum distribution of all k⃗1⊥’s. The two circles
intersect at two red points, which satisfy the conservation
law: q⃗⊥ ¼ k⃗1⊥ þ k⃗2⊥. They show clearly the two interfer-
ence paths in which the plane-wave momenta are named
with the subscripts “a” and “b.” In principle, q⃗⊥ can be
chosen at will, as long as it satisfies

jκ1 − κ2j < jq⃗⊥j < jκ1 þ κ2j:
For convenience, we choose the direction of q⃗⊥ to be the
same as the kx axis in the following calculation. In this
setting, q⃗⊥ ¼ ðq⊥; 0Þ, where q⊥ is the modulus of the
vector.
The S-matrix element for the process “two Bessel vortex

states to two plane-wave states” has been studied in
Ref. [32]. Here, we review it again. For convenience, we
choose the azimuth angle of q to be φq ¼ 0, which means
that q⃗⊥ lies on the kx axis. In this special case, the transition
amplitude is

FIG. 1. Interference scheme for a Bessel vortex states collision
at fixed total transverse momentum q⃗⊥. Two circles intersect at
two red points, which correspond to two interference paths. The
momentum combinations of the two paths are labeled with
the subscripts “a” and “b.” The interference is discussed in
the transverse plane of momentum space, since the longitudinal
momenta are fixed. The transverse momentum of the plane-wave
components in one initial vortex state is k⃗1⊥; the other is k⃗2⊥. The
momentum distribution of all k⃗1⊥’s forms the blue circle with
radius κ1, and the momentum distribution of all ðq⃗⊥ − k⃗2⊥Þ’s
forms the green circle with radius κ2.
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SðB1 þ B2 → P3 þ P4Þ ∝
Z

d3k1d3k2aBp1zl1
ðk1ÞaBp2zl2

ðk2ÞMδ3ðk1 þ k2 − qÞδðE1 þ E2 − EqÞ

∝
Z

2π

0

dφ1

Z
2π

0

dφ2eiðl1φ1þl2φ2Þδ2ðk⃗1⊥ þ k⃗2⊥ − q⃗⊥Þδðp1z þ p2z − qzÞδðE1 þ E2 − EqÞ

∝
cosðl1φ1a þ l2φ2aÞ

Δ
δðp1z þ p2z − qzÞδðE1 þ E2 − EqÞ; ð2Þ

where the subscripts 1 and 2 represent the two initial states, φi (i ¼ 1, 2) is the azimuth angle of momentum k⃗i⊥, φia is the
azimuth angle of momentum k⃗ia, Eq is the total energy of the final state, and

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðκ1 þ κ2 þ q⊥Þðκ1 − κ2 þ q⊥Þð−κ1 þ κ2 þ q⊥Þðκ1 þ κ2 − q⊥Þ

p

is the area of the triangle lying in the transverse plane formed by ðκ1; κ2; q⊥Þ. From the second line of Eq. (2) to the third
line, we have used the equation

Z
2π

0

dφ1

Z
2π

0

dφ2δ
2ðk⃗1⊥ þ k⃗2⊥ − q⃗⊥Þfðφ1;φ2Þ ¼

fðφ1a;φ2aÞ þ fðφ1b;φ2bÞ
Δ

;

which is acquired in Ref. [32]. The azimuth angles with the
subscripts “a” and “b” correspond to the two different paths
shown in Fig. 1. We also define the topological charges
according to a single z axis, even though the two particles
are counterpropagating, noting that it is a pointlike inter-
action with a momentum-independent interaction param-
eter for a 2 → 2 process in scalar ϕ4 theory if we only
consider tree-level diagrams. Hence, the calculation from
the second line of Eq. (2) to the third line is correct. In the
third line of Eq. (2), φia is dependent on q⊥:

φ1a ¼ arccos

�
κ21 þ q2⊥ − κ22

2q⊥κ1

�
;

φ2a ¼ − arccos

�
κ22 þ q2⊥ − κ21

2q⊥κ2

�
:

From Eq. (2), we see that the collision of two Bessel
vortex states can only generate final states that have the
fixed total energy E1 þ E1 ¼ Eq and the fixed longitudinal
momentum k1z þ k2z ¼ qz. However, the total final trans-
verse momentum q⊥ is not fixed, but is distributed within
the region

jκ1 − κ2j < q⊥ < jκ1 þ κ2j;

and the scattering matrix amplitude exhibits an oscillatory
behavior in this range.

B. General monochromatic vortex collision

A general monochromatic vortex state can be written as a
superposition of many Bessel vortex states with the same
energy. It has two quantum numbers: the energy E and the
topological charge l. It can be normalized in the transverse
plane. In momentum space, all the plane-wave components

have momenta lying on a sphere of radius k≡ jkj and are
accompanied by different weighting factors. The state
propagating along the z direction is described by the wave
function

ψM
E;lðx; tÞ ¼

Z
d3k
ð2πÞ3 a

M
l ðkÞ expðikx − iEtÞ;

aMl ðkÞ ¼ NMfðθÞδð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
− EÞ expðilφkÞ; ð3Þ

where θ is the polar angle of the momentum k, and NM

is the normalization coefficient of the state. Note that
fðθ ¼ 0Þ ¼ fðθ ¼ πÞ ¼ 0 to avoid phase singularity. In
realistic situations, f should be concentrated in a narrow
region of θ. For the numerical calculations, we use

fðθÞ ¼ sin θ exp

�
−
ðθ − θ0Þ2

σ20

�
; ð4Þ

where θ0 and σ0 are small constants.
For a fixed total final 4-momentum, there are many

plane-wave combinations that satisfy the energy-
momentum conservation law and lead to the same final
state. A schematic analysis of the contributions in momen-
tum space is shown in Fig. 2. The red circle, which is the
intersection of the two spheres, is perpendicular to the total
final momentum q and displays all points which can lead to
the same final state. One sphere shows the k1 distribution
and another displays the ðq − k2Þ distribution, where
ðk1;k2Þ represent momentum components in the two
initial vortex states. Only intersection points are selected
by the conservation law. Since the momenta of the initial
vortex states are concentrated within certain bands as
shown in Eq. (4), the main contribution to the production
amplitude comes from the intersection of the red circle with
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two colored bands, noting that q is positioned along the kx
axis and jk1j ¼ jk2j in the figure. These are convenient for
illustration but do not represent general cases. In principle,
q can be chosen arbitrarily as long as it satisfies the
condition

jjk1j − jk2jj < jqj < jjk1j þ jk2jj;

and k1, k2 can be arbitrary.
The S-matrix element for the process “two monochro-

matic vortex states to two plane-wave states” is

SðM1 þM2 → P3 þ P4Þ ∝
Z

d3k1d3k2aMl1ðk1ÞaMl2ðk2ÞMδð3Þðk1 þ k2 − qÞδðE1 þ E2 − EqÞ

∝
Z

π

0

dφ̂1

k1k2
q

f1ðθ1Þf2ðθ2Þ cosðl1φ1 þ l2φ2ÞMδðE1 þ E2 − EqÞ; ð5Þ

where k1, k2, and q are modulus of the momenta k1, k2,
and q.
We utilize two coordinate systems in this integral to

facilitate calculations. In the first system, we utilize
unhatted coordinates. In the second system, coordinates
are denoted with hats. The variables ðθi;φi; i ¼ 1; 2Þ
represent the polar angle and azimuthal angle in the first

coordinate system, while ðθ̂i; φ̂iÞ denote their counterparts
in the second coordinate system. The relationship between
the two coordinate systems is a straightforward rotation in
the kxOkz plane, as illustrated in Fig. 3. Momentum p in the
two systems is related by the transformation

0
B@

p̂x

p̂y

p̂z

1
CA ¼

0
B@

cos θq 0 − sin θq
0 1 0

sin θq 0 cos θq

1
CA
0
B@

px

py

pz

1
CA;

where θq is the angle between the vector q and the kz axis.
In the second line of Eq. (5), the values ðθi;φiÞ depend

on ðq; θq; φ̂iÞ:

φi ¼ arccos

0
B@ cos θ̂i sin θq þ sin θ̂i cos θq cos φ̂iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðcos θ̂i cos θq − sin θ̂i sin θq cos φ̂iÞ2
q

1
CA;

θi ¼ arccosðcos θ̂i cos θq − sin θ̂i sin θq cos φ̂iÞ;

FIG. 3. Two coordinate systems in momentum space for
Eq. (5). One is denoted with hats to distinguish it from the
other. Here, the ky axis is not changed, and the kxOkz plane is
rotated counterclockwise by an angle θq to yield the k̂xOk̂z plane.

FIG. 2. Interference scheme for the general monochromatic
vortex states collision. Two momentum spheres intersect at points
which result in the same total final momentum q. They form
the red circle. The momentum of the plane-wave components in
one initial vortex state is denoted as k1, while in another state it is
denoted as k2. The momentum distribution of all k1’s forms the
lower sphere, and the distribution of all ðq − k2Þ’s forms the
upper sphere. The two girdles in the two spheres represent
the primary contributions of the two initial vortex states. The
intersection of the red circle with the two girdles indicates the
main contribution points to the fixed final state. It is important to
note that the choice of q along the kx axis and jk1j ¼ jk2j are not
general cases.
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and

φ̂2 ¼ −φ̂1;

θ̂1 ¼ arccos

�
k21 þ q2 − k22

2qk1

�
;

θ̂2 ¼ arccos

�
k22 þ q2 − k21

2qk2

�
:

Thus, once the integral in Eq. (5) is integrated out, we can
obtain the result as a function of vector q.
Collisions of two monochromatic vortex states can

only generate final states with a fixed energy; this is also
shown by the energy delta function in Eq. (5). However, the
total transverse and longitudinal momentum distributions
span nonzero ranges, and within these regions, they exhibit
oscillations.

C. Laguerre-Gaussian vortex collision

The Laguerre-Gaussian vortex state can also be written as
a superposition of many Bessel vortex states. It is not a
monochromatic state. It can be well normalized on the
transverse plane. It has two quantum numbers, which are
the topological charge l and principal quantum number n,
both of which must be integers. In momentum space, all the
momentum components contribute to it. The state propagat-
ing along the z direction is described by the wave function

ψL
n;lðx; tÞ ¼

Z
d3k
ð2πÞ3 a

L
nlðkÞ expðikx − iEtÞ;

aLnlðkÞ ¼ NLkjlj⊥ Ljlj
n

�
k2⊥
σ2⊥

�

× exp

�
−

k2⊥
2σ2⊥

−
ðkz − k̄zÞ2

2σ2z
þ ilφk

�
; ð6Þ

whereNL is the normalization coefficient, k⊥ is the modulus
ofk’s transverse part,σ⊥ and σz determine the transverse and
longitudinal sizes of the state, k̄z is the average longitudinal
momentum, and Ln is the generalized Laguerre polynomial.
For a fixed total final 4-momentum ðEq;qÞ, the conser-

vation of 3-momentum requires that the momenta q, k1, and
k2 form a triangle, while the conservation of energy tells us
Eq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þm2

1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 þm2

2

p
. These two conditions define

a closed two-dimensional surface in momentum space.

Specially, for the zero-mass case, it is an ellipsoid. A
schematic analysis of interference space is displayed in
Fig. 4 for the zero-mass case. All the contribution points
lie on an pink ellipsoid whose focal points happen to be
end points of vector q. The ðq − k2Þ and k1 distributions
concentrate on two doughnuts. The main contribution to
the final state lies on the intersection of the ellipsoid with
the two doughnuts—note that q is positioned along the kx
axis in the figure. In addition, the central values of the
momenta for the two initial states are chosen to have the
same modulus. These are convenient for illustration but
do not represent general cases. In principle, q and the
central values of the momenta for the two initial states can
be chosen arbitrarily.
The S-matrix element for the process “two Laguerre-

Gaussian vortex states to two plane-wave states” is

SðL1 þ L2 → P3 þ P4Þ ∝
Z

d3k1d3k2aLnl1ðk1ÞaLnl2
ðk2ÞMδ3ðk1 þ k2 − qÞδðE1 þ E2 − EqÞ

∝
Z

π

0

dφ̂1

Z
π

0

dθ̂1
sin θ̂1k21E1E2g1ðk1⊥; k1zÞg2ðk2⊥; k2zÞ

jEqk1 − E1q cos θ̂1j
cosðl1φ1 þ l2φ2ÞM; ð7Þ

where

FIG. 4. Interference scheme for a Laguerre-Gaussian vortex
states collision. The surface of an ellipsoid, with its foci located at
the end points of vector q, represents all the points that yield the
same total momentum and energy. The two doughnuts in the two
spheres represent the primary contributions of the ðq − k2Þ and
k1 distributions. The intersection of the ellipsoid surface with the
two doughnuts indicates the main contribution points to the fixed
final state. It is important to note that the choice of q along the kx
axis is not a general case. In addition, the central values of the
momenta for two initial states have the same modulus in the
figure, which is also not a general case. Here, we ignore the mass
of the particles (m ¼ 0).
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giðki⊥; kizÞ ¼ kjlij
i⊥ Ljlij

ni

�
k2i⊥
σ2i⊥

�
exp

�
−

k2i⊥
2σ2i⊥

−
ðkiz − k̄izÞ2

2σ2iz
− iEit

�
; ki⊥ ¼ ki sin θi; kiz ¼ ki cos θi; i ¼ 1; 2:

We also use two sets of coordinate systems, which are the
same as those used in the monochromatic vortex collision
case. In the second line of Eq. (7), ðki;φi; θiÞ are dependent
on ðEq; q; θq; φ̂1; θ̂1Þ. In the zero-mass case, the relations
are

k1 ¼
E2
q − q2

2ðEq − q cos θ̂1Þ
;

k2 ¼ Eq − k1;

φi ¼ arccos

0
B@ cos θ̂i sin θq þ sin θ̂i cos θq cos φ̂iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðcos θ̂i cos θq − sin θ̂i sin θq cos φ̂iÞ2
q

1
CA;

θi ¼ arccosðcos θ̂i cos θq − sin θ̂i sin θq cos φ̂iÞ;

where θq is the angle between the vector q and the z axis,
and

φ̂2 ¼ −φ̂1;

θ̂2 ¼ arccos

�
k22 þ q2 − k21

2qk2

�
:

From Eq. (7), we see that there is no limitation on the
final total momentum or energy for the collision of two
Laguerre-Gaussian vortex states. Oscillation may appear in

the transverse distribution, longitudinal distribution, and
energy distribution, with Eq, q, and θq varying.

III. RESULTS

All the results shown below are based on the simple ϕ4

scalar model with a constant amplitudeM in tree level. For
definiteness, we assume that the two colliding vortex states
have the same momentum distributions except for different
topological charges.

A. Bessel vortex collision

For the Bessel state collision, the total final energy and
longitudinal momentum are fixed by the initial states,
which is revealed by delta functions in Eq. (2). Thus,
we only show radial transverse distributions within the
range jκ1 − κ2j < q⊥ < jκ1 þ κ2j, considering that the dis-
tributions must be azimuthally symmetric. The value of jSj
exhibits oscillations as a function of q⊥ due to the factor
cosðl1φ1 þ l2φ2Þ. This oscillatory behavior can be seen as
a momentum-space analogue of the famous two-slit inter-
ference pattern [34].
The value of jSj diverges near the boundaries of the q⊥

region due to the denominatorΔ in Eq. (2). This unphysical
behavior is the result of the initial Bessel states being
non-normalizable in the transverse plane. Nevertheless, we
still use Bessel states for comparison, because they are a
reasonable starting point for the description of realistic

6,–6

6,–1
6,6

FIG. 5. One-dimensional oscillation pattern of the jSj distribution for a Bessel vortex states collision. The distributions have been
normalized so that the biggest value of the vertical coordinate is 1. Left: jSj oscillates when the total final transverse momentum q⊥
changes. Right:Δ · jSj oscillates when q⊥ changes. The oscillation frequency is dependent on initial topological charges. Here, the three
lines correspond to three cases that differ only by topological charges (blue for l1 ¼ 6; l2 ¼ −6, brown for l1 ¼ 6, l2 ¼ −1; green for
l1 ¼ 6, l2 ¼ 6). Other parameters of initial states: E1 ¼ E2 ¼ 2 MeV, κ1 ¼ κ2 ¼ 0.1 MeV. Divergences have been cut out.
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vortex states, just as the traditional plane waves are a good
approximation of realistic wave packets.
Examples of the oscillation pattern are shown in Fig. 5,

and they confirm the above discussion. To demonstrate the
oscillations more clearly, in the right plot we remove the
divergence-inducing denominator Δ.
For future discussion, it is convenient to pay attention to

the points in momentum space where jSj passes through
zero. In the present example, we have several zero points,
which break the entire q⊥ domain into disjoint intervals.
The number nB of these intervals is completely determined
by the initial topological charges:

nB ¼ Integer½jl1 − l2j=2þ 1�:

Will this expression, which we derived for the Bessel states,
remain the same if we use other forms of vortex states with
the same l? The answer is negative, which we will verify in
the following sections.

B. General monochromatic vortex collision

For a general monochromatic vortex collision, only the
total final energy is fixed by initial states, as the delta
function in Eq. (2) reveals. Thus, we will get both the

FIG. 6. Two-dimensional oscillation pattern of a q · jSj distribution for the general monochromatic vortex states collision. The
distribution has been normalized so that its biggest value is 1. We set ðl1 ¼ −l2 ¼ 6Þ for the top-left picture, ðl1 ¼ l2 ¼ 6Þ for the top-
right picture, ðl1 ¼ 6;l2 ¼ −2Þ for the bottom-left picture, and ðl1 ¼ 6;l2 ¼ 2Þ for the bottom-right picture. Other parameters of
initial states: E1 ¼ E2 ¼ 2 MeV, θ01 ¼ θ02 ¼ σ01 ¼ σ02 ¼ 0.1 rad.
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transverse and longitudinal distributions. The two-
dimensional distribution has oscillatory behavior, which
depends on the topological charges of the initial states. The
boundary of the distribution is determined by the momen-
tum modulus (i.e., the radius of the momentum distribution
sphere) of the two states: jjk1j − jk2jj < q < jjk1j þ jk2jj.
The oscillation seems to be an analogue to the Fresnel
diffraction in momentum space, since the interference
region is a circle, as Fig. 2 shows. But, at different points
on the circle, weight factors are different. Thus, it is
actually an analogue to the case in which the Fresnel
diffraction experiment is prepared with an inhomogeneous
wave source.

As the factor 1=q in Eq. (5) reveals, the jSj distribution is
highly concentrated near the point q ¼ 0. The asymptotic
behavior at this value is

lim
q→0

jSj ¼
�∞ if l1 þ l2 ≡ 0;

0 if l1 þ l2 ≠ 0:

The divergence is a direct result of the non-normalizable
initial states. They can be normalized in the transverse
plane but cannot be normalized in the longitudinal direc-
tion. This means the state can be seen as a beam state, but
not a particle state. To see clearly the oscillatory behavior, we
will show q · jSj instead of the jSj distribution. It rearranges

FIG. 7. Two-dimensional oscillation patterns of a
ffiffiffiffiffiffiffiffiffiffiffiffi
q · jSj6

p
distribution for the general monochromatic vortex states collision. The

distribution has been normalized so that its biggest value is 1. We set ðl1 ¼ −l2 ¼ 6Þ for the top-left picture, ðl1 ¼ l2 ¼ 6Þ for the top-
right picture, ðl1 ¼ 8;l2 ¼ −4Þ for the bottom-left picture, and ðl1 ¼ 8;l2 ¼ 4Þ for the bottom-right picture. Other parameters of
initial states: E1 ¼ E2 ¼ 2 MeV, θ01 ¼ θ02 ¼ σ01 ¼ σ02 ¼ 0.1 rad.
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the distribution but will not influence oscillatory behavior.
The results are shown in Fig. 6. Two-dimensional oscillation
patterns show that the distribution oscillates not onlywith the
transverse momentum changing, but also with the longi-
tudinal momentum changing. This is a new feature that is
completely different with the Bessel vortex case. This
appears because the interference space (the circle shown
in Fig. 2) includes points with both different transverse
momentum and different longitudinal momentum.
Another important result is that the oscillation pattern is

partly smeared out after integration in Eq. (5). There is the
obvious tendency that the values of bright oscillation
peaks decrease, and some peaks may just run out of our
sight with much smaller amplitudes. A more careful
treatment does find more peaks and will be shown later.
The smeared-out result is analogous to the smeared-out
pattern in multifrequency double-slit interference [35].
Due to the energy dispersion of initial states, some of the
bright peaks in the final interference pattern significantly
decrease and seem to disappear. In fact, the interference
space shown in Fig. 2 can be seen as the combination of
many “two-slits,” which are characterized by different θ’s.
By the weight function [Eq. (4)], all the “two-slits” are
assigned with different weight factors, and the final
interference pattern is partly smeared out.
There is an interesting result: the interference pattern is

symmetric under the reverse of longitudinal momentum
(or forward-backward symmetric) if the topological
charges of initial states have the same absolute values.
Otherwise, it will be forward-backward asymmetric. This is
different in the Bessel vortex collision case, in which
asymmetric information that is only induced by two
topological charges cannot be reserved in the final dis-
tribution. However, the asymmetric information that is only
induced by the sign of topological charges cannot be kept.
This is not difficult to understand. Three kinds of trans-
formations should be considered here: parity transforma-
tion in the z direction, the reverse of topological charges,
and parity transformation in the transverse plane along any
direction. For initial states which satisfy jl1j ¼ jl2j, the
first transformation is equivalent to the second one, which
is equivalent to the third one. Since we are only interested in
a rotational-symmetric total final-momentum distribution
which does not change under the reverse of transverse
momentum in any direction, it should also be symmetric
when we reverse the longitudinal momentum. For the case
jl1j ≠ jl2j, the first transformation is not equivalent to the
second one.
The most attractive feature for the collision of two

general monochromatic vortex states lies in distributions
that are reshaped by the nth root, which are shown in Fig. 7.
Only four examples are shown in this figure, and more
examples will be listed in Fig. 10 in the Appendix. All the
q · jSj values are redefined by the “nth root,” except for

zeros. Thus, we can see all the unconnected areas, which
are partitioned by zero lines, in the distribution, and find
special topological structures that are completely depen-
dent on initial topological charges. The number of uncon-
nected areas can be expressed as a function of initial
topological charges:

nM ¼ nM⊥ þ nMz − 1; nM⊥ ¼ jl1j þ jl2j − jl1 þ l2j
2

þ 1;

nMz ¼ jl1 þ l2j þ 1:

The superscript “M” represents initial general monochro-
matic vortex states, and nM is the total number. According
to transverse and longitudinal oscillation, two other kinds
of numbers, nM⊥ and nMz , are defined. They correspond to
the count area numbers in the transverse and longitudinal
directions, respectively. The decomposition of topological
numbers seems to be nonsense now. Meanwhile, it will
make sense after comparison with the Laguerre-Gaussian
vortex collision case.

C. Laguerre-Gaussian vortex collision

For a Laguerre-Gaussian vortex collision, we can get
not only the total momentum distribution in the transverse
and longitudinal directions, but also the total energy
distribution of final plane waves. There is no certain
boundary for the distribution, since momentum compo-
nents of initial states run out of all the momentum space,
though some of them are more probable than others. The
interference region is an ellipsoid, and there is no analogue
to this kind of interference.
Two-dimensional distributions in the xOy plane with

fixed total energy are shown in Fig. 8. Only four examples
are shown, and more examples will be listed in Fig. 11 in
the Appendix. As numerical results as well as Fig. 11
reveal, oscillation only appears in the radial direction of the
transverse plane, although the total final-momentum dis-
tribution has three dimensions. This can only be explained
by the effect of smearing due to the two-dimensional
integral in Eq. (7). We have seen that the distribution of
the general monochromatic vortex collision has been
partly smeared out by a one-dimensional integral. For
the Laguerre-Gaussian case, a two-dimensional integral
works more effectively. The oscillation of the final dis-
tribution in the longitudinal and energetic directions are
completely smeared out, while oscillation in the transverse
direction is just partly smeared out. A direct result of this
change is that the topological charge-induced forward-
backward asymmetry is difficult to see in the Laguerre-
Gaussian case. The distributions also display topological
structures in this case. According to pictures with different
initial topological charges, we conclude that the topological
charge dependence is
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nL ¼ nL⊥ þ nLz − 1; nL⊥ ¼ jl1j þ jl2j − jl1 þ l2j
2

þ 1;

nLz ¼ 1:

The superscript “L” represents the initial Laguerre-
Gaussian vortex states. We can see that nL⊥ and nM⊥
have the same topological charge dependence. This is a
nice result and means that it may be a general principle
for physical vortex state collisions. Thus, it may be used
for the measurement of a vortex state’s topological
charge.
Another obvious feature is that the distribution near the

z axis tends to zero for almost all subpictures in Fig. 11

except for the case that satisfies l1 þ l2 ≡ 0. We see that
the distribution near the z axis is nonzero and relatively
large for this special case. In fact, this effect can be
calculated analytically by Eq. (7). Setting qz (the longi-
tudinal part of the total momentum q) equal to zero, we
find that

SðL1 þ L2 → P3 þ P4Þ ∝
Z

π

0

dφ1 cos½ðl1 þ l2Þφ1Þ�M;

ð8Þ

where another integral in Eq. (7) is not shown here because
the two integrals are completely separated by setting

FIG. 8. Two-dimensional oscillation patterns of a
ffiffiffiffiffiffijSj6

p
distribution at fixed total energy (Eq ¼ 4 MeV) for a Laguerre-Gaussian

vortex states collision. The distribution has been normalized so that its biggest value is 1. We set ðl1 ¼ −l2 ¼ 6Þ for the top-left picture,
ðl1 ¼ l2 ¼ 6Þ for the top-right picture, ðl1 ¼ 6;l2 ¼ −2Þ for the bottom-left picture, and ðl1 ¼ 6;l2 ¼ 2Þ for the bottom-right
picture. Other parameters of initial states: k̄z1 ¼ k̄z2 ¼ 2 MeV, σz1 ¼ σz2 ¼ σ⊥1 ¼ σ⊥2 ¼ 0.1 MeV, n1 ¼ n2 ¼ 0.
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qz ¼ 0. Equation (8) is nonzero only if l1 þ l2 ¼ 0. This
feature characterizes the initial system of two vortex states
with zero total angular momentum. It can also be used for
the measurement of a vortex particle’s topological charge.
By the way, the oscillation of Laguerre-Gaussian vortex
collision can also be shown by a one-dimensional trans-
verse distribution, since longitudinal and energetic distri-
butions are completely smeared out. Pictures of this kind
are shown in Fig. 9. By these figures, the feature becomes
much more clear.

IV. CONCLUSIONS AND THE OUTLOOK

In this work, using qualitative calculations and discus-
sions, we investigated the peculiar topological features
which arise in the final-momentum distributions in scalar
vortex states collisions. We compared the results for three
kinds of vortex states: the Bessel, a general monochro-
matic, and the Laguerre-Gaussian vortex states. The main
findings are as follows:
(1) The total final-momentum distribution possesses a

peculiar topological structure in momentum space in
the following sense: The distribution is partitioned
into several concentric doughnut-like regions by
multiple S ¼ 0 surfaces. The number of these
disjoint regions is fully determined by the topologi-
cal charges of the initial states.

(2) The total final-momentum distributions show an
additional feature which is characteristic for the
case l1 þ l2 ¼ 0, which means that the angular
momentum of the entire initial state is zero. Namely,
only in this case can the distribution in the vicinity of
the z axis be nonzero and relatively large. This is

especially clear for the Laguerre-Gaussian vortex
collision case. Note that most experimental vortex
states are formulated as Laguerre-Gaussian states.

Both features provide methods to measure an unknown
topological charge of a vortex particle (or beam) when it
collides with a vortex target with a known topological
charge. Whether they can be applied to realistic scattering
of vortex states requires detailed quantitative computations.
These calculations should be done with the Laguerre-
Gaussian vortex particles, because they are readily gen-
erated in experiments.
Other properties of vortex particle collision discussed in

this paper include a “smearing-out” effect, analogous to
what is seen in two-slit interference and an unusual
forward-backward asymmetry induced by jl1j ≠ jl2j,
which manifests itself only for the general monochromatic
vortex particles. We hope that all these features will remain
in realistic collisions of vortex electrons and other particles.
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APPENDIX: DEPENDENCE OF THE
MOMENTUM-SPACE DISTRIBUTIONS ON l

Here, for completeness, we show how the momentum-
space distributions for the monochromatic and Laguerre-
Gaussian states depend on the values of the topological
charge l2 with a fixed l1.
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FIG. 9. One-dimensional S distributions at fixed total energy (Eq ¼ 4 MeV) and total longitudinal momentum (qz ¼ 0 MeV) for a
Laguerre-Gaussian vortex states collision. The distributions have been normalized so that the biggest value of the vertical coordinate is 1.
Left: l1 ¼ 6 and l2 ¼ −6, −5, −4, −3, −2, −1, 0. Right: l1 ¼ 6 and l2 ¼ −6, 1, 2, 3, 4, 5, 6. Other parameters of initial states:
k̄z1 ¼ k̄z2 ¼ 2 MeV, σz1 ¼ σz2 ¼ σ⊥1 ¼ σ⊥2 ¼ 0.1 MeV, n1 ¼ n2 ¼ 0.
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FIG. 10. Two-dimensional oscillation patterns of
ffiffiffiffiffiffijSj6

p
distribution for general monochromatic vortex states collision. The distribution

has been normalized so that its biggest value is 1. ðl1;l2Þ is shown in every subpicture. Other parameters of initial states:
E1 ¼ E2 ¼ 2 MeV, θ01 ¼ θ02 ¼ σ01 ¼ σ02 ¼ 0.1 rad.

PENGCHENG ZHAO PHYS. REV. D 109, 096015 (2024)

096015-12



FIG. 11. Two-dimensional oscillation patterns of
ffiffiffiffiffiffijSj6

p
distributions at fixed total energy (Eq ¼ 4 MeV) for a Laguerre-Gaussian

vortex states collision. The distribution has been normalized so that its biggest value is 1. ðl1;l2Þ is shown in every subpicture. Other
parameters of initial states: k̄z1 ¼ k̄z2 ¼ 2 MeV, σz1 ¼ σz2 ¼ σ⊥1 ¼ σ⊥2 ¼ 0.1 MeV, n1 ¼ n2 ¼ 0.
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