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We compute a nonperturbative effective potential between two static fermions in light-front Yukawa
theory as a Hamiltonian eigenvalue problem. Fermion pair production is suppressed, to make possible an
exact analytic solution in the form of a coherent state of bosons that form clouds around the sources. The
effective potential is essentially an interference term between individual clouds. The model is regulated
with Pauli-Villars bosons and fermions, to achieve consistent quantization and renormalization of masses
and couplings. This extends earlier work on scalar Yukawa theory where Pauli-Villars regularization did
not play a central role. The key result is that the nonperturbative solution restores rotational symmetry even
though the light-front formulation of Yukawa theory, with its preferred axis, appears antithetical to such a

symmetry.
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I. INTRODUCTION

The current understanding of quantum chromodynamics
(QCD) as the theory of the strong interactions is that it
provides for the confinement of quarks and gluons.
Calculations within lattice QCD [1,2] have confirmed this
[3-5] as have analytic calculations [6—8],1 not to mention the
experimental evidence for the absence of free quarks and
gluons. What has not been established is the derivation of
confinement within a light-front quantization of the theory
[11-16]. This is something that must be nonperturbative
or at least an all-orders resummation of perturbation theory.

We wish to explore how such a nonperturbative light-
front calculation might be done.” Here we extend earlier

'For earlier discussion of static potentials in QCD, see
Refs. [9,10].

*For recent work on a perturbative calculation of a light-front
effective potential, see Ref. [17]. They use the renormalization
group procedure for effective particles (RGPEP) to compute a light-
front effective potential in QCD and then use it in nonperturbative
calculations. For alternative analyses of effective light-front poten-
tials, see Refs. [18] and [19], and for a light-front analysis of a
particle interaction with a static potential, see Ref. [20].
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work [21]° on quenched scalar Yukawa theory to include
fermion sources. The basic approach is to consider the
effective potential for two static sources as a function of their
separation, computed from the change in the eigenenergy
of the system relative to the energy of two well-separated
sources. This involves renormalization of the source mass
and, as we will show, renormalization of the coupling to
bosons. Regularization is provided by the inclusion of
Pauli-Villars (PV) fermions and bosons.* The PV fermions
provide a convenient simplification of the light-front
quantization by eliminating what are known as instanta-
neous fermion terms from the light-front Hamiltonian;
this is what makes the analytic solution possible. The PV
bosons regulate the self-energy corrections to the fer-
mion mass.

Some will be concerned that a method based on PV
regularization cannot be extended to QCD, there being a
general prejudice against PV regularization of non-Abelian
gauge theories. However, as shown in [16], a consistent PV
regularization can be constructed. The key is that the
definition of the gauge transformation must be extended

*In [21] there are two typographical errors. The factor g/m in
Eq. (3.27) should be g/(2m), and the (¢*)? in the numerator of
Eq. (3.29) should be g*.

“For earlier uses of PV regularization in nonperturbative light-
front calculations, see Ref. [22] for Yukawa theory and [23-27]
for quantum electrodynamics.
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when the Lagrangian is extended to include the PV fields.
In other words, there does remain a gauge invariance of the
QCD Lagrangian when PV fields are included. In addition,
there is a Becchi-Rouet-Stora-Tyutin (BRST) symmetry
when the gauge is fixed covariantly.

Our definition of light-front coordinates [28] is to take
x* =t + z, with x™ as the light-front time, and X | = (x, y)
in the transverse. The conjugate light-front energy is
p~ = E — p., and the light-front momentum is p=(p*=
E+p..p1=(p..py)). The mass-shell condition p* = m?
becomes p~ = (p3 +m?)/p". Further details can be
found in the review [16].

For static sources, fixed in a lab frame, the eigenstates are
no longer eigenstates of light-front energy or momentum.
The ordinary momentum is zero, including the z compo-
nent. We therefore seek eigenstates of the ordinary energy
with use of the operator £ =1 (P~ +P") but do so in
terms of light-front coordinates. Such a choice is also
motivated by the fact that the definition of an effective
potential is in the dependence of the ordinary energy on the
source separation. Most calculations in light-front-quan-
tized theories need not make this distinction because they
use a basis where the light-front momentum is held fixed.
With P, no longer conserved, holding P* fixed is not
possible.

For comparison, we do consider a variational analysis of
P~ alone. This is most easily done after the calculations done
for &, in that one can simply remove terms associated with
P*. This is carried out in Appendix C. The key result of this
analysis is that an unregulated divergence appears due to the
lack of P conservation; integrals over individual longi-
tudinal momenta have no upper bound. Introduction of an
arbitrary cutoff would destroy the rotational symmetry of the
effective potential.

The parameters of the Yukawa Lagrangian are
renormalized by fixing the mass of the dressed fermion
state at a physical value m and by requiring the effective
potential to be of the standard Yukawa form —%e‘”’e,
where R is the source separation, yu the renormalized
boson mass, and ¢ the physical coupling. For the
quenched case considered here, the boson mass in the
Lagrangian is not actually renormalized. The form of the
effective potential is obtained, including its rotational
symmetry.

In Sec. II we summarize the structure of light-front
Yukawa theory with PV regularization and of the
Hamiltonian eigenvalue problem for static fermions. The
solution for a single source is developed in Sec. III and for a
double source in Sec. IV. We summarize the results in
Sec. V and leave some details to appendixes.

II. LIGHT-FRONT YUKAWA THEORY
The Lagrangian for PV-regulated Yukawa theory is [16]’

1 1 .
L= Zrk [5 (0utr)’ = 5#%4 + Zsil/_/i(l}/ﬂay —m;)y;

k

- goz‘ﬁiﬁjfkl/_/ﬂ//jfﬁk,

ijk

(2.1)

where k =i = j =0 correspond to physical fields and
positive integers to PV fields. The r; and s; are metric
signatures, with ry = sy = 1 for the physical fields, r; =
s1 = —1 for the first PV fields, and the remainder (if any)
determined by the constraints necessary for a consistent
theory. The factors of f; and &, provide for adjustments of
the relative couplings of the PV fields, with fy =&, =1
as a definition of g, as the bare coupling for physical
fields. The regularization of loops is provided by the
constraints [16]

Y& =0 and ) 58 =0.

k

(2.2)

because one or the other of these combinations appears
for each line in a loop when summed over the PV
contributions. The r; and s; factors come from the
propagator, and the &, and f; come from the vertices at
the ends of the line. The leading UV divergence then
involves these sums and is canceled by the constraints (2.2).
For example, a boson line carrying momentum ¢ contrib-
utes > ri&7/q1 + O, remi&/q), and the leading
term is zero. This cancellation will be seen explicitly in
the next section. The nonperturbative calculation is effec-
tively a resummation of the regulated loop expansion.
The mode expansions for the boson fields are

dB —ipx T ipx
Pi(x) = e [ar(p)e™P* +aj(p)e'P*], (2.3)
V1673 pt
with the nonzero commutation relations being
lax(p), af (P)] = ridued(pt = p)3(pr—p'1).  (2.4)

The factor r;, = %1 fixes the sign of the metric for the field.

°In Eq. (223) of [16] the Yukawa Lagrangian is expressed
explicitly in terms of separate fields rather than a more general
sum. Here instead we present it in a form analogous to the QED
Lagrangian in Eq. (131).
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The fermion field satisfies the Euler-Lagrange equation

Si(iy”au —m)y; — QOZﬂiﬁj‘Ekﬁbklﬂj =0. (25)
jk

To separate the dynamical part y;, = %yoy y; from the

constrained part y,_ E%y vy~ w,;, we project this Euler-

Lagrange equation using 37°y* to yield the following two
equations:
S0, Wi —8;(—id -0 +pm;)y;_— gozkﬁiﬁjfk(ﬁkll/j— =0
j
(2.6)
and
SiA0_y;_—s;(—id -0\ +pm;)y;, —QOZﬂiﬂjfkff’kll/H =0,

I
(2.7)

with y# = (p, fa). Multiplication of the constraint equa-
tion (2.7) by s;4; and a sum over i eliminates the
interaction,” such that the constrained part of the summed
fermion field w = Y, f;y; satisfies

i0_y_ — (—i&l 0 Wy +ﬂZﬂimiWH—) =0. (2.8)

This is just the constraint equation for a free fermion. We
can then construct the Hamiltonian from the free-fermion
mode expansion

dp )
= = bis Uis e~
) / o SzEﬂ/z[ (P)uis(p)

+d},(p)vis(p)e™™], (2.9)
with
L
uis(p) = [pT+a-p+pmiy,,
/o
1
(2.10)

. = ta1oq,-p — .
D’S(B)_\/pj[p +aJ_ pPL ﬁmt])(—s

and
|

dgq
P = § BB, dx | —=—
p 90 - ﬁjgk/ X/ 167[3q+ [a (ﬂ)e

1 0
1 0 1 1
=— , 1 =— 2.11
0 -1
The nonzero anticommutators are
{bis (ﬂ)v b-]}-—y (2,)} = siéijéss’é(g - ﬂl)v
{dis(p).diy(p))} = si8,6,08(p = p),  (2.12)

and s; = £1 sets the metric.

Instantaneous fermion interactions do not appear.
However, the physics of these interactions has not been
lost; they are present implicitly and restored explicitly in
the limit of infinite PV masses, which shrinks a PV-fermion
exchange to a contact interaction [25].

The light-front Hamiltonian density is then

1 — 1
H=) b 0 L) +5Hid

k

1
+ZS [l//,+ iy - 5¢ ,Bm) (idf - aJ_ Pmi)wiy

+gozl;ﬁ,-ﬂ,fk¢kw,-w,. (2.13)
ij
The Hamiltonian
7)_E/@H:|x+=o=7’6a+7’of +Prp A P (2.14)
is specified by

Z”k / ”ﬁql al(Qae), (215

Pyr = Zsl/ m; "‘Pl
x L) + 4 (Dds(p). (210

—ig-x T zx Lsly) i
L =D R CE= DATATATN

®In [16], the analogous process for QED contains an error in the line above Eq. (138). The factors (—1)"\/B; should be replaced with

Si/))l'.
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(\/_6 25 ° Pu ﬂéés-ﬁu

p] p2+

Voot s+ [ (25422t

P

V2E.5, - Pii | V28, - Poy i(p,—p )x
- (P PP g ()| e, 1)
and
dq . . dp.dp m; m;
P = B dx | —=— T4 gl (g)e'lE / =2 )bl (p,)d"
pair goljzkﬂ ﬁjgk/ -x/ \/167[734’ [Clk(ﬂ)e + ak(ﬂ)e :I 16]7,'3 Z pi» p; ls(£]> J,—S(EQ)
V26, 'ﬁu V2€r, Pu) m; m;
+ : = bli(p,)d;,(p } {e+e) Kl—1>b-b(p )d;(p,)
( i s 42y pi py) :
_ (ﬁg—%'ﬁu v2eés, - Pu)b s(p )]e (p,+p,) } (2.18)
¥ 2y
P P
|
with \/2€,, = —(2s. i) a two-dimensional, transverse vec-  space on the x* = 0 slice.” The static fermion state with

tor [29], where s is the spin index and i = +/—1. The
integral over x has been left undone in the interaction terms,
to accommodate the source wave packets introduced in the

next sections. For the quenched theory, the term P, is, of

course, dropped. Also, we will limit our work to the
fermion sector, and antifermion terms in P, and Py,
will play no role.

The light-front momentum operator is P* = P} + PJ;
with

Pi=2n / dqq*a(@ala)  (2.19)
k
and
Pf - Z /dpp+z is p)bls +d1s( )dlS(E)}
(2.20)
We can then define the ordinary energy operator
1
&= 5(73 +Ph). (2.21)

In the next sections we explore eigenstates of &
that are associated with one or two static fermion
sources.

II1. SINGLE STATIC SOURCE
We first consider a single source at +R /2 to establish the
renormalization of the fermion mass. The static fermion is
described by a wave packet centered at p = (m6 1) in

momentum space and at x = (F R, +R, /2) in coordinate

spin s and PV type i is then

F= [ apP el G

with the function F* peaked at p = (m, 0 ) and its Fourier
transform y*(x) peaked at (F R,.£R,/2). Here |0) 7 s
the vacuum annihilated by b;. The physical and PV
fermions are all static at the same location and at the same

light-front momentum.
The Fourier transform is defined as

dx
Vals =

For the inverse, where the p* integration is limited to
positive values, we take advantage of the narrow peak in F*
to extend the p™ integral to —oo

F=(p) = e'Ty* (x). (3.2)

¢TPEFE(p). (3.3)

dp
V1673
For a static source at x = (F R,, =R, /2) we require that

w0 = 8(x” £ R)S(FL F R1/2).  (34)

The common normalization

"The translation of the longitudinal coordinate, between a lab-
fixed frame and light-front coordinates, is illustrated in Fig. 1 of
[21]. We have z = +R_/2 fixed and x™ = ¢ + z = 0; therefore,
the ordinary time is =7 R./2 and the light-front spatial
coordinate is x™ =t —z =F R,.
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1= [t P = [dplFr )P 35)
is fixed by requiring the indefinite norm
(FilF3) = [ dp'dpF ()P (s - p)
—s; [ dplF*(p)F = s (3.6)

From this static-fermion state, we build a fermion state
dressed by a cloud of bosons in a coherent state as the
ansatz for the energy eigenstate:

) = Y CHGHIF)

G+ F*; (3.7)

with

Gt =z [H ew ([ daci@ai(@ )10, @3)

and |0), the vacuum annihilated by a,. Because the spin-
flip terms in Py, are proportional to P and the static state
requires (p | ) to be zero, the eigenstate is diagonal in spin,
and the coefficient Ci* and the functions G¢; are indepen-

dent of s. The \/ZF are normalization factors for the

coherent state, given by

ZF = exp (—Zrk / dg|G,§(g)|2>. (3.9)
k
This is then to be the solution to
E|G*F*;s) = EX|GFF*;s), (3.10)

with E* = m for the ground state, which is the state of
interest. Each term in the sum over i is also an eigenstate of
the boson annihilation operators a, as is always the case
for a coherent state:
ai(q)|GF) = nG(a)|GY). (3.11)
We begin with a projection of the eigenvalue problem
onto a static fermion of type i
si(FE|E|GEF*;s) = Exs;(

FE|G*F*;s) = EXCH|GY).

(3.12)

This can be reduced with use of the following projections
for individual terms in & =3(Py + P} + Py, +
P+ Pup):

1 1 m? + p?
+ - V[t o) Lot i 1 +0 V2|t
5515 Py + PPIGF5) =55 [[ap| "4 e |iFr Pl
2 m
— C* Ly —)|GH, 3.13
(55 )i68) (.13)
1 1 u+q;
+ - fpt. o\ i}: At + +
si<Fis E(POa+P3)|G F ’S>_§Ci - /dg|: q+ +q ( )sz( )|G > (314)
and
1 1 m; +m;
Si<F$’§PEp‘|GiFi;S> :Egoﬁii 58,6 CT !
I
dq , .
4 % () et RAGLRL)/2 i(g RAG,RL)/2T | (ot
X/16ﬂ:3q+|:rka](g) ( J"qj_ )/ +a (q)e$ (q f‘"qj_ )/ ]|G] > (315)

Details of the reduction for the Py, projection can be found in Appendix A. With the combination of all of these terms, the

projected single-source eigenvalue problem becomes

mlz m 1 ﬂZ_‘_qz m‘
C?<%+E>|Gl¢>+§qﬁt;/dg{%+q ] 1(9)GE(q)|GE) + 5 goﬂ Zs,ﬂ ckai

i.(q) +i(q"R+G.R.)/2 +a ( )e:Fl( q"RA+G.R,) /2] |Gi>

g

ECE|GE). (3.16)
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For this to hold, the coefficient of al(g) must be zero, to
remove states with additional particles from the left-hand
side:

A slight rearrangement yields an implicit expression for Gkii

. . goBi&,  eTia RATLIR)/2
1 C; G G; - :
O_EC [ﬂk‘FQL q+]Gkiz(ﬂ)|Gti> (Q)| > /71671'36]+ M{— N
1 m; +m; L mi+m;
Egoﬁzzsjﬁ & C x Zslﬂ] ——|G). (3.18)
% %e¥i(4*Rz+r}g1@>/2|G%>' (3.17)
Vierq*t ' The eigenvalue problem (3.16) reduces to
|
m> m 1 m; +m; dq s
o <_’+—) GE) + 29> s;BECH——— / =—nGj;(q)e™ " I RIRIGE) = EXCFIGE). (3.19
m 2| >20%:ij] m \/Wkkj(_) |]> | > ( )
On substitution of the expression (3.18) for C;Gj;(¢)|G7), this becomes
ce(m + M) |GE) - g—%ﬂlﬂ-z.s‘ i S sy, C mjtmy IG%) = E*CF|GE), (3.20)
'2m2’2’jffmj,”fm j P

with [ the dimensionless self-energy integral

1—/ ridi (3.21)
167 /4 (q") + a1 + 1 '

and p the physical mass of the boson. The constraint
>k rkfi = 0 on the &, factors makes / finite.
This defines an n; X n; matrix problem

2
ny = |GF) + + (ot
(305 )crion + Svicslon = pecrion),

(3.22)
where n; is the number of fermion types and
V.o 9% / o M+ mjymy +m; 3.93
ij = _Eﬂ ﬂisjﬁjzlsj’ﬂj' m m . (3.23)
j

Now we convert the Fock-space equation (3.22) into an
algebraic equation by projecting it onto (G7|

m:  m
(2’2 + 2) CE + vag;cjt E*CH, (3.24)
J

given the overlap integrals

+ __ + |t
ij <G1 |G]>

= exp( Zrk/qu,ﬂ;,* )G@@), (3.25)

with i =1 and {f;* = 5. The nontrivial {; can be
computed from nonlinear equations for self-consistency
with the solution for Gf;, which arises in the projection
of (3.18) onto (GF|:

eFild RAGLR,)/2

9oPi&x
V16r3q*
LM + m;

x ZS]/}, u

CiGii(q) = -

2.2
ﬂk+qi +
q" + q

(3.26)

The two equations (3.24) and (3.25) must then be solved
simultaneously, with G,; in (3.25) given by (3.26). The

only R dependence appears in the exponentials which

cancel in (3.25), leaving the equations independent of R.
Therefore, the ground state determines the physical fermion

mass m = E* independent of the source location :I:ﬁ/ 2,
and the eigenvalue problem (3.24) provides the renormal-
ization of the bare mass m implicitly by giving m as a
function of m,. We then use these solutions to construct a
solution for the two-source case in the next section. For this
purpose, an explicit solution of the (3.24)—(3.25) system
will not be needed.
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IV. TWO STATIC SOURCES

To compute the effective potential between two sources a
distance R apart, we place them at x = (F R, LR,/ 2) and
construct the eigenstate of the ordinary energy & The
effective potential is then the difference between the
eigenvalue and the total rest mass 2m, with m specified
by the single-source problem solved in the previous
section. Following the case of scalar Yukawa theory
[21], we construct an ansatz for the eigenstate as a product
of single-source solutions:

Sisj<FJs2 <

—ESS <FjS2 < isy

|E|G+G F+F S152>

|G+G F+F 51S2>. (43)

Cross terms between F™ and F~ do not contribute because
they are proportional to

[arr o= [

Wy (x),  (44)

1673

and the second integral is zero from the lack of overlap
between narrow wave packets centered apart. Again, the

|GTG™FTF~;5,5,) ZC, JGFi )G F5,). (4.1)  spin-flip terms of Py, do not contribute, being propor-
tional to the transverse fermion momentum p, for which
This is to b Luti ¢ the expectation value is zero. The right-hand side of (4.3) is
is is to be a solution o
- + - - _ V|-
EIG G F Fris,5)) = E[G'G-F4Fs5,5,).  (42)  DosilFi [P [GTGTFTF 9150) = ECy|GIG).
(4.5)
We proceed as before with a projection onto the static
fermion states The projected terms in £ for the left-hand side are
siS]<Fjs2 < isy (POj 7)f)lG-"_(; FYF; S1sz>
1 n; ()12 mf +ri () |2 |-
=3¢y [ap{ [Pt 4 o i P + [P 4 e 0P GG
p 4
ml2 m?
—c, (2 o0 m)iGe;) (46)
_ 1+ g3
Sisj<Fjsz < isg 2(P0a +7D+)|G+G FYF; SISZ IJZ/ |: : L +:|ll (q)ak(q)|G >|G > (47)
and
+ 1 + +
Sisj<Fjv2 <Flsl np |G G FTF, S1S2>
(¢*R+G.-R.)/2 omilaRAG R )2 T T o
gOZék/ \/16734.{'3’23 ﬂl i'j ak GuRy) +Cl (z) a quRy) ] m |G >|G >
—i(gt + 7R m;+my —
573558y Cip lan(@)e™ T RATRIR 4 g (g)ela KT ROP] ’m’lc,*>|6f>}' (4.8)

Details of this last projection are again in Appendix A. The boson annihilation operators in (4.7) and (4.8) can be replaced
withuse of a;(¢)|G)|G7) = ri[G}i(q) + Gi;(9)]|G;")|G7), which is the two-source extension of (3.11), where a coherent

state is an eigenstate of the annihilation operator.
The projected eigenvalue problem is

+5 gozéfk/m

{ﬁlzs ﬂl i'j rk[le (q) —|—G ( )] (q+Rz+ZiL'RL)/2
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+a}£ (q) e_i(q+Rz+qL'ﬁL)/2j|

m; +my

1GIGT)

+ B> _siBCiy[re [szi(ﬂ) + Gpy(g)|e e Rerd k2
j/

+aj; (g) ei(q+Rz +ZI.L'EL)/2]

The reduction of this eigenvalue problem is detailed in
Appendix B.

From the reduction we obtain the effective potential
Ver =E —2m as

sifimi\* e H*
V — T A 5
off 777 (Z’ m 87R

which is clearly rotationally invariant. We define the
physical coupling g by a match to the standard form for

(4.10)

the Yukawa potential — ﬁe

g= QOZ zﬁ m; ]

We can, of course, have g = g, if we include 2 PV fermions
and impose the additional constraint Y, s;f?m; = 2m.

R which implies

(4.11)

V. SUMMARY

In this work we have thus obtained the standard, rota-
tionally invariant Yukawa potential as the effective poten-
tial between two static sources in quenched, light-front
Yukawa theory. The effective potential comes from the
interference between the two boson clouds that dress
the individual sources and is computed nonperturbatively.
The rotational invariance exists despite the special status for
the z axis in light-front quantization.

The key to our approach is to recognize the ordinary
energy as the relevant quantity, both because momentum is
not conserved when sources are static and because the
effective potential should be defined in terms of this energy.
Light-front energy combines energy and a momentum
component, making it only indirectly related.

To carry out the calculation, we have introduced Pauli-
Villars fermions and bosons. The PV fermions eliminate
instantaneous interaction terms which would otherwise
|

1 1
SiFEl5Pan G Fi5) =3 uss [ dp'F(p

/dBIdEZ ml-/
X —_— —
1623 \p{

mj+my |
~—L|g; )Gj,>} — EC

d
) (0lba () S BBty / a [ ﬁ[ak(g)e

i' jk

+P2> e Zb

U|Gl+>|Gj_> (4.9)

I

interfere with the construction of analytic solutions.
The PV bosons regulate the infinite self-energy of the
sources. The couplings of these are adjusted to satisfy
constraints that guarantee the regularization, the correct
mass and coupling renormalizations, and the removal of
instantaneous fermion interactions from the light-front
Hamiltonian. The instantaneous interactions are restored
in the limit of infinite PV mass.

Given the successful derivation of a rotationally invariant
potential in quenched Yukawa theory, the next step to be
taken is to introduce pair production and annihilation of
free fermions and their own accompanying PV counter-
parts. (The PV fermions associated with the static sources
need to be separate because they are themselves static.)
With pairs included in the basis, a coherent state solution
will no longer be available as the full solution, and Fock-
space methods must be invoked. To have an eigenvalue
problem of finite size will then require truncation, either
explicitly in Fock space or in the operator sense of the light-
front coupled-cluster method [30]. The effects of pairs will
include renormalization of the boson mass, renormalization
of the static fermion coupling, and modifications of the
form of the effective potential. At short separations, these
modifications will be due to the charge renormalization
and the screening that takes place. At large separations,
pairs provide for the Yukawa analog of string breaking.
Completion of this work in Yukawa theory will provide a
useful reference for the calculation of effective potentials in
QED and QCD.

APPENDIX A: PROJECTIONS FOR THE NO-
PAIR CONTRIBUTION

We first consider the single-source case. Substitution of
the definitions of the individual factors |F3), Py, and
|G*F*;s), as given in (3.1), (2.17), and (3.7), respectively,

yields

_iz{ + a-r (g)eiz-z]

b0 3 / dpF*(p)bl.(p)|0)[G5). (A1)
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Given the contractions

bi(P)bly(p,) = 5:8:48,95(p' = p,) (A2)

and

biy(p,)bin (p) = 5;8,8,,6(p = p,). (A3)

the Kronecker and Dirac deltas and the property s7 = 1 can be used to reduce the expression to

1 1 dp' L
(FE| = Prp |GEFE;s) = = E B d = _FH(pel?
sl< is an.p.| S> 2gOﬂl n s.]ﬂjfk/ K/ 16]‘[3 (B )e

dq ; . dp m;  m;

X | ——ar(q)e * + a'(q)e'* F* _””‘< —’)CiGi. A4

/JW["” @] [ s r e (Ges T crlen. (ad)

The momentum-space wave function F~ is peaked at (m, 0 1), which allows any factor of p™ or p'* to be replaced with m.

The two Fourier transforms of F* can be written in terms of the spatial wave function y in (3.3) and the product replaced by
the coordinate-space delta functions of (3.4):

W _pee(pyer's [ 22 pe(pyeivs = jy= @ — 8 £ RISE, T Ro/2) (AS)
Vierr - Vier - U T

Integration over x then gives

1 1 m; +m
si(F3] EPEp.|GiFi;S> = Egoﬁizsjﬂjgkcji

/ a(q)eria Ratar R/2 4 aT(q)(ﬁl( ¢ RAGLR, /2] |Gi>. (A6)
\/ 167r q" -
Use of (3.11) then yields the result given in (3.15).
When there are two sources, the projection needed is
+ 1 + +
sisj<F]sz <Fls| np |G G FF; S1S2>
1 / — % / / / +s
= Esisj f<0| dEZF (Ez)bjsz (22) dﬂlF (p zs] gOZﬂlﬂm‘fk
Imk
dq . dp,dp
- = —ig-x iq-x 22 l( 2 my, b
<[ e e el [ (T )Z Dby
x ZCif,-f/dg’{F+(£’{)b§S|(P )/dp”F (P)b, (P5)10)1GH)IG7). (A7)
l-/j/

Contraction of b,,,(p,) with each of the rightmost creation operators yields

]
5i8;(F s, <F,Jgl Pop|GTG FF;s15,)

1 [ A= / ! *
:Esisjf<0|/d£2F (Ez)bjsz(ﬂz)/d£1F+ ( 151 gOZﬁlﬂmgk/

Imk

dq . ; . dp.dp m;  m,
% ———[a;(q)e lg.£+a q zz / L1752 l( 2 <_+_’) st p
[t = [0 Hgpers] [ =25 ) )
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x Zc,-/j/{ [ aniF @) [ apsE s durdp, = B} (0%)
l-/j/
—/dp’l’FJr(p’l/)bj,sl(p’]’)/ F (p”)s Os5,0m ré(pz—p’z’)}|0>f|G;,L>|G]T,>. (A8)

With use of the Kronecker and Dirac deltas, this becomes
1
$i81{(F o, [(F o —77;_ |GTG FTF~;5,s5)

is|

1
2szsjf 0|/dp2 <p2)bj5')(p2)/dp1F+* zs] gOZﬂlé:k/

[ ot
XZC { <p+l ;1—+>F+(p2)/dp F=(p5)b lsl(El>b}sz(£/2/)

1 2
ml mj 13 N A A ¥ Ay = + -
=P\ et 7p* dpF*(p)by,, (p))bys, (PY)F~(p,) ¢10)/1G)G7). (A9)
1 2
The remaining contractions produce

8i8 (F o, (F 3 P;p|G+G FTF;518)

2JNT jsa

s [ = (e) [ dgaF+*<ga>goZﬂffk/ i [ et T e val(ges| [ R
xZCi/j,{s By ( —+ >F+ pz)/dp”F
l'!jl p p

1

X [siéilé(g/l )5151/5( ) Si 591s25 6( Blz/)sjﬁszsléjlé(ﬁlz - Bl)]
m mjy / 1+ (1 -
—sapa|— dp F F~(p
0y (222 DF(p)
X [5i05,5,000(P| = P,)$0s,5,0;00(ph — PY) — 5:8:6(p', — p})s;6:0(p) — BI)J}IGMG})- (A10)

The additional Kronecker and Dirac deltas, and the fact that slz =1, reduce this to

sisi(F7 [(F i, PEP|G+G FtF™;s18,)

LV £7)

(g)e ™% + af(q)e

gtok/ /\/1673 2
x {Zﬁ ot [ sl PF () F ) (2 )66
i 1 P>
m; / -
Gy [ P P () (0, (o) (2 + 2167167
=Sty s ot [ D ) )P () (4 ) 67165)
P P>

=ty [ ) PE o)) (4 iG5|} (A12)

) ]/dpldp2 z(p ) (All)

1 2
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The p| and p/ integrations yield either unity for direct
terms or zero for cross terms; the latter can be identified by
the leading &, ,,. The integral in the direct terms is the
normalization integral for F*. The integral for the cross
terms is zero because of zero overlap between the wave
packets of the two sources. The integrals over p, and p,
can be rewritten in terms of the Fourier transforms y*, with
factors of p/ and p, replaced with (m, 0 1) at the peak of

F*. This leaves factors of |w*(x)|*> which become

1

+5 goék m{ﬁ,Zs b C
+ﬁ,2s B Ci

(¢*R, JF(]J_RL)/ZM

5(x~ £ R,)5(%, F R, /2). The integral over x can then
be performed. The resulting expression is what is quoted
in (4.8).

APPENDIX B: REDUCTION OF THE
TWO-SOURCE EIGENVALUE PROBLEM

We begin from the statement of the full eigenvalue
problem for two static sources as given in (4.9). The
coefficient of the collected aZ(g) terms is

2 2
cﬁz{’%wﬂrkw (@) + G a)lGHIGT)

(q" R4+, -Ru)2 M E e GF)|G7)
A

m

|G,-+>|G;>}. (B1)

If we set Cj; = (ory Cj, this coefficient of a]t (g) is automatically zero, given the solution to the single-source case. This
leaves the double-source eigenvalue problem (4.9) in the form

2
n ml
C/Cy {2

+ﬂ,Z By CCinGli(q) + Gy (g)le™ (@ ket diRO2

mj +
+m}|G )IG7) + goZ:k/JmT+
X {ﬂizsi’ﬁi’cjcfrk Gl (q) + GZj(Q)]efo#%RL)/

m; +ml-/ _
P———|G;)|GT)

miptmp
" 675 |

= ECi*C]T|G;r>|G;>. (B2)
The combination C;Gj;(¢)|G;") can be replaced in each appearance with use of (3.18)
cres ™ GH)[G7) Zg
om ' 2m 90 k %16 e
_ N S oz m: _|_ mi, goﬂi,ék _l(q+Rz+6L'kL)/2 mi/ —|— mj/ _
X 3B spfaCrpeld RetdnR)/2 spByCy ——=1G;)|G7)
{ :;z i~k m /167173(1* /4,2(;_+¢12l+q+ ;/ J m J J
. S = m; +my goﬁ'fk ei(‘]+Rz+éLRL)/2 m:+my
_|_ . S ,,Cf’;r el(q+Rz+QL'RJ.>/2 ! ! G"; J S /C_, - ) G_,
ﬁliz’ 1P Cyry " 1GJr) /_1671'3(]+ ﬂﬁ;iqi +q* JZ 7P j m | ,/>
_ . I m: _|_ mq gOﬂié:k _i(q+Rz+§L'l_éJ_)/2 mi _|_ mi’ _
+ 8. s:p,Core i@ RetqR)/2 T J siBrCy ——|G1)|G7)
S g g 90
m4 + m goﬂ '/ék ei(q+Rz+QL'R.L>/2 m . —|— mi/
+ 5By Cfremia RetdR)2 T 0 |G . iy C; ——|G;
ﬁjz ﬂ] k m | i > \/W ”i;‘+qi + q+ 2: ﬁ i m | i >
= EC,*C;\GI-*HG]T). (B3)
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The g dependent factors can be combined into a factor that is either the self-energy integral / defined in (3.21), where the
exponential factors cancel, or the integral

rk§2 +i(q*R, +qJ_RL)

y= (R / oL Z , (B4)

"“]L"‘ﬂk

We then obtain
C?C;{% + g + m}|Gr>|G;> {ﬂ,c ulZs pr Zs $;,C5 = G Gy
BT RS 5o CF IS # G1)IG5)
i J
+BBY(R)Y s8,C; WZ&/MC? % G;)IG)
7 :

cdes p Zs 5rC " G G >}

= EC;FC]‘|G,+>|GJ‘> (B5)

This can be rearranged to reveal parts directly related to the single-source problem
(miom\ % o M+ my v My Ay | e
¢ m "‘5 IG}") - Eﬂiﬂlz;si’ﬁi/ Tzsj’ﬁj’cj/ T |Gj’> G; |Gj )

m2 g m;+mjp mjy +my
(1t - % 2 - -
e |G,->{c, (52+5)1en - DS S " )

%,y (i D pycp +’"’Z 6 G 6)
% R Sy T e e aler
= ECl*C]‘|Gl+>\GJ‘> (B6)

According to (3.20), with E* = m, the first curly bracket is simply mC;"|G;"), and the second is mC; |G7). These two terms

contribute 2mC; C7|G;")|G7) to the equation and, when subtracted from both sides, leave the effective potential Ver(R) =
E —2m determined by

% 4 mi +my - + N [ -
~ BBV ( Zs BiC; Zs By G Gy) = Ve CECTIGHIGY), (B7)
I
with Y=Y +7Y". To simplify the result further, we use the constraint
To extract Vg, we define |G*) =), Cis,f|GF), 3, 5,67 = 0, which eliminates all terms between the square
multiply Eq. (B7) by s;4;s;f;, and sum over i and j brackets except for the product of the first in each. We can

then equate coefficients of |G™)|G™) to obtain

Ver = =5 Y(Fe) <Z,~ #)2 (B9)

The integrals in Y are computed in [21]. They yield

Y R>Z B Z Vi [—|G+ +Z I eras |G+>]

« [H;|G->+§;sfﬁ,-/c;n;|6;>] —VatlGHIG). (B8)
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e HR

Y(R) = ré
;kkSR

(B10)

In the limit of infinite PV boson masses, with ro =1,
& =1, and py = u, this reduces to e R /(8zR), and the
effective potential is found to be

lﬂz 2 —yR
Vg = - %0 :
off 777 (Zl m 87R

This is the expression given in (4.10).

(B11)

APPENDIX C: VARIATION WITH
RESPECT TO P~

If we vary the bound state with respect to the expectation
value of P~ rather than £ = J (P~ + P*), we find that the
self-energy integral /, defined in (3.21), and the effective-
potential integrals Y=, defined in (B4), are replaced by

d~q, ”kﬁi /
da+
/1671;1Z 2+ﬂk 1

(C1)

and

R = [Tk

— 41+

rkgieiiqi'RL

/o0 dq+eiiq+Rf, (CZ)
0

respectively. The absence of the (g©)> terms in the
denominators is due to the absence of P~ terms.
Without P~ being part of the calculation, Eq. (3.16) is
altered in such a way that the ¢ factor in the second term in
the square bracket that multiplies a};(q) is missing. It is this
g that appears in the denominator of G{(¢) and yields the
missing (¢*)? terms in [ and Y*.

These new integrals are clearly divergent in a way that
the PV regularization cannot handle. In standard light-front
calculations, the ¢* integrals would be naturally cut off at
the total longitudinal momomentum P* and not cause any
difficulty. Here, however, P* is not conserved, and we
would need to introduce an arbitrary cutoff that will destroy
the rotational symmetry. We therefore find this to be
another motivation for the use of £ as the operator of
interest rather than P~.
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