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Relying on the polynomiality property of generalized parton distributions, which roots on Lorentz
covariance, we prove that it is enough to know them at vanishing and low skewness within the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi region to obtain a unique extension to their entire support up to a D term.
We put this idea in practice using two methods: reconstruction using artificial neural networks and finite-
elements methods. We benchmark our results against standard models for generalized parton distributions.
In agreement with the formal expectation, we obtain very a accurate reconstruction for a maximal value of
the skewness as low as 20% of the longitudinal momentum fraction. This result might be relevant for
reconstruction of generalized parton distribution from experimental and lattice QCD data, where
computations are, for now, restricted in skewness.
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I. INTRODUCTION

Introduced in the 1990s [1–3], generalized parton dis-
tributions (GPDs) are today at the core of hadron structure
studies, both experimentally and theoretically. This enthu-
siasm can be understood, as GPDs encode the multidi-
mensional structure of hadrons [4,5] (2D in the transverse
plane and 1D in longitudinal momentum space). They are
also connected to the energy-momentum tensor, allowing in
principle to extract the contributions of quarks and gluons to
the total angularmomentum [6], and also the contributions to
the pressure and shear forces within the hadrons [7].
Therefore, since the early 2000s, attempts to extract

GPDs from experimental data have been performed (see the
examples of [8,9]). However, the task remains hard for
multiple reasons. First, GPDs are connected to experimen-
tal data of deep exclusive processes, like deep virtual
Compton scattering (DVCS), which are much harder to
measure than inclusive ones, connected to regular parton
distribution functions (PDFs). Further, the connection
between experimental data and GPDs in standard deep
exclusive processes like DVCS, reveals itself noninvertible

at fixed scale and mathematically ill posed when evolution
is turned on [10,11]. The situation might be better for
processes involving the production of an additional particle
in the final state (see Refs. [12–16]).
The difficulty in extracting GPDs comes also from the

fact that they have to obey a number of theoretical
constraints whose fulfillment is a priori not granted using
generic modeling techniques. Among those, let us mention
polynomiality [17,18] and positivity [19–22]. A way to
fulfill systematically both at the same time was introduced
in [23] based on the so-called covariant extension [24,25],
and yielded the first evaluation of experimental feasibility
of pion DVCS [26]. The covariant extension technique was
originally developed to recover the Efremov-Radyushkin-
Brodsky-Lepage (ERBL) kinematic region from the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) one,
in a unique way, up to aD-term.1 However, as we will show
in this paper, its application is in fact more general and
allows one to uniquely continue a GPD known solely in the
vanishing and low-ξ region to the entire kinematic domain.
This application is important as it allows reconstruction
for GPDs based on collider data (see for instance [27])
supplemented2 with lattice QCD data. Moreover, current
lattice QCD calculations are able to extract GPDs. However,*Corresponding author: jose-manuel.morgadochavez@cea.fr
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1The details about the ambiguities generated by theD term can
be found in Ref. [24] and Sec. II.

2The reader can refer to [28] for the impact of combining
experimental and lattice data.
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if the entire x range of GPDs is accessible in a single lattice
QCD calculation, separated evaluations become necessary
when targeting changing values of ξ or t (see for instance
[29–32]). Given the cost of such simulations, it would be
desirable to find a way of relying on a minimal knowledge
of GPDs in their variable ξ, being able to extend them to
their entire kinematic domain. We find our formalism,
capable of extending GPDs from a limited region in ξ to
the entire support, to have the potential to become useful in
this context.
In Sec. II, we start by recalling the mathematics behind

the covariant extension, highlighting that both an incom-
plete x and ξ domain are allowed. In Sec. III, we check the
actual feasibility using two different numerical techniques,
artificial neural networks (ANNs) and finite-elements
method (FEM), on two models. The first one is derived
from light-front wave function computations [25] and the
second one is the phenomenological parametrization by
Goloskokov and Kroll [33]. Finally in Sec. IV, we conclude.

II. POLYNOMIALITY AND INVERSION
OF THE RADON TRANSFORM

In this work we show that the sole knowledge of GPDs
over part of their DGLAP region is enough for their
determination over their entire support. Importantly, this
result is completely general and does not show any relation
with the structure of the particular GPDs or the underlying
physics. On the contrary, the only two elements needed for
its derivation are: (1) the representation of GPDs through
the Radon transform of double distributions; and (2) the
support theorem [34] for the Radon transform. The former
claim directly follows from Lorentz symmetry. The later is
only related to the formal definition of the Radon trans-
form. Thus, in the following we introduce the necessary
ingredients that allow us to combine these two elements to
end up showing that, indeed, a partial knowledge of a GPD
within its support constrains it all.

A. GPD definition and polynomiality

GPDs are defined as a light-front projection of a
nondiagonal hadronic matrix element of a bilocal operator
[1–3], and they are usually expressed in terms of three
kinematic variables; namely, the light-front momentum
fraction, x, the skewness or light-front momentum fraction
transfer, ξ, and the squared momentum transfer, t.
Concerning x and ξ, the kinematic domain of GPD
defines its support with x; ξ∈ ½−1; 1�; the region jxj ≥
jξj (jxj ≤ jξj) being denominated DGLAP (ERBL) where
the GPD can be expanded in Fock space only involving
states with the same number N (different number N and
N þ 2) of particles [17].
This being given, it can be proven for any m-order

GPD’s Mellin moment that Lorentz symmetry implies
[17,18,35]

Z
1

−1
dx xmHðx; ξ; tÞ ¼

Xmþ1

k¼0

cðmÞ
k ðtÞξk; ð2:1Þ

whereHðx; ξ; tÞ denotes the unpolarized quark GPD, which
we use here as an illustration.3 This property is widely
dubbed polynomiality and has both a deep origin and
important implications. Particularly, if the GPD is known
for all x and t in a given compact range of ξ, one can calculate
the lhs of Eq. (2.1) in there and, a priori, determine the
polynomial coefficients in the rhs for any m-order Mellin
moment. It becomes thus clear that, rooting on Lorentz
covariance and on the uniqueness of Mellin moments, the
GPD appears defined in its entire support from its knowledge
within a restricted kinematic domain. Moreover, the GPD
reconstruction can be supplementarily constrained by profit-
ing the highly nontrivial interplay between the structure of
the DGLAP and ERBL regions expressed by the polyno-
miality property in Eq. (2.1). In the following, we shall
elaborate further on this, and exploit it, capitalizing espe-
cially on the related mathematical literature devoted to the
incomplete data problem in computerized tomography [37].
To the purpose of this work, ultimately capitalizing on

the result from Eq. (2.1), the momentum transfer t can be
fixed and taken to be a constant parameter all throughout
the analysis; any conclusion would then be irrespective of
its particular value. Thus, for the sake of simplicity, it will
be considered implicit from now on and omitted in the
notation. Furthermore, time reversal symmetry [36,38] can
be also invoked and seen to impose that any sensible GPD is
an even function of ξ, thus entailing that no odd power is

allowed in Eq. (2.1): cðmÞ
2nþ1 ¼ 0 for any integer n; and,

particularly, cðnÞnþ1 ¼ 0 for any even integer n. In the following
we shall concentrate on the ξ ≥ 0 region.

B. The Radon transform representation of GPDs

Then, as it has been carefully discussed in Ref. [24] (see
also references therein), given an odd function DðzÞ with
support z∈ ½−1; 1�, defined by its Mellin momentsR
1
−1 dz z

mDðzÞ ¼ cðmÞ
mþ1, one can prove that any m-order

Mellin moment ofHðx; ξÞ − sgnðξÞDðx=ξÞ is a polynomial
of degree m on ξ; otherwise said, it fulfills the Ludwig-
Helgason consistency condition entailing that it is in the
range of a Radon transform R [39],

Hðx; ξÞ − sgnðξÞD
�
x
ξ

�
¼ RFðx; ξÞ

¼
Z
Ω
dβdαδðx − β − αξÞFðβ; αÞ;

ð2:2Þ

3In the case of polarized or transversity GPDs, the polyno-
miality property as expressed in Eq. (2.1) must be modified
accordingly [36].
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where Ω ¼ fðβ; αÞ∈R2=jαj þ jβj ≤ 1g is the support for
the distribution F whose Radon transform RF is in the
physical domain of ðx; ξÞ. D is an odd function in its single
argument, as it clearly comes from its definition in terms of
Mellin moments which are zero for even order. Strictly
speaking, the Ludwig-Helgason condition and the Radon
transform are expressed4 in terms of the distance s and the
polar angle ϕ (e.g., see Ref. [40]), which can be mapped
into the usual GPD variables x and ξ through the trans-
formations x ¼ s= cosϕ and ξ ¼ tanϕ, such that the m-
order Mellin moment of ½H − signðξÞD�= cosϕ is an
homogeneous polynomial of degree m with terms
cosm−k ϕ sink ϕ. This change frommathematical to physical
variables has no consequence for our purposes.
One can then introduce a second distribution Gðβ; αÞ ¼

δðβÞDðαÞ such thatRGðβ;αÞ ¼ Dðx=ξÞ=jξj. Consequently,
the GPD H is given as RFðx; ξÞ þ ξRGðx; ξÞ ¼ Hðx; ξÞ,
withF (G) being even (odd) in α. Then, owing to its fulfilling
condition (2.1), any sensible GPD can be represented as the
Radon transformof two two-dimensional distributionsF and
G, widely named double distributions (DDs) [23,24,41,42].
However, as exposed inRefs. [41,42], the pair ofDDs ðF;GÞ
does not offer a unique representation for the GPD Hðx; ξÞ.
Instead, there exists a family of transformations, usually
called scheme transformations, which make it possible to
redefineF andG for the sameGPD.A judicious choice of the
transformation (see, for instance, Appendix B of Ref. [24])
allows for the two DDs to rely on one single DD h,

Hðx; ξÞ ¼ ð1 − xÞRhðx; ξÞ

¼ ð1 − xÞ
Z
Ω
dβdα δðx − β − αξÞhðβ; αÞ; ð2:3Þ

which corresponds to the so-called P scheme [43]. At this
point, it is worthwhile highlighting that, if ð1 − xÞRhðx; ξÞ
fulfills the polynomiality condition (2.1),

H̃ðx; ξÞ ¼ ð1 − xÞRhðx; ξÞ þ signðξÞD−ðx=ξÞ ð2:4Þ

also does, where D−ðzÞ is any odd function in its single
argument,with support z∈ ½−1; 1�. The latter is important for
our purposes of facing the inverse problem, asH and H̃ only
differ by the contribution from the line β ¼ 0within the DD
support, which impacts only on the GPD kinematic
domain jxj < jξj.
Importantly, sticking to a particular DD scheme does not

spoil the general character of the construction: One can
always rely on the known set of DD-scheme transforma-
tions to express the GPD in any other picture. Capitalizing
on this freedom, in the following, we will argue on top of
DD schemes involving one single DD, h.

C. The inverse Radon transform problem

Let us at this point consider a GPD for which its
knowledge is restricted to a given kinematic domain.
Then, rooting on a proof of uniqueness for a DD whose
Radon transform reproduces the GPD on such a restricted
domain, the inversion of the Radon transform can be
featured as a sensible procedure for a covariant extension
from restricted to full GPD kinematic ranges. So this has
been suggested and illustrated in Refs. [24,25,40], where
GPDs known within their DGLAP kinematic domain
were successfully extended to the ERBL region through
the Radon transform of the DD previously obtained by
inversion.
More generally, the problem of inverting the Radon

transform has been exhaustively studied in the mathemati-
cal context of computerized tomography [37]; for which,
in most realistic scenarios, the Radon transform is known
only for hyperplanes belonging to a particular subset of
the whole domain.5 Although explicit inversion formulas
remain mostly not available, several theorems prove the
uniqueness of the inverse function, depending on the
properties of the functions involved and given the data
of the Radon transform corresponding to specific subsets
of hyperplanes. This implies that if a particular function is
found, whose Radon transform reproduces the data known
for the subset of hyperplanes for which the theorems
apply, then that function is guaranteed to be unique. The
relevant theorem on which the GPD covariant extension
relies is the support theorem by Boman and Todd-Quinto
[34] that, for the sake of completeness, will be repro-
duced below:
Theorem. Let us consider the Radon transform of a

generalized function f∈ E0ðRnÞ along the hyperplane z ·
θ ¼ s (z∈Rn, θ∈ Sn−1, and s∈R)

Rfðθ; sÞ ¼
Z
z·θ¼s

dz fðzÞ: ð2:5Þ

LetW be an open unbounded connected subset of Sn−1 ×R,
such that Rfðθ; sÞ ¼ 0 for ðθ; sÞ∈W. Then f ¼ 0
on ∪ fz · θ ¼ sjðθ; sÞ∈Wg.
This theorem applies to f∈ E0ðRnÞ, i.e., to distributions

with compact support. It can therefore be applied to the
Radon transform of a DD, whose domain is the compact
skewed square Ω. For this two-dimensional case,
the argument of the function corresponds to the DD
variables, i.e., z≡ ðβ; αÞ and θ∈ S1 ≡ ðcosϕ; sinϕÞ, which

4They admit a direct geometric interpretation representing the
central case to which important mathematical literature has been
thus far devoted [37].

5In computerized tomography, this is the case when the
particular geometry of the probing beam only allows to scan
any two-dimensional section of the problem object along a
particular set of lines. This is also the case in the context of
the GPD covariant extension, where the original GPD data,
expressed as the Radon transform of a DD, are only known for
those lines belonging to the DGLAP region.
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correspond to ðθ; sÞ, the Radon transform variables6 usually
employed in mathematical literature and which convert
to the standard GPD variables ðx; ξÞ as it was made explicit
above. In this way, the line z · θ ¼ s corresponds to
x − β − αξ ¼ 0.
The above theorem guarantees that the knowledge of a

GPD on certain subsets of its domain is enough to uniquely
determine the double distribution whose Radon transform
generates that GPD. What follows below aims at making
transparent this implication, exhibiting that it guarantees
the uniqueness of the distribution Fðβ; αÞ from Eq. (2.2), if
RFðx; ξÞ is fixed by the knowledge of Hðx; ξÞ on a subset
of the DGLAP region.
Notice first that the lhs of Eq. (2.2) also includes a term

Dðx=ξÞ which, anyhow, has to be evaluated outside its
support for any DGLAP kinematic configuration and,
hence, vanishes. However, this D term raises a well-known
ambiguity as, despite the uniqueness of Fðβ; αÞ, the GPD
Hðx; ξÞ remains undetermined within the ERBL region by
the impact of such a term which, as argued above,
corresponds to a contribution with support only on the
line β ¼ 0. The same is true for DDs in any scheme and,
particularly, is made apparent by P-scheme Eqs. (2.3) and
(2.4), which exhibit how DGLAP data cannot unambigu-
ously fix the ERBL GPD. On the other hand, since
Hðx;−ξÞ ¼ Hðx; ξÞ, we can consider ξ ≥ 0, implying
ϕ∈ ½0; π

2
Þ; and expose that the whole DGLAP region

jxj > ξ, also expressed as jsj > sinϕ, is not a connected
set. However, this makes no limitation for the application of
the theorem, because it can be separately applied for the
two disjoint, open connected regions fjxj > ξg ∩ fx > 0g
(particle contribution) and fjxj > ξg ∩ fx < 0g (antipar-
ticle contribution).
Indeed, without lack of generalization, we can focus on

the region x > 0 and consider the following subsets (see the
right plots of Fig. 1):

Oλ ¼ fjxj > ξg ∩ fx > 0g ∩ f0 ≤ ξ < λxg; ð2:6Þ

where λ∈ ð0; 1�. One should realize that fβ > 0g ¼
∪ fz · θ ¼ sjðθ; sÞ∈Oλg. Namely, the set of lines on the
ðβ; αÞ plane corresponding to Oλ, i.e., the lines
α ¼ ðx − βÞ=ξ, with ξ∈ ð0; λxÞ, sweep the half plane
β > 0 irrespective of the value of λ (this is graphically
illustrated by the right panel of Fig. 1). The support
theorem therefore implies that if the GPD Hðx; ξÞ is
uniquely given on the DGLAP subset Oλ, the DD is
uniquely fixed on the half plane β > 0. By the same
argument, one can uniquely fix the DD on the β < 0 half
plane by knowing the GPD on the corresponding Oλ

subsets with x < 0.

Accordingly, for any λ∈ ð0; 1�, the DGLAP region
x > 0 fixes uniquely the DD for all β > 0 and, separately,
the DGLAP region x < 0 does the same for all β < 0.
Furthermore, one can simply consider a positive α in
both cases, owing to the even parity of the DDs F (or h
in this scheme). On the other hand, as discussed above,
the axis β ¼ 0 remains undetermined by the single
implementation of DGLAP data. The choice of λ ¼ 1
entails that the GPD is uniquely determined, with the
exception of the Radon transform of terms with support
only on β ¼ 0, by its whole DGLAP knowledge.7 More
importantly and not thus far highlighted, is that the same
is formally true for 0 < λ < 1. Namely, the GPD

FIG. 1. Graphic illustration. Left panel: the square being a
graphical representation of the domain of GPDs, green triangles
correspond to the ERBL region and red areas to the DGLAP one.
The hatched area represents, for different values of λ in (2.6), the
portion of the overall GPD domain which is taken as input in the
reconstruction procedure. Right panel: the skewed square being
the domain over which DDs have support, the Radon transform
Eq. (2.3) can be interpreted as an integration over straight
lines, α ¼ ðx − βÞ=ξ, with α0 ¼ x=ξ and β0 ¼ x as α and β
intercept, respectively. The support theorem guarantees the
uniqueness for the DD within the region swept by all the straight
lines such that ðx; ξÞ∈Oλ; namely, ξ=λ < x ≤ 1 with 0 ≤ ξ < λ.
Then, for any fixed ξ, one is left with parallel lines of slope
1=ξ bounded by 1=λ < α0 ≤ 1=ξ and, correspondingly,
ξ=λ < β0 ≤ 1; schematically displayed in the plot by the shad-
owed area between the two parallels crossing the bounding
intercepts (red circles). Therefore, when varying ξ from 0 to λ, the
entire DD domain (β > 0) is covered.

6Notice that although s represents the distance between the
hyperplane and the origin, the Radon transform is defined also for
negative values of s, since it satisfies Rfðθ; sÞ ¼ Rfð−θ;−sÞ.

7The covariant extension from DGLAP to ERBL kinematic
ranges introduced and discussed in Refs. [24,25,40,44] relies on
this remarkable output.

P. DALL’OLIO et al. PHYS. REV. D 109, 096013 (2024)

096013-4



covariant extension can be made from its knowledge on
proper subsets of the DGLAP region where the skewness
parameter is restricted to an arbitrarily small range, i.e.,
ξ∈ ½0; λx�, with a positive and arbitrarily small value of λ.
Beyond its formal interest by itself, this is very relevant
for physical purposes, since in actual experimental
setups one usually has access only to small values of
ξ; and can be also very helpful for the completion and
GPD reconstruction from lattice data.
In summary, we have shown that the polynomiality

property of GPDs is guaranteed if and only if a Radon
transform representation of GPDs is possible. From that
point on, relying on the Boman and Tod-Quinto theorem,
we showed that the sole knowledge of GPDs within
certain subsets of their DGLAP regions is enough to fix
the corresponding double distributions. Given this gen-
eral statement, a limited knowledge of DGLAP GPDs
always allows to find the corresponding double distri-
bution through the inversion of the Radon transform. The
latter finally allows to construct the remnant of the GPD
kinematic domain. In the following sections we will
numerically examine the soundness of this conclusion
by trying to invert the GPD Radon transform having as
inputs its data on these restricted subsets Oλ and
subsequently reconstructing the GPD on its whole
domain.

III. PROOF OF CONCEPT AND FEASIBILITY

If a kinematic completion of GPDs is formally possible,
a proof of concept and feasibility yet remains to be studied.
We therefore assess this problem by following two
approaches: (1) applying the FEM discussed and tested
in Refs. [23,24,40,45], Sec. III A; and (2) using ANNs for
the extraction of DDs, Sec. III B. The main purpose for this
double implementation, with two very different methods to
invert the Radon transform, stems from our aim of
discarding systematic effects related to a particular inver-
sion procedure. To this goal, we shall test the results
obtained with both methods against two benchmarking
models for GPDs8 (Table I): The algebraic model for the
pion GPD first constructed in [25] and the renowned
Goloskokov-Kroll model [33,46–48]. A thorough inter-
comparison of the two approaches, as they apply to our
problem, is out of the scope of the present work.

A. Finite-elements method (FEM)

A suitable numerical approach to the Radon transform
inverse problem is to proceed through discretization and
interpolation in the space of DDss, which in the following
will be referred to as FEM strategy. This methodology was
first presented in [24] and further elaborated in [23,45]

where its usefulness in the kinematic completion of GPDs
was exposed, setting the ground for a pioneering explor-
atory study of DVCS on pions [23]. As an outcome of these
studies, a C++ implementation of this tool is already
available within the PARTONS framework [49]. However,
this work employs a slight extension of that version. We
thus find it advantageous to briefly expose in the following
the main ideas behind this program. The interested reader
can find detailed discussions in [24,26,40,45].
The starting point of the FEM approach is to introduce a

discretization of the DD domain,Ω ¼ ∪e Ωe, and embed in
it a set of interpolating polynomials such that the DD may
be approximated within the discretized domain. The
accuracy of this approximation is essentially determined
by the choice of the interpolating functions as well as the
mesh itself. Inspired by the method of finite elements
widespread in, e.g., the study of partial differential equa-
tions, we choose to perform piecewise polynomial inter-
polation,9 allowing to approximate the DD as

hFEMðβ;αÞ ¼
X
e

Peðβ; αÞ; ð3:1Þ

where Peðβ; αÞ are the polynomial interpolants chosen for
each element Ωe, which can in turn be expressed as

Peðβ; αÞ ¼
8<
:

P
k∈Ωe

vkðβ; αÞhk; for ðβ; αÞ∈Ωe;

0; otherwise;
ð3:2Þ

where k labels the items of a set of interpolation nodes
nj ≡ ðβj; αjÞ appropriately distributed over Ωe; and where
vjðβ; αÞ represents the Lagrange interpolating polynomials
associated to the node nj. In this work we take them to be
degree-two polynomials.10 Finally, hj is the value of the DD
at the interpolation node nj, so we may write the integral
problem of Eq. (2.3) as

TABLE I. Syllabus—Summary of the models and strategies
explored in this study.

Model

Method Algebraic Goloskokov-Kroll

FEM Sec. III A 1 Sec. III A 2
ANN Sec. III B 1 Sec. III B 2

8For further details about these two models see Appendixes A 1
and A 2.

9See Appendix C in [45] and references therein for a detailed
description of piecewise polynomial interpolation in two dimen-
sions applied in this context.

10This feature constitutes the main upgrade of our implemen-
tation with respect to that of Refs. [23,24,40,45], where degree
zero and one interpolating polynomials where employed.

UNRAVELING GENERALIZED PARTON DISTRIBUTIONS … PHYS. REV. D 109, 096013 (2024)

096013-5



Hðx; ξÞ ¼
X
j

�Z
Ωe

dβdαδðx − β − αξÞvjðβ; αÞ
�
hj

¼
X
j

Rvjðx; ξÞhj: ð3:3Þ

Importantly, because the interpolating basis functions vj
are simple second order polynomials, the integrals can be
evaluated in closed form, turning the original problem into
a set of algebraic equations connecting the DD and its
associated GPD. Furthermore, choosing pairs ðxi; ξiÞ, a
system of algebraic equations can be built to represent the
Radon transform problem:

0
BB@

Hðx1; ξ1Þ
..
.

HðxN; ξNÞ

1
CCA ¼

0
BB@

Rv1ðx1; ξ1Þ � � � Rvnðx1; ξ1Þ
..
. . .

. ..
.

Rv1ðxN; ξNÞ � � � RvnðxN; ξNÞ

1
CCA

×

0
BB@

h1

..

.

hn

1
CCA: ð3:4Þ

In particular, one may choose the sampling points ðxi; ξiÞ
within the DGLAP region, where the GPD is assumed to be
known; even better, on a subset of that domain such as the
one considered in Eq. (2.6). When doing so, a system of
algebraic equations where the only unknowns are the
values of the DD at the interpolation nodes arises. As
explained in [23] its solution can be found using a least
squares minimization,

hFEM ¼
�
RTR

�
−1
RTHjDGLAP; ð3:5Þ

where boldface letters represent the vectors (matrices) of
Eq. (3.4) in compact form. Thereupon, one may finally
reconstruct the DD according to Eq. (3.1) [or Eq. (3.2)] and
employ it to evaluate the GPD within the ERBL region
through a Radon transform (in its discretized version):

HjERBL ¼ R̃hFEM ¼ R̃
�
RTR

�
−1
RTHjDGLAP; ð3:6Þ

where R̃ is a matrix representation of the Radon transform
integral operator built following the procedure described
before and evaluated for ðxi; ξiÞ chosen within the ERBL
region.
In this way, a FEM-inspired strategy allows to find a

solution for the inverse Radon transform problem. This
approach being grounded on the theoretical construction
of Sec. II, the covariant extension of GPDs from the
DGLAP to the ERBL region turns feasible. Nonetheless,

even if the input DGLAP GPD is known to arbitrary
precision,11 the procedure is affected by uncertainties.
Provided that the solution to our problem exists (Sec. II),
the construction of this section reveals (1) the choice of
interpolating polynomials, (2) the mesh definition (in
particular its size), and (3) the number/distribution of
sampling lines ðxi; ξiÞ in Eq. (3.4) as the main sources of
possible deviation from the actual solution. In practice,
we have tested three types of polynomial interpolants:
zero, first, and second order polynomials. Optimization in
the sense of trading performance of the implementation
for accuracy of the solution lead us to use degree-two
polynomials for all calculations. With regard to the mesh,
a Delaunay triangulation was built over the DD domain
[23,24], the average size of the elements being fixed to a
model-specific optimal value found as to balance pre-
cision (expected for finer meshes) and stability (pre-
cluded in the same direction) [50]. Coincidentally, the
meshes revealing optimal for the study of the algebraic
and the Goloskokov-Kroll (GK) models were found to be
identical and made up from 17 elements of average area
0.03 (arbitrary units). Finally, the number N of sampling
lines was set according to the criterion of [23] where it
was argued that the actual answer reveals in the least
squares solution [Eq. (3.5)] when Nsample is taken to be at
least 4 times the number of elements in the mesh. Here
we took Nsample ¼ 6n. These three sets of parameters
being thus fixed, the solution to the inverse Radon
transform problem can be found. From that point on
there remains one single parameter whose effect on the
solution has to be assessed: the distribution of sampling
lines within the (restricted) DGLAP region. Here we
follow once again the prescription of [23] and decide to
draw them randomly following a uniform distribution
x; ξ=x∈ ½0; 1�. Therefore, the distribution of lines leading
to the solution of the inverse Radon transform varies
among runs. In lack of a criterion to fix them, such
constitutes the main source of statistical uncertainty in
our calculation. Here we decide to estimate it through the
production of replicas following a strategy similar to that

11Of course that situation is unlikely to be encountered in a
realistic scenario. As an illustration, one can consider the case of
study where the input DGLAP GPD is extracted from simulations
on the lattice, thus each point being affected by the corresponding
errors. In that case, one must properly account for error
propagation from the DGLAP to the ERBL region as driven
by Eq. (3.6). However, the extraction of GPDs from the lattice as
well as their experimental assessment are still at an early stage;
and more importantly the sources of this kind of errors have little
to do with our approach. On the other hand, our numerical
solution of an ill-posed problem such as the inverse Radon
transform itself introduces systematic errors for which we may
account without regard to the nature of the feeding distribution.
They are precisely the sources and magnitudes of these last
uncertainties which we assess in this work.
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in [51]: We generate 250 sets of sampling lines and solve
our problem for each of them. Thus, one is given with the
corresponding number of solutions to our problem, say
DDss, called replicas. Then, for a given point, say the
interpolation nodes, we check for outliers following a 5σ
rule [52]. Finally, the replicas identified as outliers in any
of the points are removed from the uncertainty estimate,
which is given by the standard deviation of the popula-
tion of replicas. Accordingly, all our results (Figs. 2–5)
are given as a solid line, representing the mean value; and
the corresponding one-sigma band.

1. Algebraic model

Employing the general setup described in the previous
paragraphs, the algebraic model can be extended from the
DGLAP region, cf. Eq. (A4), to the ERBL domain. The
case ξ ¼ 0.5 is used to illustrate our findings. Figures 2 and
3 show the results obtained as the solution to our problem
using the region Oλ as the input domain. Three values of λ
have been explored, ranging for λ ¼ 1 (corresponding to
the entire DGLAP region) down to λ ¼ 0.5 and 0.2. In all
cases and for the sole sake of validation, we compare with
the known shapes of the algebraic-model GPDs. The
agreement between the actual GPD and the reconstructed
form is astonishing, showing that indeed the FEM strategy
allows to perform the covariant extension of GPDs from the
DGLAP to the ERBL region with a minimal knowledge of
the input GPD and no prior knowledge of the double
distribution. These results will agree with those found in
Sec. III B using the ANN implementation, supporting the
thesis of this study.
If the accuracy of the solution to problem is remarkably

good, we can still get a better grasp about it by looking at

the reconstructed DD hFEMðβ; αÞ against the expectation,
Eq. (A5): left panels of Figs. 2 and 3. Again, both are
essentially indistinguishable. The reason for that resides in
the structure of the DD generating the algebraic model: a
second order polynomial in the kinematic variables,
Eq. (A5); just as they are the interpolants Peðβ; αÞ
introduced within the FEM strategy. In that way, the exact
solution is accidentally put by construction in the range of
the discrete Radon transform of Eq. (3.4), meaning that
in the absence of noise, the exact result can be found. In
modern terms, this situation resembles that found in
Bayesian reconstruction when a default model is intro-
duced as prior information. In the language of Bayes
theorem, such a default model represents the most probable
answer in the absence of any data. When the chosen default
model indeed represents the input data, the functional space
is strongly dumped, and the chances of finding an accurate
solution grow. Nonetheless, it is worth highlighting at this
point that our FEM algorithm is not designed specifically to
solve the inverse Radon transform problem in the case of
the algebraic model. Accordingly, it is not that in order to
achieve this solution the algorithm needed from prior
knowledge about the polynomial structure of the DD;
instead, we only understood the accuracy of the results
by looking at the actual solution afterwards. Moreover, the
kernel of the FEM algorithm employs a general-purpose
interpolation routine which does not change between
models.

2. Goloskokov-Kroll model

With a proof of concept for the usefulness of the FEM
construction in solving the inverse Radon transform prob-
lem in a particularly favorable case, challenging our

FIG. 2. (FEM) Algebraic model. The left panel shows the DD hFEMðβ; αÞ obtained through the procedure described in Sec. III A (solid
lines), displayed as a function of the β variable for three different values of α ¼ f0.2; 0.5; 0.7g (0 ≤ β ≤ 1 − α). For comparison, the
exact analytical result of Eq. (A5) is drawn through dashed lines. The sampling of the DGLAP region corresponds to ξ∈ ½0; λx� with
λ ¼ 1 (the entire domain). The right plot displays the GPD Hðx; ξÞ at the illustration value ξ ¼ 0.5, obtained as the Radon transform of
the DD shown in the left, compared to the analytical expression, Eqs. (A4) and (A6).
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implementation in more complicated scenarios becomes
crucial. The case of the GK model constitutes an ideal test
ground for three reasons: first, as remarked in Sec. A 2, the
GK model is widely employed in phenomenological analy-
ses of GPDs. Second, the coincidence between the basis
functions and the actual expression observed in the algebraic
model is no longer found. Third, theDDgiving rise to theGK
model exhibits an integrable divergence at low values of β,
challenging even more our implementation. It is precisely
this later feature that has triggered a slightmodification of the
construction employed in the case of the algebraic model,
redefining the approximating DD, hFEM as

hFEMðβ; αÞ ¼ rðβÞ
X
e

Peðβ; αÞ; rðβÞ≡ 1ffiffiffi
β

p ; ð3:7Þ

so as to smooth the divergent behavior of hGK when applying
the FEM reconstruction.
In practice we have found this redefinition to be key in

stabilizing the problem’s solution. Because the behavior of

the underlying DD is generally unknown, this observation
might seem a curse of the present approach. However, we
believe that to be only apparent. One main reason is that,
although DDs must be generally assumed to be unknown,
we can rely on the behavior of the input DGLAP GPD to
infer information about that of the structure of the under-
lying DDs. As a simple illustration, one expects the PDFs
to exhibit a diverging behavior in the limit x → 0. One may
argue, for instance using the Goloskokov-Kroll model, that
such low-x divergences translate into a similar behavior of
the DD as β approaches zero. Moreover, these singularities
are expected to be integrable in the case of valence
distributions [as those being considered here, thus trigger-
ing our choice rðβÞ ¼ 1=

ffiffiffi
β

p
]. A second argument is of a

practical nature. Indeed, the relevance of the smoothing
suggested in Eq. (3.7) can be traced back to the structure of
the interpolating basis functions: Here they are simple
degree-two polynomials which are unlikely to accurately
piecewise approximate rapidly growing functions such as
hGK in the limit of small β. In contrast, the approximating
functions employed in our ANN approach (where no

FIG. 3. (FEM) Algebraic model. The same as Fig. 2 with a DGLAP sampling given by ξ∈ ½0; λx� and λ ¼ 0.5 (top) and 0.2 (bottom).
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special attention was payed to this feature) are more
complicated functions of the kinematic variables ðβ; αÞ,
thus hinting a modification of the interpolants Pe to be a
general possible solution to this problem. Of course, there
is no reason not to upgrade the interpolating polynomials
Pe to more sophisticated structures capable of accounting
for these kinds of effects; however, we prefer here to keep
things simple and proceed using Eq. (3.7). We highlight
that, if we do take advantage of prior knowledge here, it is
not at the level of the DD but at the level of the input GPD.
This being clarified, we can operate as before and

explore the covariant extension of the GK model from
the DGLAP to the ERBL region. Again we use ξ ¼ 0.5 as
an illustration for our results; we study three possible
sampling regions Oλ, with λ ¼ 1, 0.5, 0.2, as well. The
corresponding results are shown in the right panels of
Figs. 4 and 5. Again, the overall fidelity of the recon-
structed GPD is noticeable. However, this time we see a
growing deterioration, not that substantial at the level of the
mean value but at that of the uncertainties, as the area
covered by the input data set decreases. In particular,
deviations seem to be more apparent in the region
−ξ < x < 0. This can be traced back to numerical insta-
bilities triggered by the smoothing factor

ffiffiffi
β

p
introduced in

Eq. (3.7). Indeed, integration over β translates [by means of
the delta distribution in Eq. (2.2)] into

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x − αξ

p
, which shall

be bounded from below. However, for values x < 0, if
numerical precision languishes, the argument might show
very small while nonzero values, that being at the origin of
the observed impaired behavior.
Further insights can be obtained by again looking at the

“intermediate”DD (left panels of Figs. 4 and 5). The results
show general good agreement, especially when the entire

DGLAP region is given as input information. However, the
reconstructed signal rapidly deteriorates as λ decreases.
Nevertheless, those deviations wash out after integration to
reach the GPD domain, similarly to what will be seen in
Sec. III B. This is indeed a very noticeable feature, as the
quantity relevant for phenomenology and the one in lattice
QCD is, indeed, the integrated DD; i.e., the GPD.

B. Artificial neural networks (ANNs)

An entirely different approach to tackle the inverse
Radon transform problem consists in fitting the DD by
means of an ANN with one hidden layer. The advantages of
this strategy are twofold: First, the universal approximation
theorem [53] guarantees that this simple network archi-
tecture is able to approximate, at arbitrary precision for
sufficiently large width, any compactly supported continu-
ous function, therefore providing an unbiased parametriza-
tion of the DD; second, the optimization algorithms that are
used to train the network come equipped with regulariza-
tion methods, introduced to avoid overfitting, which are
particularly useful in this context to overcome the ill
posedness of the Radon transform inverse problem [54,55].
The DD hðβ; αÞ is therefore approximated by the final

output of an ANN consisting of three layers: an input
stratum, where the two DD variables β and α are input
features; a hidden layer, L ¼ 1, consisting of a number N
of neurons; and finally, the output (L ¼ 2) layer, made from
a single neuron (see Fig. 6). The number of neurons in the
intermediate layer, N, is tuned in each calculation to
optimize the results. As a function of the input variables,
the network’s output is denoted hANNðβ; αÞ. The explicit
functional form, in terms of the weights (wi) and bias (bi)
parameters is

FIG. 4. (FEM) GKmodel. The left panel shows the DD hFEMðβ; αÞ obtained through the procedure described in Sec. III A (solid lines),
displayed as a function of the β variable for three different values of α ¼ f0.2; 0.5; 0.7g (0 ≤ β ≤ 1 − α). For comparison, the exact
analytical result of Eq. (A12) is drawn through dashed lines. The sampling of the DGLAP region corresponds to ξ∈ ½0; λx� with λ ¼ 1
(the entire domain). The right plot displays the GPDHðx; ξÞ at the illustration value ξ ¼ 0.5, obtained as the Radon transform of the DD
shown in the left, compared to the analytical expression, Eqs. (A13) and (A14).
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hANNðβ; αÞ≡ oð2Þ ¼
XN
i¼1

wð2Þ
i oð1Þi þ bð2Þ

¼
XN
i¼1

wð2Þ
i

�
σ

�
wð1Þ
βi β þ wð1Þ

αi α
0 þ bð1Þi

�

þ σ

�
wð1Þ
βi β − wð1Þ

αi α
0 þ bð1Þi

��
þ bð2Þ; ð3:8Þ

where a rescaled variable α0 ¼ α=1 − jβj has been intro-
duced, which takes values between −1 and 1 (since
jαj þ jβj ≤ 1) which is supposed to better perform as
an input to the sigmoid activation function σðxÞ ¼
ð1þ e−xÞ−1 which we employ in this work.
With this setup the total number of learning parameters is

4N þ 1, divided between 3N weights and N þ 1 biases.
Notice that in Eq. (3.8) the traditional hidden output has
been augmented with an identical term with wα → −wα, as
it was already implemented in [51], which explicitly
enforces the parity condition hANNðβ;−αÞ ¼ hANNðβ; αÞ.

The network is trained using GPD data. Actually, the
inputs for the algorithm are the GPD variables ðxi; ξiÞ,
randomly chosen with a uniform probability distribution
from the DGLAP region. Each pair of values ðxi; ξiÞ
corresponds to a line α ¼ −β=ξi þ xi=ξi in the β-α plane,
along which the Radon transform has to be evaluated
(integrating hANNðβ; αÞ) to produce a predicted GPD value
Ĥðxi; ξiÞ that is to be compared with the true one Hðxi; ξiÞ.
The network depicted in Fig. 6 may therefore be considered
as embedded in a larger one, with two extra layers: An input
layer that for each ðxi; ξiÞ outputs the batch of ðβk; αkÞ values
positioned along the corresponding line12; and a final output
layer that combines the batch of the hANNðβk; αkÞ values to
produce Ĥðxi; ξiÞ.

FIG. 5. (FEM) GK model. The same as Fig. 2 with a DGLAP sampling given by ξ∈ ½0; λx�, with λ ¼ 0.5 (top) and
0.2 (bottom).

12The size of the batch is the number of nodes whose values
depend on the quadrature technique, which we use of numerical
integration.
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The network parameters are updated at each iteration,
using the adaptive gradient descent ADAM algorithm13 [56]
to minimize the loss function, here chosen to be the mean
squared error (MSE):

MSE ¼ 1

Nsample

XNsample

i¼1

�
Ĥðxi; ξiÞ −Hðxi; ξiÞ

�
2

: ð3:9Þ

A dropout regularization is implemented [57], where
hidden neurons are randomly turned off with a fixed
probability rate. It is worth noticing that the ill posed-
ness of a problem like the Radon transform inversion
has been commonly treated using a Tikhonov regulari-
zation. It has been shown, however, that these two
approaches are essentially equivalent [54,55], the
dropout regularization being more effective for deeper
networks.
The reader can note that the number of neurons and the

choice of activation function play here a similar role
compared to the number of cells discretizing space and
the choice of interpolating polynomials, in the FEM
approach. Yet, one can expect that the convergence and
smoothness properties might be different between the two
approaches.

1. Algebraic model

In the case of the algebraic model, the ANN has been
designed with N ¼ 100 hidden neurons, tuned by trial and
error, and trained with a sample of Nsample ¼ 104 GPD data
points. Without loss of generality, both entries x and ξ are
considered positive: The x values are generated within the
interval [0, 1], which is the x domain for the quark sector in
the DGLAP region, and the associated ξ may remain also
positive while covering the entire DGLAP region owing to
the parity of the GPD. Still, for the inversion of the Radon
transform (2.3), the subset Oλ in Eq. (2.6) is fixed by
restricting the skewness parameter to the interval ½0; λx�,
with 0 < λ ≤ 1, where the covariant extension is formally
achievable, as discussed in Sec. II.
However, despite the support theorem guarantees the

uniqueness of the inverted Radon transform from Oλ with
any λ > 0, in practice, the noise in the obtained DD
increases as the range of the skewness parameter becomes
smaller. This is exhibited in the left panels of Figs. 7 and 8,
where three outcomes for the DD function are plotted,
corresponding to the values of λ ¼ f1; 0.5; 0.2g. The values
of hðβ; αÞ are shown as functions of the β variable for three
different values of α. The error bands associated with the
ANN results correspond to a standard deviation from the
mean value estimated by training the network from scratch
on 50 independent trials (replicas).
The errors increase as λ decreases, in particular closer to

the boundary β ¼ 1 − α, where the DD is discontinuous.
These somewhat large deviations of the numerical pre-
dictions from the exact analytical expression become
milder, however, once the DD is integrated over the lines
in order to get the GPD predictions. This is shown in the
right panels of Figs. 7 and 8, where the results displayed
correspond to the particular value of ξ ¼ 0.5, chosen for
illustrative purposes. This is noteworthy especially
because the main goal of the current application of the
support theorem is the GPD reconstruction; namely, the
extension of GPD’s knowledge from a restricted DGLAP
domain to that on its entire support, particularly the full
ERBL region. Although achieved by inferring the func-
tional form of the DD, it is actually its Radon transform to
be of primary interest here.
The kinematic restriction for the GPD data of the training

setOλ has been pushed down to a value as low as λ ¼ 0.2 in
FEM. In this case, the quality of the results for both the
inverted DD and the derived GPD is still good for λ ¼ 0.5,
as it is shown in Fig. 8, but it becomes strongly degraded
for lower values of λ, these results not being then displayed.
The main reason for this will be discussed below and comes
as a drawback of the GPD behavior for the algebraic model
approached with ANNs, presumably requiring further
optimization. The GK model, in exchange, will be seen
to admit, also for λ ¼ 0.2, a very reliable GPD from a DD
approximated with ANNs.

FIG. 6. ANN architecture with one hidden layer that para-
metrizes the DD hðβ; αÞ. Here oðLÞi stem for output of the ith
neuron in the Lth layer of the network. The zeroth layer is
implicitly identified as the input one. As explained in the text, the
activation function of each neuron is chosen to be a sigmoid.
Further, the number of neurons in the hidden layer is tuned in
each calculation. An optimal solution for the algebraic model is
found using 100 neurons in the hidden layer while for the
Goloskokov-Kroll model we employed 25.

13In contrast, an alternative implementation could have em-
ployed genetic algorithms for the optimization task [51].
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2. Goloskokov-Kroll model

In the case of the GK model, as shown in Appendix A 2,
the DD function hGKðβ; αÞ relies on a profile function
πNðβ;αÞ as given by Eq. (A7), which fulfills the normali-
zation condition (A9). In the aim of making easier the
explicit implementation of this condition, we have chosen
this profile to be approximated by πANN as it results from the
ANN output oð2Þ [see Eq. (3.8)] properly normalized. Thus,
the GK DD is accordingly approximated by

hANNðβ; αÞ ¼ fðβ; μÞ oð2Þðβ; αÞR 1−jβj
−1þjβj dα

0oð2Þðβ; α0Þ
; ð3:10Þ

where fðβ; μÞ is the parton distribution function given by
Eq. (A11). Notice that in Ref. [51], in addition to

implementing this normalization condition, the ANN
expression (3.8) was modified in order to impose the
vanishing of the output along the border α ¼ 1 − β, a
property which is indeed satisfied by the hGKðβ; αÞ in
(A12). We decided, however, not to implement this
constraint explicitly and let the network learn it by itself,
considering that the vanishing at the boundary is a
particular feature of this model, unlike the normalization
condition and the parity in the α variable, which are
properties that come from first principles. This decision
comes at the cost of a much slower convergence of the
optimization algorithm, due to the larger functional space
that has to be explored during the training phase. Notice
that one is always free to reexpress any distribution in the
form (3.10).

FIG. 8. (ANNs) Algebraic model. The same as Fig. 7 with a DGLAP sampling given by ξ∈ ½0; λx� and λ ¼ 0.5.

FIG. 7. (ANNs) Algebraic model. The left panel shows the DD hANNðβ; αÞ obtained through the procedure described in Sec. III B
(solid lines), displayed as a function of the β variable for three different values of α ¼ f0.2; 0.5; 0.7g (0 ≤ β ≤ 1 − α). For comparison,
the exact analytical result of Eq. (A5) is drawn through dashed lines. The sampling of the DGLAP region corresponds to ξ∈ ½0; λx�with
λ ¼ 1 (the entire domain). The right panel displays the GPDHðx; ξÞ at the illustration value ξ ¼ 0.5, obtained as the Radon transform of
the DD shown in the left, compared to the analytical expression, Eqs. (A4) and (A6).
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FIG. 9. (ANNs) GK model. The left panel shows the profile function, πANNðβ; αÞ (solid lines), the direct ANN output which the DD
follows immediately from as given in Eq. (3.10), obtained through the procedure described in Sec. III B and displayed as a function of
the β variable for three different values of α ¼ f0.2; 0.5; 0.7g (0 ≤ β ≤ 1 − α). It compares strikingly well with the exact expressions,
Eq. (A10) with N ¼ 1 (dashed lines). The sampling of the DGLAP region corresponds to ξ∈ ½0; λx�with λ ¼ 1 (the entire domain). The
right plot displays the GPD Hðx; ξÞ at the illustration value ξ ¼ 0.5, obtained as the Radon transform of the DD shown in the left,
compared to the analytical expression, Eqs. (A13) and (A14).

FIG. 10. (ANNs) GK model. The same as Fig. 9 with a DGLAP sampling given by ξ∈ ½0; λx�, and λ ¼ 0.5 (top), 0.2 (bottom).

UNRAVELING GENERALIZED PARTON DISTRIBUTIONS … PHYS. REV. D 109, 096013 (2024)

096013-13



As opposed to the previous example, the DD function that
the network has to learn is now everywhere continuous, since
it vanishes at the boundary of its support. This property helps
the ANN to better converge to the exact solution, yielding
more precise results, as it can be appreciated inFigs. 9 and 10.
There, in the left panels, we have chosen to represent the
profile function, πANNðβ; αÞ, the direct output from ANNs
which the DD follows immediately from as given in
Eq. (3.10). Furthermore, a smaller network was used, with
N ¼ 25hiddenneurons, and a smaller training data sampling
of Nsample ¼ 5 × 103 GPD values generated in the DGLAP
region using Eq. (A13), derived from Eqs. (A11) and (A12).
In the case of a kinematic restriction given by λ ¼ 0.2, the
prediction for the inverse function is rather imprecise,
although the deviation from the exact result of its Radon
transform is not substantial (see the bottompanels in Fig. 10).
As stated above, we do not aim at a careful and

conclusive comparison of the two different approaches
herein followed to invert the Radon transform; namely,
ANNs and FEM. Both of them have been implemented
instead to avoid drawing biased conclusions about our
methodology that may stem for the suitability of a
particular implementation to the models chosen as an
illustration. To this aim, we have independently tuned
the setups in both ANN and FEM approaches such that they
deliver good results when they compare to the exact ones.
In particular, we have presented results in which the ratio of
ANN to FEM input data is roughly 100.
Notwithstanding, some exploratory studies in the context

of approximating the GK model through the ANN
approach evidence that still acceptable results, while
poorer, could be achieved by reducing the number of input
data to 250. However, similar studies around the algebraic
model seem to point out an issue arising from the use of
nonpolynomial activation functions, requiring a large
number of neurons to reproduce the polynomial behavior
of the algebraic DD. The use of extra neurons being
associated to the need of more training data, this observa-
tion suggests a limitation of the ANN-based method. One
could instead consider different activation functions, better
adapted to a polynomial DD, but this would be an ad hoc
improvement relying on prior knowledge of the DD. On
the other hand, techniques of data augmentation which are
commonly used in machine learning applications could be
also implemented. Indeed, we have triggered an analysis
with 250 data points and used standard interpolation
procedures to generate enough additional data to invert
the Radon transform for the algebraic model GPD, thus
getting results similar to those obtained with FEM.
Nevertheless, this analysis neglects the impact of errors
and noise, which will become also strongly amplified by
the data augmentation. A careful and systematic analysis,
considering noise and ANNs optimization would be needed
to perform a reliable comparison with FEM. This is anyhow
out of the scope of the present work.

IV. SUMMARY AND CONCLUSIONS

In this work we have demonstrated that, at fixed
Mandelstam t, Lorentz covariance as encoded through
the renowned polynomiality imposes a strong enough
constraint so that the sole knowledge of GPDs at zero
and very-low skewness is enough to have them determined
over their entire kinematic range. The formal proof of this
result relies entirely on a theorem by Boman and Todd-
Quinto [34], which we have revisited here and made it more
transparent for the field of GPDs by its formulation in the
appropriate language.
We have thus concluded that the knowledge of GPDs for

x∈ ½−1; 1� and ξ∈ ½0; λx� is enough to fully constrain them
over their entire ðx; ξÞ range. Furthermore, this idea has
been implemented in practice through two different algo-
rithms: one based on ANNs, and a second one using a more
traditional strategy using FEM. Both approaches have been
tested against standard models for GPDs, showing that
accurate reconstructions shall be obtained in practice with
input information as restricted as to ∼20% of the DGLAP
region. Given the increasing interest in the study of GPDs,
we believe this approach to be valuable in complementing
the limited kinematic range over which we expect out-
comes to be obtained from lattice QCD simulations (limited
by Ioffe time and hadron momentum accessible, see, e.g.,
[58]) and experimental data. So far, looking towards a
practical application of this methodology, the FEM strategy
seems to perform better than the ANN one: The number of
inputs required by the ANN approach is 10 times larger
than the one needed in the FEM approach. The reason is
that in the former case, the required information roughly
linearly scales with the size of the network. Nevertheless,
optimization of the ANN approach can still be achieved, as
well as the use of data augmentation techniques imple-
mented. This work, being intended at drawing the attention
to this novel technique and not to a refined kinematic
completion of actual data, added to the lack of reliable GPD
extractions; we defer such a comparative study, optimiza-
tion of the numerical techniques, and testing of robustness
against noise to a future work.
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APPENDIX: MODELS FOR GENERALIZED
PARTON DISTRIBUTIONS

In this work we have illustrated our methodology using
two different, well-known models for GPDs: (a) The
algebraic model [24,25,59] and (b) the Goloskokov-Kroll
model [33,46–48]. There are two main reasons for this
choice. On the one hand, the so-called algebraic model is
currently being exploited for the description of pion’s
structure (e.g., [23,26]) while the Goloskokov-Kroll model
is popular in the study of nucleon GPDs, see, e.g., [9,60]
and references therein. We thus find it enlightening to
benchmark our approach on the (perhaps) two most
paradigmatic scenarios found in the study of hadron
structure, pions and nucleons, thus triggering our interest
into these two models. A second argument follows from a
more technical perspective: If the DD of the algebraic
model is a smooth function of its kinematic variables,
Sec. A 1, that of the GK model shows an integrable
divergence at β → 0, Sec. A 2. Therefore we find it
appropriate to benchmark our implementations in these
two radically different scenarios where numerical accuracy
is expected to be challenged in two different manners.
This being said, the two models could have been

employed to test our algorithms without any regard to
the underlying physics. In fact, we are here simply testing
our way of solving the inverse Radon transform problem.
However, for the sake of self-consistency, we believe it
worthwhile to briefly review their foundations.

1. Algebraic model

Capitalizing on a long effort towards the development of
models for parton distributions respecting all of the QCD’s
basic properties [24,59,61–64], the algebraic model for the
GPD of valence quarks in a pion was first presented in
Ref. [25]. There the authors relied on the overlap repre-
sentation of GPDs [21,36] to model the DGLAP region in a
way consistent with their positivity property [20,22]. To
that end, the essential ingredient is a parametrization of the
hadron’s light-front wave function (LFWF) Ψðx; k⊥; μÞ;
which for a two-body system reads [21]

Hðx;ξ;μÞjDGLAP¼
X
σ

Z
d2k⊥
16π3

Ψ�
σ

�
x−ξ

1−x
;k⊥þ

1−x
1−ξ

Δ⊥
2
;μ

�

×Ψσ

�
xþξ

1þξ
;k⊥−

1−x
1þξ

Δ⊥
2
;μ

�
; ðA1Þ

σ being the possible quark-helicity combinations, k⊥ the
average momentum of the quark pair along the transverse

direction, as defined by the hadron’s (light-cone) momen-
tum, p, and Δ⊥ the transverse components of the four-
momentum transfer between quarks.
The light-front wave function giving rise to the algebraic

model was obtained in Euclidean space from an appropriate
projection of the pion’s Bethe-Salpeter wave function [65],
which was in turn constructed using a Nakanishi repre-
sentation for the Bethe-Salpeter amplitude [66,67],

χðk;pÞ¼ iN γ5

Z
∞

0

dw
Z

1

−1
dz

ρðw;zÞM2

ðk− 1−z
2
pÞ2þM2þw

;

with ρðw;zÞ¼ δðwÞð1−z2Þ: ðA2Þ

where M is a mass scale, supplemented with an ansatz of
the form

SðkÞ ¼ ð−iγ · kþMÞ=ðk2 þM2Þ; ðA3Þ

for the quark propagator.
Such a parametrization allows for a fully algebraic

treatment leading to the evaluation of the two possible
light-front wave functions in closed form [59], thus the
denomination of the resulting GPD model as “algebraic.”
Feeding the overlap representation Eq. (A1) with those
LFWFs yields

Hðx; ξ; μÞjDGLAP ¼ 30
ð1 − xÞ2ðx2 − ξ2Þ

ð1 − ξ2Þ2 : ðA4Þ

Here, the companion ERBL region was constructed in
[25] following the dictations of Lorentz covariance as
captured by the renowned polynomiality property and
implemented through the (inverse) Radon transform
[24,41]. As a result, the underlying DD is found [25]:

hAlgðβ; α; μÞ ¼
15

2
½1 − 3ðα2 − β2Þ − 2β�; ðA5Þ

while the ERBL GPD turns out to be

Hðx;ξ;μÞjERBL ¼
15

2

ð1−xÞðx2−ξ2Þ
ξ3ð1þξÞ2 ðxþ2xξþξ2Þ: ðA6Þ

Asa final remark, notice that no explicit reference has been
made to the scale μ in the presentation of this model. Its
setting is implicit in the expression [Eq. (A1)],where ameson
is being represented by two-body LFWFs. A discussion
about this subject is definitely outside the scope of the present
work; the interested reader can findmore information in, e.g.,
[45] and references therein.

2. Goloskokov-Kroll model

The Goloskokov-Kroll (GK) model [33,46–48] is a
popular phenomenological parametrization, originally
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tailored for the description of deeply virtual meson pro-
duction (DVMP) but which has also proved to yield good
agreement in a leading order description of deeply virtual
Compton scattering data14 [68]. It is built on top of
Radyushkin’s double distribution Ansatz (RDDA) which
in turn relays on two simple ideas [69]:

(i) The profile of a GPD along the x direction is basically
determined by that of fðx; μÞ≡Hðx; ξ ¼ 0; μÞ, i.e.,
the parton distribution function.

(ii) The shape of a GPD along the ξ direction character-
izes the spread of parton momentum induced by
momentum transfer.

A simple way to combine these two assumptions is to
model GPDs through DDs of the form

hðNÞ
RDDAðβ; α; μÞ ¼ fðβ; μÞπNðβ; αÞ; ðA7Þ

where πNðβ; αÞ is a profile function. From that point on,
Eq. (2.2) gives

Hðx; ξ ¼ 0; μÞ ¼
Z Z

Ω
dβdαδðx − βÞfðβ; μÞπNðβ; αÞ

¼ fðx; μÞ
Z

1−jxj

−1þjxj
πNðx; αÞ; ðA8Þ

which produces the desired forward limit if the profile
function is normalized as

Z
1−jxj

−1þjxj
dαπNðx; αÞ ¼ 1: ðA9Þ

A simple way to fulfill such a requirement is to employ
the profile function suggested in [69],

πNðβ;αÞ ¼
Γð2N þ 2Þ

22Nþ1Γ2ðN þ 1Þ
½ð1 − jβjÞ2 − α2�N
ð1 − jβjÞ2Nþ1

; ðA10Þ

which satisfies the condition Eq. (A9) ∀ NjReðNÞi − 1.
Strikingly, the α dependence of such a profile function

is entirely controlled by a single parameter, N, producing a
rather inflexible modeling.15

In [33,46–48] this approach is followed to build the
renowned Goloskokov-Kroll model. There, the valence-
quark GPD in nucleons is designed choosing N ¼ 1 in the
profile function πNðβ; αÞ, which reproduces the expected
asymptotic behavior for the quark distribution amplitude
[33]; and employing a phenomenological ansatz for the
parton distribution function,

fðβ; μÞ ¼ β−δð1 − βÞ3
X2
j¼0

cjðμÞβj=2 ðA11Þ

with δ and cj parameters determined from a fit to the
CTEQ6m PDF [46,70] (see Table II).
Combining the parametrization above with Radyushkin’s

DDansatz generates theGoloskokov-Krollmodel for theDD
of valence quarks within nucleons,

hGKðβ;α;μÞ≡hð1ÞRDDAðβ;α;μÞ

¼ 3

4

�
ð1−βÞ2−α2

�
β−δ

X2
j¼0

cjðμÞβj=2: ðA12Þ

For the sake of simplicity, in this work we shall deal with
the present model at μ2 ¼ μ20 ¼ 4 GeV2 which leaves us
with the GPD

Hðx; ξ; μÞjDGLAP ¼
3

4ξ3
X2
j¼0

cj
ð1 − ξ2Þaþ1

	
ξ2 − x2

aþ 1

h
ðxþ ξÞaþ1ð1 − ξÞaþ1 − ðx − ξÞaþ1ð1þ ξÞaþ1

i

− 2
ξ2 − x

ðaþ 2Þð1 − ξ2Þ
h
ðxþ ξÞaþ2ð1 − ξÞaþ2 − ðx − ξÞaþ2ð1þ ξÞaþ2

i

þ ξ2 − 1

ðaþ 3Þð1 − ξ2Þ2
h
ðxþ ξÞaþ3ð1 − ξÞaþ3 − ðx − ξÞaþ3ð1þ ξÞaþ3

i

; ðA13Þ

TABLE II. Parameters of the ansatz Eq. (A11) fitting the
CTEQ6m PDF [70] in the range 10−2 ≤ β ≤ 0.5 and μ20 ≡
4 GeV2 ≤ μ2 ≤ 40 GeV2 (taken from [46]).

δ 0.48

c0ðμÞ 1.52þ 0.248 logðμ2=μ20Þ
c1ðμÞ 2.88 − 0.940 logðμ2=μ20Þ
c2ðμÞ −0.095 logðμ2=μ20Þ

14For the sake of completeness, one must also point out that such agreement was argued in [8] to be only casual.
15In fact, a rapid convergence of the models thus produced through different choices of N was demonstrated in [61,64].
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within the DGLAP region, and

Hðx; ξ; μÞjERBL ¼ 3

4ξ3
X2
j¼0

cj

�
xþ ξ

1þ ξ

�
aþ1

	
ξ2 − x2

aþ 1
þ xþ ξ

1þ ξ

�ðxþ ξÞðξ − 1Þ
aþ 3

− 2
ξ2 − x
aþ 2

�

; ðA14Þ

in the ERBL region, where a≡ j=2 − δ.
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