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We calculate all transport coefficients of second-order transient hydrodynamics in two effective kinetic
theory models: a hadron-resonance gas and a quasiparticle model with thermal masses tuned to reproduce
quantum chromodynamics thermodynamics. We compare the corresponding results with calculations for
an ultrarelativistic single-component gas, that are widely employed in hydrodynamic simulations of heavy
ion collisions. We find that both of these effective models display a qualitatively different normalized bulk
viscosity, when compared to the calculation for the single-component gas. Indeed, ζ=½τΠðε0 þ P0Þ� ≃
16.91ð1=3 − c2sÞ2, for the hadron-resonance gas model, and ζ=½τΠðε0 þ P0Þ� ≃ 5ð1=3 − c2sÞ for the
quasiparticle model. Differences are also observed for many second-order transport coefficients, specially
those related to the bulk viscous pressure. The transport coefficients derived are shown to be consistent with
fundamental linear stability and causality conditions.
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I. INTRODUCTION

Ultrarelativistic heavy-ion collisions produce a hot and
dense fluid of nuclear matter in which the fundamental
degrees of freedom of quantum chromodynamics (QCD),
quarks and gluons, become directly manifest. Since the
typical expansion speed of this so-called quark-gluon
plasma is comparable to that of light, relativistic dissipative
hydrodynamic models are needed to describe these colli-
sions [1–3] (see Refs. [4,5] for reviews on theories of
relativistic dissipative hydrodynamics). For decades, it is
known that relativistic extensions of Navier-Stokes theory,
widely used in nonrelativistic models [6,7], are intrinsically
inconsistent. Its equations of motion allow for the propa-
gation of superluminal waves and perturbations around
global equilibriumcan be shown to grow indefinitely instead
of being damped. These are the infamous acausality [8] and
instability [9,10] problems of relativistic Navier-Stokes
theory.
In the last decade, transient hydrodynamic models have

been widely employed in heavy-ion physics [1,2,11].
In this case, the constitutive relations containing only
spacelike gradients, characteristic of Navier-Stokes theory,
are substituted by relaxation-type partial differential
equations for the dissipative currents. Such novel fluid-
dynamical formalism was originally derived by Israel and

Stewart [12,13] and implements the idea that the dissipative
currents relax exponentially to the Navier-Stokes constit-
utive relations (see Refs. [5,14] for a discussion on
Israel-Stewart-like theories). This modification renders the
equations of motion linearly causal and stable, as long as
the viscosities and relaxation times appearing in the theory
satisfy certain constrains [15–19]. References [20–22]
provide recent developments in assessing causality and its
relation to stability.
Recently, causality of transient theories in the full

nonlinear regime has been assessed making use of the
theory of characteristic manifolds [23–25]. In this case, the
constrains involve the viscosities and relaxation times but
also the remaining transport coefficients and the hydro-
dynamic fields themselves (e.g. the components of the
shear-stress tensor). This implies that causality cannot be
assessed without solving the equations of motion. In
Refs. [26,27], state-of-art codes that solve transient hydro-
dynamic equations of motion for heavy-ion collisions have
been analyzed and it was shown that nonlinear causality
violations indeed occur. These violations were seen to take
place predominantly at early times. This evidences that
there is room for improvement in the hydrodynamic models
employed, including a better understanding of the quali-
tative and quantitative behavior of the plethora of transport
coefficients appearing in these theories.
One instance of the aforementioned simulation codes is

MUSIC [28–31]. In this case, the expressions for the various
transport coefficients required in the simulations were

*gabriel.soares.rocha@vanderbilt.edu
†gsdenicol@id.uff.br

PHYSICAL REVIEW D 109, 096011 (2024)

2470-0010=2024=109(9)=096011(19) 096011-1 © 2024 American Physical Society

https://orcid.org/0000-0001-7190-8137
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.096011&domain=pdf&date_stamp=2024-05-10
https://doi.org/10.1103/PhysRevD.109.096011
https://doi.org/10.1103/PhysRevD.109.096011
https://doi.org/10.1103/PhysRevD.109.096011
https://doi.org/10.1103/PhysRevD.109.096011


determined using calculations for an ultrarelativistic single-
component gas [32]. The goal of this paper is to update
these calculations considering systems that incorporate
basic features of QCD thermodynamics. For this purpose,
we calculate all second-order transport coefficients using
two distinct effective kinetic descriptions: the hadron-
resonance gas (HRG) [33–39] and a quasiparticle model
(QPM) [40–45] with a temperature-dependent mass tuned
to recover QCD thermodynamics [37,38]. In both the QPM
and HRG descriptions, we employ the relaxation time
approximation to simplify the collision term, as was also
the case in Ref. [32].
The hadron-resonance gas is a very traditional model for

strongly interacting matter at sufficiently low temperatures,
in which the system can be effectively treated as a multi-
species gas consisting of the various strongly interacting
particles and unstable resonant states cataloged by the
Particle Data Group [46]. At sufficiently high temperatures,
after a cross-over transition [47], the effective degrees of
freedom change, quarks and gluons become deconfined
and the equation of state computed from lattice QCD
simulations provides the thermodynamic description of the
system [39]. The HRG and lattice QCD descriptions are
known to agree with each other for temperatures below that
of the crossover [37,38]. In the high temperature regime,
quasiparticle models have been employed in the literature
to estimate the effects of QCD thermodynamics to transport
properties. In fact, in Refs. [40,41,44] expressions for
transport coefficients are derived and, in order to obtain
analytically accessible results, the Anderson-Witting [48]
relaxation time approximation is employed. The present
work is a continuation of Ref. [45], where only first-order
transport coefficients were calculated—here we shall fill
this void and obtain expressions for all transport
coefficients of transient relativistic fluid dynamics in a
QPM employing an improved RTA prescription [49] and a
judicious choice of matching conditions, which simplifies
the dynamical constrain of the background field (see
Sec. IV).
We begin the discussion in Sec. II, with a general

discussion of hydrodynamics in generic matching condi-
tions. Then, we present the HRG model employed in
Sec. III, with the corresponding derivation of the transient
hydrodynamic equations of motion in Landau matching
conditions. Afterward, in Sec. IV, we present the QPM and
derive the corresponding transient hydrodynamic equations
in what we call the trace-anomaly matching condition. At
the end of the section, in order to have a consistent
comparison with the transport coefficients of the HRG
model, we perform a change of matching conditions to
Landau prescription in a manner that is consistent with the
hydrodynamic power-counting. In Sec. V, we, then, com-
pare the HRG and QPM transport coefficients also with the
expressions employed in MUSIC. In Sec. VI we make our
concluding remarks.

Notation: We shall use units such that ℏ ¼ c ¼ kB ¼ 1
and the mostly minus ðþ;−;−;−Þ metric signature.

II. HYDRODYNAMICS

In the absence of conserved charges, which is a reason-
able approximation in high energy heavy-ion collisions, the
local conservation of energy and momentum are the most
fundamental hydrodynamic equations of motion,

∂μTμν ¼ 0; ð1Þ

where Tμν is the energy-momentum tensor. The tensor can
be conveniently cast in terms of different components with
respect to a timelike normalized vector uμ, uμuμ ¼ 1 so
that,

Tμν ¼ εuμuν − PΔμν þ hμuν þ hνuμ þ πμν; ð2aÞ

ε≡ uμuνTμν; P≡ −
1

3
ΔμνTμν; ð2bÞ

hμ ≡ Δμ
νuλTνλ; πμν ≡ Δμν

αβT
αβ: ð2cÞ

where ε is the total energy density in the local rest frame,
P is the total isotropic pressure, νμ is the particle diffusion
4-current, hμ is the energy diffusion 4-current, and πμν is the
shear-stress tensor. We further introduced the projection
operators

Δμν ≡ gμν − uμuν;

Δμναβ ≡ 1

2
ðΔμαΔνβ þ ΔναΔμβÞ − 1

3
ΔμνΔαβ; ð3Þ

which render a given 4-vector in the 3-space orthogonal to
uμ and render a given second rank tensor symmetric and
traceless and orthogonal to uμ in both indices, respectively.
Now, we proceed to define a local equilibrium state,

which shall allow the separation of the energy-momentum
tensor in ideal and dissipative parts,

ε≡ ε0ðβÞ þ δε; P≡ P0ðβÞ þ Π; ð4Þ

where β≡ 1=T is the inverse temperature of this fictitious
local equilibrium state. The quantities ε0 and P0 are then
related by an equilibrium equation of state, whereas the
quantities δε, and Π are the corresponding dissipative
corrections.
The definition of the parameters β and uμ as temperature

and four-velocity is made by the so-called matching
conditions. The most traditional matching condition
employed in heavy-ion collisions was put forward by
Landau [50] and shall be used in the Hadron-Resonance
gas model. Landau’s prescription defines the fluid
4-velocity as a timelike and normalized eigenvector of
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Tμν, such that Tμ
νuν ≡ εuμ, hence implying in the condition

hμ ¼ 0. Moreover, the inverse temperature is defined
assuming that the particle number and energy densities
in the local rest frame are given by their respective
thermodynamic values, i.e., δε≡ 0. In the next section,
an alternative matching condition shall be considered
for the thermal mass quasiparticle model in order to
simplify the computations. Overall, using the decomposi-
tion (2) into the conservation laws (1), and projecting them
into their components parallel and orthogonal to uμ, we
obtain the following equations of motion,

Dε0 þDδεþ ðε0 þ δεþ P0 þ ΠÞθ
− πμνσμν þ ∂μhμ þ uμDhμ ¼ 0; ð5aÞ

ðε0 þ δεþ P0 þ ΠÞDuμ −∇μðP0 þ ΠÞ
þ hμθ þ hαΔμν

∂αuν þ ΔμνDhν þ Δμν
∂απ

α
ν ¼ 0; ð5bÞ

where D ¼ uμ∂μ is the comoving time derivative, ∇μ ¼
Δμν

∂ν is the 4-gradient operator, θ ¼ ∂μuμ is the expansion
rate, and σμν ¼ Δμναβ

∂αuβ is the shear tensor. Naturally,
Eqs. (5) do not form a closed system of equations and
relations between the dissipative currents and other quan-
tities appearing in the energy-momentum tensor. In the
present text, we shall derive second-order transient hydro-
dynamic equations of motion from kinetic theory.

III. HADRON RESONANCE GAS MODEL

At low temperatures, nuclear matter can be modeled as a
gas of weakly interacting hadrons and resonances [34–39].
In this regime, an effective kinetic theory1 approach can
also be employed, where the single-particle distribution
function fðx;piÞ≡ fp;iði ¼ 1;…; NspecÞ of each particle
species is determined by the relativistic Boltzmann
equation,

pμ
∂μfp;i¼

XNspec

j;a;b¼1

Z
dQjdQ0

adP0
bW

ij↔ab
pp0↔qq0

×ðf̃p;af̃p0;bfq;ifq0;j−fp;afp0;bf̃q;if̃q0;jÞ≡Ci½fp�:
ð6Þ

Above, Ci denotes the collision term for the ith particle
species, which contains the Lorentz-invariant transition
rate Wab↔ij

qq0↔pp0 , that enforces the conservation of four-
momentum. We also defined the integral measure

dPj ¼ d3pj=½ð2πÞ3Ep;j�, where Ep;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
j þm2

j

q
and

f̃p;i ¼ 1 − ðai=giÞfq0;i, where gi is the spin-degeneracy
of the species i and ai ¼ þ1ð−1Þ if the particle is a
fermion (boson) and ai → 0 recovers the classical particle
statistics.
The energy-momentum tensor is expressed in terms of

the single-particle distribution of each particle species as,

Tμν ¼
XNspec

i¼1

Z
dPip

μ
i p

ν
i fp;i: ð7Þ

As with all hydrodynamic models, the inverse temperature
β and fluid 4-velocity uμ are defined by matching con-
ditions. In this section, we employ the usual Landau
matching conditions, which defines β so that the total
energy density follows the equilibrium equation of state
and defines uμ as the timelike normalized eigenvector of the
energy-momentum tensor, so that we have the constraints

δε≡ 0; hμ ≡ 0: ð8Þ

With the restrictions imposed by Landau matching con-
ditions, the energy-momentum tensor for the hadron-
resonance gas model reads

Tμν
L ¼ ε0;Lu

μ
Lu

ν
L − ðP0;L þ ΠLÞΔμν

L þ πμνL ; ð9Þ

in which the hydrodynamic fields defining energy density,
pressure, bulk viscous pressure and shear-stress tensor are
defined, respectively, as

ε0;L ¼
XNspec

i¼1

Z
dPiE2

p;if0p;i; P0;L ¼ −
1

3

XNspec

i¼1

Z
dPiðΔαβpα

i p
β
i Þf0p;i;

ΠL ¼ −
1

3

XNspec

i¼1

Z
dPiðΔαβpα

i p
β
i Þδfp;i; πμνL ¼

XNspec

i¼1

Z
dPphμ

i p
νi
i δfp;i; ð10Þ

1Another hadronic effective kinetic theory, that is not the HRG, has been employed in Ref. [41].
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which are moments of the local equilibrium distribution
and the deviation function, respectively,

f0p;i ¼
gi

exp ðβuμpμ
i Þ þ ai

; δfp;i ¼ fp;i − f0p;i: ð11Þ

In the remainder of the present section, for the sake of
convenience, we shall omit the L subscripts in the hydro-
dynamic variables for the sake of compactness.

A. Moment equations for the hadron-resonance gas

Transient hydrodynamic equations of motion are com-
monly derived from kinetic theory employing the method
of moments [15,51]. In this formalism, exact equations of
motion for irreducible moments of the nonequilibrium
distribution function are derived [52]. In the present case,
we now derive the equations of motion for

ρμ1���μli;r ¼
Z

dPEr
p;ip

hμ1 � � �pμli
i δfp;i; i ¼ 1;…; Nspec;

ð12Þ

where phμ1 � � �pμli
i ≡ Δμ1���μl

ν1���νlp
ν1 � � �pνl

i , and Δμ1���μl
ν1���νl

denotes the 2l-rank tensor projector that is traceless, fully
orthogonal to uμ, and double-symmetric. Here, we only
derive the equations of motion for the scalar and rank-2
tensor moments, which are relevant for the derivation of a
fluid-dynamical theory (since we consider systems with a
vanishing chemical potential, rank-1 irreducible moments
will be of a higher-order in the hydrodynamic power-
counting and can be neglected). We then have the following
equations of motion for the scalar irreducible moments,

Dρi;r − rDuμρ
μ
i;r−1 þ∇μρ

μ
i;r−1 þ

θ

3
½−m2

i ðr − 1Þρi;r−2 þ ðrþ 2Þρi;r� − ðr − 1Þρμνi;r−2σμν

−
JðiÞrþ1;0P

jJ
ðjÞ
3;0

½Dδεþ ðδεþ ΠÞθ − πμνσμν þ ∂μhμ þ uμDhμ� þ αð0Þi;r θ ¼
Z

dPEr−1
p Ci½fp�≡ Ci;r−1: ð13Þ

And the following equations of motion for the rank-2 irreducible moments,

Dρhαβii;r − rDuμρ
μαβ
i;r−1 þ

2

5
Duhα½ðrþ 5Þρβii;rþ1 − rm2

i ρ
βi
r−1� þ Δαβ

α0β0∇μρ
α0β0μ
i;r−1

− ðr − 1Þσμνρμαβνi;r−2 þ
2

5
∇hαðm2

i ρ
βi
i;r−1 − ρβii;rþ1Þ þ

θ

3
½ðrþ 4Þραβi;r − ðr − 1Þm2

i ρ
αβ
i;r−2� þ 2ωhαj

μ ρμjβii;r

þ 2

7
σ hα
μ ½ð2rþ 5Þρβiμi;r − 2ðr − 1Þm2

i ρ
βiμ
i;r−2� þ

2

15
σαβ½−ðr − 1Þm4

i ρi;r−2 þ ð2rþ 3Þm2
i ρi;r − ðrþ 4Þρi;rþ2�

− αð2Þi;r σ
αβ ¼

Z
dPEr−1

p phαpβiCi½fp�≡ Cαβi;r−1: ð14Þ

In the above equations, we have defined ωμν ¼
ð1=2Þð∇μuν −∇νuμÞ and

αð0Þi;r ¼−c2sJ
ðiÞ
rþ1;0þJðiÞrþ1;1;

αð2Þi;r ¼2βJðiÞrþ3;2;

c2s ¼
∂P0

∂ε0
¼ðε0þP0Þ

β
P

jJ
ðjÞ
3;0

;

JðiÞn;q¼ 1

ð2qþ1Þ!!
Z

dPið−Δμνp
μ
i p

ν
i ÞqEn−2q

p;i f0p;if̃0p;i; ð15Þ

where c2s is the speed of sound of the hadron-resonance gas
model. In the high-temperature limit, in which we consider
zj ≡mj=T → 0, ∀ j ¼ 1;…; Nspec and assuming classical
statistics for all particle species, we have

c2s ≃
1

3
−

1

36

P
jgjz

2
jP

jgj
; ð16Þ

which is a generalization of the c2s ≃ 1=3 − ð1=36Þðm=TÞ2
for single particle species derived in Ref. [32]. Equa-
tions (13) and (14) are completely analogous to the moment
equations of Refs. [15,51], with vanishing chemical po-
tential, for each particle species.

B. Relaxation time approximation

The computation of collisional moments on the right-
hand side of Eqs. (13) and (14) is the most nontrivial step in
deriving transient hydrodynamic theories. Thus, phenom-
enological models for the collision term are often employed
to simplify the derivation of a fluid-dynamical theory. In the
relaxation time approximation proposed by Anderson and
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Witting [48], the collision term is substituted by a phe-
nomenological ansatz which imposes that the single-
particle distribution function relaxes exponentially to local
equilibrium within a timescale τR,

Ci½fp� ≃ −
Ep;i

τR
f0p;if̃0p;iϕp;i; ð17Þ

where we consider that the relaxation time, τR, is the same
for all particle species. This approximation is widely used
to obtain solutions of the Boltzmann equation [53–56] and
exact expressions for transport coefficients [40,41,43]. In
particular, this approximation was employed in Ref. [32],
where the second order transport coefficients currently
implement MUSIC were derived.
It is further noted that the above approximation can only

be employed if the relaxation time, τR, does not depend on
particle momenta and if one employs Landau matching
conditions [49]. This is the case in the present section.
Otherwise, the Anderson-Witting RTA is inconsistent with
the local conservation laws (1). Indeed, considering for a
moment that τR depends on momentum, and integrating
both sides of the Boltzmann equation with pν, we have
∂μTμν ¼ −

P
i

R
dPpνðEp;i=τRp;iÞδfp;i, whose right-hand

side does not necessarily vanish. Nevertheless, for a
momentum- and species-independent τR, the right-hand
side will vanish as long as one adopts Landau’s matching
condition.
With ansatz (17), all irreducible moments of the collision

term become

Cμ1���μli;r−1 ¼ −
1

τR
ρμ1���μli;r : ð18Þ

C. Transient hydrodynamic equations of motion

The reduction of dynamical degrees of freedom from the
full moment equations to that of the hydrodynamic currents
(ε0, Π, uμ, πμν, in the present case) requires a truncation
procedure. In the present case, we make use of the order of
magnitude procedure [6,57]. In this case, approximate
relations between different moments of δfp;i are estab-
lished by considering that the order of magnitude of the
moments can be well estimated by the corresponding
asymptotic constitutive relations, given in terms of space-
like derivatives of temperature and 4-velocity. At leading
order, we approximate scalar and rank-2 moments by their
respective asymptotic Navier-Stokes values,

ρi;r ¼ −ζi;rθ þOð2Þ;
ρμνi;r ¼ 2ηi;rσ

μν þOð2Þ; ð19Þ

where Oð2Þ denotes terms that are of second-order or
higher in powers of gradients or in powers of the dissipative
currents. Then, these relations are rearranged so that one

finds relations between generic moments solely in terms of
Π and πμν. Hence, we derive

ρi;r ≡ ζi;r
ζ

Π≡AðiÞ
r ΠþOð2Þ; ð20aÞ

ρμνi;r ¼
ηi;r
η

πμν ≡ CðiÞr πμν þOð2Þ: ð20bÞ

Microscopic expressions for the coefficients ζr;i and ηr;i,

and thus AðiÞ
r and CðiÞr can be derived from Eqs. (13) and

(14) together with Eq. (18) for the collisional moments. For
instance, we have

ζi;r ¼ −τRα
ð0Þ
i;r ;

ηi;r ¼ τRα
ð2Þ
i;r ; ð21Þ

where we identify ζ ¼ −ð1=3ÞPi m
2
i ζi;0 and η ¼ P

i ηi;0.
We also have that

AðiÞ
r ¼ ð−c2sJðiÞrþ1;0 þ JðiÞrþ1;1Þ

1
3

P
jm

2
jðJðjÞ1;0c

2
s − JðjÞ1;1Þ

;

CðiÞr ¼ JðiÞrþ3;2P
j J

ðjÞ
3;2

: ð22Þ

1. Bulk viscous pressure

Now, we proceed to compute the equation of motion for
the bulk viscous pressure. To that end, we take r ¼ 0 in
Eq. (14) multiply by −m2

i , sum it over the particle-species
index i and use the order-of-magnitude relations (20) and
(22) to reexpress the nonhydrodynamic moment as dis-
sipative currents. From this procedure, we derive

τΠDΠþ Π ¼ −ζθ − δΠΠΠθ þ λΠππ
μνσμν þOð3Þ; ð23Þ

whereOð3Þ denote terms that are of third order or higher in
the power-counting scheme explained in the previous
section—such terms are not considered in traditional
theories of transient fluid dynamics. The corresponding
transport coefficients are determined microscopically as

τΠ ¼ τR; ð24aÞ

ζ ¼ τR
3

X
i

m2
i ðJðiÞ1;0c2s − βJðiÞ1;1Þ; ð24bÞ

δΠΠ
τΠ

¼ 2

3
−
1

9

X
i

m4
iA

ðiÞ
−2 −

1

3

P
im

2
i J

ðiÞ
1;0P

jJ
ðjÞ
3;0

; ð24cÞ
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λΠπ
τΠ

¼ 1

3

X
i

m2
i C

ðiÞ
−2 þ

1

3

P
im

2
i J

ðiÞ
1;0P

jJ
ðjÞ
3;0

: ð24dÞ

In connection with Ref. [32], we assess the behavior of
the transport coefficients in the large temperature limit.
Presently, we define such limit so that the ratio of the
masses of all particles with respect to temperature are small,
i.e., zj ≡mj=T → 0, ∀ j ¼ 1;…; Nspec, and classical
statistics for all species (ai → 0) is assumed. In this limit,
the transport coefficients behave asymptotically as

ζ

ðε0 þ P0ÞτΠ
≃

1

72
P

jgj

�X
j

gjz4j −
1

6

ðPjgjz
2
jÞ2P

jgj

�
; ð25aÞ

δΠΠ
τΠ

≃
2

3
−
1

6

ðPjgjm
4
jÞð

P
jgjz

2
jÞ

½−ðPjgjm
2
jÞ2 þ 9ðPjgjm

4
jÞð

P
jgjÞ�

−
1

36

P
jgjz

2
jP

jgj
; ð25bÞ

λΠπ
τΠ

≃
1

18

P
jgjz

2
jP

jgj
: ð25cÞ

In codes solving the hydrodynamic equations of motion, it
is customary to employ expressions (24) as a function of
temperature as a tabulated input or to make use of
expansions (25) above to derive simple expressions in
terms of another thermodynamic quantity, such as the speed
of sound, so that the dependence on the parameters of
microscopic theory (the mass of particle species in the
present case) is not manifest. Indeed from Eqs. (25a) we
can provide relations between the bulk transport coeffi-
cients and the conformal violation of the speed of sound
ðc2s − 1=3Þ ≃Oðz2Þ [see Eq. (16)]. For the normalized bulk
viscosity and the coefficient λΠπ , we have, respectively,

ζ

ðε0 þ P0ÞτΠ
≃
�
18

ðPjgjÞð
P

jgjm
4
jÞ

ðPjgjm
2
jÞ2

− 3

��
1

3
− c2s

�
2

;

λΠπ
τΠ

≃ 2

�
1

3
− c2s

�
: ð26Þ

whereas for δΠΠ one would use the constant leading order
result δΠΠ=τΠ ≃ 2=3. In the above expressions, we see that
the result ζ=½ðε0 þ P0ÞτΠ� ≃ 15ð1=3 − c2sÞ2 calculated in
Ref. [32] is not valid for multiple species systems. Indeed,
quadratic and quartic power averages of the mass ratios
appear in a nontrivial way. For the particle content of
UrQMD [58,59], ζ=½ðε0 þ P0ÞτΠ� ≃ 16.91ð1=3 − c2sÞ2 and
ζ=½ðε0 þ P0ÞτΠ� ≃ 19.36ð1=3 − c2sÞ2 for SMASH particle
content [60].2 Anyhow, the result ζ=½ðε0 þ P0ÞτΠ� ≃
15ð1=3 − c2sÞ2 is recovered in the limiting case where there
is only one particle species, i.e., gj ¼ δj0, for instance. We

note that the expression λΠπ=τΠ is different from what was
derived in Ref. [32] and used in the MUSIC code [28,30,62].
There, λΠπ=τΠ ≃ ð8=5Þð1=3 − c2sÞ.

2. Shear-stress tensor

In order to derive the equation of motion for the shear-
stress tensor, we take Eq. (14), sum it over the particle-
species index i and employ the order-of-magnitude
relations (20b) and (22). The final result is

τπDπhαβi þ παβ ¼ 2ησαβ − δπππ
αβθ − 2ω hα

μ πβiμ

− τππσ
hα
μ πβiμ þ λπΠΠσαβ þOð3Þ; ð27Þ

where the transport coefficients read

τπ ¼ τR;

η ¼ τR
X
i

βJðiÞ3;2;

δππ
τπ

¼ 4

3
þ
X
i

m2
i C

ðiÞ
−2;

τππ
τπ

¼ 10

7
þ 4

7

X
i

m2
i C

ðiÞ
−2;

λπΠ
τπ

¼ 6

5
−

2

15

X
i

m4
iA

ðiÞ
−2: ð28Þ

We note, once more, that the shear relaxation time τπ
coincides with the RTA characteristic time τR. Besides, it is
seen that the second-order transport coefficients δππ , τππ
and λπΠ coincide with the values calculated in Ref. [32]
in the massless limit. Indeed, in the high temperature
limit, zj ¼ mj=T → 0, ∀ j ¼ 1;…; Nspec, and assuming
classical statistics for all species (ai → 0), we have the
following asymptotic expressions for the transport coef-
ficients in

η

τπðε0 þ P0Þ
≃
1

5
−

1

60

P
jgjz

2
jP

jgj
;

δππ
τπ

≃
4

3
þ 1

12

P
jgjz

2
jP

jgj
;

τππ
τπ

≃
10

7
þ 1

21

P
jgjz

2
jP

jgj
;

λπΠ
τπ

≃
6

5
−
1

5

ðPjgjm
4
jÞð

P
jgjz

2
jÞ

½−ðPjgjm
2
jÞ2 þ 9ðPjgjm

4
jÞð

P
jgjÞ�

;

ð29Þ
where it seen that all the transport coefficients coincide with

2The PDG data used for the obtention of these results stems
from the scikit HEP package Particle [61].
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the values derived in Ref. [32] and used in the MUSIC code
at leading order. At subleading order, almost all transport
coefficients are given in terms of the average of the square
of the mass-to-temperature ratio of all particle species with
a coefficient that does not depend on averages of the
particle species (e.g. 1=12 for δππ=τπ). The exception being
λπΠ=τπ , where this coefficient is given in terms of averages
of quartic and quadratic powers of masses. Expressions
analogous to Eqs. (26) can also be deduced from Eqs. (29).
In this case, they reduce to the leading order constant
results, which coincide with the values employed in the
MUSIC simulation code [32].

IV. THERMAL-MASS QUASIPARTICLE MODEL

Effective kinetic models have also been employed as a
technique to obtain properties of quantum field theories
in the weakly coupled regime [41,44,63–69]. In such
formalisms, certain aspects emerging from the underlying
microscopic interaction can be captured by an effective
relativistic Boltzmann equation for quasiparticles with a
temperature-dependent mass,

pμ
∂μfpþ

1

2
∂μM2ðTÞ∂μðpÞfp

¼
Z

dQdQ0dP0Wpp0↔qq0 ðfqfq0 −fpfp0 Þ≡CQ½fp�: ð30Þ

In the present case, the thermal mass MðTÞ is defined so
that QCD thermodynamics is recovered. We stress at this
point that the quasiparticles of the present model should not
be confused with any of the fundamental QCD degrees of
freedom. Instead, they are effective degrees of freedom
defined in such a way as to reproduce thermodynamic
properties of QCD. In Eq. (30), fp is the single particle
distribution function, CQ½fp� is the corresponding quasi-
particle collision term, in which Wpp0↔qq0 denotes the
collision rate, which enforces the conservation of momen-
tum in the collision processes. It is seen that the addition of
a thermal mass leads to the emergence of a Boltzmann-
Vlasov term, where we define

∂
μ
ðpÞ ≡

∂

∂pμ
: ð31Þ

Besides, we employ the integral measure

Z
dP ¼ 4π

Z
d4p
ð2πÞ4 δðp · p −M2ðTÞÞ: ð32Þ

In the present model, which shall be hereon referred to as
quasiparticle model (QPM), we consider that the fluid is
locally neutral and that there are no charge four-currents.
By integrating both sides of the Boltzmann equation with
four-momentum components pμ, we can identify the
energy-momentum tensor as

Tμν ≡
Z

dPpμpνfp þ gμνBðTÞ: ð33Þ

Thus, it is readily seen that the presence of the thermal mass
leads to a redefinition of the conserved current which
employs the field B, called the background field, which
obeys the constrain

∂μB ¼ −
1

2
∂μM2

Z
dPfp; ð34Þ

that is valid for arbitrary nonequilibrium configurations. In
Ref. [42], which assumed a highly symmetric flow con-
figuration (Bjorken flow), this was seen as a boundary
condition, which allowed the dynamical determination of
B. In Ref. [44], a different prescription for the dynamics of
the B-field is assumed, also considering nonequilibrium
effects, but relating B to the dissipative hydrodynamic
fields. In general, the dynamic constrain (34) is not trivially
incorporated in power counting procedures such as the
Chapman-Enskog expansion [45] and the procedure that
shall be employed in Sec. IV D to derive transient hydro-
dynamic equations.
As discussed above, a fundamental ingredient of the

hydrodynamic model in the imposition of matching con-
ditions, which provide a definition of the reference local
equilibrium state, i.e. they define the temperature and four-
velocity. In this context, we impose that

Z
dPfp ≡

Z
dPf0p; ð35Þ

with f0p, the local equilibrium state being given by

f0p ≡ g exp ð−βEpÞ; ð36Þ

where Ep ¼ uμpμ and g is the degeneracy factor which is
set to

g ¼ π4

180
½4ðN2

c − 1Þ þ 7NcNf�; ð37Þ

with Nc ¼ Nf ¼ 3, so that the high-temperature limit of
QCD is recovered [40]. Condition (35) effectively defines
the temperature of the local equilibrium state and we still
need to provide one additional matching condition to define
the fluid four-velocity, uμ. To that end, we employ the
constrain,

Z
dPEpphμifp ¼

Z
dPEpphμif0p; ð38Þ

that is one of the conditions implied by Landau [50], which
defined uμ as the timelike normalized eigenvector of the
energy momentum tensor. This condition implies that the
fluid-comoving observer measures no heat flux, hμ ≡ 0.
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With conditions (35) and (36), the energy-momentum
tensor reads

Tμν
Q ¼ ðε0;Q þ δεQÞuμuν − ðP0;Q þ ΠQÞΔμν þ πμνQ : ð39Þ

The equilibrium energy density, ε0, and pressure, P0, are
given by

ε0;Q ¼ I2;0 þ B ¼ gT4Z2

2π2
½3K2ðZÞ þ ZK1ðZÞ� þ B; ð40aÞ

P0;Q ¼ I2;1 − B ¼ gT4Z2

2π2
K2ðZÞ − B; ð40bÞ

In;q ≡ 1

ð2qþ 1Þ!!
Z

dPð−ΔμνpμpνÞqEn−2q
p f0p; ð40cÞ

where Z ¼ MðTÞ=T and KnðZÞ denotes the nth modified
Bessel function of the second kind [70]. In their turn, the
viscous correction to the energy density, the bulk viscous
pressure and the shear-stress tensor are obtained as

δεQ ¼
Z

dPE2
pδfp;

ΠQ ¼ −
1

3

Z
dPðΔμνpμpνÞδfp;

πμνQ ¼
Z

dPphμpνifp: ð41Þ

We note that constrain (35) implies that δεQ ¼ 3ΠQ. Thus,
matching condition (35) implies that the dissipative cor-
rections to the trace anomaly are automatically set to zero,
i.e., Tμνgμν ≡ ε0;Q − 3P0;Q. As it occurred in Sec. III, for
the sake of simplicity, we shall omit the Q subscript, until
Sec. IV E, where we shall discuss the mapping from the
trace-anomaly matching to the Landau matching condition
employed in the last section.

A. Temperature-dependence of the quasiparticle mass

The procedure for determining the temperature depend-
ence of the quasiparticle mass is such that the basic
thermodynamic relation is guaranteed,

s0 ¼
∂P0

∂T
¼ βðε0 þ P0Þ ¼

gT3Z3

2π2
K3ðZÞ: ð42Þ

Thus, once the function s0ðTÞ is especified (for the
equation of state under consideration), the transcendental
equation (42) can be solved for Z ¼ MðTÞ=T. Since
Z3K3ðZÞ is a monotonic function of Z, the solution of
s0ðTÞ, at a given T, is unique. In the present case, we
employ the Wuppertal-Budapest Collaboration [38] lattice
QCD equation of state for 2þ 1 quark flavors. The
corresponding trace anomaly, IðTÞ≡ ε0ðTÞ − 3P0ðTÞ,
has the analytic parametrization

IðTÞ
T4

¼
�

h0
1þ h3t2

þ f0½tanhðf1tþ f2Þ þ 1�
1þ g1tþ g2t2

�

× exp

�
−
h1
t
−
h2
t2

�
; ð43Þ

with parameters given by h0 ¼ 0.1396, h1 ¼ −0.1800,
h2¼0.0350, f0¼2.76, f1¼6.79, f2¼−5.29, g1 ¼ −0.47,
g2 ¼ 1.04 and h3 ¼ 0.01, where t≡ T=ð0.2 GeVÞ. In
Fig. 1, we display the Wuppertal-Budapest trace anomaly
and the corresponding result for the temperature dependence
of the quasiparticles mass. Similar plots can be seen in
Refs. [40,42,45].We note that, in the high-temperature limit,
the behavior of IðTÞ leads to a thermal mass that behaves as,
MðTÞ=T → 1.1 when T → ∞. Besides, in the region near
the crossover, the peak in the trace-anomaly leads to a
nonmonotonic behavior of the derivative of MðTÞ=T with
respect to T in that region.
Moreover, from the trace anomaly, the pressure can be

obtained by solving the following ODE, stemming from
thermodynamic relations,

0 200 400 600 800 1000
0

1

2

3

4

T(MeV)

I (T)

T4

10 50 100 500 1000

5

10

15

20

T(MeV)

M (T)
T

(a) (b)

FIG. 1. Normalized trace-anomaly obtained from lattice QCD data [38] and thermal mass as a function of temperature for the QPM.
(a) Normalized trace anomaly. (b) Normalized thermal mass.
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T
∂P0ðTÞ
∂T

− 4P0ðTÞ ¼ IðTÞ: ð44Þ

Imposing the boundary condition Pð0Þ ¼ 0, we have the
unique solution

P0ðTÞ
T4

¼
Z

T

0

dX
X

IðXÞ
X4

; ð45Þ

from that, the energy and entropy densities can be
obtained, respectively, by the relations ε0 ¼ I þ 3P0 and
s0 ¼ βðε0 þ P0Þ.
The matching condition (35) simplifies the dynamical

constrain (34), since it implies that we can consider
solutions of B that are dependent only on temperature
and, thus, can be determined solely by the quasiparticle
mass [45]. Hence, the background field B can be deter-
mined as if the system were in equilibrium,

∂B
∂T

¼ −
1

2

∂M2

∂T

Z
dPf0p ¼ −

gTM2

2π2
K1ðZÞ

∂MðTÞ
∂T

; ð46Þ

which can be uniquely solved for BðTÞ by

BðTÞ¼−
g
2π2

Z
T

0

dXM2ðXÞXK1

�
MðXÞ
X

�
∂MðXÞ
∂X

; ð47Þ

where the initial condition Bð0Þ ¼ 0 [40,42] has been used.
In Fig. 2, the results obtained for equilibrium quantities

within the QPM are compared with the ones for the HRG,
with UrQMD particle content. We see that both models
agree for temperatures T ≲ 100. As expected, as one
increases the temperature the models start to differ signifi-
cantly since the HRGmodel is not capable of describing the
deconfined phase of nuclear matter.

B. Moment equations for the quasiparticle model

Analogously to what occurred in Sec. III A, we shall
employ the method of moments to derive transient hydro-
dynamic equations. In the present case, we shall derive
exact equations of motion for

ρμ1���μlr ¼
Z

dPEr
pphμ1 � � �pμliδfp: ð48Þ

Similarly to what occurred in the last section, we restrict
our analyses to the equations of motion for the scalar and
rank-2 moments, since they are the most relevant for the

QPM
HRG
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FIG. 2. Comparison between thermodynamic quantities for the QPM and the HRG as a function of temperature. (a) Normalized
pressure. (b) Normalized energy density. (c) Speed of sound squared. (d) Conformality violation of the speed of sound squared.
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derivation of hydrodynamic equations of motion (at vanishing chemical potential). Hence, we have, for scalar moments

Dρr − rDuμρ
μ
r−1 þ∇μρ

μ
r−1 þ ρrθ − ðr − 1Þσμνρμνr−2 − ðr − 1Þ θ

3
ðM2ρr−2 − ρrÞ −

1

2
DM2ðr − 1Þρr−2

þ − β
2
ð∂M2=∂βÞIr−1;0 − Irþ1;0�
I3;0 þ β

2
ð∂M2=∂βÞI1;0

� ½Dδεþ ðδεþ ΠÞθ − πμνσμν þ ∂μhμ þ uμDhμ� − αð0Þr θ ¼
Z

dPEr−1
p CQ½fp�; ð49Þ

and for rank-2 moments we have

Dρhαβir − rDuμρ
μαβ
r−1 þ

2

5
Duhα½ð2rþ 5Þρβirþ1 − rM2ρβir−1�

þ Δαβ
α0β0∇μρ

α0β0μ
r−1 − ðr − 1Þσμνρμαβνr−2 þ 2

5
∇hαðM2ρβir−1 − ρβirþ1Þ þ

θ

3
½ðrþ 4Þραβr − ðr − 1ÞM2ραβr−2� þ 2ω hα

μ ρβiμr

þ 2

7
σ hα
μ ½ð2rþ 5Þρβiμr − 2ðr − 1ÞM2ρβiμr−2� þ

2

15
σαβ½−ðr − 1ÞM4ρr−2 þ ð2rþ 3ÞM2ρr − ðrþ 4Þρrþ2�

−
1

2
βDM2ðr − 1Þραβr−2 − Δαβ

α0μ∇μM2ρα
0

r−1 − αð2Þr σαβ ¼
Z

dPEr−1
p phαpβiCQ½fp�; ð50Þ

where we made use of the definitions

αð0Þr ¼ c2s

�
β

2

∂M2

∂β
Ir−1;0 þ Irþ1;0

�
− βIrþ1;1;

αð2Þr ¼ 2βIrþ3;2;

c2s ¼
∂P0

∂ε0
¼ I3;1

I3;0 þ β
2
ð∂M2=∂βÞI1;0

: ð51Þ

Note that the expression for c2s displays a contribution of
the temperature-dependence of the mass, which remains
relevant even in the high-temperature limit, i.e. when we
consider that MðTÞ=T → 0

c2s ≃
1

3
þMðTÞ

36

∂

∂T

�
MðTÞ
T

�
: ð52Þ

This differs from the c2s − 1=3 ≃ −ð1=36Þðm=TÞ2 behavior,
found when the massm does not depend on the temperature
[32]. In Eqs. (49) and (50), we note the appearance of new
terms with respect to Refs. [15,51,52], proportional toDM2

or ∇μM2 stemming from the fact that the mass is a function
of temperature, that varies locally.

C. Relaxation time approximation

Now we shall address the collisional moments appearing
on the right-hand side of Eqs. (49) and (50). In contrast to
the last section, the matching conditions (35) and (36) do
not correspond to Landau matching conditions, and the
traditional Anderson-Witting RTA [48] cannot be
employed, since this approximation is inconsistent with
the local conservation laws. Consequently, we adopt

relaxation time approximation developed in Ref. [49] to
approximate the collision term in the quasiparticle model
and render the computation of the equations of motion
simpler. In practice, we employ

CQ½fp� ≃ −
Ep

τR
f0p

�
ϕp −

hϕpE2
pi0

I3;0
Ep þ

hϕpEpphμii
0

I3;1
phμi

�
;

ð53Þ
where we use the notation

h� � �i0 ≡
Z

dPð� � �Þf0p;

ϕp ≡ fp − f0p
f0p

; ð54Þ

and we consider, for simplicity, that the relaxation time, τR,
does not depend on momentum. In this case, the compu-
tation of the scalar and rank-2 tensor collisional moments
present in Eqs. (49) and (50) simplifies considerably and
we have

Z
dPEr−1

p C½fp� ¼ −
1

τR

�
ρr −

Irþ1;0

I3;0
ρ2

�
;

Z
dPEr−1

p phαpβiC½fp� ¼ −
1

τR
ραβr : ð55Þ

D. Transient hydrodynamic equations of motion

The reduction of the dynamical degrees of freedom
appearing in the full moment equations to that of the
hydrodynamic currents (ε0, Π, uμ, πμν, in the present case)

GABRIEL S. ROCHA and GABRIEL S. DENICOL PHYS. REV. D 109, 096011 (2024)

096011-10



requires a truncation procedure. As before, we make use of
the order of magnitude method [6,57,71]. First, we derive
the asymptotic expression for the scalar and rank-2 irre-
ducible moments in a gradient expansion,

ρr ¼ −ζrθ þOð2Þ;
ρμνr ¼ 2ηrσ

μν þOð2Þ; ð56Þ

As in the last section, Oð2Þ denotes terms that are of
second-order or higher in powers of gradients or in powers
of the dissipative currents. The expressions for ζr and ηr
can be obtained by combining Eqs. (49), (50) and (55),

ζr ¼ −αð0Þr þ Irþ1;0

I1;0
αð0Þ0 ;

ηr ¼
1

2
αð2Þr ; ð57Þ

where we further identify the bulk viscosity ζ ¼ ð1=3Þζ2
and the shear viscosity η ¼ η0. Expressions (57) can be
alternatively derived by computing momentum integrals of
the first order solution of the Chapman-Enskog expansion,
obtained in Ref. [45] (Eq. (53) of that reference, consid-
ering a momentum-independent τR), using the relaxation
time approximation (53).
Then, relations (56) can be rearranged in order to express

generic moments solely in terms of Π and πμν. Hence, we
derive

ρr ¼
ζr
ζ
Π≡ArΠþOð2Þ; ð58aÞ

ρμνr ¼ ηr
η
πμν ≡ Crπμν þOð2Þ; ð58bÞ

where we defined the following coefficients,

Ar ¼ 3
αð0Þr − ðIrþ1;0=I1;0Þαð0Þ0

αð0Þ2 − ðI3;0=I1;0Þαð0Þ0

;

Cr ¼
Irþ3;2

I3;2
: ð59Þ

These relations allow us to express nonhydrodynamic
moments in terms of dissipative currents and thus provide
closure for the equation of motion, when substituted in the
moment equations (49)–(50). This procedure is accurate up
to Oð2Þ.

1. Bulk viscous pressure

First,we derive the equationsofmotion for the bulk viscous
pressure. For this purpose, we take Eq. (49) with r ¼ 0
[having in mind that δε ¼ 3Π, see text below Eq. (41)], and
substitute expressions (55) and Eqs. (58) to approximate the
collisional integrals and the nonhydrodynamic moments
appearing in the equations. We finally obtain

τ⋆ΠDΠþ Π ¼ −ζ⋆θ − δ⋆ΠΠΠθ þ λ⋆Πππ
μνσμν þOð3Þ: ð60Þ

In this derivation, timelike derivatives of the inverse temper-
ature are replaced, up to second-order in gradients, by
spacelike derivatives of the four-velocity using the conserva-
tion law

Dβ ¼ βc2sθ þOð2Þ: ð61Þ
In Eq. (60) we employ the star indices in the transport
coefficients as a reminder that these transport coefficients
are computed without assuming Landau matching conditions
and, thus, are not equivalent to the transport coefficient
derived in the last section for the HRG. In Sec. IV E, we
shall convert these equations of motion and corresponding
transport coefficient to the Landau frame. The transport
coefficients read

ζ⋆ ¼ −
τR
3

I3;0
I1;0

�
βI1;1 − βc2s

�
I1;0 þ

β

2

∂M2

∂β
I−1;0

��
;

τ⋆Π ¼ τR
I1;0 þ ðβ=2Þð∂M2=∂βÞI−1;0
I3;0 þ ðβ=2Þð∂M2=∂βÞI1;0

I3;0
I1;0

;

δ⋆ΠΠ
τ⋆Π

¼ 4

3
−A−2

�
M2

9

I3;0 þ ðβ=2Þð∂M2=∂βÞI1;0
I1;0 þ ðβ=2Þð∂M2=∂βÞI−1;0

þ 1

6

∂M2

∂β

ðε0 þ P0Þ
I1;0 þ ðβ=2Þð∂M2=∂βÞI−1;0

�
;

λ⋆Ππ
τ⋆Π

¼ 1

3
þ 1

3
C−2

I3;0 þ ðβ=2Þð∂M2=∂βÞI1;0
I1;0 þ ðβ=2Þð∂M2=∂βÞI−1;0

: ð62Þ

We notice a surprising feature particular of the thermal
mass model: τ⋆Π ≠ τR, i.e., the fact that the relaxation time
depends nontrivially on the temperature even when τR does
not depend on temperature. This is in contrast to the HRG
model [see Eq. (24a)]. This is an effect of the nonideal

equation of state implemented. Indeed, if the mass does not
depend on temperature, the bulk relaxation time reduces to
the RTA characteristic time, i.e., ∂M=∂β ¼ 0 ⇒ τΠ ¼ τR.
Now, we analyze the high-temperature/small-mass limit

behavior of the transport coefficients in the bulk pressure
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equation ofmotion, characterized by the limitMðTÞ=T → 0.
Before displaying the results, we must notice that this
limit is not realized for QCD-thermodynamics-fitted
quasiparticles, since MðTÞ=T → 1.1, as T → ∞ [see also
Fig. 1(b)]. However, since this asymptotic constant mass is
relatively small, the results below should provide reasonable
estimates,

τ⋆Π
τR

≃ 1 −
5

12
MðTÞ ∂

∂T

�
MðTÞ
T

�
;

ζ⋆

τRðε0 þ P0Þ
≃ −

5

36
MðTÞ ∂

∂T

�
MðTÞ
T

�
þ
�
T
6

∂

∂T

�
MðTÞ
T

�

−
5

432

�
T

∂

∂T

�
MðTÞ
T

��
2
��

MðTÞ
T

�
2

;

δ⋆ΠΠ
τ⋆Π

≃
4

3
þ 6πT

5

∂

∂T

�
MðTÞ
T

�
;

λ⋆Ππ
τ⋆Π

≃
2

3
þ 5

36
MðTÞ ∂

∂T

�
MðTÞ
T

�
; ð63Þ

It is noted that the expression for ζ⋆=½τRðε0 þ P0Þ� coincides
with Eq. (54) of Ref. [45] (with the parameter γ ¼ 0, in that
reference). Regarding the bulk relaxation time τΠ, it
approaches the RTA characteristic time, τR. Besides, it is
seen that the sub-leading term for δΠΠ=τΠ cannot be
expressed as something proportional to ð1=3 − c2sÞ, due to
the fact that A−2 ∝ ðT=MðTÞÞ in this regime.

2. Shear-stress tensor

Now we turn our attention to the equation of motion
for the shear-stress tensor. For this purpose, we take
Eq. (49) with r ¼ 0, and Eq. (50) for the rank-2 moments
of the collision term. Employing also Eq. (61), we
derive

τ⋆πDπhαβi þ παβ ¼ 2η⋆σαβ − δ⋆πππ
αβθ − 2τ⋆π ω

hα
μ πβiμ

− τ⋆ππσ
hα
μ πβiμ þ λ⋆πΠΠσαβ þOð3Þ; ð64Þ

where the various transport coefficients have the following
expressions

η⋆ ¼ τRβI3;2;

τ⋆π ¼ τR;

δ⋆ππ
τ⋆π

¼ 4

3
þ C−2

�
M2

3
þ β

2
c2s

∂M2

∂β

�
;

τ⋆ππ
τ⋆π

¼ 10

7
þ 4

7
M2C−2;

λ⋆πΠ
τ⋆π

¼ 8

5
−
2

5
A−2M4: ð65Þ

In contrast to the bulk equations of motion, we note that the

shear relaxation time coincides with the RTA characteristic
timescale.
Once again, we display the small-mass limit behavior for

the transport coefficients,

η⋆

τ⋆π ðε0 þ P0Þ
≃
1

5
−

1

60

�
MðTÞ
T

�
2

;

δ⋆ππ
τ⋆π

≃
4

3
−

1

36
MðTÞ ∂

∂T

�
MðTÞ
T

�
;

τ⋆ππ
τ⋆π

≃
10

7
þ 1

21

�
MðTÞ
T

�
2

;

λ⋆πΠ
τ⋆π

≃
8

5
−
9π

25

�
MðTÞ
T

�
3

; ð66Þ

and it is readily seen that, with the exception of δ⋆ππ=τ⋆π , all
transport coefficients have subleading contributions that
depend on powers of the mass-to-temperature ratio, instead
of its derivative.

E. Matching redefinition for the quasiparticle model

At this point, we note that the equations of motion for the
thermal-mass quasiparticle and the hadron-resonance gas
models have been derived in different matching conditions.
Hence, in order to have a consistent comparison of the
results, we will perform a matching transformation con-
necting the matching conditions employed for the quasi-
particle model to the Landau matching conditions
employed for the hadron-resonance gas model. Thus, we
must reexpress the degrees of freedom of the energy-
momentum tensor derived for the quasiparticle model in
Sec. IV. We perform that consistently with the hydro-
dynamic power-counting employed so far. For the sake of
the present discussion, we shall denote the energy-
momentum tensor in each matching condition as

Tμν
L ¼ ε0ðTLÞuμLuνL − ½P0ðTLÞ þ ΠL�Δμν

L þ πμνL ;

Tμν
Q ¼ ½ε0ðTQÞ þ δεQ�uμQuνQ − ½P0ðTQÞ þ ΠQ�Δμν

Q þ πμνQ ;

ð67Þ

where one is reminded that δεQ ¼ 3ΠQ in the matching
conditions (35). In both cases, uμ is defined by the Landau
frame condition Tμ

L;Qνu
ν
L;Q ¼ εL;Qu

μ
L;Q, where we empha-

size that εL;Q is the total energy density, which reduces to
the equilibrium energy density for Landau matching,
εL ¼ ε0;L, and to εQ ¼ ε0;Q þ δεQ, for conditions (35).
The redistribution of the degrees of freedom is estab-

lished from the fact that the energy momentum tensors, Tμν
L

and Tμν
Q are the same. We can then relate the degrees of

freedom appearing in each matching procedure, leading to,

uμL ¼ uμQ; ð68aÞ
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ε0ðTLÞ ¼ ε0ðTQÞ þ δεQ; ð68bÞ

P0ðTLÞ þ ΠL ¼ P0ðTQÞ þ ΠQ; ð68cÞ

πμνL ¼ πμνQ ; ð68dÞ

where we note that the shear-stress tensor is unaffected by
the matching redefinitions. Note that the thermodynamic
energy density and pressure differ due to the different
definitions of temperature. We define the temperature
difference, δT ≡ TL − TQ, and relate it to δεQ using
Eq. (68b)

δT ¼ δεQ
∂ε0;L=∂TL

þ 1

2

∂
2ε0
∂T2

L

δε2Q
ð∂ε0=∂TLÞ3

þOð3Þ

¼ 3ΠQ

∂ε0;L=∂TL
þ 9

2

∂
2ε0
∂T2

L

Π2
Q

ð∂ε0=∂TLÞ3
þOð3Þ; ð69Þ

where Oð3Þ denotes terms that are cubic in the dissipative
currents and, thus, are of third order in our power-counting
scheme. The bulk viscous pressure in each matching
condition are related using Eq. (68c)

ΠQ ¼ ΠL þ c2sðTLÞδεQ −
1

2

∂c2s
∂ε0

δε2Q þOð3Þ

¼ ΠL þ 3c2sðTLÞΠQ −
9

2

∂c2s
∂ε0

Π2
Q þOð3Þ: ð70Þ

Combining these expressions, we obtain the following
relation between the temperature and the bulk viscous in
both equilibrium frames,

TQ ¼ TL −
3ΠL

ð∂ε0=∂TLÞð1 − 3c2sÞ
þOð2Þ;

ΠQ ¼ ΠL

1 − 3c2s
−
9

2

∂c2s
∂ε0

Π2
L

ð1 − 3c2sÞ3
þOð3Þ: ð71Þ

The equations of motion for the bulk viscous pressure and
shear-stress tensor presented in Eqs. (60) and (64), respec-
tively, can be converted to the Landau frame using the
expressions above and only retaining terms that are of
second order or smaller.

F. The redefined quasiparticle transport coefficients

Now we employ the matching connection equations (71)
in the quasiparticle model transient equations of motion

(60) and (64), respectively, for the bulk viscous pressure
and the shear-stress tensor. We then derive the following
equations of motion,

τΠDΠþ Π ¼ −ζθ − δΠΠΠθ þ λΠππ
μνσμν þOð3Þ;

τπDπhαβi þ παβ ¼ 2ησαβ − δπππ
αβθ − 2τπω

hα
μ πβiμ

− τππσ
hα
μ πβiμ þ λπΠΠσαβ þOð3Þ; ð72Þ

where, for the sake of simplicity, we dropped the Q
subscripts used in the beginning of the present section.
We note that the term ∝ Π2, which emerges as a conse-
quence of the matching redefinition, has been incorporated
into ∝ Πθ. With this modification, Eqs. (72) are of the same
form of Eqs. (60) and (64), with the important difference
that the transport coefficients are modified. Most transport
coefficients maintain their functional form (with just their
temperature being modified),

ζ

τΠ
¼ ζ⋆

τ⋆Π
;

λΠπ
τΠ

¼ λ⋆Ππ
τ⋆Π

; ð73aÞ

τπ¼ τ⋆π ;
η

τπ
¼ η⋆

τ⋆π
;

δππ
τπ

¼δ⋆ππ
τ⋆π

;
τππ
τπ

¼ τ⋆ππ
τ⋆π

; ð73bÞ

whereas some coefficients change nontrivially, so that

τΠ ¼ τ⋆Πð1 − 3c2sÞ; ð74aÞ

δΠΠ
τΠ

¼δ⋆ΠΠ
τ⋆Π

−
3

τ⋆Πð1−3c2sÞ
∂ζ⋆

∂ε0
−
9

2

1

τ⋆Π

∂c2s
∂ε0

ζ⋆

ð1−3c2sÞ2
; ð74bÞ

λπΠ
τπ

¼ λ⋆πΠ
τ⋆π

−
6

τ⋆π ð1 − 3c2sÞ
∂η⋆

∂ε0
: ð74cÞ

We remark that the thermodynamic quantities on the right-
hand side of Eqs. (73) and (74) are calculated using the
temperature evaluated in the Landau frame. We note that,
since ζ and τΠ are modified by the same factor in the
matching transformation, the ratio ζ=τΠ is not modified by
the frame transformation. We also note that δ⋆ΠΠ is the only
transport coefficient that depends on the second derivative
of the thermal mass in the temperature.
With the corrections implied by Eqs. (73), the high

temperature (MðTÞ=T → 0) behavior of the transport coef-
ficients is also expected to change. Indeed, the expressions
for the transport coefficients corresponding to the bulk
viscous pressure equation of motion read,

τΠ
τR

≃ −
MðTÞ
12

∂

∂T

�
MðTÞ
T

�
þMðTÞ2

36

�
∂

∂T

�
MðTÞ
T

��
2

; ð75aÞ
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ζ

ðε0 þ P0ÞτR
≃

5

432
MðTÞ2

�
∂

∂T

�
MðTÞ
T

��
2

þ
�

5

2592

�
T

∂

∂T

�
MðTÞ
T

��
3

−
5

72

�
T

∂

∂T

�
MðTÞ
T

��
2
��

MðTÞ
T

�
3

; ð75bÞ

δΠΠ
τΠ

≃ −
5

2

T2

MðTÞ
∂

∂T

�
MðTÞ
T

�
−
47

6
þ
�
3þ 11π

10

�
T

∂

∂T

�
MðTÞ
T

�
−
35

24

�
T

∂

∂T

�
MðTÞ
T

��
2

−
5

2

T ∂
2

∂T2

�
MðTÞ
T

�

∂

∂T

�
MðTÞ
T

� ; ð75cÞ

λΠπ
τΠ

≃
2

3
þ 5

36
MðTÞ ∂

∂T

�
MðTÞ
T

�
; ð75dÞ

where we assumed that for the relaxation time τR does not depend on temperature for these expansions. The same shall be
assumed when calculating the asymptotic expansion below. In the equation of motion for the shear-stress tensor, only
λπΠ=τπ changes nontrivially with the redefinition of the hydrodynamic frame. Nevertheless, for the sake of convenience, we
display the asymptotic behavior of all transport coefficients related to the shear-stress tensor equation of motion below,

η

τπðε0 þ P0Þ
≃
1

5
−

1

60

�
MðTÞ
T

�
2

;

δππ
τπ

≃
4

3
−

1

36
MðTÞ ∂

∂T

�
MðTÞ
T

�
;

τππ
τπ

≃
10

7
þ 1

21

�
MðTÞ
T

�
2

;

λπΠ
τπ

≃
96

5

�
MðTÞ ∂

∂T

�
MðTÞ
T

��
−1
: ð76Þ

Keeping only the leading contribution ofOðMðTÞ=TÞ, we can derive simple thermodynamic expressions for most of the
transport coefficients

τΠ
τπ

≃ 3

�
1

3
− c2s

�
;

ζ

ðε0 þ P0ÞτΠ
≃ 5

�
1

3
− c2s

�
;

λΠπ
τΠ

≃
2

3
;

η

τπðε0 þ P0Þ
≃
1

5
;

δππ
τπ

≃
4

3
;

τππ
τπ

≃
10

7
;

λπΠ
τπ

≃ −
3456

5

�
1

3
− c2s

�
−1
: ð77Þ

Similar relations were derived for the HRG model, see
Eqs. (25), (26), and (29). We further note that similar
asymptotic expressions, derived for a single component
gas [32], are often used in fluid-dynamical simulations of
heavy-ion collisions [29–31]. We note that the introduction
of a temperature dependence mass to recover QCD thermo-
dynamic modified qualitatively the asymptotic expressions
for most of these transport coefficients. For instance,
ζ=½τΠðε0 þ P0Þ� no longer behaves as ∼15ð1=3 − c2sÞ2,
displaying a dependence usually associated to holography
calculations, ∼ð1=3 − c2sÞ [72,73]. Finally, we remark that
the transport coefficient δΠΠ=τΠ could not be trivially
expressed solely in terms of the conformality violation,
even in the asymptotic regime. In order to so, we must
assume a specific dependence for the thermal mass.

V. TRANSPORT COEFFICIENT COMPARISON:
QPM, HRG AND MUSIC

Now that the transport coefficients of both the HRG and
QPM models are expressed in the Landau frame, we can
compare them. In Figs. 3–5, we display the quasiparticle
model coefficients in comparison to hadron-resonance gas
model (with UrQMD particle content) and also the values
employed in the MUSIC simulation code [28,30,62]. First, in
Fig. 3, we display the ratios ζ=½τΠðε0 þ P0Þð1=3 − c2sÞ2�
(left panel) and η=½τπðε0 þ P0Þ� (right panel). Figure 3(a)
shows that the QPM and the HRG models agree with
each other until T ≃ 150 MeV, but both are significantly
below the value employed in MUSIC. At larger temper-
atures, both the HRG and QPM models grow

GABRIEL S. ROCHA and GABRIEL S. DENICOL PHYS. REV. D 109, 096011 (2024)

096011-14



monotonically. The QPM grows over the MUSIC constant
value, since this transport coefficient behaves asymptoti-
cally as3∼5ð1=3 − c2sÞ. Figure 3(b) shows that the QPM and

the HRGmodels do not agree with each other unless we are
in the high temperature limit. In the latter case, all models,
including the parametrization used in MUSIC, behave
as η=½τπðε0 þ P0Þ� ∼ 0.2.
In Figs. 4 and 5 we plot the second-order transport

coefficients. We note that the dependence on the free
parameter τR of the transport coefficients δΠΠ and λπΠ
cannot be removed by simply normalizing these

QPM
HRG
MUSIC

0 200 400 600 800 1000

0.5
1

5
10

50
100

T(MeV)

(a)

QPM
HRG
MUSIC

0 200 400 600 800 1000

0.05

0.10

0.15

0.20

T(MeV)
(b)

FIG. 3. Comparison between first order transport coefficients of the QPM, HRG and the ones employed in the MUSIC code as a
function of temperature. (a) Bulk viscosity normalized with τΠ, enthalpy density and conformal violation of the speed of sound.
(b) Shear viscosity normalized with τπ and enthalpy density. (a) Bulk viscosity normalized with its relaxation time. (b) Normalized shear
viscosity.

(a) (b)

(c)

FIG. 4. Comparison between second order transport coefficients in the bulk viscous pressure equation of motion for the QPM, HRG
and the ones employed in the MUSIC code as a function of temperature. (a) Bulk relaxation time. (b) Bulk to shear coupling. (c) Bulk to
bulk and expansion coefficient coupling.

3This is in contrast to the ∼16.91ð1=3 − c2sÞ2 asymptotic
behavior of the HRG model, as discussed in Subsec. III C 1,
and the 15ð1=3 − c2sÞ2 parametrization adopted in the MUSIC
simulation code.
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coefficients by their corresponding relaxation times, as is
the case for all the other transport coefficients. This
happens because these coefficients depend also on deriv-
atives of the relaxation time on the temperature [see
Eqs. (74b) and (74c)]. When plotting these quantities,
we always assume a constant (temperature-independent)
relaxation time.
In Fig. 4, we display the second-order transport coef-

ficients related to the bulk viscous pressure equation of
motion. In Fig. 4(a), it is seen that the bulk relaxation time
of the QPM is always smaller than the shear relaxation
time, while in the HRG model they are identical.4 In the
QPM, the bulk relaxation time goes to zero at very large
temperature—this does not lead to issues related to acau-
sality since the bulk viscosity (normalized by the enthalpy)
decreases even faster with increasing temperature. We
further note that in QP displays a peak around the crossover
transition region, T ≃ 200 MeV. In Fig. 4(b) we show
λΠπ=½τΠð1=3 − c2sÞ� as a function of temperature. Our

results show a good quantitative agreement between the
HRG and MUSIC values for this transport coefficient. The
QPMmodel, on the other hand, displays significantly larger
values for this quantity for almost all temperatures. This
emerges from the fact that λΠπ=τΠ ≃ 2=3, as estimated in
Eq. (77), and thus all temperature dependence emerges due
to the normalization factor, 1=3 − c2s . For the coefficient
δΠΠ=τΠ, displayed in Fig. 4(c), the HRG model leads to an
almost constant value ∼0.8 for most temperatures, whereas
the QPM calculations lead to values that vary significantly
with the temperature.
In Fig. 5, we display second-order transport coefficients

appearing in the equations of motion for the shear-stress
tensor. In Fig. 5(a) we plot δππ=τπ as a function of
temperature and see a qualitatively similar behavior for
the QPM and HRG calculations, with the former converg-
ing faster to the values used in MUSIC. A similar behavior is
observed for τππ=τπ in Fig. 5(b), with the important
differences that the HRG and QPM models cross around
T ¼ 200 MeV and that the QPM results do not converge to
the values used in MUSIC. Finally, for the coefficient λπΠ=τπ
shown in Fig. 5(c), the HRG model converges slowly to a
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FIG. 5. Comparison between second order transport coefficients in the shear-stress tensor equation of motion for the QPM, HRG and
the ones employed in the MUSIC code as a function of temperature. (a) Shear-stress to expansion coefficient coupling. (b) Shear-stress to
shear-stress and shear tensor coupling. (c) Shear to bulk and shear tensor coupling.

4This happens because of our assumption of an momentum-
independent relaxation time in the RTA model.
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value compatible to the one of MUSIC, while the QPM
calculation saturates to zero.
Finally, now we assess the linear causality and stability

properties emerging from the fluid-dynamical theories
derived. Indeed, in order for a transient hydrodynamic
theory to be linearly causal, the first-order transport
coefficients and their corresponding relaxation times must
satisfy [10,16,74]

1 − c2s −
1

ε0 þ P0

�
4

3

η

τπ
þ ζ

τΠ

�
≥ 0: ð78Þ

The above inequality arises from the requirement that
the group velocity of the perturbations is smaller than
the velocity of light [10,15–17,74]. In Fig. 6, we display the
left-hand side of Eq. (78) as a function of temperature. For
the curve corresponding to MUSIC, we use the same lattice
equation of state employed to obtain the QPM results. At
high temperatures, we see that all three models converge to
the same constant asymptotic value that obeys the causality
constraint. We note that the HRG model and the QPM
approach this asymptotic value from above i.e., they are
farther from violating the causality conditions in the cross
over region. On the other hand, the transport coefficients
employed in the MUSIC approach the constant asymptotic
value from below, i.e., they are closer to violating the
causality constraint. As a matter of fact, around T ¼
143 MeV the left-hand side of (78) yields 0.01, almost
violating the linear causality condition. As pointed out in
Ref. [27], this almost violation of the linear causality
condition is what leads to the violation of causality5 in
heavy-ion collision simulations. Given that a causal evo-
lution is a central property of any relativistic dissipative
hydrodynamic theory, we think that the QPM would be a
good candidate to update the second-order transport coef-
ficients in codes such as MUSIC.

VI. CONCLUSIONS

In this work, we have derived the transport coefficients
for transient hydrodynamics within kinetic theory for two
systems: a hadron resonance gas model and a quasiparticle
model with a thermal mass tuned to reproduce lattice QCD
thermodynamics. In both cases, we derive transient hydro-
dynamics assuming the relaxation time approximation [49]
to simplify the collision term. We find that both the QPM
and HRG transport coefficients can be rather different from
what is currently present in the MUSIC simulation code,
which contains transport coefficients calculated assuming a
single component gas in the high temperature limit [32].
In particular, we discussed the normalized bulk viscosity

coefficient, ζ=½τΠðε0 þ P0Þð1=3 − c2sÞ2�. In HRG, we
have found that this quantity can differ significantly from
the result ζ=½τΠðε0 þ P0Þð1=3 − c2sÞ2� ≃ 15, computed in
Ref. [32] and used in MUSIC. In the asymptotically high
temperature regime, we found similar values of ζ=½τΠðε0 þ
P0Þð1=3 − c2sÞ2� ≃ 16.91 for UrQMD particle content,
while for the temperature range usually appearing in
heavy-ion collision simulations, it is seen that this quantity
assumes values much smaller, ζ=½τΠðε0þP0Þð1=3−c2sÞ2�≃
3.04. On the other hand, in the QPM, ζ=½τΠðε0 þ
P0Þð1=3 − c2sÞ2� does not saturate to a constant, increasing
indefinitely with temperature. Indeed, this happens because
this quantity is actually linearly proportional to the con-
formal violation of the speed of sound, ζ=½τΠðε0 þ P0Þ�≃
5ð1=3 − c2sÞ—a behavior qualitatively similar to the
one found in strongly coupled plasma calculations within
holography [72,73,75]. Finally, we note that both the
HRG model and the QPM provide values of
ζ=½τΠðε0 þ P0Þð1=3 − c2sÞ2�, that are in reasonable agree-
ment around the crossover region.
Regarding the remaining transport coefficients, it is seen

that the value of the normalized shear viscosity,
η=½τπðε0 þ P0Þ�, is similar for the HRG and the QPM near
the crossover region, but both are smaller than what is
implemented in MUSIC. Besides, the bulk-to-shear cou-
pling, λΠπ=½τΠð1=3 − c2sÞ�, possess similar values for HRG
and MUSIC, but the QPM calculations lead to much larger
values at high temperatures. In its turn, the shear-to-bulk
coupling, λπΠ=τπ , calculated in the QPM also behaves
differently with respect to one calculated in the HRGmodel
and the one used in MUSIC: the QPM calculation leads to a
negative value for this transport coefficient, while the HRG
model leads to a positive value. Finally, the transport
coefficients, δΠΠ=τΠ, δππ=τπ and τππ=τπ, are quantitatively
similar in both models, even though they display a
qualitatively different dependence with temperature. It
was also demonstrated that the transport coefficients in
both models satisfy with a greater margin the linear
causality condition than the transport coefficients currently
implemented in MUSIC. The latter almost violate the
causality constrains in regions relevant to heavy-ion
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FIG. 6. Comparison between linear causality constrain con-
dition for the QPM, HRG and the coefficients employed in the
MUSIC code as a function of temperature.

5nonlinear causality conditions were derived in Ref. [24].
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phenomenology. In future studies, it would be relevant to
assess the role of baryon chemical potential to the analysis
and to assess the effect on heavy-ion observables and on the
hydrodynamic evolution of the QGP of updating the
transport coefficients in simulation codes such as MUSIC.
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