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We present the complete spectrum for the Bjorken x weighted energy-energy correlation in the deep
inelastic scattering (DIS) process, from the target fragmentation region to the current fragmentation region,
in the Breit frame. The corresponding collinear and transverse momentum-dependent logarithms are
resummed to all orders with the accuracy of NLL and N3LL, respectively. The results in the full region are
matched with an Oðα2sÞ fixed-order calculation. The final numerical predictions are presented for both
Electron-Ion Collider and Continuous Electron Beam Accelerator Facility kinematics.
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I. INTRODUCTION

The pursuit of a comprehensive understanding of the
nucleonic structure and the intricate mechanisms under-
lying the formation of hadrons from partons and beam
remnants is a paramount objective in the field of particle
physics. This quest will continue to be at the forefront of
scientific exploration within the Standard Model, particu-
larly at the forthcoming Electron-Ion Collider (EIC) and
future QCD facilities [1–3].
In recent years, approaches to nucleon/nucleus tomog-

raphy have significantly evolved and been enriched since
many novel ideas have been proposed in the field. One
notable advancement is the jet-based studies of the trans-
verse momentum-dependent (TMD) structure functions
[4–20] and the study of gluon saturation [21–29].
Event shape observables, such as the thrust and

C-parameter, serve as measures of the energy flow, multiple
particle correlations, and radiative patterns in high-energy
collisions, which have undergone extensive investigations
at various colliders and have played a central role in
enhancing our understanding of the perturbative and
nonperturbative dynamics of QCD over the past several
decades.

Energy-energy correlation (EEC) [30–40] is an event
shape originally introduced in the context of eþe− colli-
sions as an alternative to the thrust family. EEC stands out
among other event shape observables for its simplicity and
effectiveness in revealing the intrinsic transverse-dependent
dynamics [41–43] and the scales of the quark-gluon plasma
[44–47]. It has also been used to study cold nuclear matter
effects [48]. Moreover, owing to the high perturbative
accuracy achieved both in resummed and fixed-order
calculations [40,41,49,50], complemented by high precision
measurements [51–57], EEC offers opportunities for pre-
cision studies in QCD. In particular, EEC has been used for
precise extractions of the strong coupling constant, illumi-
nating the effects of the intrinsic mass of the elementary
particles of QCD [58,59] and understanding gluon satura-
tion and nuclear modifications [60]. Meanwhile, instead of
using calorimetry, track-basedmeasurements can be utilized
[38,61–66], providing high pointing and angular resolution.
In Ref. [43], the EEC has been adapted to the deep

inelastic scattering (DIS) process in the current fragmenta-
tion region (CFR) of the Breit frame. It was shown that
the EEC in this region can be used to extract the conven-
tional TMD parton distribution functions (TMDPDFs) and
the TMD fragmentation functions (TMDFFs). The asso-
ciated TMD resummation was carried out at the N3LL level
of accuracy.
On the other hand, in the target fragmentation region

(TFR), where the outgoing particles propagate in the
forward direction close to the incoming hadron beam, a
variant of EEC, named the nucleon energy-energy corre-
lator (NEEC), was proposed in [67], which supplies a
unique opportunity to reveal the intrinsic dynamics of
nucleons. Notably, similar to EEC, NEEC manifests a
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remarkable phase transition between the perturbative par-
ton and the nonperturbative free hadron phases [67]. NEEC
has also been shown to be powerful in unraveling the onset
of gluon saturation [68] predicted by small-x physics.
Furthermore, a joint measurement of NEEC in the TFR
and CFR exhibits an exquisite signature of the linearly
polarized gluons inside the nucleons [69]. The derivation of
the NEEC factorization theorem and its NLL resummation
were obtained in [70].
In this paper, we investigate the Bjorken xweighted EEC

in the TFR and CFR region, which was first introduced
by [67] and called NEEC in their paper. The definition is

dΣN

dQ2dθ
¼

X
i

Z
dσðxB;Q2; piÞxN−1

B
Ei

EP
δðθ − θiÞ: ð1Þ

Here N > 1 is a positive power, and dσ is the differential
cross section with Bjorken xB and virtuality of the photon
Q. Note that pi denotes the four-momentum of the particle
detected by the calorimetry. The angle θi is the polar angle
of pi with respect to the nucleon beam, and Ei and EP are
the energy of the detected particle and the incoming
nucleon, respectively. The sphere represents the detector
that reports the energy and the angle of the final-state
particle. The measurement is illustrated in Fig. 1. In the rest
of the paper, we will use EEC to represent the Bjorken x
weighted EEC defined in Eq. (1) for short.
In the TFR and TMD regions, EEC can be systematically

analyzed using the factorized formula based on the soft-
collinear effective theory (SCET) [71–76]. We perform a
consistency check of our approach by comparing the LO
and NLO singular distributions, obtained by the factoriza-
tion formula. We show the resummed cross section in the
TMD region up to the N3LL level of accuracy and in the
TFR up to the NLL level of accuracy. The resummed
distribution is matched with the NLO fixed-order QCD
result for both EIC and Continuous Electron Beam
Accelerator Facility (CEBAF) kinematics. The nonpertur-
bative effects are discussed briefly in the EIC and CEBAF.

The paper is organized as follows. In Sec. II we introduce
the definitions of EEC and the kinematics formula in both
the TFR and the TMD regions. In Sec. III we introduce the
factorized formula in both the TFR and the TMD regions.
In Sec. IV we present the numerical calculations of the
resummation and the fixed-order singular distribution and
compare our results with PYTHIA simulations. We conclude
in Sec. V.

II. KINEMATICS

In this paper, we examine the process of DIS, where
kμ; k0μ, and Pμ represent the four-momenta of the initial
electron, the outgoing electron, and the initial-state proton,
respectively. The momentum of the virtual photon is given
by q≡ k − k0. The Lorentz invariant variables are conven-
tionally defined as follows:

Q2 ≡ −q2; xB ≡ Q2

2P · q
; zi ≡ P · pi

P ·
P

pi
; ð2Þ

whereQ2 represents the virtual photon momentum squared,
xB is the Bjorken scaling variable, and zi denotes the
momentum fraction carried by the observed particles (pi)
with respect to the sum of all observed particles. In our
analysis, we work in the Breit frame, where a distinct
separation between the target and current fragmentation
regions can be defined by the hemispheres that cover the
þz and −z directions, respectively. The momentum of the
virtual photon only acquires momentum in its z component:

qμ ¼ Q
2
ðn̄μ − nμÞ ¼ Qð0; 0; 0;−1Þ; ð3Þ

with n̄μ ≡ ð1; 0; 0;−1Þ and n≡ ð1; 0; 0; 1Þ. The proton
carries the momentum,

Pμ ¼ Q
2xB

nμ ¼ Q
2xB

ð1; 0; 0; 1Þ: ð4Þ

Throughout this paper, we adopt the standard notation,
where pþ ≡ n̄ · p and p− ≡ n · p. Here, n≡ ð1; 0; 0; 1Þ
and n̄≡ ð1; 0; 0;−1Þ in the light-cone basis, with a vector
denoted as pμ ¼ ðpþ; p−;pTÞ. Consequently, in the Breit
frame, zi ¼ p−

i
Q .

We can relate the vector in any frame where the
momentum of the virtual photon is ðqþ; q−;qTÞ to the
Breit frame with vμB ¼ ðΛRÞμνvany;ν, where

Rμν ≡

0
BBB@

1 0 0 0

0 q1
qT

q2
qT

0

0 −q2
qT

q1
qT

0

0 0 0 1

1
CCCA; ð5Þ

FIG. 1. EEC measurement in DIS.
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Λμν ≡

0
BBB@

q0
Q þ Q

q− − qT
Q 0 − q3

Q − Q
q−

− qT
Q 1 0 qT

q−

0 0 1 0
q0
Q − qT

Q 0 − q3
Q

1
CCCA: ð6Þ

The angle of the final-state particle i can be defined
as arctanðpi;T=pi;3Þ.
The kinematic region can be roughly divided into two

distinct parts: the CFR and the TFR [77–81]. Each region
has its own characteristics and is associated with different
aspects of the scattering process.
In the CFR, the observed particles result from the

fragmentation of the parton struck by the virtual photon.
The outgoing parton fragments into the detected particles.
The CFR can be further divided into two subregions. The
first subregion is the TMD region, where θ − π ≪ 1. In this
region, the momenta of the observed particles scale as
pi ∼Qðθ2; 1; θÞ. TMD factorization theorems are well
established and applicable in this case. The second sub-
region is the hard region, where θ ∼ 1, and the momenta of
the observed particles scale as pi ∼Qð1; 1; 1Þ. In this
region, hard QCD radiation produces a large hadronic
transverse momentum, and it is appropriate to deal with the
fixed-order QCD calculations based on collinear factori-
zation theorems.
In TFR, θ ≪ 1, the momenta of the observed particles

scale as pi ∼Qð1; θ2; θÞ. The TFR is associated with the
fragmentation of spectator partons, which originate in the
target nucleon but do not experience a hard collision with
the virtual photon. These partons continue to move pre-
dominantly in the direction of the parent nucleon, where the
measured hadron predominantly travels in the forward
direction of the incoming target.
In the hard region, the distribution is very well described

by the fixed-order QCD calculations, while in the TFR and
TMD regions, resummation of enhanced logarithms is
required for reliable predictions. To this end, the cross
section can be factorized, with the framework of SCET.
Events in both regions can be used to comprehend the
internal structure of hadrons and the properties of strong
interactions. To better visualize the different kinematic
regimes discussed above, we provide an angle map
in Fig. 2.

III. BJORKEN x WEIGHTED EEC SPECTRUM

A. TMD region

In this section, we briefly review the factorization of the
EEC in the TMD region where π − θ ≪ 1. The factoriza-
tion is similar to the one in [43] except for the factor of the
weighted Bjorken xN−1

B .
In the TMD region, the EEC can be related to the single

hadron production process eþ p → eþ aþ X with a

small transverse momentum of the observed hadron. The
expression for ΣNðQ2; θÞ is given by

dΣN

dQ2dθ
¼

Z
dxBxN−1

B

X
a

Z
d2qTdz

×
dσeþp→eþaþX

dQ2dxBd2qTdz
Ea

Ep
δðθap − θÞ: ð7Þ

The TMD cross section can be expressed in terms of TMD
PDF and FF as follows:

dσeþp→eþaþX

dQ2dxBd2qTdz
¼ HðQ2;μ;μHÞ

Z
d2qT

d2b
ð2πÞ2

× exp½−iqT · b�Bf=pðb; xB;μ; ν;μB;νBÞ
× Sðb;μ;ν;μS;νSÞDa=fðz; b;μ;ν;μJ;νJÞ;

ð8Þ

where Bf=p is the TMD beam function, S is the soft
function, Da=f is the fragmentation function for parton f to
hadron a, and b ¼ jbj. The factorization of the EEC can be
obtained by approximating Ea

Ep
as xBza:

dΣN

dQ2dθ
¼

Z
dxBxNBHðQ2; μ; μHÞ

Z
d2qT

d2b
ð2πÞ2

× exp½−iqT · b�Bf=pðb; xB; μ; ν; μB; νBÞ
× Sðb; μ; ν; μS; νSÞJf;EECðb; μ; ν; μJ; νJÞ

× δ

�
2jqT j
Q

− θ

�
; ð9Þ

where Jf;EEC is the EEC (anti)quark jet function defined as
the first moments of the fragmentation functions:

Jf;EEC ≡X
a

Z
1

0

dz zDf=aðz;bÞ: ð10Þ

When 1 ≫ ðπ − θÞQ ≫ ΛQCD, through an OPE, the EEC
jet function and TMD beam function can be expressed in

θ = πθ = 0

TMDTFR

Hard

FIG. 2. Sketch of kinematical regions of EEC in terms of the
Breit frame angle.
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terms of a convolution of short-distance matching coef-
ficients:

JOPEf;EEC ¼
X
j

Z
1

0

dωωDfj

�
b
ω
;ω; μ; ν

�
; ð11Þ

BOPE
f=p ðb; x; μ; ν; μB; νBÞ

¼
X
i

Z
1

x

dz
z
Ifi

�
b;
x
z
; μ; ν; μB; νB

�
fi=pðz; μÞ; ð12Þ

where Dfj and Ifi are the matching coefficients, and fi=p
represents the parton distribution functions. We have used
the superscript OPE to denote that this is the leading
contribution in the expansion and it is considered a good
approximation of the true TMDs in the perturbative regime
where ðπ − θÞQ ≫ ΛQCD.
The beam, jet, and soft functions can be evolved to the

common scale μ from their natural scales at νB, νJ, νS, μB,
μJ, and μS, respectively, as

Bfðx; b; μ; ν; μB; νBÞ ¼ UBðμ; ν; μB; νBÞ
× Bfðx; b; μB; νBÞ;

Jf;EECðb; μ; ν; μJ; νJÞ ¼ UJðμ; ν; μJ; νJÞ
× Jf;EECðb; μJ; νJÞ;

SEECðb; μ; ν; μS; νSÞ ¼ USðμ; ν; μS; νSÞ
× SEECðb; μS; νSÞ; ð13Þ

where UB, UJ, and US are the position space evolution
factors for the beam, jet, and soft functions, respectively.
Similarly, the hard function also has a multiplicative
renormalization group evolution

HðQ2; μ; μHÞ ¼ UHðQ2; μ; μHÞHðQ2; μHÞ; ð14Þ

where UHðξ2; μ; μHÞ is the corresponding hard function
renormalization group evolution factor.
The RG-evolved cross section reads

dΣN

dQ2dθ
¼
Z

dxBxNBHðQ2;μHÞ
Z

d2qT
d2b
ð2πÞ2

×exp½−iqT ·b�UtotBf=pðb;xB;μB;νBÞ

×Sðb;μS;νSÞJf;EECðb;μJ;νJÞδ
�
2jqT j
Q

−θ

�
; ð15Þ

where Utot ≡ UBUHUJUS.
The factorization framework outlined above provides a

systematic way to study the EEC in the TMD region and
allows for the resummation of large logarithms. It enables
the calculation of precise theoretical predictions for the

observable in high-energy scattering processes involving
hadrons.
Table I lists the ingredients required up to N3LL. The

hard function is known at Oðα2sÞ in [82,83]. The soft
function has been calculated at Oðα2sÞ in [49,84]. The EEC
jet function is available up to Oðα3sÞ in [85–90]. The beam
function has been calculated up to Oðα3sÞ [85–88,91–95].
Finally, the analytic expression for the four-loop cusp
anomalous dimension, needed to solve the renormaliza-
tion group evolution equations at N3LL, was obtained
recently [96,97].
The fact that the factorization involves the universal back-

to-back TMD soft function enables us to incorporate hadro-
nization and nonperturbative corrections in a universal
framework applicable to conventional TMD observables.
For the soft rapidity anomalous dimension, the imple-

mentation of the nonperturbative model is done as in
conventional TMD observables at the level of evolution,

Utot → Utot exp

�
gKðbÞ ln

ν

νS

�
: ð16Þ

Here, gKðbÞ ¼ −0.42 ln ð1þ b2=b2maxÞ is the model func-
tion for the nonperturbative component of the rapidity
anomalous dimension following the model in [98,99]. We
set bmax ¼ 0.561.
For the hadronization model of the EEC jet function and

TMD beam function, we can assume a generic multipli-
cative ansatz and the TMD beam function,

ffiffiffi
S

p
Jf;EECðb; μ0; ν0Þ ¼

ffiffiffiffiffiffiffiffi
Spert

q
JOPEf;EECðb; μ0; ν0ÞjfðbÞ;ffiffiffi

S
p

Bi=pðx; b; μ0; ν0Þ ¼
ffiffiffiffiffiffiffiffi
Spert

q
BOPE
i=p ðb; μ0; ν0ÞfiðbÞ: ð17Þ

Here, Spert is the perturbative expression for the soft
function, and jfðbÞ and fiðbÞ are the multiplicative ansatz
for hadronization effects in the EEC jet function and TMD
beam function, respectively. The scales μ0 and ν0 are
arbitrary in the soft, beam, and jet functions.
Following the model and parameters in [98,99], we use

fiðbÞ¼expð−0.212b2Þ and jfðbÞ¼ expð−0.59b−0.03b2Þ.
Thus, combining all elements at the level of the cross

TABLE I. Classification of the resummation accuracy in terms
of the fixed-order expansions of the boundary term, anomalous
dimensions, and the beta function in the TMD region.

Accuracy H; J; S; B γcusp γ β

LL Tree 1 loop � � � 1 loop
NLL Tree 2 loop 1 loop 2 loop
NNLL 1 loop 3 loop 2 loop 3 loop
N3LL 2 loop 4 loop 3 loop 4 loop
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section, we can collect all nonperturbative contributions in
a single function,

FNP
i ðbÞ≡ jiðbÞfiðbÞ exp

�
−0.42 ln

�
1þ b2

b2max

�
ln

�
ν

νS

��
:

ð18Þ

The cross section reads

dΣN

dQ2dθ
¼

Z
dxB xNBHðQ2; μHÞ

Z
d2qT

d2b
ð2πÞ2

× exp½−iqT · b�UtotFNP
f ðbÞBOPE

f=p ðb; xB; μB; νBÞ

× Spertðb; μS; νSÞJOPEf;EECðb; μJ; νJÞδ
�
2jqT j
Q

− θ

�
:

ð19Þ

Further details on hadronization and nonperturbative
corrections can be found in [43] and references therein.

B. Target fragmentation region

We now review the EEC factorization in TFR. The
detailed derivation of the factorization theorem with SCET
in the TFR is given in [70]. We note that, recently, the
factorization for the EEC observable in eþe− annihilation
has been derived within the context of the light-ray operator
product expansion (OPE) in [100], where a similar factor-
ized form as the EEC factorization in the DIS [70] was
obtained. It will be fascinating to see if the derivation using
the light-ray OPE can apply to the EEC case where an
external hadronic state is present.
The expression for ΣNðQ2; θÞ is given by

dΣN

dQ2dθ
¼ α2

Q4

Z
dxBxN−1

B Lμν

×
Z

d4xeiq·xhPjjμ†ðxÞÊðθÞjνð0ÞjPi; ð20Þ

with Lμν the lepton tensor, the same as DIS. The inserted

normalized asymptotic energy flow operator ÊðθÞmeasures
the energy deposited in the detector at a given angle θ
[101–104] normalized to the energy EP of the incoming
proton

ÊðθÞjXi≡X
i∈X

Ei

EP
δðθ − θiÞjXi: ð21Þ

The contribution of the energy flow operator in the soft
region will be power suppressed by the factor Ei

EP
.

We further match the second line in Eq. (20) to the SCET
matrix as

Z
d4xeiq·xhPjj†μðxÞÊðθÞjνð0ÞjPi

¼
Z

d4xeiq·x
�
Cμν
q ðxÞhPjχ̄nðx−ÞY†ð0Þγ

þ

2
ÊðθÞYð0Þχnð0ÞjPi

þCμν
g ðxÞhPjB⊥ðx−ÞY†ð0ÞÊðθÞYð0ÞB⊥ð0ÞjPi

�
; ð22Þ

which contains only the gauge invariant collinear quark and
gluon fields χ and B⊥, respectively [105]. In addition, we
have the soft Wilson lines Y and Y in the fundamental and
adjoint representations, respectively. The soft Wilson lines
decouple the interaction between the collinear and the soft
sectors. Here, we note that

½Ê; Y� ¼ ½Ê;Y� ¼ 0 ð23Þ

since ÊðθÞ and YðYÞ act on different sectors. Now, we use
the identity Y†Y ¼ Y†Y ¼ 1 to reach

Z
d4xeiq·xhPjj†μðxÞÊðθÞjνð0ÞjPi

¼
Z

d4xeiq·x
�
Cμν
q ðxÞhPjχ̄nðx−Þ

γþ

2
ÊðθÞχnð0ÞjPi

þ Cμν
g ðxÞhPjB⊥ðx−ÞÊðθÞB⊥ð0ÞjPi

�
: ð24Þ

We can further derive that the hard tensors Cμν
q and Cμν

g are
the same as the hard tensor in inclusive DIS by noting the
following:

(i) The above derivation closely follows the SCET
derivation of the inclusive DIS cross section in
[75], except for the existence of the collinear
operator ÊðθÞ.

(ii) By substituting the collinear operator ÊðθÞ with the
identity operator 1 ¼ P

X jXihXj, we recover the
hadron tensor in the standard inclusive DIS cross
section. Meanwhile, Eq. (20) reduces to the inclu-
sive DIS cross section.

(iii) The hard coefficients remain unaffected whether
using the collinear operator ÊðθÞ or the identity
operator in the collinear function. This is because the
hard coefficients are independent of the details of the
collinear sector.

Immediately, the factorization of the EEC can be obtained:

dΣN

dQ2dθ
¼

X
i¼q;g

Z
dxBxN−1

B

×
Z

dz
z
fλσ̂λ;ið

xB
z
;Q2Þ d

dθ
fi;EECðz; PþθÞ; ð25Þ

where fi;EEC is the quark NEEC,
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fq;EECðz; θÞ≡
Z

dy−

4π
e−izP

þy−
2

X
i∈X

Ei

EP
Θðθ − θiÞ

×hPjχ̄nð
y−

2
nμÞ γ

þ

2
jXihXjχnð0ÞjPi; ð26Þ

and fg;EEC is the gluon NEEC,

fg;EECðz; θÞ≡
Z

dy−

4π
e−izP

þy−
2

X
i∈X

Ei

EP
Θðθ − θiÞ

×PþhPjB⊥ð
y−

2
nμÞjXihXjB⊥ð0ÞjPi. ð27Þ

Note that σ̂λ;i is the partonic DIS cross section. The
corresponding flux is given by

fT ¼ 1 − yþ y2

2
; fL ¼ 2 − 2y: ð28Þ

We notice that in the TFR, the soft radiation is fully
encompassed in the measurement, and therefore the soft
modes do not lead to any logarithmic enhancement con-
tributions. This is different from the TMD region meas-
urement, where the soft contribution leads to the enhanced
contribution which eventually gives rise to the perturbative
Sudakov factor that suppresses the distribution in the TMD
region exponentially.
When θPþ ≫ ΛQCD, the NEEC can be matched onto the

collinear PDFs, with all θ dependence occurring only in the
perturbative matching coefficients. In this way, since fEEC
is dimensionless, the Pþθ will show up in the form of
ln Pþθ

μ . Therefore, dΣN
dQ2dθ could also be written as

dΣN

dQ2dθ
¼ dΣ̂T;N

dQ2dθ
þ 2

dΣ̂L;N

dQ2dθ
þ Q4

2s2
dΣ̂T;N−2

dQ2dθ

−
Q2

s

�
dΣ̂T;N−1

dQ2dθ
þ 2

dΣ̂L;N−1

dQ2dθ

�
; ð29Þ

where we defined

dΣ̂λ;N

dQ2dθ
¼

X
i¼q;g

Z
duuN−1

× σ̂λ;iðu;Q2Þ d
dθ

fi;EEC

�
N; ln

Qθ

uμ

�
; ð30Þ

with u ¼ xB
z and we have used the fact that Pþ ¼ Q

xB
¼ Q

zu in
the Breit frame. The μ dependence in other forms through
the strong coupling constant and the collinear PDFs are
suppressed in the fi;EEC, where fi;EECðN; ln Qθ

uμÞ is the
NEEC in the Mellin space,

fi;EEC

�
N; ln

Qθ

uμ

�
¼

Z
1

0

dz zN−1fi;EEC

�
z; ln

Qθ

zuμ

�
: ð31Þ

When Q ≫ θQ ≫ ΛQCD, NEEC can be matched onto
the PDF,

fi;EEC

�
N; ln

Qθ

uμ

�

¼ fiðN; μÞ − Iij

�
N; ln

Qθ

uμ

�
fjðN þ 1; μÞ: ð32Þ

Here, Iij is a perturbatively calculable matching coefficient
and the index j runs over the possible initial parton species
in the proton, including the quarks, the antiquarks, and
the gluon.
The NEEC satisfies the modified DGLAP evolution

equation

d
d ln μ2

fi;EEC

�
N; ln

Qθ

uμ

�

¼
X
j

Z
dξξN−1PijðξÞfj;EEC

�
N; ln

Qθ

ξuμ

�
; ð33Þ

where Pij is the vacuum splitting function. The solution of
this RG equation at the NLL level of accuracy is given in
[70]. Solving this equation, the NLL NEEC receives the
compact analytic form

fi;EECðμÞ ¼ fiðN;μÞ−DN
ikðμ;μ0ÞIkj

�
ln
Qθ

uμ0

�
fjðNþ 1;μ0Þ

−
αsðμ0Þ
2π

N ik½2Pð0Þ
kj ðNÞ− 2Pð0Þ

kj ðNþ 1Þ�
× fjðNþ 1;μ0Þ: ð34Þ

Here, Iijðln Qθ
uμ0

Þ is the NLOmatching coefficient in Eq. (32)

evaluated at scale μ0, and the evolution factor DN
ijðμ; μ0Þ is

nothing but the DGLAP evolution in the Mellin space,

DN
ijðμ; μ0Þ ¼ exp

�Z
μ

μ0

d ln μ2PðN; μÞ
�
ij

: ð35Þ

The correction to the DGLAP evolution starts from αnsLn−1

order, in which

N ij ¼
Z

μ

μ0

d ln μ21D
N
ikðμ; μ1ÞP̃klðN; μ1ÞDN

ljðμ1; μ0Þ: ð36Þ

Here, we have defined
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P̃ijðNÞ≡
Z

dzzN−1PijðzÞ ln z: ð37Þ

Further details can be found in [70] and references therein.
In the limit of extremely small angles, we anticipate that

the dΣN=dθ pattern indicates the presence of a free hadron
phase where the energy is uniformly distributed. In this
phase, the energy deposited within the region bounded by
the polar angle being less than θ is proportional to θ2. As
the derivative of NEEC is proportional to the distribution of
energy with respect to the polar angle, we expect

dΣN

dθ

����
NP

∝ θ: ð38Þ

The analogous pattern has also been observed in the final-
state jet through the utilization of CMS open data [106].

IV. NUMERICAL RESULTS

In this section, we explore the EEC distributions with two
distinct collision energies: the interaction of 18GeVelectrons
with 275GeVprotons at theEICwith

ffiffiffi
s

p ¼ 140.7 GeV, and
the interaction of 22 GeV electrons with 2 GeV protons at
CEBAF with

ffiffiffi
s

p ¼ 13.3 GeV.
For the EIC kinematics, we set the parameters as N ¼ 4

and Q ¼ 20 GeV, while for the CEBAF kinematics, we
consider N ¼ 4 and Q ¼ 3 GeV. For all the numerical
results, we use the PDF4LHC15_nnlo_mc PDF sets [107]
with the associated strong coupling constant provided by
LHAPDF6 [108].
First, we validate the factorization formalism by com-

paring the leading singular ln θ contributions predicted by
the factorization theorem with the complete αs and α2s
calculations of the distribution dΣN=dy, where y≡ ln tan θ

2
.

As θ is small or large, the ln θ terms dominate the
distribution, and the singular contribution should coincide
with the full fixed-order calculation. The comparison is
shown in Fig. 3 utilizing EIC kinematics where the
renormalization and factorization scales are set to be Q.
The full fixed-order calculations are obtained numerically
using nlojetþþ [109]. Remarkably, in both the small y
and large y regions, we observe excellent agreement
between the leading singular terms predicted by the
factorization formula and the full fixed-order calculations.
This comparison validates the factorization theorem. In the
forward region when y > −1 and the backward region
when y < 2.5, Fig. 3 starts to show differences between the
leading singular and full QCD calculations, corresponding
to transition regions between resummation and fixed-order
calculations.
In the TMD and the TFR regions, the logarithmic

enhancements can spoil the convergence of the perturbative
expansion. Therefore, the resummation of these logarithms

to all orders in the strong coupling constant is necessary for
reliable predictions to compare with experimental data.
In the TMD region, the resummed cross section can be

evaluated by evolving the hard, soft, beam, and jet
functions in Eq. (9) from their canonical scales to common
rapidity and renormalization scales, ν and μ, respectively.
Here, we choose the canonical resummation scales as

μ¼ μH ¼ ν¼ νJ ¼ νB¼Q; μJ ¼ μS¼ μB¼
2e−γE

b�
: ð39Þ

To avoid the Landau pole at large b, we employ a local b�
prescription [99,110] freezing out the virtuality scales.
Specifically, we have

b� ¼ bTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2T=b

2
max

p ;
2e−γE

bmax
¼ 2 GeV: ð40Þ

We choose 2e−γE=bmax ¼ 2 GeV. This ensures that the
scale used in the PDFs is larger than 1 GeV when we vary
the scale by a factor of 2.
Figure 4 presents the resummed distributions in the

TMD region using EIC kinematics. The upper panel shows
the result without nonperturbative models; the scale uncer-
tainties are evaluated by varying scales up and down in
Eq. (39) by a factor of 2 independently. We observe large
corrections from NLL to N2LL and a good perturbative
convergence from N2LL to N3LL. Furthermore, we find
that the scale uncertainties are significantly reduced for the
N3LL compared to the lower accuracy distributions. For the
nonperturbative models discussed in Sec. III A, the result is
present in the lower panel of Fig. 4. The nonperturbative
corrections shift the peak of the cross sections to smaller y.
The nonperturbative effects presented here are consistent
with those reported in [43].
In the TFR, we consistently choose μh ¼ μ, allowing us

to evaluate the resummed cross section by evolving the

FIG. 3. Comparison between the ln θ leading singular contri-
butions with the full fixed-order calculations in both the forward
and backward regions.
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NEEC in Eq. (29) from μ0 to μ. In this case, we select the
canonical resummation scales as follows:

μ ¼ Q; μ0 ¼
Qθ

2
: ð41Þ

The scale uncertainties are evaluated by varying scales in
Eq. (41) up and down by a factor of 2 independently.
The upper panel of Fig. 5 illustrates the resummed

distributions in the TFR region for EIC kinematics. When
y < −3, μ0 is comparable with ΛQCD. The perturbative
calculation is no longer valid in this regime. The non-
smoothness observed in the curve is a consequence of the
impact of quark masses. As μ0 crosses the threshold of a
quark mass, it necessitates a modification in the number of
quark flavors, which is discontinuous in the rhs of Eq. (34).
The lower panel of Fig. 5 demonstrates the resummed

distributions in the TFR region in CEBAF kinematics.
Similarly, when y < −1, μ0 is comparable with ΛQCD.
Comparing these results to the fixed-order calculations
depicted in Fig. 3, we can see that the resummation effects
play a significant role in the small angle region. This
resummation enhances the distribution several times com-
pared to the α2s calculation for y around −3. Furthermore, it
is worth emphasizing that the distribution at small angles
exhibits no suppression since there is no conventional

Sudakov factor in the NEEC. This unique property of the
NEEC stands in marked contrast to the behavior observed
in TMD PDFs, which experience exponential suppression
in the small transverse momentum region induced by the
Sudakov factor.
The final distributions without nonperturbative effects

for EIC and CEBAF are presented in the upper and lower
panels of Fig. 6, respectively. In the TMD region, we match
the N2LL (N3LL) resummed distributions to the QCD LO
(NLO) ones. In the TFR region, we match the NLL
resummed distributions to the QCD LO (NLO) ones.
The uncertainties in the full spectrum are evaluated by
varying all scales up and down independently by a factor
of 2. We compare our calculations to PYTHIA [111,112]
simulations without hadronization modeling.
In EIC kinematics, the distribution is normalized to the

central curve over the range −3 < y < 3.5. The distribu-
tions are described by the fixed-order results for
−1 < y < 2.5, and by the sum of resummed and non-
singular power corrections for y > 3 and −3 < y < −2. In
the region −2 < y < −1.3 and 2.3 < y < 3, we apply our
matching scheme where the cross section smoothly tran-
sitions from the resummed to the fixed-order cross section.
The matching scheme is defined as

FIG. 4. Resummed y distributions for EEC in the TMD region. FIG. 5. Resummed y distributions for EEC within the TFR,
depicted in the upper and lower panels for EIC kinematics and
CEBAF kinematics, respectively.
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dΣN

dQ2dy
¼ ð1 − f2Þ dΣN

dQ2dy

����
QCD

þ f2
�

dΣN

dQ2dy

����
nonsing

þ dΣN

dQ2dy

����
res

�
ð42Þ

where

f ¼
8<
:

1
2

h
cos

�
cos θ−a
a−b π

	
þ 1

i
ð2.3 < y < 3Þ

1
2

h
cos

�
cos θ−c
c−d π

	
þ 1

i
ð−2 < y < −1.3Þ:

ð43Þ

Here, a, b, c, and d are equal to cos θwith θ associated with
y ¼ 3, y ¼ 2.3, y ¼ −2, and y ¼ −1.3, respectively. A
similar matching procedure and a detailed discussion about
matching can be found in [113].
In CEBAF kinematics, the distribution is normalized

to the central curve over the range −1 < y < 1. For
−0.2 < y < 1, the distributions are described by the
fixed-order results, and for y < −0.3, by the sum of
TFR resummed and nonsingular power corrections. In

the region −0.2 < y < −0.1, we impose the same matching
scheme as Eq. (42), but with

f ¼ 1

2

�
cos

�
cos θ − a
a − b

π

�
þ 1

�
; ð44Þ

where a and b are equal to cos θ, with θ associated with
y ¼ −0.2 and y ¼ −0.1, respectively.
In the perturbative region, the matching result agrees

reasonably well with the partonic PYTHIA simulation. The
NLLþ αs þ N2LL agrees better with PYTHIA. There is a
difference between NLLþ α2s þ N3LL and NLLþ αs þ
N2LL mainly due to the Oðα2sÞ corrections.
In the extreme forward region, when y < −5.5 in EIC

kinematics and y < −3.4 in CEBAF kinematics, we fit the
un-normalized PYTHIA distribution with the nonperturba-
tive model aNPθ to observe the free hadron gas phase.
Even without hadronization, we observe a nearly perfect
dΣN=dy ∝ θ2 scaling, as expected above in Eq. (38),
corresponding to uniformly distributed partons.
Furthermore, in Fig. 6, we observe a distinct phase

transition. The transition from the TFR resummation
region to the free hadron gas region, connected by a

FIG. 6. Comparison of EEC between the SCET predictions
without nonperturbative effects, the free hadron gas model, and
PYTHIA simulations running without hadronization modeling.
The upper panel displays the results for EIC kinematics, while the
lower panel showcases the results for CEBAF kinematics.

FIG. 7. Comparison of EEC between PYTHIA simulations with
and without hadronization. The upper panel displays the results
for EIC kinematics, while the lower panel showcases the results
for CEBAF kinematics.
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nonperturbative transition region, occurs at approximately
θ ∼ 0.1 rad in EIC kinematics and θ ∼ 0.7 rad in CEBAF
kinematics. When comparing the EIC kinematics distribu-
tion to the CEBAF kinematics distribution, we observe
that the free hadron gas region and the transition region
shift to larger angles in the CEBAF kinematics distribution.
This shift is expected since the transition occurs as
θ ∼OðΛQCD=QÞ. Consequently, CLAS holds the potential
for probing NEEC in the nonperturbative region, which
essentially enables direct imaging of the confining tran-
sition to free hadrons.
In Fig. 7, we compare the simulated PYTHIA result with

and without hadronization for both EIC and CEBAF
kinematics. We observe that for y < −5.5 in EIC kinemat-
ics and y < −3.4 in CEBAF kinematics, the dΣN=dy ∝ θ2

scaling persists, indicating the presence of uniformly
distributed hadrons. By comparing the distributions in
Fig. 8, we can see that the inclusion of hadronization
effects, as implemented in PYTHIA, enhances the distribu-
tion in the central region while the distribution in the free
hadron gas, transition, and TMD region is suppressed.
The final distributions with nonperturbative effects for

EIC are presented in Fig. 8. We use the same matching
strategy as discussed above. We compare our calculations
with PYTHIA simulations that include hadronization. We
include the nonperturbative model in the TMD resummed
results while the TFR resummed results are unchanged. The
comparison in the TMD resummed region can be used to
validate the universality of the nonperturbative model and
parameters introduced in Eq. (18) extracted from SIDIS.

V. CONCLUSION

In this work, we explore the Bjorken x weighted EEC in
DIS from the TFR to CFR. In both regions, a factorization
theorem can be derived with SCET, based on which the
logarithms can be resummed to all orders in αs. The

singular distributions can be derived from the factorized
formula and compared against the full fixed-order QCD
calculations up to NLO. This comparison serves two main
purposes. First, the numerical agreement observed in the
TMD region and TFR validates our factorization formal-
ism. Second, the point at which the distributions deviate
indicates the region where power corrections become
significant. Additionally, we present the resummation
results up to NLL in the TFR and N3LL in the TMD region.
In the extremely small angle limit, the free hadron gas

model is introduced to investigate the nonperturbative
distribution. We compare our predictions to partonic
PYTHIA simulations. Between the hadron gas phase region
and the perturbative resummation region, a transition phase
is observed. We note that the transition region from the
perturbative parton phase to the nonperturbative region for
CEBAF begins at θ ∼ 0.7 rad, indicating CLAS may have a
good opportunity to probe the nonperturbative NEEC.
The nonperturbative and hadronization effects in the

TMD region are investigated by considering nonperturba-
tive form factors extracted from the semi-inclusive hadron
production in DIS. Incorporating these nonperturbative
models, we also present the comparison of our predictions
to PYTHIA simulations.
The recent progress in understanding EEC in DIS holds

great promise, and we firmly believe that it will play a
pivotal role in advancing our comprehension of nucleon
structure in the years to come.
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APPENDIX A: USEFUL IDENTITIES

When we calculate the singular ln θ contributions pre-
dicted by the factorization theorem in Eq. (9), all b
dependence in the soft, jet, and beam functions will show
up in the form of ln b. Therefore, b can be integrated
analytically using the following formula. The Fourier
transformation between bT and qT can be derived from

Z
d2qT

2π
exp½iqT · bT �

1

μ2

�
μ2

q2T

�
1þα

¼ −
e−2αγE

2α

Γð1 − αÞ
Γð1þ αÞ

�
b2Tμ

2

4e−2γE

�
α

: ðA1Þ

The explicit transformations of the logarithmic terms from
the bT space to the qT space are

FIG. 8. Comparison of EEC between the SCET predictions
with hadronic PYTHIA simulations for EIC kinematics.
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1 → ð2πÞδð2ÞðqTÞ;

ln
b2μ2

4e−2γE
→ −

2

q2T
;

ln2
b2μ2

4e−2γE
→ −4

1

q2T
ln
μ2

q2T
;

ln3
b2μ2

4e−2γE
→ −6

1

q2T
ln2

�
μ2

q2T

�
− 4ζð3Þð2πÞδð2ÞðqTÞ;

ln4
b2μ2

4e−2γE
→ −8

1

q2T
ln3

�
μ2

q2T

�
þ 32ζð3Þ 1

q2T
: ðA2Þ

APPENDIX B: RENORMALIZATION GROUP
EVOLUTION IN TMD FACTORIZATION

The RG evolution equation for the hard, beam, jet, and
soft functions is given by

μ
d
dμ

HðQ2; μÞ ¼ γH HðQ2; μÞ;

μ
d
dμ

JEECðz; b; μ; νÞ ¼ γJðμ; νÞJEECðz; b; μ; νÞ;

ν
d
dν

JEECðz; b; μ; νÞ ¼ −
1

2
γνðb; μÞJEECðz; b; μ; νÞ;

μ
d
dμ

Bqðx; b; μ; νÞ ¼ γBðμ; νÞBqðx; b; μ; νÞ;

ν
d
dν

Bqðx; b; μ; νÞ ¼ −
1

2
γνðb; μÞBqðx; b; μ; νÞ;

μ
d
dμ

SEECðb; μ; νÞ ¼ γSðμ; νÞSEECðb; μ; νÞ;

ν
d
dν

SEECðb; μ; νÞ ¼ γνðb; μÞSEECðb; μ; νÞ; ðB1Þ

where the anomalous dimensions γH are given by

γHðμÞ ¼ 2CFγcusp ln
Q2

μ2
þ 2γq;

γBðμ; νÞ ¼ CFγcusp ln
ν2

Q2
þ 2γqB;

γJðμ; νÞ ¼ CFγcusp ln
ν2

Q2
þ 2γqJ;

γSðμ; νÞ ¼ 2CFγcusp ln
μ2

ν2
− 2γsEEC;

γνðb; μÞ ¼ −4
Z

μ

μ0

dμ0

μ0
CFγcusp þ 2γrEECðμ0Þ: ðB2Þ

The solution to the RG equations for the hard function in
Eqs. (B1) has the form in Eq. (14), where the hard function
evolution factor has the form

UHðQ2; μ; μHÞ ¼ exp½4CFSðμ; μHÞ − 2AHðμ; μHÞ�

×

�
μ2H
Q2

�
2CFAðμ;μHÞ

; ðB3Þ

where the functions S; Acusp, and AH are defined as

Sðμf; μiÞ ¼ −
Z

αsðμfÞ

αsðμiÞ

dα
β½α� γcusp½α�

Z
α

αsðμiÞ

dα0

β½α0� ;

Aðμf; μiÞ ¼ −
Z

αsðμfÞ

αsðμiÞ

dα
β½α� γcusp½α�;

AHðμf; μiÞ ¼ −
Z

αsðμfÞ

αsðμiÞ

dα
β½α� γ

q½α�: ðB4Þ

We define r≡ αsðμfÞ
αsðμiÞ. The perturbative expansion of

Sðμf; μiÞ needed for N3LL resummation is given by

Sðμf; μiÞ ¼
γcusp0

4β20



4π

αsðμiÞ
�
1 −

1

r
− ln r

�
þ
�
γcusp1

γcusp0

−
β1
β0

�
ð1 − rþ ln rÞ þ β1

2β0
ln2r

þ αsðμiÞ
4π

��
β1γ1
β0γ

cusp
0

−
β2
β0

�
ð1 − rþ r ln rÞ þ

�
β21
β20

−
β2
β0

�
ð1 − rÞ ln r −

�
β21
β20

−
β2
β0

−
β1γ

cusp
1

β0γ
cusp
0

þ γcusp2

γcusp0

� ð1 − rÞ2
2

�

þ
�
αsðμiÞ
4π

�
2
��

β1β2
β20

−
β31
2β30

−
β3
2β0

þ
�
γcusp2

γcusp0

−
β2
β0

þ β21
β20

−
β1γ

cusp
1

β0γ
cusp
0

�
β1r2

2β0

�
ln r

þ
�
γcusp3

γcusp0

−
β3
β0

þ 2β1β2
β20

þ β21
β20

�
γcusp1

γcusp0

−
β1
β0

�
−
β2γ

cusp
1

β0γ
cusp
0

−
β1γ

cusp
2

β0γ
cusp
0

� ð1 − rÞ2
3

þ
�
3β3
4β0

−
γcusp3

2γcusp0

þ β31
β30

−
3β21γ

cusp
1

4β20γ
cusp
0

þ β2γ
cusp
1

β0γ
cusp
0

þ β1γ
cusp
2

4β0γ
cusp
0

−
7β1β2
4β20

�
ð1 − rÞ2

þ
�
β1β2
β20

−
β3
β0

−
β21γ

cusp
1

β20γ
cusp
0

þ β1γ
cusp
2

β0γ
cusp
0

�
1 − r
2

��
: ðB5Þ

The corresponding perturbative expansion for Acuspðμf; μiÞ is given by
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Acuspðμf; μiÞ ¼
γcusp0

2β0



log rþ αsðμiÞ

4π
ð1 − rÞ

�
γcusp1

γcusp0

−
β1
β0

�
þ
�
αsðμiÞ
4π

�
2
�
γcusp2

γcusp0

−
β2
β0

−
β1
β0

�
γcusp1

γcusp0

−
β1
β0

��
r2 − 1

2

þ 1

3

�
αsðμiÞ
4π

�
3
�
γcusp3

γcusp0

−
β3
β0

þ γcusp1

γcusp0

�
β21
β20

−
β2
β0

�
−
β1
β0

�
β21
β20

−
2β2
β0

þ γcusp2

γcusp0

��
ðr3 − 1Þ3

�
: ðB6Þ

Finally, the corresponding expansion for AHðμf; μiÞ is given by

AHðμf; μiÞ ¼
γq0
2β0



log rþ αsðμiÞ

4π

�
γq1
γq0

−
β1
β0

�
þ
�
αsðμiÞ
4π

�
2
�
γq2
γq0

−
β2
β0

−
β1
β0

�
γq1
γq0

−
β1
β0

��
r2 − 1

2

�
: ðB7Þ

Solving the other RG equations in Eq. (B1) gives the beam, jet, and soft functions evolved to any arbitrary scale, μ, from
their values at their natural scales μB, μJ, and μS, respectively, where large logarithms in their perturbative expansions are
minimized. They have the general form given in Eq. (13), where UB, UJ, and US denote the RG evolution factors, which
have the form

UBðμ; μB; ν; νBÞ ¼ exp½−2ABðμ; μBÞ�
�
Q2

ν2B

�
CFAðμ;μJÞ�ν2

ν2B

�−CFAðμ;μ0Þ−γrEECðαðμ0ÞÞ=2
;

UJðμ; μJ; ν; νJÞ ¼ exp½−2AJðμ; μJÞ�
�
Q2

ν2J

�
CFAðμ;μJÞ�ν2

ν2J

�−CFAðμ;μ0Þ−γrEECðαðμ0ÞÞ=2
;

USðμ; μS; ν; νSÞ ¼ exp ½−4CFSðμ; μSÞ þ 2ASðμ; μSÞ�
�
μ2S
ν2S

�−2CFAðμ;μSÞ�ν2
ν2S

�
2CFAðμ;μ0ÞþγrEECðαðμ0ÞÞ

; ðB8Þ

where the function S is defined in Eq. (B4) and its perturbative expansion needed for N3LL resummation is given in
Eq. (B5). The functions AB, AJ, and AS are defined as

ABðμf; μiÞ ¼ −
Z

αsðμfÞ

αsðμiÞ

dα
β½α� γ

q
B½α�;

AJðμf; μiÞ ¼ −
Z

αsðμfÞ

αsðμiÞ

dα
β½α� γ

q
J ½α�;

ASðμ; μSÞ ¼ −
Z

αsðμfÞ

αsðμiÞ

dα
β½α� γ

s
EEC½α�: ðB9Þ

The corresponding expressions for the perturbative expansions of AB, AJ, and AS in Eq. (B9) needed for N3LL resummation
can be obtained by replacing γq0;1;2 with γqB;0;1;2; γ

q
J;0;1;2, and γsEEC;0;1;2, respectively, in Eq. (B7).
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