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The strongly coupled system like the quark-hadron transition (if it is of first order) is becoming an active
play yard for the physics of cosmological first-order phase transitions. However, the traditional field
theoretic approach to strongly coupled first-order phase transitions is of great challenge, driving recent
efforts from holographic dual theories with explicit numerical simulations. These holographic numerical
simulations have revealed an intriguing linear correlation between the phase pressure difference (pressure
difference away from the wall) to the nonrelativistic terminal velocity of an expanding planar wall, which
has been reproduced analytically alongside both cylindrical and spherical walls from perfect-fluid
hydrodynamics in our previous study but only for a bag equation of state. We also found, in our previous
study, a universal quadratic correlation between the wall pressure difference (pressure difference near the
bubble wall) to the nonrelativistic terminal wall velocity regardless of wall geometries. In this paper, we
will generalize these analytic relations between the phase/wall pressure difference and terminal wall
velocity into a more realistic equation of state beyond the simple bag model, providing the most general
predictions so far for future tests from holographic numerical simulations of strongly coupled first-order
phase transitions.
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I. INTRODUCTION

The cosmological first-order phase transition (FOPT)
[1,2] is a quantum field analog of quantum tunneling in
quantum mechanics and thermal transition in statistical
mechanics. For a quantum field theory that exhibits a
continuous symmetry breaking with the appearance of a
potential barrier [3], the cosmological FOPT occurs by
randomly nucleating true-vacuum bubbles in the false-
vacuum environment [4], and then proceeds by accelerating
expansion of bubble walls [5,6] driven by the potential
difference that is eventually balanced by the backreaction
force during the asymptotic expansion stage [7,8], and
finally ends by violent bubble wall collisions [9–12]
with longstanding bulk fluid motions afterward [13–21].

The associated stochastic gravitational wave backgrounds
(SGWBs) [22,23] and curvature perturbations [24] or even
the primordial black holes [25–30] provide comprehensive
probes into our early Universe [31–33].
Although much attention on cosmological FOPTs

has focused on the model buildings and parameter space
searching at the electroweak scales (see, for example, [34]
and references therein) for their apparent advantage of
promising detection in space-borne GW detectors, the
current observational data has already manifested the
potential power in constraining the cosmological FOPT
at corresponding energy scales of PT much higher or lower
than the electroweak scales. For example, with the first
three observing runs of Advanced LIGO-Virgo’ data, the
strong super-cooling FOPTs at LIGO-Virgo band have
been marginally ruled out [35] when both contributions
from wall collisions and sound waves are present as a
general improvement to the previous works [36–39] with a
single source. In particular, recent detection of SGWBs
from the pulsar-timing-array (PTA) observations [40–43]
has renewed the interest in strongly coupled system like the
quark-gluon/hadron PT at the quantum chromodynamics
(QCD) scales.
The cosmological PT of a strongly coupled system, if it

is of first-order, has thus became an alternative probe in
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addition to the traditional heavy-ion collisions and lattice
simulations for investigating the strong dynamics in QCD
physics from various cosmological observations like the
recent PTA constraints [44–62] at QCD scales. In particu-
lar, the PTA constraint [59] on the FOPT at QCD scales
allows for the productions of solar-mass primordial
black holes (PBHs) [25], which, however, might be dis-
favoured by the accompanying constraints from curvature
perturbations [24] as shown specifically for a holographic
QCD model [62]. On the other hand, the strongly coupled
FOPT can in return serve as a play yard for exploring
the nonequilibrium physics of cosmological FOPT.
However, unlike the usual weakly coupled FOPT, the
strongly coupled FOPT is difficult to deal with from the
traditional perturbative field-theory approach due to its
strong-dynamics nature.
Nevertheless, the holographic principle, especially the

AdS / CFT correspondence [63–65] as a specific realization
of the strong-weak duality, can be naturally applied to
the strongly coupled FOPT in recent studies on bubble
nucleation [66–72] and bubble expansion [73–76] as well
as bubble-collision phenomenology [27,62,77–79]. In par-
ticular, the numerical simulations [73,75] from two very
different holographic models reveal a similar linear corre-
lation between the phase pressure difference1 and the
terminal velocity of an expanding planar wall as also
derived analytically from a nonperturbative top-down
approach [74]. However, such a correlation has not been
explored yet in the holographic numerical simulation [76]
for a cylindrical wall due to the high costs of computational
power. Based on the same reason, the holographic numeri-
cal simulation has also not been conducted to date for the
more realistic case of spherical wall expansion.
Intriguingly, besides the linear correlation between the

phase pressure difference and terminal planar-wall velocity,
the holographic numerical simulations [73,75] have also
unfolded two characteristic features for the strongly
coupled FOPT: (i) The terminal wall velocity is marginally
nonrelativistic. This can be understood that, as the bubble
wall strongly interacts with the ambient plasma, the back-
reaction force is so rapidly growing that it only takes a very
short time duration for the accelerating expansion stage
until the backreaction force could balance the driving force.
Hence, the strong dynamics can force the bubble wall to
quickly saturate at a small velocity; (ii) The perfect-fluid
hydrodynamics works extremely well in the whole range of
bubble expansion except at the wall position. This can be
understood as the bubble wall now moves so slowly

(nonrelativistically) that the particles have enough time
to fully thermalize before the bubble wall has swept over.
Hence, the strong dynamics can also help to establish
perfect-fluid hydrodynamic approximation except at the
wall. Note that with appropriate junction conditions
across the bubble wall, the perfect-fluid hydrodynamic
approximation might as well work effectively at the wall
position [7,8].
The above-mentioned nonrelativistic terminal wall

velocity and perfect-fluid hydrodynamics approximation
revealed by the holographic numerical simulations for the
strongly coupled FOPT have indicated that it might be
feasible to derive the linear correlation between the phase
pressure difference and terminal planar-wall velocity from
bottom-up approach by fully appreciating the perfect-fluid
hydrodynamics in the nonrelativistic limit of a planar-
wall expansion. This is what we achieved in Ref. [80] not
only for the planar wall but also for both cylindrical
and spherical walls provided with a bag equation of state
(EOS).
However, in both holographic numerical simulations and

realistic models of strongly coupled FOPTs, the EOS
cannot be fixed exactly by the bag model. It is therefore
necessarily useful to generalize our previous study [80]
directly into the case beyond the bag EOS, and in particular,
to provide analytic approximations for practical use without
going over again the whole numerical evaluations. We
therefore first set up the conventions and requisite formulas
for later use in Sec. II, and then derive in the nonrelativistic
wall limit for its correlations to the phase pressure differ-
ence and wall pressure difference in Secs. III and IV,
respectively. Finally, Sec. V is devoted to conclusions and
discussions. Appendix is provided for a self-containing
introduction to the hydrodynamics beyond the bag EOS.

II. STRONGLY COUPLED FOPT

In this section, we will introduce the necessary notations
and conventions closely following Ref. [8] in order to
generalize the results of our previous study [80].
For a generally coupled system of scalar field and

thermal plasma, the joined dynamics is governed by a
series of Boltzmann equations for the distribution functions
of each species. By considering the late stage of a fast
FOPT, one can take advantage of simplifications from the
flat-spacetime background, self-similar expansion, thin-
wall geometry, and steady-state evolution. Therefore, the
scalar-plasma system can be further reduced into a wall-
fluid system [8] that can be well described by the perfect-
fluid hydrodynamics with corresponding energy-momen-
tum tensor of form

Tμν ¼ ðeþ pÞuμuν þ pημν; ð1Þ

where e, p are the total energy density and pressure, and
uμ ≡ dxμ=dτ is the four velocity of the fluid element at

1Note that, owing to the presence of sound shell with a
nonvanishing fluid-velocity profile around the bubble wall, the
phase pressure difference is different from the wall pressure
difference, the former of which takes the pressure difference away
from the bubble wall (in fact, away from the sound shell) while
the latter of which takes the pressure difference near the bubble
wall.
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xμ ≡ ðt; z; x ¼ 0; y ¼ 0Þ; ðt; ρ;φ ¼ 0; z ¼ 0Þ; ðt; r; θ ¼ 0;
φ ¼ 0Þ for planar, cylindrical, and spherical wall geom-
etries, respectively. Here, the corresponding coordinate
systems are established at the center of the bubble in such
a way that the fluid element only moves in the x1 direction
with the other two spatial directions fixed constantly, for
example, all at zero. Hence, the four velocity of bulk fluids
also reads uμ ¼ γðvÞð1; v; 0; 0Þ from the three velocity v≡
dx1=dx0 via the Lorentz factor γðvÞ≡ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
. The

similarity of bubble expansion during the asymptotic stage
at late time preferentially defines a convenient self-similar
coordinate system ðT ¼ t; X ¼ x1=x0 ≡ ξÞ so that vðξÞ
traces the fluid velocity at x1 ¼ ξt in the background
plasma frame. Besides, the steady-state expansion of the
thin wall also preferentially defines an observer frame
comoving with the wall at x1wðx0Þ ¼ ξwt traced by the
wall velocity ξw. Hence, in the comoving wall frame, the
bulk-fluid four velocity reads uμ ¼ γ̄ð1;−v̄; 0; 0Þ with
γ̄ ≡ γðv̄Þ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v̄2

p
, where the negative sign before

the wall-frame three velocity v̄ ¼ ðξw − vÞ=ð1 − ξwvÞ≡
μðξw; vÞ is introduced to ensure a positive v̄ for later
convenience. Here, the abbreviation μðζ; vðξÞÞ≡ ðζ − vÞ=
ð1 − ζvÞ denotes for the Lorentz boost of the bulk fluid
velocity vðξÞ in the background plasma frame into a ζ-
frame velocity seen in the comoving frame with velocity ζ.
With the wall-fluid approximation for the coupled scalar-

plasma system of cosmological FOPTs, the equation of
motions (EoMs) of the wall-fluid system is given by the
conservation of the total energy-momentum tensor
∇μTμν ¼ 0, which can be projected parallel along and
perpendicular to the bulk fluid direction [81] that can be
further combined into following equations for the profiles
of fluid velocity vðξÞ and total enthalpy wðξÞ ¼ eþ p,

D
v
ξ
¼ γðvÞ2ð1 − ξvÞ

�
μðξ; vÞ2

c2s
− 1

�
dv
dξ

; ð2Þ

d lnw
dξ

¼ γðvÞ2μðξ; vÞ
�
1

c2s
þ 1

�
dv
dξ

: ð3Þ

Here D ¼ 0, 1, 2 correspond to planar, cylindrical, and
spherical walls [82], respectively, and the sound velocity
cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂ξp=∂ξe

p
should be in general a function of ξ [83].

To further maintain the conservation of total energy-
momentum tensor across the discontinuous interfaces at
the bubble wall ξ ¼ ξw and shockwave front ξ ¼ ξsh,
appropriate junction conditions should be imposed from
the temporal and spatial components of ∇μTμν ¼ 0.
Specifically, in the comoving frame of the bubble wall,
the following junction conditions,

w−γ̄
2
−v̄− ¼ wþγ̄2þv̄þ; ð4Þ

w−γ̄
2
−v̄2− þ p− ¼ wþγ̄2þv̄2þ þ pþ; ð5Þ

are hold across the bubble wall, where w�, p�, v̄�, and
γ̄� ≡ γðv̄�Þ are the enthalpy, pressure, wall-frame fluid
velocity, and corresponding Lorentz factors just right in
front and back of the bubble wall, respectively. Besides, in
the comoving frame of the shockwave front, the following
junction conditions,

wLγ̃
2
LṽL ¼ wRγ̃

2
RṽR; ð6Þ

wLγ̃
2
Lṽ

2
L þ pL ¼ wRγ̃

2
Rṽ

2
R þ pR; ð7Þ

are hold across the shockwave front, where wR=L, pR=L,
ṽR=L, and γ̃R=L ≡ γðṽR=LÞ are the enthalpy, pressure, shock-
frame fluid velocity, and corresponding Lorentz factors just
right in front and back of the shockwave front. Therefore,
the combination of the fluid EoMs (2) and (3) with the
junction conditions (4), (5), (6), and (7) together ensures the
conservation of total energy-momentum tensor in the whole
range of the fluid profile.
The fluid EoMs (2) and (3) can be readily solved

numerically for the detonation and deflagration modes
with the junction condition (4) at the bubble wall and
junction condition (6) at the shockwave front (if any)
provided with an extra assumption on the EOS. For a
strongly coupled FOPT, the MIT bag EOS [84] is usually
assumed as a good approximation with corresponding
sound velocity cs ¼ 1=

ffiffiffi
3

p
independent of ξ. A more

general EOS dubbed ν-model [85] renders two constant
sound velocities c2� ¼ ∂ξp�=∂ξe� outside and inside of the
bubble wall, respectively, where

e� ¼ a�T
ν�
� þ V�

0 ; ð8Þ

p� ¼ c2�a�T
ν�
� − V�

0 ; ð9Þ

are the total energy density and pressure just right in
the front and back of the bubble wall, respectively. Here,
V�
0 ≡ V0ðϕ�Þ is the zero-temperature part of total effective

potential Veffðϕ; TÞ ¼ V0ðϕÞ þ ΔVTðϕ; TÞ at the false and
true vacua ϕ�, respectively. It is easy to see that
ν� ¼ 1þ 1=c2�. With above ν-model EOS, the wall-frame
fluid velocities v̄� from the junction conditions (4) and (5)
can be related by

v̄þ ¼ 1

1þ αþ

�
qXþ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2X2

− þ α2þ þ ð1 − c2þÞαþ þ q2c2− − c2þ
q �

; ð10Þ

with abbreviations q≡ ð1þ c2þÞ=ð1þ c2−Þ, X� ≡ v̄−=2�
c2−=ð2v̄−Þ, αþ ≡ ΔV0=ðaþTνþþ Þ, and ΔV0 ≡ Vþ

0 − V−
0 . One

can also define the strength factor αN ≡ ΔV0=ðaþTνþ
N Þ at

null infinity ξ ¼ 1 (unperturbed by fluid motions) so
that αþwþ ¼ αNwN ¼ ð1þ c2þÞΔV0. The hydrodynamic
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solutions for the above ν-model EOS can be solved
numerically in Appendix.
To see the nonrelativistic behavior of the phase pressure

difference (driving force per unit area) between the inner-
most and outermost parts of the fluid profile [7,8],

pdr ¼ ΔVeff ¼ −Δp ¼ Δð−c2saTν þ V0Þ

¼ −
c2þ

1þ c2þ
wN þ c2−

1þ c2−
wO þ 1

1þ c2þ
αNwN; ð11Þ

we consider the deflagration expansion of bulk fluid with a
compressive shockwave as a sound shell in front of the
bubble wall, in which case we can equal the enthalpy at null
infinity wN ≡ wðξ ¼ 1Þ ¼ wðξ ¼ ξsh þ 0þÞ≡ wR to the
enthalpy just in front of the shockwave front, and equal
the enthalpy at the origin wO ≡ wðξ ¼ 0Þ ¼ wðξ ¼ ξw þ
0−Þ≡ w− to the enthalpy just behind the bubble wall.
Further note that w− can be even reduced to depend only on
ξw, vþ, and wþ by adopting the junction condition (4) with
v̄þ ¼ μðξw; vþÞ and v̄− ¼ ξw, where wþ can be further
expressed in terms of ξw, vþ, and observable parameters at
null infinity like αN and ωN by

wþ ¼ ð1þ c2−Þð1 − v2þÞξwαNwN

c2þðξw þ c2−vþÞð1 − vþξwÞ − ðc2− þ vþξwÞðξw − vþÞ
ð12Þ

from the minus-sign branch of (10). Now the phase pressure
difference reads purely in terms of the sound velocities c�,
null-infinity observables αN andwN , bubblewall velocity ξw,
and fluid velocity vþ (to be determined later),

pdr

wN
¼
�

1

1þ c2þ

þ c2−ðξw −vþÞð1−vþξwÞ
c2þðξwþ c2−vþÞð1−vþξwÞ− ðc2−þvþξwÞðξw −vþÞ

�
αN

−
c2þ

1þ c2þ
; ð13Þ

where vþ ¼ μðξw; v̄þðξw; αþÞÞ from the minus-sign branch
of (10) can be further reduced in terms of ξw and αþ.
Therefore, as long as we can find a relation between αþ and
αN , which can be achieved approximately to the leading
order (LO) in ξw for planar, cylindrical, and spherical walls,
we can eventually arrive at the direct relation between the
phase pressure difference pdr and bubble wall velocity ξw
solely in terms of the ν-model EOS c� and null-infinity
observables αN and wN without reference to the underlying
microscopic physics.

III. PHASE PRESSURE DIFFERENCE

In this section, we analytically derive the approxi-
mated relation between the phase pressure difference

pdr ¼ ΔVeff ¼ pO − pN and the bubble wall velocity ξw
with ν-model EOS for planar, cylindrical, and spherical
wall geometries.

A. Planar wall

For a planar wall, the nonvanishing fluid profile is
depicted by the fluid EoM (2) with D ¼ 1,

ðμðξ; vÞ2 − c2þÞ
dv
dξ

¼ 0; ð14Þ

whose solutions are either dv=dξ ¼ 0, namely, v ¼ const,
or μðξ; vÞ ¼ cþ, which would lead to ξ > cþ for v > 0 but
with no deflagration regime. Hence, the only solution
should be v ¼ const ¼ vþ in the sound shell and the
corresponding enthalpy profile from (3) with dv=dξ ¼ 0
also stays constant in the sound shell, wþ ¼ const ¼ wL.
This wL can be related to wR ¼ wN by the junction
condition (6) via ṽR ¼ ξsh and ṽL ¼ μðξsh; vshÞ from the
fluid velocity vsh ≡ vðξsh þ 0−Þ just behind the shockwave
front ξsh. To further determine vsh and ξsh, note that the
constant velocity profile in the sound shell implies vsh ¼
vþ ¼ μðξw; v̄þðv̄−; αþÞÞ with v̄− ¼ ξw and v̄þðv̄−; αþÞ
given by the minus-sign branch of (10). Thus, vsh can
be expressed in terms of ξw and αþ alone. Once vsh is
determined, ξsh can be directly obtained from the shock
front condition μðξsh; vshÞξsh ¼ c2þ. Hence, αN=αþ ¼
wþ=wN can be derived in terms of ξw and αþ alone, which
can be expanded as

αN
αþ

¼ 1þ c2− − c2þ þ ð1þ c2−Þαþ
c2−cþ

ξw

þ ½c2− − c2þ þ ð1þ c2−Þαþ�2
2c4−c2þ

ξ2w þOðξ3wÞ: ð15Þ

We can reverse the above relation to get αþ expressed in
terms of ξw and αN . Then, we can plug αþðξw; αNÞ into the
minus-sign branch of (10) to get v̄þðv̄− ≡ ξw; αþðξw; αNÞÞ.
Next, we can further expand vþ ¼ μðξw; v̄þðξw; αNÞÞ
in ξw, which finally yields the phase pressure difference
(13) in the small ξw limit up to the next-to-leading order
(NLO) as

pdr

wN
¼ cþ½c2− − c2þ þ ð1þ c2−ÞαN �

c2−ð1þ c2þÞ
ξw

þ c2− − c2þ þ ð1þ c2−ÞαN
2c4−ð1þ c2þÞ2

½αN − c4þ − c2þð3þ αNÞ

þ c2−ð1 − c2þÞð1þ αNÞ�ξ2w þOðξ3wÞ: ð16Þ

In the bag limit c� ¼ cs, this analytic approximation
reduces to the same linear correlation pdr ¼ αNwNξw=cs þ
Oðξ2wÞ at the leading order as our previous estimation [80].
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To see the goodness of fit for our analytical approximation,
we can separately evaluate the phase pressure difference
numerically from the exact numerical solutions, and
then find a perfect match for both cases with cþ > c−
and cþ < c− at NLO as shown in Fig. 1. This leading-order
linear dependence in the planar-wall velocity can be tested
explicitly in Sec. V with respect to the holographic
numerical simulation of a strongly coupled FOPT with a
planar wall [73].

B. Cylindrical wall

For a cylindrical wall with D ¼ 1, the fluid EoM (2) to
the order of v2,

dv
dξ

¼ c2þv
ξðξ2 − c2þÞ

−
ðc2þ þ ξ2 − 2Þc2þv2

ðc2þ − ξ2Þ2 þOðv3Þ; ð17Þ

can be solved as

FIG. 1. The comparison between our analytical approximations (dashed lines) and the exact numerical evaluations (solid lines) for
the relations (16) (top), (20) (middle), and (24) (bottom) between the phase pressure difference pdr=wN and wall velocity ξw given
some illustrative values for the asymptotic strength factor αN in both cases of ν-model EOS with sound velocities cþ > c− (left)
and cþ < c− (right).
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vðξÞ ¼ cþðc2þ − ξ2Þ
ξ

=

"
2cþðc2þ− 1Þþ 1

vþξw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2þ − ξ2

c2þ− ξ2w

s
Sol

#
;

Sol¼ cþξwð2vþ − ξwÞþ c3þð1− 2vþξwÞ

þvþξwðc2þ − 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2þ − ξ2w

q
ln

�
ξðcþ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2þ − ξ2w

p
Þ

ξwðcþ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2þ− ξ2

p
Þ

�
;

ð18Þ
given the condition vðξw þ 0þÞ ¼ vþ at the bubblewall. It is
easy to see from (18) that the shock front where vðξÞ drops to
zero is now approximated at ξ ¼ ξsh ¼ cþ with
wðcþÞ ¼ wN , from which we can integrate the fluid EoM
(3) to evaluate wþ at ξw from d lnw=dξ as estimated shortly
below. To estimate d lnw=dξ, we first insert (18) into (3) and
then expand d lnw=dξ to the order of v2þ. Hence, αN=αþ ¼
wþ=wN is now a function of ξw, αþ, and vþ ¼ μðξw; v̄þÞ.
After inserting v̄þðξw; αþÞ from the minus-sign branch of
(10), αN=αþ can be expanded in the small ξw limit as

αN
αþ

¼ 1þ c2− − c2þ þ ð1þ c2−Þαþ
2c4−c2þð1þ c2þÞ

�
c2þ − c2− − ð1þ c2−Þαþ

þ 2c2−ð1þ c2þÞ ln
2cþ
ξw

�
ξ2w þOðξ4wÞ: ð19Þ

Reversing the above relation to get αþðξw; αNÞ and plugging
it into the minus-sign branch of (10), we can derive
v̄þðξw; αNÞ as a function of ξw and αN . We next further
expand vþ ¼ μðξw; v̄þðξw; αNÞÞ in terms of ξw and then
insert it into (13), finally the phase pressure difference can be
obtained in the small ξw limit as

pdr

wN
¼ c2− − c2þ þ ð1þ c2−ÞαN

2c4−ð1þ c2þÞ2
�
ð1þ c2−ÞαN

− ðc2þ þ 2c2þc2− þ c2−Þ þ 2c2−ð1þ c2þÞ ln
2cþ
ξw

�
ξ2w

þOðξ4wÞ: ð20Þ
Note that the purely quadratic term in ξw in the above
approximation is actually an NLO term, while the term
proportional to ξ2w ln ξw is at the leading order as it is
larger than the purely quadratic term in ξw. This analytic
expression serves as an even better approximation in the bag
limit c� → cs ¼ 1=

ffiffiffi
3

p
compared to our previous estimation

[80], and also perfectly matches the exact numerical evalu-
ation as shown in Fig. 1 for both cases with cþ > c− and
cþ < c−, where the distinctive logarithmic dependence can
be directly tested in future holographic numerical simula-
tions of strongly coupled FOPTswith a cylindrical wall [76].

C. Spherical wall

For a spherical wall withD ¼ 2, the fluid EoM (2) to the
order of v2,

dv
dξ

¼ 2c2þv
ξðξ2 − c2þÞ

−
2ðc2þ þ ξ2 − 2Þc2þv2

ðc2þ − ξ2Þ2 þOðv3Þ; ð21Þ

can be solved as

vðξÞ ¼ cþvþξ2wðc2þ − ξ2Þ
ξ

=½c3þξþ 2cþvþξwðc2þ − 2Þξ

− cþξ2wð2c2þvþ − 4vþ þ ξÞ þ Sol�;

Sol ¼ 4vþξ2wðc2þ − 1Þ
�
arctanh

�
ξ

cþ

�
− arctanh

�
ξw
cþ

��
ξ;

ð22Þ
given the condition vðξw þ 0þÞ ¼ vþ at the bubble wall.
Following the same procedures as in the cylindrical case,
we can obtain estimate d lnw=dξ by first plugging (22)
into (3) and then expanding it to the order of v2þ. Hence,
αN=αþ ¼ wþ=wN is obtained by integrating d lnw=dξ.
After inserting vþ ¼ μðξw; v̄þðξw; αþÞÞ, αN=αþ as a func-
tion of ξw and αþ can be expanded in the small ξw limit as

αN
αþ

¼ 1þ c2− − c2þ þ ð1þ c2−Þαþ
2c4−c2þð1þ c2þÞ

½c2þ þ 3c2− þ 4c2þc2−

− ð1þ c2−Þαþ�ξ2w þOðξ3wÞ: ð23Þ
Reversing the above relation to obtain αþðξw; αNÞ and
substituting it into the minus-sign branch of (10), we can
derive v̄þðξw; αNÞ as a function of ξw and αN . We next
further expand vþ ¼ μðξw; v̄þðξw; αNÞÞ in terms of ξw and
then substitute it into (13), finally the phase pressure
difference can be obtained in the small ξw limit as

pdr

wN
¼ c2− − c2þ þ ð1þ c2−ÞαN

2c4−ð1þ c2þÞ2
½3c2− − c2þ þ 2c2þc2−

þ ð1þ c2−ÞαN �ξ2w þOðξ4wÞ: ð24Þ
This analytical expression serves as an even better approxi-
mation in the bag limit c� → cs ¼ 1=

ffiffiffi
3

p
compared to our

previous estimation [80], and also perfectly matches the
exact numerical evaluation as shown in Fig. 1 for both cases
with cþ and c− although the matching is not as good as the
planar and cylindrical cases as here we only include the
leading-order quadratic term while the NLO quartic term is
too lengthy to be informative. This leading-order pure
quadratic dependence in the spherical wall velocity can be
directly tested in future holographic numerical simulations
of strongly coupled FOPTs with a spherical wall.

IV. WALL PRESSURE DIFFERENCE

Apart from the phase pressure difference away from the
bubble wall, we can also approximate in the nonrelativistic
limit for the pressure difference near the bubble wall,
Δwallp≡ pþ − p−, which can evaluated by the junction
condition (5),
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Δwallp
wN

¼ γ̄2−v̄2−w− − γ̄2þv̄2þwþ
wN

: ð25Þ

For the deflagration mode with v̄−¼ ξw and v̄þ¼μðξw;vþÞ,
we can solve αþ from the minus-branch of (10) as

αþ ¼ 1

ðc2− þ 1Þðv2þ − 1Þξw
× ½vþξwðξw − vþÞ þ c2þξwðvþξw − 1Þ
þ c2−ðξw − vþ − vþc2þ þ v2þc2þξwÞ�: ð26Þ

Combining (25) and (26), we can obtain the wall pressure
difference Δwallp=wN in terms of c�, ξw, αN , and vþ as

Δwallp
wN

¼ ½ð1þ c2−Þðvþ − ξwÞξwvþαN �=fξwvþðξw − vþÞ

þ c2þξwðξwvþ − 1Þ
þ c2−½ξw þ vþðc2þξwvþ − c2þ − 1Þ�g; ð27Þ

where we have converted w− to wþ via the junction
condition (4), and then converted wþ to wN via
wþαþ ¼ wNαN . After plugging the nonrelativistic analytic
approximations vþðξw; αNÞ we obtained in the previous
three subsections for planar, cylindrical, and spherical walls
into (27), we finally arrive at a universal quadratic
dependence in the wall velocity at the leading order for
the wall pressure difference in the small ξw limit as

�
Δwallp
wN

�
D¼0;1;2

LO

¼ ð1þ c2−Þðc2þ − αNÞ½c2− − c2þ þ αNð1þ c2−Þ�
c4−ð1þ c2þÞ2

ξ2w; ð28Þ

whose bag limit c� → cs is the same as our previous
result [80],

�
pþ − p−

wN

�
D¼0;1;2

LO;c�→cs

¼
�
αN
c2s

−
α2N
c4s

�
ξ2w: ð29Þ

This universal scaling for different wall shapes can be
understood as the pressure difference taken near the wall
does not care about its global shape. This is different from
the phase pressure difference taken between the null
infinity and bubble center, which does care about the
global shapes of the bubble wall, containing not only the
information near the bubble wall but also the whole bubble-
fluid system including the sound shell and shock-wave
front (if any). This is why the phase pressure difference
admits different leading-order behaviors, that is, the lead-
ing-order linear, logarithmic-quadratic, and purely quad-
ratic dependences for the planar, cylindrical, and spherical
walls, respectively. Nevertheless, for the asymptotic
strength factor αN taking a relatively large value, the
leading-order analytical approximation is not enough,
and we must consider the next leading-order correction,

�
pþ − p−

wN

�
D¼0

NLO
¼ ð1þ c2−Þ½c2− − c2þ þ αNð1þ c2−Þ�½c2þc2− − c4þ þ α2Nð1þ c2−Þ�

c6−cþð1þ c2þÞ2
ξ3w;�

pþ − p−

wN

�
D¼1

NLO
¼ ð1þ c2−Þ½c2− − c2þ þ αNð1þ c2−Þ�

2c8−c2þð1þ c2þÞ4
ðCy1 þ Cy2 þ Cy3 þ Cy4Þξ4w;�

pþ − p−

wN

�
D¼2

NLO
¼ ð1þ c2−Þ½c2− − c2þ þ αNð1þ c2−Þ�

2c8−c2þð1þ c2þÞ4
ðSp1 þ Sp2 þ Sp3Þξ4w; ð30Þ

with

Cy1 ¼ ðc2þ − αNÞ2ðc4þ þ 3c2þ þ c2þαN − αNÞ þ ð4 ln 2Þc2−c2þα2N þ c2−αNðc2þ − αNÞð1þ 2αN − 2 ln 2Þ;
Cy2 ¼ −c2−ðc2þ − αNÞ½ð2 ln 2Þc6þ − c4þ½4þ 3αN − ð2 ln 2ÞαN � þ c2þð2α2N þ 4αN þ 2 ln 2Þ�;
Cy3 ¼ c4−½c6þð2þ 2 ln 2þ 2αNÞ þ c4þ½ð2 ln 2 − 4Þα2N − 5αN − 1þ 4 ln 2� þ Cy03�;
Cy03 ¼ c2þ½α3N þ ð4 ln 2þ 1Þα2N − αN þ 2 ln 2 − 1� − α2Nð1 − 2 ln 2þ αNÞ

Cy4 ¼ 2c2−

�
ðα2Nð1þ c2þÞ2 þ c2−ð1þ c2þÞ2ðc2þ þ α2NÞ − ð1þ c4þÞc4þÞ ln

�
cþ
ξw

�
− 2c6þ ln

�
2cþ
ξw

��
Sp1 ¼ ðc2þ − αNÞ2ðc4þ þ 3c2þ þ c2þαN − αNÞ;
Sp2 ¼ −c2−ðc2þ − αNÞ; ½4c6þ þ c4þð4þ αNÞ þ 2c2þðα2N þ 6αN þ 2Þ þ αNð3 − 2αNÞ�;
Sp3 ¼ c4−½2c6þð3þ αNÞ þ c4þð7 − 5αNÞ þ c2þðα3N þ 9α2N − αN þ 3Þ þ ð3 − αNÞα2N �: ð31Þ

GENERAL BUBBLE EXPANSION AT STRONG COUPLING PHYS. REV. D 109, 096012 (2024)

096012-7



The comparison between our analytical approximation (28)
[with additional next-to-leading order correction (30) for a
relatively large αN ¼ 0.24, 0.3] and the exact numerical
evaluations is presented in Fig. 2 with perfect match in the
nonrelativistic limit. Note that the crossing of curves for
relatively large αN at relatively large ξw is due to the
nonmonotonous dependence of the wall pressure difference
on αN at relatively large ξw. This can be easily illustrated in
the case of a simple bag EOS [80] with cþ ¼ c− ¼ 1=

ffiffiffi
3

p
,

in which case the wall pressure difference pþ − p−
reads

pþ − p−

wN
¼ wþ

wN
γ̄2þv̄þðv̄− − v̄þÞ; ð32Þ

after using the junction conditions w−γ̄
2
−v̄− ¼ wþγ̄2þv̄þ and

w−γ̄
2
−v̄2− þ p− ¼ wþγ̄2þv̄2þ þ pþ. When the bubble wall

velocity ξw is small, the fluid profile is deflagration and

FIG. 2. The comparison between our analytical approximation (28) (dashed lines) [with additional next-to-leading order correction (30)
for relatively large αN ¼ 0.24, 0.3] and the exact numerical evaluations (solid lines) for the relation between the wall pressure difference
p=wN and terminal velocity ξw (solid lines) of planar (top), cylindirical (middle), and spherical (bottom) walls, respectively, given some
illustrative values for the asymptotic strength factor αN in both cases with sound velocities cþ > c− (left) and cþ < c− (right).
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hence the wall-frame fluid velocity just behind the wall
reads v̄− ¼ ξw. For wþ=wN ¼ αN=αN ¼ 1þOðξwÞ, we
take wþ=wN ≃ 1 and then (32) turns into

pþ − p−

wN
¼ v̄þ

1 − v̄2þ
ðξw − v̄þÞ: ð33Þ

As one can explicitly check numerically, although the wall-
frame fluid velocity just in front of the wall v̄þ decreases
with an increasing αN , the wall-pressure difference is not a
monotonic function of v̄þ, and hence it is also nonmono-
tonic to αN . For example, for a small ξw, the leading-order
wall pressure difference in the bag case,

Δwallp
wN

				
LO

¼ 9

�
1

3
− αN

�
αNξ

2
w; ð34Þ

will be larger if αN is closer to 1=6. However, when ξw is
relatively larger, we need take into account the NLO term,

Δwallp
wN

				
NLO

¼ 9ðαN − 8α2N þ 36α3N − 9α4NÞξ4w; ð35Þ

where the quartic coefficient increases as αN increases.
Therefore, when ξw is relatively large, the wall pressure
difference of large αN is larger than that of small αN .

V. CONCLUSIONS AND DISCUSSIONS

The cosmological FOPT serves as an indispensable
probe into the early Universe for the new physics beyond
the standard model of particle physics. The weakly coupled
FOPT is widely studied for its validity in adopting the
perturbative field theory method to estimate the vacuum
decay rate and bubble wall velocity. However, this is not the
case for the strongly coupled FOPTs where the perturbative
method ceases to apply for lack of perturbative definitions
on the effective potential and collision terms in Boltzmann
equations. Fortunately, the holographic method as a specific
realization of the strong-weak duality can map the strongly
coupledFOPTon theboundary into aweakly coupled gravity
theory in the bulk. Recent holographic numerical simulations
of strongly-coupled FOPTs not only prefer a nonrelativistic
terminal wall velocity but also confirm the perfect-fluid
hydrodynamics approximation, and in particular, reveal an
intriguing linear correlation between the phase pressure

FIG. 3. The original data points from Ref. [73] for the energy density and pressure (first panel) as well as sound velocity (second panel)
with respect to the wall velocity. The third panel reproduces their original fit to the phase pressure difference in unit of asymptotic energy
density, which is actually achieved highly nontrivial by adjusting the strength factor and EOS simultaneously. The last panel compares
the data points from the holographic numerical simulation to our analytic approximation (16) from both bag EOS and ν-model EOS.
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difference and terminal velocity of planar wall. By fully
appreciating the perfect-fluid hydrodynamics, we analyti-
cally reproduce such a correlation not only for the planarwall
but also for cylindrical and spherical walls in the case with a
bagEOS. To bemore close to the realistic case,wegeneralize
in this paper our previous analytic results into the case with a
ν-model EOS beyond the simple bag model. The analytic
approximations of the phase pressure difference (16), (20),
and (24)we obtained for the planar, cylindrical, and spherical
walls, respectively, not only well-match the exact numerical
evaluations from the perfect-fluid hydrodynamics, but also
improve our previous results in the bag limit c� → cs,�

pO − pN

wN

�
D¼0

c�→cs

¼ αN
cs

ξw þOðξ2wÞ; ð36Þ

�
pO−pN

wN

�
D¼1

c�→cs

¼
�
α2N
2c4s

−
αN
c2s

�
1þ ln

ξw
2cs

��
ξ2wþOðξ4wÞ;

ð37Þ
�
pO − pN

wN

�
D¼2

c�→cs

¼
�
αN
c2s

þ α2N
2c4s

�
ξ2w þOðξ4wÞ: ð38Þ

All these analytic results can be directly tested in future
holographic numerical simulations (see, for example,
the last panel of Fig. 3 for a perfect match between our
analytic approximation (16) and holographic numerical
simulation [73] in the case with an expanding planar wall),
which would shed light on the understanding of strongly
coupled FOPT and its holographic dual.
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APPENDIX: HYDRODYNAMICS BEYOND
BAG EOS

In this appendix, we revisit in detail the hydrodynamics
beyond the bag EOS specifically in the ν-model [85] where
the sound velocity profile csðξÞ takes constant values c−
and cþ inside (ξ < ξw) and outside (ξ > ξw) of the bubble

wall, respectively. This ν-model EOS together with the
junction conditions (4) and (5) across the bubble wall gives
rise to the hydrodynamic solution (10) which we repeat
here at your convenience,

v̄þ ¼ 1

1þαþ

�
qXþ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2X2

−þα2þ þð1− c2þÞαþ þq2c2− − c2þ
q �

: ðA1Þ

Here abbreviations q≡ ð1þ c2þÞ=ð1þ c2−Þ,
X� ≡ v̄−=2� c2−=ð2v̄−Þ, αþ ≡ ΔV0=ðaþTνþþ Þ, and ΔV0 ≡
Vþ
0 − V−

0 are introduced for clarity. Similar to the bag-EOS
case, the detonation (deflagration) mode picks the plus-sign
(minus-sign) branch of (A1). Note that in order for v̄þ in
(A1) to be real positive number, αþ should be bounded
from below by ðc2þ − c2−Þ=ð1þ c2−Þ, and for αþ > c2þ, only
the detonation mode exists. Note also that the condition
v̄− ¼ c− defines the Jouguet velocity, which further defines
the Jouguet detonation (deflagration) mode when v̄þ in the
plus-sign (minus-sign) branch of (A1) takes its minimal
(maximal) value as

vdetJ ðαþÞ ¼
qc− þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2c2− − ð1þ αþÞðc2þ − αþÞ

p
1þ αþ

; ðA2Þ

vdefJ ðαþÞ ¼
qc− −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2c2− − ð1þ αþÞðc2þ − αþÞ

p
1þ αþ

: ðA3Þ

It is worth noting that if αþ takes its minimal value
ðc2þ − c2−Þ=ð1þ c2−Þ, we have vdetJ jmin ¼ vdefJ jmax ¼ c−, that
is to say, we always have vdetJ ≥ c− and vdefJ ≤ c−.
After specifying the physical branches of hydrodynamic

solutions for different expansion modes, we can solve the
fluid velocity profile vðξÞ from the hydrodynamic EoM (2)
given corresponding junction conditions (4) and (6) at the
bubble wall and shockwave front, if any. We illustrate the
fluid velocity profiles vðξÞ naively solved from (2) in Fig. 4
for some particular values of the sound velocity. Note that
ðξ ¼ cs; v ¼ 0Þ is an improper node of (2), where all of
vðξÞ curves are approached from cs þ 0þ. The expansion
modes are separated by the rarefaction front μðξ; vÞ ¼ c−
and shockwave front μðξ; vÞξ ¼ c2þ. We next turn to solve
the fluid velocity and enthalpy profiles specifically for
different expansion modes.

1. Weak detonation

The detonation mode is defined when the fluid velocity
in front of the bubble wall is vanished, vðξ > ξwÞ ¼ 0,
namely v̄þ ¼ ξw in the wall frame. Thus, v̄− can be solved
from the plus-sign branch of (A1), leading directly to
v− ¼ μðξw; v̄−Þ. Hence, the condition v− > vþ ¼ 0 namely
v̄þ > v̄− defines the detonation mode. The detonation
mode can be of either weak or Jouguet types with
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v̄− > c− or v̄− ¼ c−, that is ξw > vdetJ or ξw ¼ vdetJ , respec-
tively. We postpone the discussion of the Jouguet deto-
nation until Sec. A 4, but first solve here the hydrodynamic
EoM (2) with cs ¼ c− for the fluid velocity profile vðξÞ
passing through ðξw; v−Þ in the case of weak detonation
(ξw > vdetJ ) as illustrated in the left panel of Fig. 5. Note that
for the ν-model EOS, the weak detonation mode contains
not only the case with a large ξw > vdetJ > cþ but also the
case with a very large ξw > c2þ=vdetJ > vdetJ . As a compari-
son for a bag EOS with cþ ¼ c− ¼ cs, only the former case
ξw > vdetJ > cs survives. With the fluid velocity profile vðξÞ
solved from (2) at hand, the corresponding enthalpy profile
wðξÞ can be obtained simply by integrating (3) from the
point ðξw; w−Þ with the enthalpy w− just behind the wall
determined by the junction condition (4) from the enthalpy
wþ ¼ wN in front of the wall up to the null infinity. We
illustrate the enthalpy profile for the weak detonation in the
right panel of Fig. 5.

2. Weak deflagration

The deflagration mode is defined when the fluid velocity
behind the bubble wall is vanished, vðξ < ξwÞ ¼ 0,
namely v̄− ¼ ξw in the wall frame. Thus, v̄þ can be solved
from the minus-sign branch of (A1), leading directly to
vþ ¼ μðξw; v̄þÞ. Hence the condition vþ > v− ¼ 0 namely
v̄− > v̄þ defines the deflagration mode. The deflagration
mode can be of either weak or Jouguet types with ξw ¼
v̄− < c− or ξw ¼ v̄− ¼ c−, that is ξw < vdefJ or ξw ¼ vdefJ ,
respectively. We postpone the discussion of the Jouguet
deflagration until Sec. A 3, but first solve here the hydro-
dynamic EoM (2) with cs ¼ c− for the fluid velocity profile
vðξÞ passing through ðξw; vþÞ in the case of weak def-
lagration (ξw < vdefJ ) as illustrated in the left panel of Fig. 6.
Note that the solved fluid velocity profile vðξÞ should be
cut off due to the shockwave front at ξsh with correspond-
ing fluid velocity vsh ≡ vðξsh þ 0−Þ, both of which can be
determined as shown shortly below. First, it is easy to find
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FIG. 4. The fluid velocity profiles vðξÞ for a ν-model EOS with cs ¼ cþ ¼ 1=
ffiffiffi
3

p
(left) and cs ¼ c− ¼ 1=

ffiffiffi
5

p
(right). The shockwave

front is defined by μðξ; vÞξ ¼ c2þ while the rarefaction front is defined by μðξ; vÞ ¼ c−. The gray, red, blue, and purple shaded regions
correspond to the forbidden, deflagration, detonation, hybrid profiles, respectively.

FIG. 5. The profiles of the fluid velocity vðξÞ (left) and enthalpy wðξÞ=wN (right) for the weak detonation mode. We fix αN ¼ 0.16 and
take cþ ¼ 1=

ffiffiffi
3

p
, c− ¼ 1=

ffiffiffi
5

p
for illustration. The red, green, and blue curves correspond to the bubble wall velocities ξw ¼ 0.7, 0.8, 0.9,

respectively.
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ṽLṽR ¼ c2þ for the shock-frame fluid velocities ṽL=R just
inside/outside of the shockwave front since the whole
shockwave is in the symmetric phase in front of the
bubble wall. Then, as the fluid velocity in front of the
shockwave front is at rest, vR ¼ μðξsh; ṽRÞ ¼ 0, the shock-
wave front velocity ξsh ¼ ṽR ¼ c2þ=ṽL ¼ c2þ=μðξsh; vLÞ
can be directly solved from vL ¼ vðξsh þ 0−Þ≡ vsh given
by extrapolating the solved profile of vðξÞ from ðξw; vþÞ to
ðξsh; vshÞ. The enthalpy profile wðξÞ shown in the right
panel of Fig. 6 can be obtained by integrating the fluid
EoM (3) from the shock front ðξsh; wLÞ all the way back to
the wall, where wL ≡ wðξsh þ 0−Þ can be determined by
the junction condition (6) with wR ¼ wN , ṽR ¼ ξsh, and
ṽL ¼ μðξsh; vshÞ. At the bubble wall, the enthalpy profile
experiences a sudden jump from wþ ¼ wðξw þ 0þÞ to w−
determined by the junction condition (4) with v̄− ¼ ξw and
v̄þðαþ; ξwÞ given by the minus-sign branch of (10).

3. Jouguet deflagration

The Jouguet deflagration mode (or we call it the hybrid
mode in the bag model) is a special deflagration mode
(v̄þ < v̄−) of Jouguet type (v̄− ¼ c−) corresponding to
the minus-sign branch of (10) and realized with the wall
velocity lying between c− < ξw < vdetJ . The fluid velocity
profile in Fig. 7 contains both compressive shockwave and
rarefaction wave in the front and back of the bubble wall,
respectively, as derived shortly below. The Jouguet def-
lagration condition v̄− ¼ c− leads to v̄þ ¼ vdefJ from (A3)
by (10), giving rise to vðξw þ 0þÞ≡ vþ ¼ μðξw; vdefJ Þ and
vðξw þ 0−Þ≡ v− ¼ μðξw; c−Þ that can be used to solve
the fluid EoM (2) both forward and backward from
ðξw þ 0þ; vþÞ and ðξw þ 0−; v−Þ with cs ¼ cþ and
cs ¼ c−, respectively. The solved velocity profile again
vanishes in front of the shockwave front ξ ¼ ξsh þ 0þ and
behind ξ ¼ c− þ 0− as in the weak deflagration and weak

FIG. 6. The fluid profiles vðξÞ (left) and wðξÞ=wN (right) of the weak deflagration mode. We fix αN ¼ 0.16 and take cþ ¼ 1=
ffiffiffi
3

p
,

c− ¼ 1=
ffiffiffi
5

p
. The red, green and blue lines correspond to the bubble wall velocity ξw takes the value of 0.22, 0.32 and 0.42, respectively.

FIG. 7. The fluid profiles vðξÞ (left) and wðξÞ=wN (right) of the Jouguet deflagration mode. We fix αN ¼ 0.16 and take cþ ¼ 1=
ffiffiffi
3

p
,

c− ¼ 1=
ffiffiffi
5

p
. The red, green, and blue lines correspond to the bubble wall velocity ξw taking the value of 0.48, 0.52, and 0.56,

respectively.
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detonation cases. The enthalpy profile can be similarly
obtained from integrating (3) backward from both
wðξsh þ 0−Þ ¼ wL and wðξw þ 0−Þ ¼ w−, where the
enthalpies wL and w− are sequentially determined by
the junction conditions (6) and (4) with wR ¼ wN ,
ṽR ¼ ξsh, ṽL¼μðξsh;vshÞ and wþ ¼wðξwþ 0þÞ, v̄þ ¼ vdefJ ,
v̄− ¼ c−, respectively.

4. Jouguet detonation

The Jouguet detonation mode (absent in the bag model)
is a special detonation mode (v̄þ > v̄−) of Jouguet type
(v̄− ¼ c−) corresponding to the plus-sign branch of (10)
realized by v̄þ ¼ vdetJ ðαþÞ. Similar to the Jouguet defla-
gration mode, the fluid velocity profile of Jouguet deto-
nation mode in Fig. 8 also contains both compressive
shockwave and rarefraction wave in the front and back of
the bubble wall, respectively, but corresponding to the
purple region in Fig. 4. To derive the fluid velocity profile,
the Jouguet detonation condition v̄− ¼ c− leads to v̄þ ¼
vdetJ from (A2) by (10), giving rise to vðξw þ 0−Þ≡ vþ ¼
μðξw; c−Þ and vðξw þ 0þÞ≡ v− ¼ μðξw; vdetJ Þ that can be
used to solve the fluid EoM (2) both forward and backward
from ðξw þ 0þ; vþÞ and ðξw þ 0−; v−Þ with cs ¼ cþ and
cs ¼ c−, respectively. The solved velocity profile again
vanishes in front of the shockwave front ξ ¼ ξsh þ 0þ and
behind ξ ¼ c− þ 0− as in the weak deflagration and
weak detonation cases. The enthalpy profile can be
similarly obtained from integrating (3) backward from
both wðξsh þ 0−Þ ¼ wL and wðξw þ 0−Þ ¼ w−, where the
enthalpies wL and w− are sequentially determined by the
junction conditions (6) and (4) with wR ¼ wN , ṽR ¼ ξsh,
ṽL ¼ μðξsh; vshÞ and wþ ¼ wðξw þ 0þÞ, v̄þ ¼ vdetJ ,
v̄− ¼ c−, respectively.

Finally, we discuss the condition where the Jouguet
detonation mode can be realized. The difference between
the weak detonation and Jouguet detonation mode is that
the Jouguet detonation mode has a compressive shockwave
in front of the wall. From the analysis of the weak
deflagration mode, we can figure out that the situation
where a shockfront can exist is μðξsh; vshÞξsh < c2þ, cor-
responding to the red and purple regions in Fig. 4. If the
condition cannot be satisfied even at ξsh ¼ ξw, the com-
pressive shockwave must vanish and only weak detona-
tion mode exists. Since just right in front of the wall
μðξw; vþÞ takes the value of vdetJ , we can derive that the
form of the condition μðξsh; vshÞξsh < c2þ turns into
vdetJ ξw < c2þ at ξsh ¼ ξw, leading to ξw < c2þ=vdetJ . Recall
that for a detonation mode v̄− < v̄þ < ξw, we must have
ξw > v̄þjmin ¼ vdetJ . Hence, the existence of both detona-
tion profile as wall as the shockwave can only be realized
when vdetJ < ξw < c2þ=vdetJ , that is exactly the condition
where the Jouguet detonation mode can be realized. Note
that if cþ < vdetJ , the condition vdetJ < ξw < c2þ=vdetJ cannot
be satisfied at all. Therefore, the condition of the realization
of the Jouguet detonation can be concluded as

vdetJ < ξw <
c2þ
vdetJ

; if cþ > vdetJ

no Jouguet detonation mode; if cþ < vdetJ : ðA4Þ

Recall that we have shown the minimum of vdetJ ðαþÞ is c−,
then when cþ < c−, the condition cþ > vdetJ cannot be
satisfied at all and the purple region will vanish in Fig. 4.
Therefore, the Jouguet detonation mode can exist only in
the cþ > c− case.

FIG. 8. The fluid profiles vðξÞ (left) and wðξÞ=wN (right) of the Jouguet detonation mode. We fix αN ¼ 0.16 and take cþ ¼ 1=
ffiffiffi
3

p
,

c− ¼ 1=
ffiffiffi
5

p
. The blue lines correspond to the bubble wall velocity ξw taking the value of 0.58.
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