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We develop a quantum kinetic theory for photons in the presence of an axion background and in the
collisioness limit. In deriving the classical regime of our quantum kinetic equations, we observe that
they capture well-known features of axion electrodynamics. By projecting the Wigner function onto a
polarization basis, relating the Wigner matrix function with the Stokes parameters, we establish the
dispersion relations and transport equations for each polarization space component. Additionally, we
investigate how the axion background affects the dispersion relations of photon collective modes within an
electron-positron plasma at equilibrium temperature T. While the plasmon remains unaffected, we find that
the axion background breaks the degeneracy of transverse collective modes at order egaγTð∂aÞ, where e
represents the electron charge, gaγ denotes the photon-axion coupling, and ∂a represents the scale
associated with variations in the axion field.
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I. INTRODUCTION

The exploration of axion electrodynamics holds interest
in various domains of physics. Originally conceived within
the realm of high-energy physics to address the so called
CP problem of QCD [1–4], the term axion is nowadays
more generically used to refer to a broader class of light
pseudoscalar particles, regardless or not they are related
to QCD. Axions naturally manifest in extensions of the
Standard Model of particle physics, thus deserving serious
consideration as potential candidates for dark matter. There
are several intense experimental programs to search for
these elusive particles, both in the laboratory an in
astrophysical scenarios (see, for example, [5,6], and refer-
ences therein). Concurrently, analogous axion-photon cou-
plings manifest in certain condensed matter systems [7],
giving account of topological magnetoelectric phenomena.
In this article we will consider photon properties in a

plasma when there is also an axion background. A plasma
is typically characterized by either a temperature T and/or

chemical potential μ. We will consider that the axion
wavelength is much greater than any of these scales T,
μ which describe the medium. The interactions between
axions and photons are described by the Lagrangian,

Lint ¼
1

4
gaγaFμνF̃μν: ð1Þ

Here F̃μν ¼ 1
2
ϵμναβFαβ is the dual of the electromagnetic

tensor Fμν ¼ ∂
μAν − ∂

νAμ, being ϵμνρσ the Levi-Civita
tensor, the fields AμðxÞ and aðxÞ are associated to photons
and axions respectively, and gaγ is the axion-photon
coupling [6]. This coupling suggests that an axion back-
ground acts as an effective chiral medium. There has been a
renewed interest in the last decade on chiral media, with the
discovery of a variety of new quantum chiral transport
phenomena [8], such as the chiral magnetic effect. A clear
parallelism among axion electrodynamics and chiral media
has been stressed [9].
Quantum field theory methods have been developed

for the study of relativistic plasmas [10]. It is by now well-
understood that the particle fields of different energy scales
have to be treated differently (see, for example [11]).
Effective field theories have been designed for that purpose.
For momenta scales of the order of the temperature T or
higher, the photons are treated as quasiparticles, which
are more efficiently described with transport equations. For
momenta much lower than the temperature T the photon
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fields are then described as classical background fields,
whose properties are then modified by the medium.
Collective modes then emerge for those scales, with the
appearance of the so called plasmon mode [12,13], which is
absent in vacuum.
The purpose of this article is to study how an axion

background modifies both the photon transport equation
and also the collective modes of a thermal plasma.
We will assume that the time and spatial scales of
variation of the axion are much less than the photon
momentum. While our study would be valid for astro-
physical and cosmological plasmas, it can be also of used
for other condensed matter systems. We will use well-
established quantum field theory methods to study these
two effects. Similar photon transport equations have been
derived [14,15]. We will comment later on differences
with Ref. [14], while in Ref. [15] the axions are
considered as quasiparticles and not as a background.
Therefore, there the axions interact with the photons
through the collision term, allowing for the conversion of
axions into photons in the background of a magnetic
field, as those commonly found in astrophysical plasmas.
In this work, we ignore these processes, while they could
be easily incorporated by including a proper collision
term to our transport equations.
The paper is structured as follows. In Sec. II we derive

quantum kinetic equations for photons in the presence of an
axion background using the Keldysh-Schiwgner formalism
and in Sec. III we address the effect of the axion back-
ground onto the collective modes of photons. Finally in
Sec. IV we discuss our findings and make contact with
other approaches found in the literature. We also give
some details on the derivation of the kinetic equations in
Appendix A. Appendix B is devoted to provide the trans-
port equations in a linear polarization basis.
Let us establish our notations and conventions. We use

the signature diagðgμνÞ ¼ ð1;−1;−1;−1Þ, and the normali-
zation ϵ0123 ¼ −ϵ0123 ¼ 1 for the Levi-Civita tensor. Rising
or lowering spatial indices produces a minus sign e.g. if
Aμ ¼ ðA0; AiÞ is a vector in Minkowski space, we have
Ai ¼ −Ai. Boldface letters will be used to denote three-
dimensional vectors Ai ¼ A. The four gradient is
∂μ ¼ ð∂0; ∂iÞ, where ∂i ¼ ∇. The Minkowski product
between Aμ and Bμ is defined as A · B ¼ gμνAμBμ ¼
A0B0 − A · B. Natural units ℏ ¼ c ¼ kB ¼ 1 are used
throughout.

II. QUANTUM KINETIC EQUATIONS FOR
PHOTONS IN AN AXION BACKGROUND

The Keldysh-Schwinger formulation of quantum field
theory has become a well-established tool to study rela-
tivistic plasmas, whether they are at or far to thermal
equilibrium [16]. In the Keldysh-Schwigner formalism,
nonequilibrium Green functions are defined as 2 × 2matrix

in the complex, closed time path contour, see e.g. Ref. [17]
for a recent review. In the case of photons one defines,

Gμνðx; yÞ ¼
�
Gc;μνðx; yÞ G<;μνðx; yÞ
G>;μνðx; yÞ Ga;μνðx; yÞ

�

¼
 
hT AμðxÞAνðyÞi hAνðyÞAμðxÞi
hAμðxÞAνðyÞi hT̃ AμðxÞAνðyÞi

!
; ð2Þ

where T and T̃ denote time and anti-time ordering along
the complex path, respectively, and h…i stands for average
over an ensemble of states. In order to derive kinetic
equations it is sufficient to study the dynamics of the lesser
(or greater) component of the Green function G<;μνðx; yÞ
(or G>;μνðx; yÞ), as this is related to the photon phase space
density after a Wigner transformation.
A relevant problem that emerges in the present formu-

lation is that the components of the Green function in
Eq. (2) are not gauge invariant quantities, and they contain
nontransverse degrees of freedom. There are various ways
to circumvent this inconvenience, the usual prescription is
to impose gauge-fixing conditions, although there are other
approaches, such as defining a gauge-invariant two-point
Green function [18]. In a forthcoming publication, we will
explore alternative possibilities by employing effective
field theory techniques. In this work, we adopt the former
and impose the Lorentz gauge ∂μAμ ¼ 0, which leads to the
following gauge conditions for the lesser component of the
Green function:

∂x;μG<;μνðx; yÞ ¼ 0; ð3aÞ

∂y;νG<;μνðx; yÞ ¼ 0: ð3bÞ

The equations of motion obeyed by each component of the
Green function can be deduced from the Kadanoff-Baym
equations [19]. In the collisionless limit and allowing
photons to interact with the axion background through
the coupling in Eq. (1), the Kadanoff-Baym equations take
the simple form,

ðgμλ□ − gaγϵμλαβð∂αaÞ∂βÞxG<;μνðx; yÞ ¼ 0; ð4aÞ

ðgμν□ − gaγϵμναβð∂αaÞ∂βÞyG<;λμðx; yÞ ¼ 0: ð4bÞ

Where □ ¼ ∂
μ
∂μ and the suffix ð…Þx indicates that all

operators act on the coordinate xμ. The second equation
above, in which the operators act on yμ, is easily obtained
by considering the equation of motion obeyed by the
greater two-point Green function, renaming xμ ↔ yμ and
using the property,

G>;νμðy; xÞ ¼ G<;μνðx; yÞ: ð5Þ
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The phase space density, also called Wigner function, is
defined as the Wigner transform of the Green function,

G<;μνðX; qÞ ¼
Z

d4seiq·sG<;μνðX þ s=2; X − s=2Þ; ð6Þ

where Xμ ¼ ðxμ þ yμÞ=2 and sμ ¼ xμ − yμ are the center
and relative coordinates, respectively. Let us recall, as said
in the introduction, that we assume that j∂μaj=jaj ≪ qμ.
Adding and subtracting the Wigner transformed equations
of motion of Eqs. (4a) and (4b) one finds the collisionless
equations,
�
q2 −

∂
2

4

�
Gμν þ gaγ

2
ðϵμραβAαβGρ

ν þ ϵνραβA�
αβG

μ
ρÞ ¼ 0;

ð7aÞ

ðiq · ∂ÞGμν þ gaγ
2

ðϵμραβAαβGρ
ν − ϵνραβA�

αβG
μ
ρÞ ¼ 0; ð7bÞ

which have to be complemented with the Wigner-
transformed gauge conditions of Eqs. (3a) and (3b)

�
1

2
∂μ − iqμ

�
Gμν ¼

�
1

2
∂μ þ iqμ

�
Gνμ ¼ 0; ð8Þ

and the additional condition, necessary to eliminate the
residual ambiguity of the Lorentz gauge,

uμGμν ¼ uμGνμ ¼ 0; ð9Þ
where uμ is a time-like vector representing the velocity of
the reference frame, satisfying u2 ¼ 1. When writing the
above equations, we used the notation ∂

μ ¼ ∂=∂Xμ and
dropped the lesser symbol and the arguments of the Wigner
function to enlighten the notation, Gμν ¼ G<;μνðX; qÞ.
Additionally, we establish

AαβGρ
ν≡X∞

n¼0

ð−iΔÞn
n!

∂αaðXÞ
�
1

2
∂β− iqβ

�
Gρ

νðX;qÞ; ð10Þ

being Δ ¼ 1
2

∂

∂q ·
∂

∂X. For details regarding the derivation of
the kinetic equations, we refer to Appendix A. In the
absence of an axion background, we reproduce the photon
quantum kinetic equations found in Refs. [20–22]. The
Keldysh-Schwinger formalism could also be used to
reproduce the collision term in the photon transport
equation. We will not add a collision term in this reference,
but refer to [15] for that purpose.

A. Classical transport equation in the polarization basis

It is convenient to obtain the classical limit of the photon
transport equations, which are easier to handle and are
enough to study the physics at large scales. For that
purpose, one should carry out a gradient expansion,
assuming that variations of the Wigner function on the

scale associated to the center coordinate are much less than
those on the relative coordinate i.e. ∂μX ≪ ∂

μ
s . That this

corresponds to a classical limit can be seen by going to
momentum space in the relative coordinate and restoring ℏ,
as one then assumes ℏ∂μX ≪ qμ when performing the
gradient expansion. In a thermal plasma, as most photons
have momenta of the order of the temperature T, this
simply implies to look for variations at scales larger than
the inverse of the temperature. Thus, we perform a gradient
expansion of Eqs. (7a) and (7b) and the Wigner function,

GμνðX; qÞ ¼ Gμν
ð0ÞðX; qÞ þ Gμν

ð1ÞðX; qÞ þOð∂2XÞ; ð11Þ

whereGμν
ð0ÞðX; qÞ should be understood as the classical limit

of the Wigner function, while higher-order terms in the
gradient expansion correspond to the quantum corrections.
As we will only consider the classical limit in this work,
we drop the subindex (0), and understand that we only
keep the Gμν

ð0Þ in the expansion. In the classical limit the

kinetic equations read,

q2Gμν −
igaγ
2

ð∂αaÞqβðϵμραβGρ
ν − ϵνραβGμ

ρÞ ¼ 0; ð12aÞ

ðiq ·∂ÞGμν−
igaγ
2

ð∂αaÞqβðϵμραβGρ
νþϵνραβGμ

ρÞ¼0; ð12bÞ

and the classical Wigner function is constrained by

qμGμν ¼ qμGνμ ¼ uμGμν ¼ uμGνμ: ð13Þ
After imposing the condition that the Wigner function is
orthogonal to uμ, the resulting framework is essentially
identical to adopting the Coulomb gauge [20]. Yet another
way to eliminate the residual gauge ambiguity of the
Lorentz gauge is to project the Wigner function into the
physical space, using transverse projectors [23].
It is convenient to write the transport equation in a

polarization basis. If we introduce a two dimensional basis
of polarization vectors (e.g. ϵμa with a ¼ f1; 2g) satisfying,
ϵ�a · ϵb ¼ δab, and ϵa · u ¼ ϵa · q ¼ 0, then the Wigner
function can be expressed as

GμνðX; qÞ ¼
X

a;b¼1;2

ϵ�μa ϵνbG
abðX; qÞ: ð14Þ

Projecting Eqs. (12a) and (12b) onto the polarization
basis we easily obtain the kinetic equations obeyed by
the polarization space components of the Wigner function,

q2Gab −
igaγ
2

ϵμναβð∂αaÞqβðϵ�μc ϵνaGcb − ϵμcϵ�νb GacÞ ¼ 0;

ð15aÞ

ðiq · ∂ÞGab −
igaγ
2

ϵμναβð∂αaÞqβðϵ�μc ϵνaGcb þ ϵμcϵ�νb GacÞ ¼ 0;

ð15bÞ

PHOTON QUANTUM KINETIC EQUATIONS AND COLLECTIVE … PHYS. REV. D 109, 096003 (2024)

096003-3



where summation over repeated indices should be
understood. It is simpler to solve the transport equations
in a circular polarization basis, since the polarization
space components of the Wigner function then decouple.
Explicitly, we introduce the polarization basis vectors
ϵμa ¼ fϵμþ; ϵμ−g, characterized by the properties,

ϵ�� · ϵ� ¼ 0; ϵ�� · ϵ∓ ¼ 1; ðϵμ�Þ� ¼ ϵμ∓: ð16Þ

Let us elaborate on the physical interpretation of the
Wigner function components in the circular polarization
basis. Since Gμν is invariant under basis rotations, i.e.

ϵμ
0

� → e�iθϵμ�, the polarization space components of the
Wigner function transform as [23]

G��0
→ G��; G�∓0

→ e�2iθG�∓; ð17Þ

which reveals that G�� and G�∓ have null (s ¼ 0) and
integer ðs ¼ �2Þ spin, respectively. Moreover, the polari-
zation space components of the Wigner function can be
directly related to the Stokes parameters [24], their relation
in the circular basis is

Gab¼
�
Gþþ Gþ−

G−þ G−−

�
¼
�

GI−GV GQ− iGU

GQþ iGU GIþGV

�
: ð18Þ

Hence, the diagonal components of the Wigner function
G�� relate to the intensity GI and degree of circular
polarization GV of the photon ensemble, while the off-
diagonal components G�∓, decomposed into the Stokes
parameters GQ and GU, give information on the polariza-
tion phases and are related to the so called E and B
polarization modes [23].
The kinetic equations for each polarization space com-

ponent of the Wigner function in the circular basis can be
simplified after using the identity [25],

iðϵ�μ− ϵν− − ϵ�μþ ϵνþÞ ¼
1

κ
ϵμναβuβqα; ð19Þ

where we defined κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu · qÞ2 − q2

p
. Hence, for the

diagonal components Gþþ and G−−, corresponding to
right- and left-handed circularly polarized photons respec-
tively, we find

�
q2�gaγ

κ
½ðq ·∂aÞðu ·qÞ−q2ðu ·∂aÞ�

�
G��¼0; ð20aÞ

iq · ∂G�� ¼ 0: ð20bÞ

As for the off-diagonal components Gþ− and G−þ, reflect-
ing the correlation of different polarization in the photon
ensemble, we get

q2G�∓ ¼ 0; ð21aÞ
�
iq ·∂�gaγ

κ
½ðq ·∂aÞðu ·qÞ−q2ðu ·∂aÞ�

�
G�∓¼0: ð21bÞ

The form of Eqs. (20a) and (21a) suggest that the general
structure of the Wigner function is

GabðX; qÞ ¼ 4πδðQ2
abÞsgnðu · qÞfabðX; qÞ; ð22Þ

where a; b ¼ þ;− and sgnðxÞ is the sign function, the
quantities Q2

ab govern the dispersion relations and
fabðX; qÞ are the off shell distribution functions for each
polarization space component of the Wigner function. The
transport equations obeyed by the on-shell distribution
functions are derived finding the dispersion relations and
imposing the resulting on shell conditions. Let us show
how this is realized in the rest frame of the medium
uμ ¼ ð1; 0Þ.
In this frame, the dispersion relations are obtained as
solutions to the equations,

Q2
�� ¼ ω2 − jqj2 � gaγ½jqj∂0aþ ωðq̂ · ∇aÞ� ¼ 0; ð23aÞ

Q2
�∓ ¼ ω2 − jqj2 ¼ 0; ð23bÞ

and the transport equations read,

ðiω∂0 þ iq ·∇ÞG�� ¼ 0; ð24aÞ

ðiω∂0þ iq ·∇�gaγ½jqj∂0aþωðq̂ ·∇aÞ�ÞG�∓¼0; ð24bÞ

where we used the notation qμ ¼ ðω; qÞ for the photon
momentum and defined q̂ ¼ q=jqj. Then, we see that the
presence of the axion induces a different dispersion
relation for the diagonal components of the Wigner
function Gþþ and G−−, while both off-diagonal compo-
nents Gþ− and G−þ obey a free dispersion relation,
unaffected by the axion. Explicitly, solving Eqs. (23a)
and (23b) we find the following dispersion relations:

ω��ðqÞ ≈ jqj ∓ 1

2
gaγð∂0aþ q̂ ·∇aÞ; ð25aÞ

ω�∓ðqÞ ¼ jqj: ð25bÞ

The first equation above coincides with the result first
found by Harari and Sikivie [26], note that we approxi-
mated ω��ðqÞ at linear order in gaγ . There are also
negative energy solutions,

ω̃��ðqÞ ≈ −jqj � 1

2
gaγð∂0a − q̂ · ∇aÞ; ð26aÞ

ω̃�∓ðqÞ ¼ −jqj: ð26bÞ
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Imposing the on shell conditions dictated by Eqs. (25a)
and (25b) onto Eqs. (24a) and (24b) respectively leads to
the transport equations obeyed by the on-shell distribution
functions, that we formally define as

f��ðX; qÞ ¼ f��ðX; qÞjq0¼ω��ðqÞ; ð27aÞ

f�∓ðX; qÞ ¼ f�∓ðX; qÞjq0¼jqj; ð27bÞ

for the positive energy solutions. Thus, at first order in the
gradient expansion and at linear order in gaγ we find,

ði∂0 þ iq̂ ·∇Þf��ðX; qÞ ¼ 0; ð28aÞ

ði∂0 þ iq̂ ·∇� gaγð∂0aþ q̂ ·∇aÞÞf�∓ðX; qÞ ¼ 0: ð28bÞ

Please note that the effective velocity appearing in
Eq. (28a) is veff ¼ q̂þOð∂XÞ, which consistently ignores
the effects of the axion, as it would enter as quantum
effect, at second order in the gradient expansion. Similar
distribution functions and transport equations can be
defined for the negative energy solutions.
The conditions we assumed in this work are equivalent

to those carried out in the so called eikonal approxi-
mation [27]. It has been argued that in the eikonal
approximation there is no chiral bending of light in the
presence of an axion background in vacuum [27], as the
index of refraction of both left- and right-handed waves
is one in this approximation. Please note that in this
gradient expansion we found that the dispersion law of
the right-/left-handed photons might be also written down
as ðq� gaγ

2
∂aÞ2 ≈ 0, so that the photons travel at the speed

of light, as also found in [27].
The photon current associated to the polarized photons

can be defined as

Jμ;abðXÞ ¼ ðnab; jabÞ ¼
Z

d4q
ð2πÞ4 q

μGabðX; qÞ: ð29Þ

In a plasma at thermal equilibrium, and in the frame at rest
with the medium, the right and left-handed photon dis-
tribution function is the Bose-Einstein distribution function
fBðωÞ ¼ 1=ðeω=T − 1Þ. Then, by direct computation one
finds that the difference between equilibrium densities
of right- and left-handed photons is proportional to the
temporal variation of the axion field,

nþþ − n−− ¼ gaγT2

3
∂0aþOðg2aγÞ: ð30Þ

Similarly, one finds

jþþ − j−− ¼ gaγT2

9
∇aþOðg2aγÞ; ð31Þ

such that the spatial gradient of the axion field induces a
difference in the right- and left-handed photon currents.
On the other hand, from Eq. (28b) we see that the axion
induces a rotation on the E and B modes, if there are such
polarizations modes. If Xμ

0 ¼ ðt0;X0Þ denotes an initial
coordinate, then one finds that at a final state Xμ

f ¼ ðtf;XfÞ,

f�∓ðXf; qÞ ¼ f�∓ðX0; qÞ exp f∓igaγ½aðXfÞ − aðX0Þ�g:
ð32Þ

As these components have spin 2, the angle of rotation of
these modes is gaγðΔaÞ=2. This accounts for the rotation
of the polarization vector first discussed in [28,29].
In particular, if the initial configuration only contains E
polarization modes, the axion background induces the
appearance of B-modes. This is an effect that has also
already been discussed in the literature [30,31], and that our
transport equation properly encodes.

III. COLLECTIVE MODES OF PHOTONS
IN AN AXION BACKGROUND

The momentum of most quasiparticles that constitute an
electromagnetic plasma is of the order of the equilibrium
temperature T and/or the chemical potential μ. Collective
modes then emerge as perturbations whose typical momen-
tum, that we denote byQμ, is much lesser than those scales,
of the order of the Debye mass Qμ ∼mD ≪ T, μ. In the
previous section, we assumed that the variations of the
axion field are much less than the momentum of
the photons j∂μaj=jaj ≪ qμ ∼ T, μ, which allowed us to
treat the axion as a background field and the photons as
quasiparticles. We also emphasize that if the variations
of the axion field are of the same order of the photon
momentum, then axions should also be treated as quasi-
particles. The interaction between the collective modes
and the axion field has also to be addressed differently
according to the hierarchy between their typical scales.
We will assume that the variations of the axion field are
much less than the momentum of the collective modes
j∂μaj=jaj ≪ Qμ ∼mD, so that the axion still can be
effectively described as a background field.
In the absence of an axion background or any CP

violating effect in the medium, there is a transverse
collective mode that is degenerate and a longitudinal
collective mode, the so called plasmon, which is absent
in vacuum. The impact of the axion background on the
dispersion relations of collective modes is reflected in the
dynamics of the dressed propagator Ĝμνðx; yÞ, whose
inverse reads in momentum space,

Ĝ−1
μν ðQÞ ¼ −Q2gμν þ ΠμνðQÞ þ igaγϵμναβð∂αaÞQβ: ð33Þ

Within the frame of reference in which the medium
is in motion with velocity uμ, one can establish three
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independent projectors which are orthogonal to both Qμ

and uμ as [25]

Pμν
T ¼ g̃μν−Pμν

L ; Pμν
L ¼ ũμũν

ũ2
; Pμν

P ¼ i
κ
ϵμναβQαuβ; ð34Þ

where

ũμ ¼ g̃μνuν; g̃μν ¼ gμν −
QμQν

Q2
; ð35Þ

and κ was given below Eq. (19) (now one should replace
qμ → Qμ). The projectors in Eq. (34) are called transverse,
longitudinal, and parity-odd projectors, respectively. They
satisfy the properties

P2
L ¼ 1; P2

T ¼ 2; P2
P ¼ −2;

Pμν
L PT;μν ¼ Pμν

L PP;μν ¼ Pμν
T PP;μν ¼ 0: ð36Þ

As the effect of a parity odd source, either due to the
axion background or the medium, is to split the otherwise
degenerate right- and left-circular polarization modes of
the photon [25], it is convenient to introduce additional
right (þ) and left (−) projectors,

Pμν
h ¼ 1

2
ðPμν

T þ hPμν
P Þ; h ¼ �; ð37Þ

in terms of which, the polarization tensor can be
decomposed as

Πμν ¼
X
h¼�

Pμν
h ðΠT þ hΠPÞ −

Q2

κ2
Pμν
L ΠL: ð38Þ

Note that if ΠP ¼ 0 one recovers the usual decomposition
of the polarization tensor into its transverse and longi-
tudinal component. The inverse of the dressed propagator
in Eq. (33) can be decomposed in terms of the projectors
Pμν
þ ; Pμν

− , and Pμν
L too and then inverted, which gives,

ĜμνðQÞ ¼ −
κ2

Q2

Pμν
L

κ2 þ ΠL
−
X
h¼�

Pμν
h

Q2 − ΠT þ hðΠP þ gaγ
κ ½ðQ · ∂aÞðu ·QÞ −Q2ðu · ∂aÞ�Þ : ð39Þ

The poles in the dressed propagator above determine the
dispersion relations obeyed by the collective modes within
the medium. It is worth mentioning that the longitudinal
collective mode remains unaffected by the interaction of
photons with the axion background. The projectors used to
decompose the dressed propagator can be related to the
polarization vectors,

Pμν
þ ¼−ϵ�μþ ϵνþ; Pμν

− ¼−ϵ�μ− ϵν−; Pμν
L ¼−ϵμLϵνL; ð40Þ

where we introduced the longitudinal polarization vector
as [25]

ϵμL ¼ ũμffiffiffiffiffiffiffiffi
−ũ2

p : ð41Þ

Thus, we may write the dressed propagator in terms of the
polarization basis vectors,

ĜμνðQÞ ¼ κ2

Q2

ϵμLϵ
ν
L

κ2 þ ΠL
þ
X
h¼�

ϵ�μh ϵνh
Q2 − ΠT þ hðΠP þ gaγ

κ ½ðQ · ∂aÞðu ·QÞ −Q2ðu · ∂aÞ�Þ : ð42Þ

Let us now assume a QED plasma at very high temper-
ature, such that one can neglect the electron mass. The
Debye mass is then m2

D ¼ e2T2=3 where e is the electron
charge so that the momentum of the collective modes is
of order Qμ ∼ eT. The values of the longitudinal ΠL and
transverse ΠT polarization tensors components are then
well-known, and given by the so called hard thermal loop
(HTL) expressions [10]. Certainly, the axion background
also affects the polarization tensor through its coupling to
electrons. We ignore those contributions here, but they
would be required for a more complete analysis. Then,
assuming ΠP ¼ 0 and moving to the rest frame of the

plasma uμ ¼ ð1; 0Þ, the dispersion relations associated to
the two transverse collective modes are obtained as
solutions to the equations,

ω2 − jqj2 −m2
Dω

2

2jqj2
�
1 −

�
1 −

jqj2
ω2

�
ω

2jqj ln
�
ωþ jqj
ω − jqj

��

� gaγ½jqj∂0aþ ωðq̂ ·∇aÞ� ¼ 0; ð43Þ

where we used the notation Qμ ¼ ðω; qÞ. The effect of the
axion background then comes in modifications of order
eTgaγ∂a to the dispersion laws. While these have to be
solved numerically, it is possible to find simple analytical
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solutions in some cases. For instance, in the long wave-
length limit mD ≫ jqj we find the solutions,

ω2
� ≈

m2
D

3
∓ gaγmDffiffiffi

3
p ðq̂ · ∇aÞ; ð44Þ

implying that right- and left-handed circularly polarized
collective modes oscillate with different plasma frequen-
cies, and at this expansion order also different from that
of the plasmon mode, which is ωL ¼ mD=

ffiffiffi
3

p ≡ ωpl [10].
On the other hand, in the regime mD ≪ jqj ≪ T one finds

ω2
� ≈ jqj2 þm2

D ∓ gaγð∂0aþ q̂ · ∇aÞ; ð45Þ

so that the axion produces a different shift on the effective
asymptotic masses for right- and left-handed modes. It is
also interesting to study the limit ω ≪ jqj, as in this regime,
and due to Landau damping, there is an additional family of
poles in the transverse modes which are purely imaginary.
Let us assume without loss of generality that IðωÞ > 0
where I denotes the imaginary part, then one finds the
solutions,

ω� ¼ −i
4jqj3
πm2

D

�
1 ∓ gaγ∂0a

jqj
�

¼ −iγ�: ð46Þ

This has the same form of the chiral instabilities that are
found in chiral media characterized by an imbalance in the
population of right- and left-handed fermions [32]. In fact,
it has the same form, after identifying the chiral chemical
potential μ5 with gaγ∂0a=2α [32,33]. The collective modes
evolve in time as exp ð−iω�tÞ ∼ exp ð−γ�tÞ, and they
would become unstable if γ� becomes negative. As the
sign of ∂0a can be either positive or negative, this leads to
the conditions �gaγ∂0a > jqj, however, in this article we
assumed that j∂μaj=jaj ≪ Qμ, as the axion is treated as a
background field. Therefore, taking this assumption into
account and due to the smallness of the axion-photon
coupling constant gaγ , we conclude that γ� remains positive
and there are no unstable modes in this case.

IV. DISCUSSION

We have developed a quantum kinetic theory in the
collisionless limit for photons with the presence of an
axion background, which is summarized in Eqs. (7)–(9).
Performing a gradient expansion of the operators and the
Wigner function (or phase-space distribution), we derived
their classical limit and projected the resulting equations on
a basis of polarization vectors, yielding Eqs. (12) and (13).
A considerable advantage of this last projection is that the
components of the Wigner function in polarization space
can be directly related to the Stokes parameters, thus having
a clear physical interpretation. Then, using a circular
polarization basis of vectors, we derived the transport

equations obeyed by the on shell distribution functions
f�� and f�∓ in the rest frame of the medium, given by
Eqs. (28a) and (28b) respectively, which is the central result
of this article. Those equations properly encode features
of axion electrodynamics, such that right- and left-handed
circular polarized photons obey different dispersion rela-
tions, or the phase rotation of the polarization plane, which
have been explored before in the literature.
A similar transport equation for photons in an axion

background was derived in Ref. [14], there the authors
derived a transport equation for the Stokes parameters in a
time-dependent axion background. Our treatment is more
general and fully covariant, and allows for the incorpo-
ration of different sort of corrections. For the comparison
with Ref. [14] see Appendix B.
There are several ways in which our work could be

extended, for instance, we could include the effects of
collisions of photons with the quasiparticles of the thermal
bath or compute quantum corrections to our classical
transport equations. Another interesting generalization
would be to consider that photons propagate through a
nonflat space time, as considered in Ref. [23], as the
presence of the axion background could provide new
sources of B mode polarization.
We have also addressed the effects of the axion back-

ground on the photon collective oscillations within the
medium through the photon-axion interaction. As
expected, the axion background breaks the degeneracy
of right- and left-handed circular polarized collective
modes, while the plasmon remains unaffected. The con-
tribution of the axion background is of order egaγTð∂aÞ,
where ∂a is the scale associated to the variations of the
axion field. We also considered limiting cases for the
dispersion relations of the transverse collective modes;
in the regime mD ≫ jqj the axion produces a shift on the
oscillation frequencies of right- and left-handed polarized
collective modes, see Eq. (44), while in the regime
mD ≪ jqj ≪ T the axion modifies their effective asymp-
totic masses [cf. Eq. (45)].
It has been argued that specific photon modes in chiral

media may not propagate and experience instabilities [9].
However, under the considerations of this work, we have
shown that if the chiral media consists of an axion
background, both right- and left-handed photons are
propagating modes, since the assumption that the axion
field acts as a background prevents those instabilities to
occur. We stress that the situation would change if the
axions are considered as quanta, interacting with photons
through the Lagrangian of Eq. (1). A similar reasoning
and conclusion applies for the collective modes, that we
have elaborated in Sec. II.
A relevant scenario, that we have not considered in

this work, is when the variations of the axion field are
comparable to the momentum scale of the collective modes,
as in that case interactions between axions and collective
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modes can occur, leading to interesting phenomena and
possible windows for detection [34–37].
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APPENDIX A: KINETIC EQUATIONS

In this section we give some details on how to derive the
kinetic equations Eqs. (7a) and (7b). We start by defining

the Wigner transform of the sum and difference of the
equations of motion given by Eqs. (4a) and (4b) as

ðI�Þλν ¼
Z

d4seiq·sfðgμλ□ − gaγϵμλαβð∂αaÞ∂βÞxGμ
νðx; yÞ

� ðgμν□ − gaγϵμναβð∂αaÞ∂βÞyGλ
μðx; yÞg: ðA1Þ

Then, we move from configuration space variables xμ and
yμ to Wigner space variables Xμ and sμ using the relations

Xμ ¼ xμ þ yμ

2
; sμ ¼ xμ − yμ; ðA2aÞ

∂
μ
x ¼ 1

2
∂
μ
X þ ∂

μ
s ; ∂

μ
y ¼ 1

2
∂
μ
X − ∂

μ
s : ðA2bÞ

Doing so, we can write

ðI�Þλν ¼
Z

d4seiq·s
��

gμλ

�
∂s · ∂X þ ∂

2
s þ

1

4
∂
2
X

�
− gaγϵμλαβAαβðX; sÞ

�
Gμ

νðX þ s=2; X − s=2Þ

�
�
gμν

�
−∂s · ∂X þ ∂

2
s þ

1

4
∂
2
X

�
− gaγϵμναβAαβðX;−sÞ

�
Gμ

λðX þ s=2; X − s=2Þ
�
: ðA3Þ

Where we defined the following operator, acting on the Wigner function,

AαβðX; sÞ ¼
�
1

2
∂
α
X þ ∂

α
s

�
aðX þ s=2Þ

�
1

2
∂
β
X þ ∂

β
s

�
: ðA4Þ

Now we perform a gradient expansion of the axion field,

aðX þ s=2Þ ¼
X∞
n¼0

1

n!

�
s · ∂X
2

�
n
aðXÞ; ðA5Þ

and after the Wigner transformation, we find

ðI�Þλν ¼
��

gμλ

�
−iq · ∂X − q2 þ 1

4
∂
2
X

�
− gaγϵμλαβAαβðX; qÞ

�
Gμ

νðX; qÞ

�
�
gμν

�
iq · ∂X − q2 þ 1

4
∂
2
X

�
− gaγϵμναβA�;αβðX; qÞ

�
Gλ

μðX; qÞ
�
; ðA6Þ

where now AαβðX; qÞ is given by Eq. (10), in which we neglected the arguments for simplicity. So finally, we find for the
dispersion relation,

ðIþÞλν ¼
�
−2q2 þ 1

2
∂
2
X

�
GλνðX; qÞ − gaγϵμλαβAαβðX; qÞGμ

νðX; qÞ − gaγϵμναβA�;αβðX; qÞGλ
μðX; qÞ ¼ 0: ðA7Þ

While for the transport equation,

ðI−Þλν ¼ −2iðq · ∂XÞGλνðX; qÞ − gaγϵμλαβAαβðX; qÞGμ
νðX; qÞ þ gaγϵμναβA�;αβðX; qÞGλ

μðX; qÞ ¼ 0: ðA8Þ
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Now we divide both Eqs. (A7) and (A8) by a factor of −2,
also rising the indices in the Wigner function and the Levi-
Civita tensor using the property ϵμνρσ ¼ −ϵμνρσ we reach,

�
q2 −

1

4
∂
2
X

�
Gλν −

gaγ
2

ðϵμλαβAαβGμ
ν þ ϵμναβA�

αβG
λ
μÞ ¼ 0;

ðiq · ∂XÞGλν −
gaγ
2

ðϵμλαβAαβGμ
ν − ϵμναβA�

αβG
λ
μÞ ¼ 0;

ðA9Þ

which exactly give Eqs. (7a) and (7b) after relabeling
some indices and using the antisymmetry property of the
Levi-Civita tensor.

APPENDIX B: CLASSICAL
TRANSPORT EQUATION IN THE
LINEAR-POLARIZATION BASIS

In this section we give the classical kinetic Eqs. (12a)
and (12b) in a linear polarization basis and then write them
in terms of the Stokes parameters. We start by introducing a
linear-polarization basis vectors ϵμa ¼ fϵμ1; ϵμ2g, satisfying
ϵ�a · ϵb ¼ δab and ðϵμaÞ� ¼ ϵμa. The relation between the
components of the Wigner function and the Stokes param-
eters in a linear polarization basis is [24]

Gab¼
�
G11 G12

G21 G22

�
¼
�

GIþGQ GU− iGV

GUþ iGV GI−GQ

�
; ðB1Þ

so that, after using the identity

ϵμ1ϵ
ν
2 − ϵμ2ϵ

ν
1 ¼

1

κ
ϵμναβuβqα; ðB2Þ

the dispersion laws for the Stokes parameters may be
written as

q2GI −
gaγ
κ
½ðq · ∂aÞðu · qÞ − q2ðu · ∂aÞ�GV ¼ 0; ðB3aÞ

q2GV −
gaγ
κ

½ðq · ∂aÞðu · qÞ − q2ðu · ∂aÞ�GI ¼ 0; ðB3bÞ

q2GQ ¼ 0; ðB3cÞ

q2GU ¼ 0: ðB3dÞ

A problem with this formulation, that was not discussed in
Ref. [14] is that the equations for GI and GV are coupled,
so that they can not be treated individually as propagating
modes. Instead, the propagating modes are the

combinations GI ∓ GV , corresponding to right- and left-
handed photons, respectively, whose dispersion relations
can be obtained by solving,

�
q2 � gaγ

κ
½ðq · ∂aÞðu · qÞ − q2ðu · ∂aÞ�

�
ðGI ∓ GVÞ ¼ 0;

ðB4Þ

which yields to the solutions of Eqs. (25a) and (26a) in the
rest frame. The transport equations in the linear polarization
basis read,

ðq · ∂ÞðGI ∓ GVÞ ¼ 0; ðB5aÞ

ðq ·∂ÞGQþgaγ
κ
½ðq ·∂aÞðu ·qÞ−q2ðu ·∂aÞ�GU¼0; ðB5bÞ

ðq ·∂ÞGU−
gaγ
κ
½ðq ·∂aÞðu ·qÞ−q2ðu ·∂aÞ�GQ¼0: ðB5cÞ

The coupled equations for GQ and GU can be solved by
applying the operator ðq · ∂Þ on each equation and neglect-
ing terms with two derivatives acting on the axion field.
Thus, we find

ðq ·∂Þ2GQþg2aγ
κ2

½ðq ·∂aÞðu ·qÞ−q2ðu ·∂aÞ�2GQ¼0; ðB6aÞ

ðq ·∂Þ2GU−
g2aγ
κ2

½ðq ·∂aÞðu ·qÞ−q2ðu ·∂aÞ�2GU¼0: ðB6bÞ

Now, the general structure of the Stokes parameters
is GQ;UðX; qÞ ¼ 4πδðq2Þsgnðu · qÞfQ;UðX; qÞ, being
fQ;UðX; qÞ the corresponding off shell distribution func-
tions. Moving to the rest frame and imposing the on-shell
condition, we reach to

½ðv · ∂Þ2 þ Ω2�fQðX; qÞ ¼ 0; ðB7aÞ

½ðv · ∂Þ2 −Ω2�fUðX; qÞ ¼ 0; ðB7bÞ

where fQ;UðX; qÞ are the on shell distribution functions
for the positive energy solutions, also we introduced
the velocity vector vμ ¼ ð1; q̂Þ and the frequency
Ω ¼ gaγðv · ∂aÞ. Note that Ω coincides with the frequency
defined in Ref. [14] when neglecting the gradient of the
axion field (there is a difference of a factor of 2 due to our
distinct definition of the dual of the electromagnetic
tensor F̃μν).
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