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We put forward a concrete experimental setup allowing to measure light-by-light scattering in the
collision of two optical high-intensity laser beams at state-of-the-art high-field facilities operating petawatt
class laser systems. Our setup uses the same focusing optics for both laser beams to be collided and
employs a dark-field approach for the detection of the single-photon-level nonlinear quantum vacuum
response in the presence of a large background. Based on an advanced modeling of the colliding laser
fields, we in particular provide reliable estimates for the prospective numbers of signal photons scattered
into the dark field for various laser polarizations.
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I. INTRODUCTION

Quantum fluctuations mediate effective couplings of
macroscopic electromagnetic fields in vacuum. These sup-
plement Maxwell’s linear theory of classical electrodynam-
ics with effective nonlinear interactions [1–3]. All
macroscopic electric E⃗ and magnetic B⃗ fields currently
available in the laboratory meet the criterion fjE⃗j; cjB⃗jg ≪
Ecr, with the reference field strength ES ¼ m2c3=ðeℏÞ ≃
1.3 × 1018 V=m set by the electron massm and elementary
charge e, respectively. If these fields vary on spatial and
temporal scales λ, τ much larger then the Compton wave-
length of the electron ƛC ¼ ℏ=ðmcÞ ≃ 3.9 × 10−13 m, i.e.,
fulfill the low-energy condition fλ; cτg ≫ ƛC, the leading
quantum vacuum nonlinearity can be parametrized by the
interaction Lagrangian (ℏ ¼ c ¼ 1) [4]
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where the numerical constants a and b are fully determined
by the underlying quantum field theory; F ¼ FμνFμν=4
and G ¼ Fμν

⋆Fμν=4 with (dual) field strength tensor
Fμν (⋆Fμν).

Within the standard model of particle physics their
values are accurately determined by quantum electrody-
namics (QED), predicting these to be given by [5–7]
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where α ¼ e2=ð4πÞ ≃ 1=137 is the fine structure constant.
The above weak and slowly varying field conditions are in
particular well met by the field configurations generated by
state-of-the-art high-intensity lasers that produce the
strongest macroscopic electromagnetic fields currently
available in the laboratory. Higher-order QED corrections
to Eq. (1) are parametrically suppressed by additional
powers of 1=ES ∼ ƛ2C ∼ 1=m2.
The effective couplings of macroscopic electromagnetic

fields in Eq. (1) generically gives rise to a signal component
that may differ in characteristic properties such as propa-
gation direction and polarization from the originally
applied fields. Because these signals are very small, they
could not yet be verified in a controlled laboratory experi-
ment [8–10]. However, recent advances in high-intensity
laser technology have substantiated the perspectives of a
first measurement of this effect with state-of-the-art tech-
nology in the near future [11–15]. One of the key
challenges is to achieve a sufficiently large signal-to-noise
ratio allowing us to measure the small quantum vacuum
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signal in the presence of the huge number of photons
constituting the driving laser fields.
In the present work we put forward a specific setup

allowing for its detection in an experiment based on the
collision of two focused high-intensity laser pulses in a
counter-propagating geometry; cf. also Refs. [16–25]. For
recent measurements of signatures of light-by-light scatter-
ing processes using the strong Coulomb fields of heavy
ions, see Refs. [26–29]. The basic idea of our setup is to use
the same focusing optics for both pulses to be collided and
to employ a dark-field approach for the detection of the
induced single-photon-level signal. To this end two sub-
sequent pulses generated by the same laser system and
appropriately separated in time by means of a delay line are
collided in their common focus after the propagation
direction of the first pulse has been reversed at a spherical
retro-reflector. Moreover, a central shadow is imprinted in
the transverse profile of the initial beam by reflecting the
initial beam off a mirror with hole. By construction this
shadow is then present both in the converging beam prior to
its focus and the diverging beam after its focus, while a
peaked on-axis focus profile is retained [30,31]. The
shadow in the diverging beam is effectively imaged onto
a single-photon sensitive detector via a hole in the retro-
reflector such as to spatially filter out a sizable fraction of
the quantum vacuum signal induced in the collision of the
two laser pulses.
Our article is organized as follows: In Sec. II we explain

the scenario put forward for the measurement of photonic
quantum vacuum signals in the present work. To this end,
we briefly recall how the relevant quantum vacuum signal
can be derived from Eq. (1). Our method of choice is the
vacuum emission picture [21,32] for which a flexible and
convenient numerical solver allowing to study all-optical
signatures of quantum vacuum nonlinearities in generic
laser fields is available [33]. Thereafter we explain the
experimental setup devised by us in full detail. Finally, we
discuss the theoretical modeling of the driving laser fields
and comment on the numerical implementation of the
considered scenario in the vacuum emission solver [33]
which we employ to evaluate the signal photon yield and
emission characteristics for our setup. In Sec. III we present
results for the prospective quantum vacuum signals attain-
able in our setup using state-of-the-art laser parameters as
input. Finally, we close with conclusions and a brief
outlook in Sec. IV.

II. SCENARIO

A. Theoretical basics

Photonic quantum vacuum signals can be conveniently
analyzed by viewing them as vacuum emission processes
stimulated by the applied macroscopic electromagnetic
field Fμν [21,32]. In the parameter regime considered
throughout this work, single signal photon emission vastly

dominates over emission processes with higher multiplic-
ities. The amplitude for the relevant zero-to-single signal
photon transition can be compactly expressed as [21]

Spðk⃗Þ ¼ hγpðk⃗Þj
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where the in-state j0i denotes the vacuum subjected to the
initially applied field featuring zero signal photons by
definition, and hγpðk⃗Þj is the out-state containing a single

on-shell transverse signal photon of wave vector k⃗ and
polarization p; polarization vector ϵμðpÞðk⃗Þ. Finally, f̂μνðxÞ
denotes the canonically quantized field strength tensor of
the signal photon field. Equations (1) and (3) imply that
determining the signal emission amplitude effectively boils
down to performing a four-dimensional Fourier integral of
a function cubic in Fμν.
The signal-photon polarizations can be parametrized as

ϵμðpÞðk⃗Þ ¼ ð0; e⃗pðk⃗ÞÞ by two orthonormal three vectors

e⃗pðk⃗Þ fulfilling k⃗ · e⃗pðk⃗Þ ¼ 0. For a linear polarization

basis we have p∈ f1; 2g. The associated vectors e⃗1ðk⃗Þ,
e⃗2ðk⃗Þ are real and fulfill k⃗=jk⃗j × e⃗1ðk⃗Þ ¼ e⃗2ðk⃗Þ. On the
other hand, for a circular polarization basis we have
p∈ fþ;−g and e⃗� ¼ fe⃗1ðk⃗Þ � ie⃗2ðk⃗Þg=

ffiffiffi
2

p
. Here, “þ”

denotes right and “−” left hand circular polarization,
respectively. The above definitions imply ϵðpÞμðk⃗Þϵ�μðp0Þðk⃗Þ¼
δp;p0 for both cases. We also note that generic elliptic
polarizations can be parametrized by polarization vectors

e⃗ϵðk⃗Þ¼ fc1ðk⃗Þe⃗1ðk⃗Þþ ic2ðk⃗Þe⃗2ðk⃗Þg=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21ðk⃗Þþc22ðk⃗Þ

q
, with

real-valued functions c1ðk⃗Þ, c2ðk⃗Þ.
The differential number of signal photons of energy

k≡ jk⃗j, propagation direction k⃗=jk⃗j and polarization p
associated with the transition amplitude (3) can then be
expressed as [21]

d3Npðk⃗Þ ¼
d3k
ð2πÞ3 jSpðk⃗Þj2: ð4Þ

Clearly, the signal attainable in a polarization insensitive
measurement follows upon summation over two transverse
signal polarizations as d3Nðk⃗Þ ¼ P

p d
3Npðk⃗Þ. For the

analysis of the signal in Eq. (4) it is particularly convenient
to employ spherical momentum coordinates where
d3k ¼ k2dk dφ d cosϑ. The angular emission characteris-
tics of the signal is then encoded in

d2Npðφ;ϑÞ
dφ d cosϑ

¼ 1
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In the present work we will ultimately employ the numeri-
cal solver put forward in Ref. [33] to evaluate the signals in
Eqs. (4) and (5) for the specific laser field configuration to
be implemented in our experimental setup detailed in
Sec. II B.
In the parameter regime where the driving laser fields can

be accurately modeled as leading-order paraxial beams
detailed analytical insights into Eq. (4) are possible. This is
especially true for the collision of just two beams: here, the
signal decomposes in two distinct main contributions that
can be understood in terms of laser photons of one beam
(“the probe“) being quasielastically scattered off the cycle-
averaged intensity profile of the other beam (“the pump”)
and vice versa [34]. Due to the nonlinear interaction of the
driving laser fields, in this case the signal generically
comprises components polarized similar (k) and
perpendicular (⊥) to the laser photons constituting the
probe field. It can be shown that in the low-energy limit
considered throughout this work the associated signal
photon numbers scale as

Nk;⊥ ∼ ck;⊥α4
�
Wpump

m

ωprobe

m

�
2

Nprobe; ð6Þ

with α, the pulse energy of the pump Wpump, the probe
photon energy ωprobe and the probe photon number
Nprobe ≃Wprobe=ωprobe. Finally, the coefficients ck;⊥ gov-
erning the strength of the signal components induced in a
k;⊥-polarized mode depend on both the low-energy con-
stants (2) and the polarizations of the driving laser fields.
Besides, the signal photon numbers typically depend non-
trivially on other characteristic parameters of the colliding
beams such as the collision angle, their pulse durations,
waist sizes and Rayleigh ranges; cf., e.g., Refs. [35,36].
Specifically, the dependence on the collision angle is such
that the signal vanishes for copropagating beams and
becomes maximum for counterpropagation. In the paraxial
limit, these additional dependencies are encoded in a
function that amounts to global factor in Eq. (6) in the
sense that it is independent of the polarization characteristics
of the driving beams as well as the signal. In turn, ratios of
the explicit values of ck;⊥ provided below reproduce the
ratios of the associated signal photon numbers. Note,
however, that higher-order corrections in the diffraction
angles characterizing both the colliding beams and the
signal, which can for instance be safely neglected for
state-of-the-art XFEL probes, generically break this factori-
zation. Besides, beyond the low-energy limit also higher-
order derivative corrections [37–39] to Eq. (1) are expected
to impact the signal polarizations [20,40]. Because in the
present context we are only interested in an estimate for the
signals to provide for a reference and guidance for our full
numerical calculations detailed below, in our analytical
calculations we restrict ourselves to the paraxial limit. In
this case, the coefficients ck;⊥ in Eq. (6) are given by

ck ≃ ½ðaþ bÞ þ ða − bÞ cosð2ϕÞ�2;
c⊥ ≃ ½ða − bÞ sinð2ϕÞ�2; ð7Þ

for linearly polarized beams; ϕ measures the relative
polarization of the colliding beams. On the other hand, if
both beams are circularly polarized we have

ck ≃ ðaþ bÞ2;
c⊥ ≃ 0; ð8Þ

independent of the helicities of pump and probe. The same
result (8) is obtained for a linearly polarized probe being
collided with a circularly polarized pump. Finally, for a
circularly polarized probe and a linearly polarized pump we
find

ck ≃ ðaþ bÞ2;
c⊥ ≃ ða − bÞ2: ð9Þ

These results for ck;⊥ clearly depend on the low-energy
constants a and b only in terms of aþ b and a − b. The
numbers of signal photons N attainable in a polarization
insensitive measurement follow by adding the k and ⊥
polarized signals, i.e., are given by Eq. (6) with
ck;⊥ → ck þ c⊥. We will make use of these dependencies
to benchmark our numerical results in Sec. III.
A comparison of the results in Eqs. (7)–(9) then implies

that the maximum signal photon number is obtained for
linearly polarized pump and probe beams and ϕ ¼ π=2 [41]
for which ck þ c⊥ ≃ 4b2. Because c⊥ ≃ 0 in this case, this
number also amounts to the maximum possible signal
polarized similarly to the probe. On the other hand, the
maximum polarization/helicity-flip signal is obtained in the
collision of linearly polarized pump and probe beams with
ϕ ¼ π=4 [16] or a circularly polarized probe collided with a
linearly polarized pump, respectively. Both of these cases
result in c⊥ ¼ ða − bÞ2.
Also note that Eqs. (7) and (9) imply that when colliding

either linearly or circularly polarized probe light with a
linearly polarized pump and measuring both signal com-
ponents—at least in principle—the values of a and b can be
inferred separately [31].

B. Experimental setup

The experimental setup envisioned by us to allow for the
measurement of quantum vacuum signals in an all-optical
experiment at a petawatt (PW) class laser system, such as
the 3PW Advanced Titanium-Sapphire Laser System
(ATLAS3000) at the Centre for Advanced Laser
Applications (CALA) [42] in Garching, Germany, is
depicted schematically in Fig. 1. We have decided for a
counterpropagating geometry of the driving laser fields to
maximize the signal-photon yield in Eq. (6). With regard to
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an experimental implementation in the high-intensity
domain, this geometry has so far been excluded for optical
frequencies because the signal photons predominantly
emerge in the forward cones of the driving laser beams
and are thus completely background dominated. In addi-
tion, the large diameter of the amplified high-intensity
beam, which is typically of the order of several tens of
centimeters, and the strong focusing required for a signifi-
cant signal yield pose challenges on possible schemes even
with only two colliding pulses.
We address this challenge by generating a double pulse

each containing an energy of several tens of Joules. The
two pulses will be introduced in the front end of the high-
intensity laser system by splitting the original pulse,
introducing an appropriate temporal delay of about 2 ns.
The delay and the pulse energy content can be finely tuned
by a delay stage and an appropriate continuous neutral
density (ND) filter. Subsequently these pulses will travel
the exact same path through the amplifiers, compressor and
the laser beam delivery to the experimental vacuum
chamber, where a 90° off-axis parabolic mirror (OAP)
with effective focal length of feff ¼ 30 cm focuses the
pulses. A spherical mirror with suitable radius of curvature
(R ¼ 30 cm) will be mounted downstream of the primary
focus point. It will reflect and refocus the pulses, such that
the first pulse on its return collides with the second pulse in
its first pass in the common focus spot. A motorized
hexapod will enable precise spatial overlap, whereas fine
tuning the temporal delay between the pulses in the front
end varies temporal overlap. The spatial overlap between
the pulses can be optimized to better than < 0.1 μm with
typically available hardware. At the same time, fine tuning
the temporal delay between the pulses in the front end to

vary the temporal overlap is possible to better than fs
precision. We note, however, that this overlap will be
influenced by shot-to-shot variations, especially of the
beam pointing, present in any large laser system. In
principle, these can be minimized by active control to a
similar or better level. The necessary level of improvement
will depend on the real-world background contributions
and thus is beyond the scope of this manuscript.
By introducing two large aperture wave plates, one

before the OAP (WP1) and one in front of the spherical
retro-reflecting mirror (WP2), we can change the polari-
zation of both pump and probe pulses and thus realize all
potentially relevant polarization combinations studied in
Sec. II A in experiment; see Fig. 1. To this end, we consider
all incident laser pulses to be linearly polarized. In turn, if
WP1 is a quarter wave plate and WP2 is an eighth wave
plate, the probe will be circularly polarized and the pump
polarization will be linear. If WP1 is omitted and only an
eighth wave plate is used for WP2, the probe will be
linearly polarized and the pump circularly polarized. On the
other hand, if we use a quarter wave plate for WP1 and omit
WP2, probe and pump will be circularly polarized with
opposite helicity. If both WP1 and WP2 are quarter wave
plates, probe and pump will also be circularly polarized but
with equal helicity. Finally, if we do not use WP1 and
operate WP2 as a quarter wave plate we can rotate the
polarization of the pump pulse by an angle of 0 ≤ ϕ ≤ 90°
relative to that of the probe. This allows us to tune the
coefficients in Eq. (7). In particular, recall that ϕ ¼ 45°
maximizes the polarization-flip signal N⊥. Even though
being reduced by a factor of about c⊥=ðck þ c⊥Þjϕ¼45° ≃
0.07 relative to the total signal, this signal can likely be
more efficiently separated from the residual copropagating

FIG. 1. Schematic layout of the experimental setup. Two pulses generated by the same frontend are separated in time and fed into the
same focusing optics such that they are collided in their common focus after the propagation direction of the first pulse has been reversed
at a retro-reflector. A central shadow is imprinted in the transverse profile of the initial beam by reflecting it off a mirror with hole. The
shadow is effectively imaged onto a single-photon sensitive detector via another hole in the retro-reflector such as to spatially filter out a
sizable fraction of the quantum vacuum signal while minimizing the background. The remaining pump background traversing the hole
in the retro-reflector about 2 ns in advance to the signal can be filtered out by a Pockels cell (PC). Abbreviations: Wave plate (WP), off-
axis parabolic mirror (OAP), focal point (F), spatial filter (SF), polarizer (POL).
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laser background that is inevitable in any actual exper-
imental implementations of our setup using polarimetry.
The second key-challenge, namely achieving a sufficient

signal-to-background separation in experiment, is mastered
by an approach pioneered by Refs. [43,44] for the detection
of weak nonlinear optics signals in the presence of strong
fields. Its great potential for the measurement of quantum
vacuum signals has recently been showcased in
Refs. [30,31] for the case of high-intensity and x-ray free
electron laser (XFEL) collisions. The idea underlying this
approach is to remove a central part of the collimated beam
by reflecting the initial beam at a mirror with hole to create
an annular beam. Alternatively the annular beam profile
can be introduced by an obstacle put into the beamline.
The central shadow implemented in the transverse beam

profile is then present in both the convergent beams prior to
focusing and the divergent beams after focusing; see Fig. 1. At
the same time, a strongly peaked on-axis focus profile, very
similar to that of an ordinary focused beamwithout dark field,
is retained; in the focus the information about the central
shadow is encoded in the Airy ring structure [30]. Because the
peak-field driven quantum vacuum signal is predominantly
induced by the central focus peak, which—to leading order—
can locally not be distinguished from the focus profile of a
Gaussian beam, a sizable signal fraction is thus expected to be
emitted into the dark field. Our setup in Fig. 1 is designed such
as to image the signal induced in forward directionvia a hole in
the retro-reflector onto a single-photon sensitive detector, and
thus to allow for a spatial separation of the quantum vacuum
signal from the background of the driving laser photons. To
reduce background due to diffracted photons in this shadow
region, a beam block will be inserted closer to the primary
focus. A set of two lenses positioned behind the hole in the
retro-reflector images the beam block onto the entrance
aperture of a spatial filter (SF) with pinhole matched to the
image of the high-intensity focal spot. This arrangement
prevents singly scattered photons from the OAP from propa-
gating to the detector andwehencehave a situationwhere only
doubly scattered photons could enter the beam path. The
photons that pass through the pinhole of the spatial filter
naturally decompose into (i) a pure background component
due to the pump pulse and (ii) a probe background plus signal
component arriving delayed byΔt¼ 2R=c. Ideally, the back-
ground contribution is negligible with respect to the signal.
In Refs. [30,31] a relation between the inner θin and outer

θout radial divergences of a paraxial beam of wavelength λ
featuring a circular flat top near-field profile with a perfect
central circular shadow and its 1=e2 beam waist w0 (with
respect to intensity) was derived. This can be expressed as

w0 ≃
λ

πθout

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − e−1Þ

1þ ν

s
; where ν ¼

�
θin
θout

�
2

ð10Þ

measures the fraction of the transverse area of the beam in
the near field obstructed by the central shadow; in the limit of

ν → 0 we recover the result for a flat top without shadow.
Assuming the full beam entering our setup in Fig. 1 to
feature a flat top transverse profile into which the central
shadow is imprinted and neglecting the impact of the
asymmetry induced by the 90° OAP in our setup for the
moment, the parameter ν can also be related to the beam
energies of the initial beam W0 and the resulting annular
beam asW ¼ W0ð1 − νÞ. Clearly, θout is to be kept fixed and
amounts to the radial opening angle of the focused beam. At
this point we also emphasize that in the present context the
paraxial approximation should allow for reliable insights as
long as θout ≪ 1. Moreover, it can be shown that the focus
peak field amplitude of such a beam is given by [45]

Epeak ≃ ð1 − νÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−1

1þ ν

s
E0; ð11Þ

where E0 is the peak field amplitude of a Gaussian beam of
energy W0 featuring the same waist size and temporal
envelope. Also note that by construction in our setup the
pumpandprobe laser pulseshave the samepulseduration τ and
the same waist w0 when they collide in their common focus.
Using the above findings in the analytical approximation

for the angular emission characteristics in the collision of
two pulsed Gaussian beams provided in Eq. (11) of
Ref. [36] and integrating over a forward cone with radial
opening angle θdet ≤ θin we thus can arrive at an estimate
for the quantum vacuum signal to be measured by a
detector with an angular acceptance of πθ2det located behind
the central hole in the retro-reflector in Fig. 1. For
completeness, we emphasize that though formally resorting
to an infinite Rayleigh range approximation for the probe,
the analytical approximation [36] should allow for reason-
able estimates even for the collision of beams with the same
Rayleigh range as considered here: the somewhat less
pronounced localization of the composite laser field in the
interaction region in longitudinal direction and the stronger
localization in transverse direction associated with this
idealization tend to compensate each other.
Identifying the beam waists with Eq. (10), equating the

pulse durations with τ and multiplying by an overall
rescaling factor of ðEpeak=E0Þ6 to account for the reduction
of the peak field amplitude, Eq. (11) of Ref. [36] provides
us with an estimate for the number of p∈ fk;⊥g polarized
signal photons reaching the detector,

Np;det ≃ cp

ffiffiffi
3

π

r
2ð1 − e−1Þ

6075
ðπαÞ4

�
W0

m

�
3

×

�
ƛC
λ

�
5

θ4out
ð1 − νÞ6
1þ ν

ffiffiffiffiffiffiffiffiffiffiffi
F0F1

p

×

�
1 − exp

�
−
4

3

1 − e−1

1þ ν

ffiffiffiffiffiffi
F1

F0

s �
θdet
θout

�
2
��

; ð12Þ
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where

Fβ≔F

�
8

π

ffiffiffi
2

3

r
1−e−1

1þν

λ

τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2β2

p
θ2out

�
; with

FðχÞ≔χ2e2χ
2

Z
∞

−∞
dκe−κ

2 ½e2κχerfcðχþκÞþe−2κχerfcðχ−κÞ�2;

ð13Þ

and τ denotes the 1=e2 pulse duration with respect to
intensity. In the limit where θdet → θin and the maximum
possible number of signal photons is detected within the
hole in the retro-reflector we clearly have ðθdet=θoutÞ2 → ν.
Adopting this choice, for a wavelength of λ ¼ 800 nm, a
typical pulse duration of τFWHM ¼ 30 fs (τ ≃ 51 fs) avail-
able at state-of-the-art high-intensity laser systems and an
outer radial beam divergence as large as θout ≃ 1=2 such as
to reach a large peak field strength in the focus, Eq. (12)
allows us to infer that the maximum signal can be
achieved for ν ≃ 0.1. We emphasize that, because θout ≃
1=2 does not fulfill the citerion θout ≪ 1, higher-order
corrections to the (leading-order) paraxial approximation
adopted in the derivation of Eqs. (10)–(12) may become
sizable in the considered limit. Especially as it makes use
of an infinite Rayleigh range approximation, Eq. (12) thus
is likely to allow only for a qualitative estimate for the
present parameters.
When aiming at implementing the experimental setup

outlined above at the ATLAS3000 system where the
beam radius is rbeam¼14cm, we obtain θout ≈ rbeam=feff≃
0.47. Correspondingly, because of ν ≃ ðrhole=rbeamÞ2 the
optimal value for the radius of the hole in the first mirror
and the retro-reflector should be of the order of
rhole≈

ffiffiffiffiffiffiffi
0.1

p
rbeam≈4.5cm. Specializing to ATLAS3000

parameters in the remainder of this work, we choose a
somewhat larger value of rhole ¼ 4.75 cm for the hole in
the first mirror and rdet ¼ 3.75 cm for the one in the retro-
reflector that effectively defines the size of the detection
region. Correspondingly, we have ν ≃ 0.12. These hole
sizes are manageable in terms of available, high quality
optics for collection and subsequent signal filtering and
analysis. The experimental results in Ref. [46] suggest

that double scattering at the OAP and in the collection
lens will contribute the majority of background photons
within a gate window width of 1 ns around the laser pulse.
Importantly, these are significantly delayed or advanced
with respect to the signal photons and can hence be
further suppressed by appropriate temporal gating
techniques.

C. Laser field model

As detailed above, the 90° OAP constitutes a key
component of our setup. For the modeling of its impact
on the driving laser fields we resort to the vector diffraction
formulas allowing to infer the electromagnetic field near
the focus of an off-axis paraboloid for a given incident field
configuration derived in Ref. [47] on the basis of the
Stratton–Chu formula [48]. See also Ref. [49] for a recent
systematic investigation. This in particular ensures that the
distortions of the laser fields when reflected off the OAP are
consistently accounted for in our calculation of the quan-
tum vacuum signals.
The input to this calculation is the transverse profile of a

monochromatic paraxial beam specified at a longitudinal
coordinate z ¼ z0 right in front of the OAP such that
diffraction effects from the input plane to the OAP surface
can be safely neglected. This beam propagates in negative z
direction and is characterized by a complex electric field of
the form E⃗inðxÞ ¼ e−iωtE⃗inðω; x⃗Þ with

E⃗inðω; x⃗Þjz¼z0 ¼ e−iωz0 ½E0;xðx; yÞe⃗x þ E0;yðx; yÞe⃗y�; ð14Þ

and a corresponding magnetic field given by B⃗in ¼
−e⃗z × E⃗in. Here, ω denotes the oscillation frequency of
the beam and the transverse profile functions E0;xðx; yÞ
and E0;yðx; yÞ implement transverse beam sizes much
larger than its wavelength λ ¼ 2π=ω [47]. The origin of
our coordinate system is in the focal point F in Fig. 1. For
a monochromatic input beam, the beam reflected off the
OAP is, of course, also monochromatic. For a 90° OAP
the electric field of the resulting beam near its focus at
x⃗ ¼ 0 (see below for the precise condition) can then be
expressed as [47]

Exðω; x⃗Þ ¼
iω
2π

ZZ
dx̃dỹ

�
E0;x

�
1 −

x̃2

2f2ð1þ sÞ
�
− E0;y

x̃ ỹ
2f2ð1þ sÞ

�
1

fð1þ sÞ e
−iωϕ;

Eyðω; x⃗Þ ¼
iω
2π

ZZ
dx̃dỹ

�
E0;y

�
1 −

ỹ2

2f2ð1þ sÞ
�
− E0;x

x̃ ỹ
2f2ð1þ sÞ

�
1

fð1þ sÞ e
−iωϕ;

Ezðω; x⃗Þ ¼
iω
2π

ZZ
dx̃dỹðE0;xx̃þ E0;yỹÞ

1

f2ð1þ sÞ2 e
−iωϕ; ð15Þ
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with the phase

ϕ ¼ x̃xþ ỹyþ fðs − 1Þz
fð1þ sÞ ð16Þ

containing the full dependence of Eq. (15) on x⃗. Here, f ¼
feff=2 is the parent focal length of the 90° OAP,
E0;x ≡ E0;xðx̃; ỹÞ, E0;y ≡ E0;yðx̃; ỹÞ, s ¼ ðx̃2 þ ỹ2Þ=f2eff
and the integrations are performed over the transverse
coordinates x̃ and ỹ of the input beam. The associated
magnetic field B⃗ðω; x⃗Þ is fully determined by Maxwell’s
equations in vacuum [47] and thus can be readily extracted
from Eq. (15); for its explicit expression see Ref. [47]. The
use of Eq. (15) is well justified given the near focus
condition jx⃗j2 ≪ 2jx̃xþ ỹyþ fðs − 1Þzj is met [47], i.e.,
as long as jx⃗j is sufficiently small and the integrals over x̃
and ỹ in Eq. (15) receive their main contributions from
regions where this condition is met.
Also note that knowledge of the electromagnetic fields

near the beam focus immediately grants access to the far-
field angular distribution of the numberN ¼ W=ω of laser
photons per unit time. To this end, recall that in momentum
space the (appropriately regularized) energy stored in the
electromagnetic field can be expressed as

W ¼
Z

d3k
1

2
ðjE⃗ðω; k⃗Þj2 þ jB⃗ðω; k⃗Þj2Þ; ð17Þ

which for a monochromatic beam with jE⃗ðω; k⃗Þj ¼
jB⃗ðω; k⃗Þj as considered here implies that

d2N ðφ; ϑÞ
dφ d cos ϑ

¼ 1

ω

Z
∞

0

dk k2jE⃗ðω; k⃗Þj2: ð18Þ

Making use of the fact that the electric field can be spanned
by two orthogonal polarization vectors e⃗pðk⃗Þ transverse to
k⃗ (see Sec. II A), we can write

jE⃗ðω; k⃗Þj2 ¼
X
p

je⃗pðk⃗Þ · E⃗ðω; k⃗Þj2: ð19Þ

This identity allows us to infer from Eq. (18) that the far-
field angular distribution of laser photons polarized in
mode p can be represented as (cf., e.g., Ref. [14])

d2N pðφ; ϑÞ
dφ d cos ϑ

¼ 1

ω

Z
∞

0

dk k2je⃗pðk⃗Þ · E⃗ðω; k⃗Þj2: ð20Þ

With Eq. (15), and rewriting the relevant Fourier integral
in the following form

Z
d3xe−iðk⃗·x⃗þωϕÞ ¼

�
feff

ωþ kz

�
2

ð2πÞ3δ
�
x̃þ feff

kx
ωþ kz

�

× δ

�
ỹþ feff

ky
ωþ kz

�
δðk − ωÞ; ð21Þ

it is then straightforward to work out explicit expressions
for Eqs. (18) and (20). For completeness and future
reference we provide the explicit results for the components
of E⃗ðω; k⃗Þ in Appendix A. In a coordinate system oriented
such that k⃗ ¼ kðcosϑ; sin φ sin ϑ;− cosφ sin ϑÞ espe-
cially the far-field angular distribution of the total number
of laser photons (18) can be expressed as

d2N ðφ; ϑÞ
dφ d cos ϑ

¼ N
E2
0;xðx̃; ỹÞ þ E2

0;yðx̃; ỹÞ
ð1 − cos φ sinϑÞ2

�Z
2π

0

dφ
Z

1

−1
d cos ϑ

E2
0;xðx̃; ỹÞ þ E2

0;yðx̃; ỹÞ
ð1 − cosφ sin ϑÞ2

�
−1
; ð22Þ

where

x̃ ¼ −feff
cos ϑ

1 − cosφ sin ϑ
and

ỹ ¼ −feff
sin φ sinϑ

1 − cos φ sin ϑ
: ð23Þ

The only input needed to evaluate Eq. (22) is the transverse
profile of the beam (14) impinging the 90° OAP. In this
context, we also note that the ratio of Eq. (20) and N as
determined from Eq. (18) is manifestly finite and therefore
specifically provides direct access to the fractionN p=N of
p polarized laser photonsN p contained in the total number
of laser photons N .

For a linearly polarized incident top-hat beam featuring a
perfect central circular shadow we have

E0;xðx;yÞ¼E0ðx;yÞcosβ; E0;yðx;yÞ¼E0ðx;yÞsinβ;
ð24Þ

where the angle β parametrizes the possible polarization
directions and the field profile reads

E0ðx; yÞ ¼ E0Θ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxþ feffÞ2 þ y2
q

− rhole

�

× Θ
�
rbeam −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ feffÞ2 þ y2

q �
; ð25Þ
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with Heaviside step function Θð·Þ and field amplitude E0,
the value of which is left unspecified for the moment; see
the discussion in the context of Eq. (28) below. On the other
hand, for a “�” circularly polarized input beam we have

E0;xðx;yÞ¼
1ffiffiffi
2

p E0ðx;yÞ; E0;yðx;yÞ¼∓ i
1ffiffiffi
2

p E0ðx;yÞ;

ð26Þ

cf. also Sec. II A. To this end, recall that the beam
impinging the 90° OAP propagates in negative z direction.
In a next step, we plug either Eq. (24) or Eq. (26)

into Eq. (14) and determine the resulting electric field (15)
in the vicinity of the focus. The associated magnetic field
is determined therefrom via Maxwell’s equations.
Accounting for the fact that the beam reflected off the
90° OAP propagates along the positive x axis, we then
multiply all field components with a factor of expf−ðx −
tÞ2=ðτ=2Þ2g with ωτ ≫ 1 such as to implement a physical
finite energy beam; τ is the 1=e2 duration of the resulting
pulsed beam with respect to intensity. We denote the
resulting (complex) electric and magnetic fields near
focus by

E⃗ðxÞ ¼ e−iωt−ð
x−t
τ=2Þ2E⃗ðω; x⃗Þ and

B⃗ðxÞ ¼ e−iωt−ð
x−t
τ=2Þ2B⃗ðω; x⃗Þ: ð27Þ

The demand of ωτ ≫ 1 ensures that (i) the resulting
pulsed beam has a negligible bandwidth and thus can be
considered as quasimonochromatic, and (ii) the violations
of Maxwell’s equations in vacuum inevitably introduced
by this ad hoc prescription can be safely neglected; they
are parametrically suppressed by inverse powers of ωτ.
For λ ¼ 800 nm and τFWHM ¼ 30 fs we have ωτ ≃ 314
which implies that this assumption is indeed well justified.
Modeling the electric field of the incident beam by the real
part of Eq. (14) with transverse profile (25) and adopting
the above pulsed beam prescription, we then fix the field
amplitude E0 by demanding the focus pulse energy W ¼
W0ð1 − r2hole=r

2
beamÞ to fulfill [33]

W ¼
Z

dt
Z

dy
Z

dzðe⃗x · S⃗ðxÞÞjx¼0: ð28Þ

Here, W0 is the total pulse energy of the employed laser
system and S⃗ðxÞ ¼ RefE⃗ðxÞg × RefB⃗ðxÞg, with the elec-
tric and magnetic fields given in Eq. (27), is the Poynting
vector. ATLAS 3000 can routinely provide pulses with an
energy of W0 ¼ 25 J, which is the value adopted by us in
the remainder of this work. With the values for rbeam and
rhole envisioned for the implementation of our setup at
ATLAS 3000 given above we thus have W ≃ 22.1 J.
Figure 2 depicts the far-field angular distributions of

the laser photons (22) of such a beam, namely the one

constituting the probe beam in the experimental setup
devised by us in Sec. II B for the parameters available at
ATLAS 3000. This distribution features a pronounced
asymmetry with regard to the xy plane, but is symmetric
with respect to the xz plane. We emphasize that because the
distance from the focus F to the retro-reflector with hole is
R ¼ 30 cm in our setup and correspondingly R=zR ≫ 1
assuming the detection to take place in the far field is well
justified; recall that the Rayleigh range zR of the beam is the
distance from the waist along its beam axis to the
longitudinal coordinate where the cross section area (char-
acterized by its 1=e2 average radius with respect to
intensity) is doubled. To be specific, in our case we
numerically infer zR ≈ 4.9 μm and thus indeed have
R=zR ≈ 6 × 104 ≫ 1; the mean waist size is w0 ≈ 708 nm.
Finally, we assume the electric field of the laser beam

reflected back to the focus by the retro-reflector to be again
well modeled by E⃗ðxÞ ¼ E⃗ðt; x⃗Þ in Eq. (27). To be precise,
as both the propagation direction and the orientation of the
electric field of this beam are reversed at the mirror, the
electric field of this beam follows by the mapping
E⃗ðt; x⃗Þ → −E⃗ðt;−x⃗Þ and the associated magnetic field
from Maxwell’s equations. This choice ensures perfect
collisions at zero impact parameter. However, note that this
construction does not require the colliding laser fields to
have the same polarization. In fact, along the lines of
Eqs. (24) and (26) we can always choose a different
polarization for the collimated incident top-hat beam
impinging the OAP in our setup depicted in Fig. 1 prior
to implementing the above mapping. We emphasize that
throughout the present work we fix the polarization of a
given beam in this way, which allows for an unambiguous,
theoretically solid definition of the beam’s polarization
state. In experiment, the polarization of the reflected
beam can alternatively be modified with respect to the

FIG. 2. Normalized far-field angular distribution (22) of the
laser photons constituting the probe beam in our setup;
feff ¼ 30 cm, rbeam ¼ 14 cm, rhole ¼ 4.75 cm. The asymmetry
is induced by the 90° OAP.
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left-moving one by the appropriate insertion of optical
elements such as half-wave and quarter-wave plates into its
beam path; cf., also Fig. 1.

III. RESULTS

Instead of setting up a dedicated integrator allowing to
directly evaluate the signal photon amplitude (3) in the
combined electromagnetic field of the left- and right-moving
focused beams in our setup, we make use of the numerical
vacuum emission solver [33] to determine the relevant
quantum vacuum signals. This solver allows to initialize
a given laser beambyproviding its (complex) electric field at
a fixed time discretized on a three dimensional grid. For a
finite-energy beam, inherently coming with a spatial locali-
zation of the electromagnetic field, the input volume can—at
least in principle—always be chosen large enough such as to
accommodate the full laser field. In the present work, we
identify the input time with the time where the maximum
intensity is reached in the beam focus at x⃗ ¼ 0. This amounts
to setting t ¼ 0 in Eq. (29) and thus using

E⃗ðxÞjt¼0 ¼ e−4ðxτÞ2E⃗ðω; x⃗Þ; ð29Þ

with the components of E⃗ðω; x⃗Þ given in Eq. (15) to initialize
a given laser beam in the vacuum emission solver [33]. The
field configuration of the resulting beam is then self-con-
sistently propagated to times t ≠ 0 by the solver according to
Maxwell’s equations in vacuum. For further details on the
numerical implementation see Appendix B and Ref. [33].

A. Laser polarizations

Here, we provide results for seven different polarizations
of the colliding laser beams. As clarified in the last
paragraph of Sec. II C, in our theoretical considerations
these are assumed to be implemented for the collimated
beams prior to being reflected off the 90° OAP in Fig. 1.
Namely, we consider (A) both beams to be linearly
polarized with a relative polarization of

ðA1Þ∶ ϕ ¼ 0 ðβprobe ¼ βpump ¼ π=2Þ;
ðA2Þ∶ ϕ ¼ π=4 ðβprobe ¼ π=4; βpump ¼ π=2Þ;
ðA3Þ∶ ϕ ¼ π=2 ðβprobe ¼ 0; βpump ¼ π=2Þ;

where we also provide the explicit value of the angle β used
for the probe and pump laser fields in Eq. (24) to realize a
given relative polarization. (B) Both beams are circularly
polarized with the

ðB1Þ∶ oppositehelicity ðprobe¼ “þ ”; pump¼ “− ”Þ;
ðB2Þ∶ samehelicity ðprobe¼ “þ ”; pump¼ “þ ”Þ:

Recall that in out setup in Fig. 1 the propagation direction
and the orientation of the electric field of the pump beam,
and thus also its helicity, are reversed at the mirror acting as
retro-reflector prior to the collision with the probe. Finally,
we assume (C) one beam to be linearly polarized and the
other one to be circularly polarized. The specific cases
considered here are

ðC1Þ∶ circ polarized probe; lin polarized pump ðprobe ¼ “þ ”; βpump ¼ π=2Þ;
ðC2Þ∶ lin polarized probe; circ polarized pump ðβprobe ¼ π=2; pump ¼ “ − ”Þ:

We emphasize that the polarizations of the colliding laser
beams near focus encoded in E⃗ðxÞ certainly do differ from
the polarizations of the collimated input beams. The
reasons for this are both the focusing and the asymmetry
induced by the use of the 90° OAP in our setup. In addition,
also the finite pulse duration of the colliding beams
implemented by the above ad hoc description can impact
the polarization of the beams. As we have explicitly
ensured that ωτ ≫ 1, the latter effect should, however,
be negligible.
In any case, we expect characteristic properties such as

the dominant polarization component to be inherited by the
focused beam. To this end, it is, however, important to note
that the 90° reflection at the OAP genuinely maps the
polarization vector of a linearly polarized input beam
propagating in −z direction given by e⃗in ¼ cos βe⃗x þ
sin βe⃗y [cf. Eqs. (14) and (24)] onto e⃗out ¼ cos βe⃗z −
sin βe⃗y for the output ray propagating along þx toward
the focal point, i.e., the beam axis of the focused beam.

The reason for this is that upon hitting a mirror the electric
field component tangential to the mirror surface is com-
pensated by a field induced in the mirror such as to ensure
the electric field to vanish identically on its surface.
Analogously, the polarization vector of a “�” circularly
polarized input beam e⃗in ¼ ðe⃗x ∓ ie⃗yÞ=

ffiffiffi
2

p
[cf. Eq. (26)] is

mapped onto e⃗out ¼ ðe⃗z � ie⃗yÞ=
ffiffiffi
2

p
by the 90° OAP, which

clearly implies that the reflection reverses the polarization
from right to left hand circular polarization and vice versa.
At the same time, we emphasize that within the present

approach we have direct access to the polarization vectors
e⃗divðk⃗Þ of the laser photons of wave vector k⃗ forming the
divergent laser beam propagating toward the retro-reflector
in our setup in Fig. 1. In line with this, we refer to signal
photons that copropagate with the divergent OAP reflected
beam after focusing and fulfill the criterion

e⃗pðk⃗Þ · e⃗�div ¼ 0 ð30Þ
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as being perpendicularly polarized to this beam; we denote
their polarization vectors by e⃗⊥ðk⃗Þ. For the details, see
Appendix A.

B. Prospective signals

In Table I we provide our results for the numbers of
signal photons reaching a detector registering all signal
photons traversing the hole in the retro-reflector per shot,
i.e., those signal photons scattered to polar angles ϑ ≤ θdet.
To this end we integrate Eq. (5) over the full azimuthal
angle 0 ≤ φ ≤ 2π and the polar angle interval
0 ≤ ϑ ≤ arctanðrdet=feffÞ ≃ 7.1°. The estimates presented
here are obtained from Eq. (12) which, as detailed in
Sec. II B above, is severely based on the paraxial
approximation and completely neglects the asymmetry
introduced by the 90° OAP visible in Fig. 2, as well as
any effects associated with the finite Rayleigh length of the
probe. In turn, deviations from the results of a full
numerical calculation in the parameter regime where θout ≃
rbeam=feff ≃ 0.47 are to be expected. Still, Table I shows
that the analytical estimates (12) with coefficients (7)–(9)
encoding the polarization dependence of the signal never-
theless predict the full numerical results as well as their
general trends reasonably well.
This is in particular true for the numbers Ndet of

signal photons to be registered by the detector in a
polarization insensitive measurement. In general, the
analytical estimates deviate from these only by factors
of ≈0.9…1.2. For the linearly polarized cases (A) the

estimates and the results of the full calculation fulfill
NdetjðA1Þ < NdetjðA2Þ < NdetjðA3Þ. Moreover, the ratios
of NdetjðA2Þ=NdetjðA1Þ ≈ 2 and NdetjðA3Þ=NdetjðA2Þ ≈ 1.5
inferred from both approaches agree well with each other.
Also the degeneracy of the results for (A2) and (C1) that is
to be expected from the estimate is reproduced by the full
calculation. At the same time, the outcomes for (B1), (B2)
and (C2) agree for the estimate but differ for the full
calculation. As to be expected from the paraxial limit
(cf. the second to last paragraph of Sec. II A), for the cases
considered here the maximum signal of Ndet ≃ 4.29 signal
photons per shot is obtained for orthogonally polarized
probe and pump beams in (A3).
In Fig. 3 we depict the angular emission characteristics

of the polarization insensitive signal for this particular case;
note that d2Npðφ;−ϑÞ ¼ d2Npðφþ π; ϑÞ and similarly for
d2N p. The depicted angular resolved signal photon dis-
tributions exhibit a pronounced dent in the field free
shadow imprinted in the probe beam. We note that this
behavior can be attributed to the specific collision geometry
considered here where both the probe and the pump beam
are focused to the same waist size. In principle, a peaked
signal photon distribution in the shadow can be ensured but
requires to tune the probe and pump waists appropri-
ately [30].
For completeness, we also note that the full calculation

allows us to infer that the total numbers N of induced signal
photons scattered into the right half-space, i.e., to angles
0 ≤ φ ≤ 2π and 0 ≤ ϑ ≤ π=2, are about a factor of
≈17.2…17.8 larger than those for Ndet in Table I.

TABLE I. Numbers of signal photons scattered into the hole in the retro-reflector fulfilling ϑ ≤ θdet. Ndet: polarization insensitive
measurement; N⊥;det: perpendicularly polarized signal.

(A1) (A2) (A3) (B1) (B2) (C1) (C2)

Estimate Ndet 1.41 2.86 4.32 2.67 2.67 2.86 2.67
N⊥;det 0 0.20 0 0 0 0.20 0

Full calculation Ndet 1.48 2.88 4.29 3.11 2.32 2.88 2.72
N⊥;det 6.71 × 10−4 0.19 7.78 × 10−3 3.29 × 10−11 2.72 × 10−11 0.18 1.83 × 10−2

FIG. 3. Differential number (5) of signal photons N attainable in a polarization insensitive measurement (solid red line) and laser
photons N (dotted blue line) for case (A3). Dependence on ϑ for φ ¼ 0 (left) and φ ¼ π=2 (right). The blue shaded areas delimited by
dashed vertical lines mark the fraction of the signal reaching the detector.
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However, these numbers are typically only of academic
interest as most of the signal photons are vastly dominated
by the background of the driving laser photons and thus
essentially inaccessible in experiment.
For all cases apart from (A2) and (C1) the polarization-

flipped signals per shot N⊥;det are suppressed by at least
two orders of magnitude relatively to the polarization
unresolved signals Ndet. This is in good accordance with
the analytic estimates predictingN⊥;det to vanish identically
in these cases. On the other hand, the analytical estimates
for (A2) and (C1) overestimate the results of the full
calculation for our setup by a factor of just≈1.1. This minor
discrepancy is in line with the one found above for the
polarization insensitive signals Ndet. Because (A2) max-
imizes the polarization-flip signal in the collision of linearly
polarized beams, this choice is typically envisioned for
vacuum birefringence experiments; cf., e.g., Refs. [50,51].
In accordance with the corresponding analytical estimates,
the full calculation predicts the signal photon numbers
N⊥;det to (approximately) agree for (A2) and (C1) and result
in a maximum yield of N⊥;det ≃ 0.19 polarization-flipped
signal photons per shot. Also note that for these cases the
total-to-flipped signal ratio Ndet=N⊥;det, predicted to be
≃14.3 by the analytical estimate, is found to be
≈15.5…15.8 for the full calculation, and thus is in
reasonable agreement. Figure 4 shows the angular emission
characteristics of the ⊥ polarized signal for (A2).

IV. CONCLUSIONS AND OUTLOOK

In this work we have put forward a concrete exper-
imental schema allowing to detect nonlinear quantum
vacuum signals in the head-on collision of two tightly
focused high-intensity beams of the petawatt class with
state-of-the-art technology.
The key components of our setup are a 90° off-axis

parabolic mirror and a retro-reflector arranged such as to
allow two subsequent laser pulses generated by the same

front end to be focused by the same optics and to be
collided in the common focal point of the OAP and the
retro-reflector. In order to allow for a measurement of the
small quantum vacuum signal in the presence of the large
background of the laser photons constituting the driving
beams our setup employs a dark-field approach: to this end
a central shadow is imprinted into the colliding laser beams
and the signature of quantum vacuum nonlinearity to be
detected in experiment amounts to signal photons scattered
into the central shadow. The latter is imaged onto a detector
through a hole in the retro-reflector. By appropriately
preparing the polarization state of the incident beams prior
to being fed into the focusing optics also polarization
sensitive observables can be studied with our setup.
Resorting to a set of well-justified assumptions and

theoretical idealizations, in the present work we have
explicitly demonstrated that the setup envisioned by us
should indeed provide a prospective new route toward a
first measurement of nonlinear quantum vacuum signals in
an all-optical experiment at present and forthcoming peta-
watt-class high-intensity laser laboratories, such as CALA
in Garching, Germany. As a critical next step, it needs to be
shown that the scattering and diffraction background that is
inevitable in any real-world experimental implementation
of the setup can indeed be appropriately controlled and
sufficiently suppressed in experiment.
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APPENDIX A: COMPONENTS OF E⃗ðω;k⃗Þ AND
FAR-FIELD POLARIZATION VECTORS

Equations (15) and (21) imply that the components of
E⃗ðω; k⃗Þ can be expressed as

FIG. 4. Differential number (5) of⊥ polarized signal photons N⊥ (solid red line) for case (A2). Note, that by definition there are no⊥-
polarized laser photons. Dependence on ϑ for φ ¼ 0 (left) and φ ¼ π=2 (right). The blue shaded areas delimited by dashed vertical lines
mark the fraction of the signal reaching the detector.
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Exðω; k⃗Þ ¼
i
ω
ð2πÞ2δðk − ωÞ feff

ðωþ kzÞ2
½E0;xðω2 þ ωkz − k2xÞ − E0;ykxky�;

Eyðω; k⃗Þ ¼
i
ω
ð2πÞ2δðk − ωÞ feff

ðωþ kzÞ2
½E0;yðω2 þ ωkz − k2yÞ − E0;xkxky�;

Ezðω; k⃗Þ ¼ −
i
ω
ð2πÞ2δðk − ωÞ feff

ωþ kz
ðE0;xkx þ E0;ykyÞ; ðA1Þ

where the arguments x̃ and ỹ of E0;x and E0;y are to be
identified with Eq. (23). One can easily convince oneself
that the electric field components in Eq. (A1) indeed fulfill
k⃗ · E⃗ðω; k⃗Þ ¼ 0 in accordance with Maxwell’s equations in
vacuum. The unit vector

e⃗divðk⃗Þ ¼
1

jE⃗ðω; k⃗Þj
E⃗ðω; k⃗Þjω¼jk⃗j ðA2Þ

can hence be interpreted as the far-field polarization
vector of the photons of wavevector k⃗ constituting the
divergent laser beam after focusing. In our setup in Fig. 1
these are the laser photons propagating toward the retro-
reflector. The latter is sufficiently separated from the focal
point F, such as to be effectively located in the far field;
cf. also the corresponding discussion in the paragraph
below Eq. (28) in Sec. II C. In line with that, the
polarization vector of photons propagating toward the
retro-reflector and being polarized perpendicular to
the laser photons can be defined as

e⃗⊥ðk⃗Þ ≔ k⃗ × e⃗divðk⃗Þ: ðA3Þ

Finally, some comments on a subtlety are in order here:
clearly, Eq. (A1) is nonzero only for directions k⃗=jk⃗j for
which the components E0;x and E0;y determined by the
input field (14) [cf. also Eqs. (22) and (23)] do not vanish.
This immediately implies that, even though the depend-
ence on E0;x and E0;y drops out completely for our specific
profile choices (24)–(26), Eq. (A2) is a priori only defined
for these directions. However, we emphasize that for the
present analysis it indeed amounts to a natural choice to
extend the definitions (A2) and (A3) to arbitrary photon
propagation directions. This is completely in line with the
original derivation of [47] underlying our present con-
siderations, where the transverse direction dependence of
E0;x and E0;y effectively only acts as a regulator enforcing
a finite transverse beam profile, but does not at all affect
the polarization characteristics relative to an infinitely
extended monochromatic plane-wave input field.

APPENDIX B: NUMERICAL IMPLEMENTATION

The numerical evaluation of Eq. (3) requires the tuning
of eight numerical parameters. These are the extents

ðLt; Lx; Ly; LzÞ parametrizing the space-time volume of
the simulation box and the corresponding numbers of grid
points nð4Þ ¼ ðnt; nð3ÞÞ ¼ ðnt; nx; ny; nzÞ. The simulation
box needs to be large enough such as to capture the
interaction region of the colliding laser pulses where the
quantum vacuum signals are induced. In our setup in
Fig. 1 this amounts to the region around the focal point F,
the transverse and longitudinal extents of which are
controlled by the beam waist w0 and the Rayleigh length
zR, respectively. The temporal extent is set by the overlap
of the colliding pulses and is controlled by the pulse
duration τ.
For the temporal extent we choose Lt ¼ 2τ ≃ 102 fs

centered at t ¼ 0 where the colliding pulses overlap best;
recall that τFWHM ¼ 30 fs. Moreover, we choose Lx ¼
4cτ ≃ 61.1 μm and Ly ¼ Lz ≃ 19.1 μm ≈ 24λ for the spa-
tial extents in longitudinal and transverse directions,
respectively. We have explicitly checked that the field
strengths at the boundaries reach at most 2% of the peak
field value for t ¼ 0.
A quantitative prediction of the quantum vacuum

signals requires resolving all frequency components of
the signal. The four-field interaction in Eq. (1) gives rise to
signals at two different photon oscillation frequencies
k ≈ fω; 3ωg. In order to resolve the signal the maximum
frequency k ≈ 3ω, we use nt ¼ 688 grid points in temporal
direction and nx ¼ 920 grid points in longitudinal direc-
tion. This corresponds to a sampling with approximately 6
and 4 grid points per minimum wavelength λ=3, respec-
tively. In the focal plane the annular flat top beam
reflected off the 90° OAP features side lobes that have
to be resolved for an accurate determination of the signal.
As default value for our simulations we use ny ¼ nz ¼
245 grid points in the transverse directions, which implies
a sampling with approximately 3 grid points per λ=3. For
case (A2) in Sec. III A, the above extents of the simulation
box and nð4Þ ¼ ð688; 245; 245; 920Þ we obtain a total
number of N ≃ 49.58 signal photons scattered into the
right half-space. With a finer resolution based on nð4Þ ¼
ð1376; 315; 315; 1150Þ grid points the analogous result is
found to be N ≃ 49.61. We use this value as reference
value Nref for the estimation of the mean relative error
MRE ¼ jN − Nref j=Nref of the signal photon numbers N
extracted from our simulations. Therewith we attribute a
MRE ≃ 0.06% to the results determined with the default
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resolution, indicating a reasonably small discretization
error for the present purposes. See Fig. 5 for a plot of the
MRE of N as a function of nt for different spatial grid
resolutions. Here, we observe a decrease of the MRE for
increasing grid resolution. Figure 5 clearly indicates the
convergence of the results for N for the above finite space-
time volume of the simulation box.
To discretize the signal photon energies and emission

directions in spherical momentum coordinates, we use

nk ¼ 718 grid points in radial direction to span the energy
range 0 ≤ k ≤ 14.5 eV, nϑ ¼ 363 grid points to discretize
the azimuthal angle 0 ≤ ϑ ≤ π and nφ ¼ 726 grid points for
the polar angle 0 ≤ φ ≤ 2π. This corresponds to a reso-
lution of about 0.5° for the angles and 0.02 eV for the
energy. To quantify the discretization error arising from the
spherical momentum grid we also performed a reference
calculation with nk ¼ 1077, nϑ ¼ 543 and nφ ¼ 1086 grid
points. Therewith, we obtain a MRE of ≃1.8 × 10−3% for
N and ≃2.0 × 10−3% for N⊥ obtained by integration over
0 ≤ φ ≤ 2π and 0 ≤ ϑ ≤ π=2.
The accuracy of our numerical results does not only

depend on the volume and the grid resolution of the
simulation box just discussed, but of course also on the
resolution of the discretization adopted for the numerical
evaluation of Eq. (15). For the simulations presented in
this work, we sample the rotationally symmetric beam of
outer radius rbeam ¼ 14 cm in the input plane (14) by a
rectangular grid of side lengths lx ¼ ly ¼ 2rbeam consist-
ing of nx ¼ ny ¼ 432 points centered at the beam axis.
For comparison, we also performed a calculation at half
resolution, i.e., for lx ¼ ly ¼ 2rbeam with nx ¼ ny ¼ 216

and extract the associated results for N and N⊥.
Calculating the MRE of these results with respect to
the analogous values obtained at full resolution we find
≃0.08% for N and ≃0.20% for N⊥. The quoted values
for the MRE are of the same order as those inferred
for the resolution of the simulation box used for the
vacuum emission solver above. In turn, they also hint
at a sufficiently small discretization error for the
present work.
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