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We conduct a combined analysis to investigate dark matter (DM) with hypercharge anapole moments,
focusing on scenarios where Majorana DM particles with spin 1=2, 1, 3=2, and 2 interact exclusively with
Standard Model particles through Uð1ÞY hypercharge anapole terms for the first time. For completeness, we
construct general effective U(1) gauge-invariant three-point vertices. These enable the generation of
hypercharge gauge-invariant interaction vertices for both a virtual photon γ and a virtual Z boson with two
identical massive Majorana particles of any nonzero spin s, after the spontaneous breaking of electroweak
gauge symmetry. For complementarity, we adopt effective operators tailored to each dark matter spin
allowing crossing symmetry. We calculate the relic abundance, analyze current constraints and future
sensitivities from dark matter direct detection and collider experiments, and apply the conceptual naive
perturbativity bound. Our estimations based on a generalized vertex calculation demonstrate that the
scenario with a higher-spin DM is more stringently constrained than a lower-spin DM, primarily due to the
reduced annihilation cross section and/or the enhanced rate of LHC monojet events. As a remarkable
outcome, the spin-2 anapole DM scenario is almost entirely excluded, while the high-luminosity LHC
exhibits high sensitivities in probing spin-1 and -3=2 scenarios, except for a tiny parameter range of DM
mass around 1 TeV. A significant portion of the remaining parameter space in the spin-1=2 DM scenario
can be explored through upcoming Xenon experiments, with more than 20 ton-yr exposure equivalent to
approximately 5 years of running the XENONnT experiment.
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I. INTRODUCTION

The nature of dark matter (DM) remains one of the
greatest puzzles in particle physics and cosmology,
accounting for approximately a quarter of the total energy
content in the Universe. Exploring the nongravitational
interactions of DM with Standard Model (SM) particles
offers a direct path to uncovering new structures and
symmetries. This exploration can be pursued through three
distinct experimental approaches: direct detection, indirect
detection, and collider experiments. These three different
types of experiments can be complementary to one another,
and hence it is extremely helpful to combine the results and
apply them to a single effective operator for DM/SM

interactions. This is a reasonable and widely applicable
approach in scenarios where the corresponding effective
field theory (EFT) is valid [1–4].
Certainly, for a proper EFT description, it is required that

the energy scale of all processes under consideration be
well below the masses of the mediating particles, and that
their interactions respect the established low-energy (global
and/or gauge) symmetries of the SM [5–8]. As the TeV
energy scale, which is higher than the electroweak scale, is
currently being probed and the SM with its SUð3ÞC ×
SUð2ÞL × Uð1ÞY gauge symmetry has been firmly estab-
lished, particularly with the discovery of the Higgs boson
[9,10], it is appropriate to maintain both the hypercharge
Uð1ÞY symmetry and the other non-Abelian gauge sym-
metries, SUð3ÞC and SUð2ÞL. For instance, the importance
of considering the hypercharge Uð1ÞY rather than the
electromagnetic Uð1ÞEM as a valid U(1) gauge symmetry
has been clearly and persuasively demonstrated from
various physics perspectives in recent work [11].
The nongravitational interaction between DM and SM

particles through an electromagnetic (EM) form factor, for
DM with nonzero spin, is realized through a higher-
dimensional operator. Consequently, this provides an inter-
esting test bed for the EFT approach in DM studies.
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Additionally, the EM form factor induces unexpected (and
suppressed) EM interactions of DM with SM particles,
without the DM being directly charged. The phenomeno-
logical effects of such interactions were first discussed
in Ref. [12].
In this paper, we adopt an EFT approach for scenarios

involving CPT self-conjugate Majorana DM with spin 1=2
to 2, where interactions with SM particles are exclusively
mediated through Uð1ÞY hypercharge anapole terms. For
neutralino DM in supersymmetric models, which has been
the most preferred and theoretically well-motivated DM
candidate over the past decades, the corresponding anapole
term is the only allowed U(1) form factor, and hence it is
worthwhile to study in detail [13–15]. The first Kaluza-
Klein excitation of the hypercharge gauge boson is a typical
candidate for a spin-1 Majorana particle interacting with the
SM particles through hypercharge anapole terms. The
scenario involving spin-1DMparticles has been investigated
in various works [16–30]. The spin-3=2 DM has been well
studied as a gravitino in supergravity and also in various
effective theories [31–45]. Themassive graviton, expected to
exist in extra-dimensional models and bigravity theories, has
beenwidely discussed as a spin-2 DMcandidate [43,46–61].
Previously, several aspects of EM anapole DM inter-

action terms have been studied in the context of relic
abundance measurements as well as in searches at direct
detection, indirect detection, and collider experiments for
the spin-1=2 case [62–70] and the spin-1 case [71,72]. A
comprehensive analysis of the Uð1ÞY anapole DM scenario
with a spin-1=2 Majorana particle was recently conducted
[11]. On the contrary, the analysis for the spin-1 case was
restricted so far to the EM anapole DM scenario, as the
focus was only on the direct DM detection capability. In
this context, it is worthwhile to perform a generic analysis
accommodating and characterizing the hypercharge ana-
pole DM particle of any nonzero spin with combined
experimental probes all together.
In our general analysis, we construct effective Uð1ÞY

gauge-invariant three-point vertices of a hypercharge gauge
boson B and two identical on-shell Majorana particles with

any nonzero spin.1 These vertices accommodate an arbitrary
spin s and nonzero mass m, generating interaction vertices
with not only a virtual photon γ but also a virtual gauge boson
Z after electroweak symmetry breaking (EWSB). A concise
overview of the distinction between our analysis targets and
those of other studies is shown in Table I.
Having outlined the general three-point vertices, our in-

depth numerical analysis is specifically targeted toward
four scenarios where the DM particle spin is set to be 1=2,
1, 3=2, and 2, while qualitatively exploring the implications
for the scenarios with its spin larger than 2. We incorporate
the relic abundance value determined by the Planck
Collaboration [74], the up-to-date result from the DM
direct detection experiment XENONnTwith approximately
1.1 ton-yr exposure [75], and the LHC experiments with the
integrated luminosity of 139 fb−1 [76–78] as well as the so-
called naive perturbativity bound (NPB) making our EFT
approach valid.2 In addition, we estimate the projected
sensitivities of the high-luminosity LHC (HL-LHC) experi-
ment with the full run of 3 ab−1 integrated luminosity [79]
and those of the future XENONnT with the 20 ton-yr
exposure.
This paper is organized as follows. In Sec. II, we derive

the general effective hypercharge gauge-invariant three-
point vertices. These generate interaction vertices for a
virtual photon γ and a massive gauge boson Z with two
identical on-shell particles of any nonzero spin s and mass
m, following EWSB. The derivation is based on an efficient
and systematic algorithm for constructing the covariant
effective vertex for three particles of any spin and mass
[80–82]. In Sec. III, we calculate the annihilation cross
sections of two Majorana particles into kinematically

TABLE I. Comparison between our current research and various previous studies on EM anapole DM and
hypercharge anapole DM conducted through three main experiments: relic abundance analysis, searches at the LHC,
and/or direct detection experiments. The works are referenced with corresponding citation numbers provided in the
references. In the case of spin-1 EM anapole DM, each cross mark (✗) denotes that the relic abundance and LHC
search aspects have not been explored to date. On the other hand, the check mark (✓) signifies the comprehensive
quantitative investigation of all the clarified experimental aspects in the spin-1, -3=2, and -2 cases in addition to the
spin-1=2 case, undertaken in our current work.

EM anapole DM Hypercharge anapole DM

Scenario (Spin) 1=2 1 1=2 1 3=2 2

Relic abundance [62] [66] [70] ✗ [11]
This work ✓LHC search [64] [67] [69] ✗ [11]

Direct detection [62] [65] [67] [68] [70] [71] [72] [11]

1For clarity, the term “Majorana particle” is conventionally
used to represent a spin-1=2 self-conjugate particle; however, we
will generalize it to include self-conjugate particles of any spin
without loss of generality, as done in Ref. [73].

2Conceptually, there could also be unitarity bounds on the
couplings for each annihilation mode, but these are quantitatively
much weaker than the naive perturbativity limits.
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allowed pairs of SM particles. We then determine the
constraints on the effective coupling strengths for the spin-
1=2, 1, 3=2, and 2 cases from the observed DM relic
abundance. Section IV is devoted to determining con-
straints on the coupling strengths from recent LHC and
upcoming HL-LHC experiments [76,79]. We particularly
focus on how these constraints depend on the spin of the
anapole DM Majorana particle. In Sec. V, we explore
constraints from the up-to-date results of the DM direct
detection experiment XENONnT [75] and the projected
sensitivities from its highly enhanced exposure and study
the implications for the coupling strengths. Based on all the
experimental constraints and an additional theoretical
constraint from the naive perturbativity bound, we present
an overall combined picture of the current constraints and
sensitivities in Sec. VI. This comprehensive analysis places
special emphasis on systematically delineating the distinct
characteristics that vary depending on the spin values. We
summarize the key points of our results and conclude in
Sec. VII. Furthermore, Appendix A provides a concise and
systematic algorithmic description for constructing all
the general three-point anapole vertices efficiently, and
Appendix B provides a detailed explanation of the numeri-
cal calculation strategy employed to determine the DM
relic abundance.

II. ANAPOLE VERTICES FOR TWO MAJORANA
PARTICLES OF ANY SPIN

In this section, we present an efficient and systematic
algorithm for constructing covariant three-point anapole
vertices for two identical Majorana particles of any spin.
This algorithm allows us to perform a complete and
systematic characterization of all the spin values of the
hypercharge anapole DM. Subsequently, we delve deeper
into the specific case of covariant vertices, focusing on the
spin-1=2, -1, -3=2, and -2 scenarios. This detailed analysis
encompasses both analytic and numerical investigations to
provide comprehensive insights and findings.

A. Aanapole three-point vertices
of Majorana particles of any spin

A Majorana particle, by definition, is a CPT self-
conjugate particle, which means it remains unchanged
under the combined operations of charge conjugation
(C), parity reversal (P), and time reversal (T). These
particles do not possess any static charge or multipole
moments, as all the terms in their interaction Hamiltonian
are CPT odd.
The only permissible U(1) gauge-invariant interaction

vertices between a U(1) gauge boson and two identical
massive Majorana particles of nonzero spin are known as
anapole-type moments [73]. It is worth noting that no
massless CPT self-conjugate Majorana particle can have
any U(1) gauge-invariant couplings unless its spin is 1=2.

The effective anapole three-point χχB vertex of two
identical massive Majorana particles χ of any spin and a
U(1) gauge boson B is in general given by the gauge-
invariant Lagrangian

Lanapole ¼ J μ∂νBμν; ð2:1Þ

with the 4-vector current J μ comprising two Majorana-
particle fields and the field-strength tensor Bμν ¼ ∂

μBν −
∂
νBμ of the U(1) gauge boson B.
Equation (2.1) enables us to construct the effective

conserved current for the annihilation of two Majorana
particles into a virtual vector boson depicted in Fig. 1.
Explicitly, the current can be cast into the form

Vμðp; qÞ ¼ p2Jμðp; qÞ − p · Jðp; qÞpμ; ð2:2Þ

with p ¼ k1 þ k2 and q ¼ k1 − k2 in terms of the incoming
Majorana-particle momenta, k1 and k2, where the vector
current Jμ is nothing but the momentum-representation
version of the position-representation current J μ in
Eq. (2.1). Note that the vector current Vμ automatically
satisfies the U(1) gauge invariance condition pμVμ ¼ 0. In
the covariant formulation, the vector current Vμ can be
written as the products between the wave tensors χsðk1Þ and
χsðk2Þ of two Majorana particles and a covariant three-
point vertex Γ,

Vμðp; qÞ ¼ χ̄βsðk2ÞΓα;β;μðp; qÞχαs ðk1Þ; ð2:3Þ

FIG. 1. A diagram for the annihilation of two identical
Majorana particles χs into an off-shell hypercharge gauge boson
B�. The combined momenta p ¼ k1 þ k2 and q ¼ k1 − k2 are
constructed by the combinations of incoming momenta k1;2 of

two Majorana particles. The k1;2-dependent χαs and χβs are the
wave functions of two identical Majorana particles with the
particle symbol denoted by χ in the main text. The indices, α and
β, stand collectively for the 4-vector indices, α ¼ α1 � � � αn and
β ¼ β1 � � � βn, with n ¼ s − 1=2 or n ¼ s for a half-integer or
integer spin-s Majorana particle. The curved arrow is for an
arbitrary chosen fermion-number flow direction whose meaning
is described in detail in Refs. [83,84].
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with respect to the arbitrarily chosen fermion-number-flow
arrow shown in Fig. 1, where the indices, α and β, stand
collectively for the 4-vector indices, α ¼ α1 � � � αn and
β ¼ β1 � � � βn, with n ¼ s − 1=2 or n ¼ s for a half-integer
or integer spin-sMajorana particle. All the details about the
wave tensors [85–90] and the general covariant vertices are
included collectively in Appendix A.
As two identical Majorana particles annihilate into a

virtual gauge boson B�, the covariant three-point vertex
must satisfy the so-called identical-particle (IP) condition,
Eq. (A23) or (A24), in the fermionic or bosonic case,
respectively, as described in detail in Appendix A. By
employing the general covariant three-point vertices and
imposing the IP relation, the anapole three-point vertices
can be cast into a compact square-bracket operator form,

½ΓF� ¼
�
p2

Λ2

�
½A�

Xn
τ¼0

�
p2

Λ2

�
τ

f−τ ½g�n−τ½S0�τ

þ
�
p2

ffiffiffiffiffi
p2

p
Λ3

�
½V�

Xn
τ¼1

�
p2

Λ2

�
τ−1

× fþτ ½g�n−τ½S0�τ−1 for fermions; ð2:4Þ

½ΓB� ¼
ffiffiffiffiffi
p2

q �
p2

Λ2

�Xn
τ¼1

�
p2

Λ2

�
τ−1

× ðb−τ ½V−� þ bþτ ½Vþ�Þ½g�n−τ½S0�τ−1 for bosons;

ð2:5Þ
in terms of 2s independent f and b couplings for the spin-s
Majorana fermion with s ¼ nþ 1=2 and boson with s ¼ n,
respectively. The cutoff scale Λ is set forth explicitly to
indicate that the effective covariant vertex originates from a
higher-dimensional operator term in the given effective
Lagrangian or Hamiltonian. Here, the square-bracket nota-
tions are introduced for denoting the product of the basic
helicity-related operators as well as two derived operators
in a compact form with all the 4-vector and spinor index
symbols hidden.
First, the two square-bracket operators, [A] and [V], in

Eq. (2.4) denote an orthogonal axial-vector and vector
currents, of which the explicit forms are given by

½A� → Aμ ¼ γ⊥μγ5; ð2:6Þ
½V� → Vαβ;μ ¼ p̂αg⊥βμ þ p̂βg⊥αμ; ð2:7Þ

with an orthogonal gamma matrix γ⊥μ ¼ g⊥μνγ
ν and an

orthogonal metric tensor g⊥μν ¼ gμν − p̂μp̂ν þ q̂μq̂ν
involving two normalized momenta, p̂ ¼ p=

ffiffiffiffiffi
p2

p
and

q̂ ¼ q=
ffiffiffiffiffiffiffiffi
−q2

p
. Second, due to the totally symmetric prop-

erty of the wave tensors [85–90] over all the 4-vector
indices, the nth power products of the metric tensor g and
the basic scalar operator S0 can be given in a compact
square-bracket form,

½g�n → gα1β1 � � � gαnβn ; ð2:8Þ

½S0�n → S0α1β1 � � � S0αnβn ; ð2:9Þ

where the basic scalar operator S0 is defined by

S0αβ ¼ p̂αp̂β; ð2:10Þ

of which the repeated appearance at the vertices increases
the dimensions of the corresponding Lagrangians gradu-
ally. It is compensated by introducing the proper power of
the cutoff scale Λ along with the operator as shown in
Eqs. (2.4) and (2.5). Third, the other two derived basic
vector operators ½V�� are defined by

½V�� → V�
αβ;μ ¼ p̂βS�αμ þ p̂αS

∓
βμ; ð2:11Þ

in terms of the normalized momentum p̂ and the basic
scalar operators S� of which the explicit expression is

S�αβ ¼
1

2
½g⊥αβ � ihαβp̂ q̂i�; ð2:12Þ

with the angle-bracket notation hαβp̂ q̂i ¼ εαβρσp̂ρq̂σ of a
product between an antisymmetric Levi-Civita tensor and
two normalized momenta p̂ and q̂.

B. Effective three-point anapole vertices
for the spin of 1=2, 1, 3=2, and 2

Following the systematic derivation procedure for con-
structing the general anapole vertices and using the general
properties of wave tensors described in Appendix A, we
can recast the covariant three-point anapole vertices
extracted from the general forms in Eqs. (2.4) and (2.5)
effectively into the following form as

Γ½1=2�
μ ¼eff p

2

Λ2
a1=2γ⊥μγ5; ð2:13Þ

Γ½1�
α;β;μ¼eff

ip2

Λ2
½a1hαβμqi⊥ − b1ðpαg⊥βμ þ pβg⊥αμÞ�; ð2:14Þ

in termsof a single couplinga1=2 in the spin-1=2 case and two
independent couplings, a1 and b1, in the spin-1 case with an
orthogonal antisymmetric tensor hαβμqi⊥ ¼ g⊥μνϵαβ

νσqσ,
and

Γ½3=2�
α;β;μ¼eff

p2

Λ2
a3=2γ⊥μγ5gαβ; ð2:15Þ

Γ½2�
α1α2;β1β2;μ

¼eff ip
2

Λ2
½a2hα1β1μqi⊥

− b2ðpα1g⊥β1μ þ pβ1g⊥α1μÞ�gα2β2 ; ð2:16Þ
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in termsof a single couplinga3=2 in the spin-3=2 case and two
independent couplings, a2 andb2, in the spin-2 case up to the
leading order in 1=Λ2. All the couplings are in general
complex, and the ai terms are parity odd, while the bj terms
are parity even where i ¼ 1=2; 1; 3=2, 2 and j ¼ 1, 2.
Although our numerical analysis is confined up to spin 2,
a simple extrapolation suggests that a single coupling exists
in any half-integer spin scenario, while in the case of nonzero
integer spin, there are two distinct and independent couplings
at the leading order of 1=Λ2, as evident with Eqs. (2.4)
and (2.5).
The effective U(1) gauge-invariant spin-1=2 and spin-1

anapole Lagrangians corresponding to the vertices in
Eqs. (2.13) and (2.14) can be reconstructed by replacing
each momentum with its corresponding derivative as

L1=2 ¼
a1=2
2Λ2

χ̄1
2
γμγ5χ1

2
∂νBμν; ð2:17Þ

L1 ¼
�
a1
2Λ2

ϵαβμρ½χα1ð∂ρχβ1Þ − ð∂ρχα1Þχβ1�

þ b1
2Λ2

∂
ρðχ1ρχ1μ þ χ1μχ1ρÞ

�
∂νBμν; ð2:18Þ

in terms of the spin-1=2 and spin-1 Majorana fields, χ1
2
and

χ1μ, respectively. Likewise, the U(1) gauge-invariant spin-
3=2 and spin-2 anapole Lagrangians corresponding to the
vertices in Eqs. (2.15) and (2.16) are given as

L3=2 ¼
a3=2
2Λ2

χ̄3
2
ργ

μγ5χ
ρ
3
2

∂νBμν; ð2:19Þ

L2 ¼
�
a2
2Λ2

ϵαβμρ½χασ2 ð∂ρχβ2σÞ − ð∂ρχασ2 Þχβ2σ�

þ b2
2Λ2

∂
ρðχσ2ρχ2μσ þ χσ2μχ2ρσÞ

�
∂νBμν; ð2:20Þ

in terms of the spin-3=2 and spin-2 Majorana fields, χ3
2
μ and

χ2μν, respectively.
In the following, we specify the U(1) gauge boson to be

the hypercharge Uð1ÞY gauge boson B in the SM. The
hypercharge gauge field Bμ is decomposed into a photon
field Aμ and a Z-boson field Zμ as Bμ ¼ cWAμ − sWZμ with
cW ¼ cos θW and sW ¼ sin θW of the weak mixing angle
θW after the firmly established EWSB. Furthermore, for
simplicity and without loss of generality, we omit the spin
index s of the Majorana particle χs in the following
discussion, as it applies universally across all spin cases.

III. DM RELIC ABUNDANCE

In this section, we calculate the relic abundance of our
anapole DM of each spin from the thermal freeze-out
mechanism. The overabundant region beyond the observed

relic abundance [74] is simply considered to be excluded
without introducing late time reduction possibilities. The
corresponding areas are shown in the two-dimensional
planes of mass of dark matter and the couplings ai, bj
normalized by the cutoff scale squared Λ2.
The self-conjugate hypercharge anapole DM particles can

annihilate into the SM particles via the s-channel photon γ
and Z-boson exchanges. If kinematically allowed, the DM
particles annihilate mainly via the processes χχ → ff̄,
W−Wþ, and/or ZH, where f is a SM quark q ¼
u; d; s; c; b; t or lepton l ¼ e; μ; τ; νe; νμ; ντ, as depicted in
Fig. 2. The relic abundance of χ can be determined through
the freeze-out of the annihilation processes in the figure. As
notedpreviously inRef. [73], every annihilation cross section
is completely factored into a simple product of two inde-
pendent parts, of which one corresponds to the DM anni-
hilation into a virtual gauge boson and the other of which
corresponds to the sequential decay of thevirtual gaugeboson
into a pair of SM particles.3 Explicitly, the total cross section
of each annihilationmode can bewritten in the compact form

σ1=2 ¼
ja1=2j2
4Λ4

βχsPSM; ð3:1Þ

σ1 ¼
ja1j2β2χ þ jb1j2

9Λ4

�
s

4m2
χ

�
βχsPSM ð3:2Þ

for the spin-1=2 and spin-1 Majorana particles, respectively,
and

σ3=2 ¼
ja3=2j2
72Λ4

ð5 − 2β2χ þ 5β4χÞ
�

s
4m2

χ

�
2

βχsPSM; ð3:3Þ

σ2 ¼
1

300Λ4
½ja2j2β2χð7 − 6β2χ þ 15β4χÞ

þ jb2j2ð15 − 6β2χ þ 7β4χÞ�
�

s
4m2

χ

�
3

βχsPSM ð3:4Þ

for the spin-3=2 and spin-2 Majorana particles, respectively,

with the collision energy
ffiffiffi
s

p
and the speed of χ, βχ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4m2
χ=s

q
in the c.m. frame of two χ particles. Here, the

dimensionless SM pair-production term PSM ¼ P
f Pff̄ þ

PWW þ PZH is the sum of all the kinematically allowed
production terms,

3The angular distribution of each annihilation mode is
uniquely determined independently of the DM particle spin.
This characteristic spin-independent angular distribution was
demonstrated explicitly in the scattering process e−eþ → γ� →
χχ via a photon exchange in Ref. [73].
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Pff̄ ¼
e2

12πc2W
βfΠZðsÞ½ð3− β2fÞV̄2

f þ 2β2fA
2
f�θð

ffiffiffi
s

p
− 2mfÞ;

ð3:5Þ

PWW ¼ e2

96πc2W
ð1þΓ2

Z=m
2
ZÞβ3WΠZðsÞ

× ð1þ20m2
W=sþ12m4

W=s
2Þθð ffiffiffi

s
p

−2mWÞ; ð3:6Þ

PZH ¼ e2

96πc2W
β̄ZHΠZðsÞð1þ 8m2

Z=sÞθð
ffiffiffi
s

p
−mZ −mHÞ;

ð3:7Þ

with βf;W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

f;W=s
q

and β̄ZH ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1 − ðmZ þmHÞ2=s�½1 − ðmZ −mHÞ2=s�

p
. Here, for the

FIG. 2. Feynman diagrams for the dominant annihilation processes of two identical Majorana particles into a pair of SM particles,
χχ → ff̄ (left), W−Wþ (middle), and ZH (right) where f is a SM quark q ¼ u; d; s; c; b; t or lepton l ¼ e; μ; τ; νe; νμ; ντ. Here, χ
denotes the self-annihilating Majorana DM particle. The red open circle in each diagram indicates the effective three-point anapole
vertex. The notation γ� ⊕ Z� stands for the combined s-channel γ and Z exchanges.

FIG. 3. Exclusion limits on the effective anapole couplings versus the DM mass from the observed DM relic abundance. The top
(bottom) left panel shows the constraint on the normalized coupling ja1=2j=Λ2 (ja3=2j=Λ2) in the spin-1=2 (spin-3=2) case. The top
(bottom) middle panel shows the constraint on the normalized coupling ja1j=Λ2 (ja2j=Λ2), and the top (bottom) right panel shows the
constraint on the normalized couplings jb1j=Λ2 (jb2j=Λ2) in the spin-1 (spin-2) case. In each plot, the gray-shaded region is excluded by
making DM overabundant and bounded by the relic density line (black solid).
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sake of notation, the normalized propagator factorΠZðsÞ and
an effective SMvector coupling squared V̄2

f are introduced as

ΠZðsÞ ¼
s2

ðs −m2
ZÞ2 þm2

ZΓ2
Z
; ð3:8Þ

V̄2
fðsÞ ¼ V2

f − 2c2WQfVf

�
1 −

m2
Z

s

�
þ c4W

Q2
f

ΠZðsÞ
; ð3:9Þ

in terms of the SM vector and axial-vector couplings, Vf ¼
I3f=2 −Qfs2W and Af ¼ −I3f=2, of the Z boson to a SM

fermion pair ff̄ with the isospin component I3f and electric
chargeQf of the fermion f. We emphasize again that the SM
production terms are independent of the DMparticle spin and
its couplings to the photon and Z boson. Consequently, the
information on the characteristics of the anapole DM particle
is encoded exclusively in the DM annihilation into a virtual
gauge boson.
By calculating the DM relic abundance using the

methodology described in detail in Appendix B, we can
derive exclusion limits on the effective anapole couplings
versus the DM mass. These limits are based on the
observed relic abundance of Ωχh2 ≈ 0.12, as illustrated
in Fig. 3. Each plot features a gray shaded region that
represents an overabundance of DM and is bounded by the
relic density line (black solid) obtained from the freeze-out
mechanism. The top (bottom) left panel is for the normal-
ized coupling ja1=2j=Λ2 (ja3=2j=Λ2) versus the DM mass
mχ in the spin-1=2 (spin-3=2) case, the top (bottom) middle
panel is for the normalized coupling ja1j=Λ2 (ja2j=Λ2)
versus the DM mass mχ in the spin-1 (spin-2) case, and the
top (bottom) right panel is for the normalized coupling
jb1j=Λ2 (jb2j=Λ2) versus the DM mass mχ in the spin-1
(spin-2) case. The single-power dependence of the fer-
mionic annihilation cross sections on the χ speed βχ in
Eq. (3.1) implies that each DM annihilation is a p-wave
dominant process in the fermionic cases. On the other hand,
the bosonic DM annihilation cross sections include the
d-wave dominant terms proportional to the coupling a1 or
a2 in addition to the p-wave dominant ones with the
coupling b1 or b2. Hence, the cross sections can be further
suppressed by β4χ once a UV model expects b1 or b2 is
negligible, as can be clearly seen in the right panels of
Fig. 3. Note that the p-wave dominant terms jb1;2j=Λ2 are
more strongly constrained than the ja1=2;3=2j=Λ2 from the
observed relic abundance due to the reduced spin-averaged
and polarization-weighted factors as shown in Eqs. (3.1)
and (3.2). Typically, due to the smaller spin averaged
factors in the annihilation cross sections, higher-spin DM
particles face more stringent constraints compared to the
lower-spin cases with the same order of suppression
factor βχ.

IV. LHC SEARCHES

In this section, we derive the exclusion limits on the
couplings for the hypercharge anapole DM particle from its
searches at the LHC experiment with the projected sensi-
tivities on the couplings from the upcoming HL-LHC
experiment [77,78,91,92]. Although there are possibly
various production channels at the LHC, we consider the
most dominant production processes for the hypercharge
anapole DM particle in our analytic analysis.
It was shown in a previous work [69] that the EM

anapole DM particles in the Uð1ÞEM gauge-invariant
framework can be produced dominantly through the dijet
processes via vector-boson fusion, especially when inves-
tigating them with strong experimental cuts. On the
contrary, the dijet processes cannot be dominant anymore
in the hypercharge anapole DM case because not only the γ
exchange diagram but also Z-boson exchange diagram
contribute to the process, leading to a quite significant
cancellation in the high-energy regime so that the unitarity
problem is diminished extremely efficiently [11]. As a
result, the strongest LHC constraints on the hypercharge
anapole DM couplings are expected to come from the so-
called monojet processes pp → jþ X with X standing for
the collection of invisible particles including two DM
particles, χχ.
Two parton-level processes, gq → qχχ and qq̄ → gχχ,

contribute dominantly to the monojet process pp → jþ X
at the LHC. Quantitatively, the former gq cross section is
much larger than the latter qq̄ cross section. In this light, we
consider the process gq → qχχ in the present work as the
most crucial mode for investigating the constraints from the
LHC monojet events on the couplings versus the DM mass
mχ in the spin-1=2, 1, 3=2, and 2 cases.4 There are two
Feynman diagrams contributing to the sequential process
gq → qγ�=Z� → qχχ, of which one is a s-channel quark-
exchange mode and the other a t-channel quark-exchange
mode as depicted in Fig. 4. As demonstrated in all the DM
annihilation processes in Sec. III, the effective anapole
three-point γχχ and Zχχ vertices allow each parton-level
cross section to be completely factored into the SM 2-to-2
scattering process gq → qγ�=Z� and the DM pair produc-
tion processes through the 2-body decay γ�=Z� → χχ. After
performing the 2-body phase space integration over the
invisible final two-body χχ system, we can obtain the
parton-level cross section for the process gq → qχχ in a
compact integral form as

σ1=2ðŝ;pTÞ ¼
Z

ŝ

4m2
χ

dQ2

2π
Oðŝ; Q2;pTÞ

ja1=2j2
Λ4

; ð4:1Þ

4The parton-level process gq̄ → q̄χχ contributes to the same
single-jet process at the LHC, although this mode is insignificant
because the antiquark contribution is much smaller than the quark
contribution to the parton distribution functions of the proton.
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σ1ðŝ;pTÞ ¼
Z

ŝ

4m2
χ

dQ2

2π
Oðŝ;Q2;pTÞ

�
Q2

4m2
χ

� ja1j2β2χ þ jb1j2
Λ4

;

ð4:2Þ

σ3=2ðŝ;pTÞ ¼
Z

ŝ

4m2
χ

dQ2

2π
Oðŝ; Q2;pTÞ

�
Q2

4m2
χ

�
2

×
2ja3=2j2
9Λ4

ð5 − 2β2χ þ 5β4χÞ; ð4:3Þ

σ2ðŝ;pTÞ ¼
Z

ŝ

4m2
χ

dQ2

2π
Oðŝ; Q2;pTÞ

�
Q2

4m2
χ

�
3

×
1

12Λ4
½ja2j2β2χð7 − 6β2χ þ 15β4χÞ

þ jb2j2ð15 − 6β2χ þ 7β4χÞ�; ð4:4Þ

for the spin-1=2, -1, -3=2, and -2 cases, respectively, with

the χχ invariant mass
ffiffiffiffiffiffi
Q2

p
corresponding to the virtual γ�

or Z� invariant mass, the speed factor βχ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

χ=Q2
q

and the gq collision CM energy
ffiffiffî
s

p
and the transverse-

momentum cut pT of the produced quark, invariant
under any Lorentz boost along the proton beam direction.
The parton-level 2-to-2 scattering processes gq → qγ�=Z�

are encoded fully in the ŝ and Q2 dependent cross
section O. Explicitly, the parton-level effective cross
section O with the transverse-momentum cut pT is
given by

Oðŝ; Q2;pTÞ ¼
e2g2S

192π2c2Wŝ
ðjV̄qj2 þ A2

qÞQ2ΠZðQ2Þ

×

�
1 −

4m2
χ

Q2

�
3=2

F ðŝ; Q2;pTÞ; ð4:5Þ

with the strong-interaction coupling gs, the normalized
propagator ΠZðQ2Þ, and the modified vector coupling V̄q

of the quark q defined in Eqs. (3.8) and (3.9), where the
parton-level q transverse momentum, which is invariant

under the Lorentz boost along the beam direction, is p̂T ¼ffiffî
s

p
2
ð1 −Q2=ŝÞ sin θ with the polar-angle θ between the

momenta of the initial gluon g and the final quark q. The
function F ðŝ; Q2;pTÞ with the transverse-momentum cut
pT in Eq. (4.5) is given explicitly by

F ðŝ; Q2;pTÞ ¼
�

1

3
ffiffiffî
s

p þ Q2

ŝ3=2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
Tmax − p2

T

q
þ
�
4p2

Tmax

3ŝ
þ Q4

3ŝ2

�
ln

�
pTmax þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
Tmax − p2

T

p
pT

�

∼
1

6

�
1þ 2

Q2

ŝ
− 3

Q2

ŝ

�
þ 1

3

�
1 − 2

Q2

ŝ
þ 2

Q4

ŝ2

�
ln

�
ŝ −Q2ffiffiffî
s

p
pT

�
for pT → 0; ð4:6Þ

with the maximal transverse momentum pTmax ¼ffiffî
s

p
2
ð1 −Q2=ŝÞ. The transverse-momentum cut pT is intro-

duced to regularize the forward singularity caused by
neglecting the quark mass; this also allows us to ignore
particles escaping detection along the proton-beam pipe
directions. Compared to the spin-1=2 case, the parton-level
production cross section in the spin-1 case has an additional
kinematic enhancement factor Q2=4m2

χ originating from
the longitudinal mode of one of the two spin-1 DM
particles as in Eq. (4.2). We note in passing that the power
of the enhancement factor gets bigger for higher-spin cases
due to the larger number of longitudinal modes so that the
monojet searches at the LHC impose much stronger

constraints on the couplings gradually. Certainly, the
parton-level cross sections should be folded with proper
quark and gluon parton distribution functions for evaluating
the monojet cross section at the LHC.
In this paper, we adopt a simple statistical analysis for

deriving the LHC and HL-LHC limits on the hypercharge
anapole couplings versus the DM mass, focusing on the
effective characterization of the hypercharge anapole DM
particle according to the spin. Let us calculate the simplest
version of the signal significance z defined by

z ¼ sffiffiffiffiffiffiffiffiffiffiffi
sþ b

p ; ð4:7Þ

FIG. 4. Two parton-level Feynman diagrams contributing to the
process gq → qχχ, of which the left one is for a s-channel quark
exchange and the right one is for a t-channel quark exchange. If
the quark mass is ignored, the t-channel diagram has a forward
singularity to be regularized. The notation γ� ⊕ Z� stands for the
combined s-channel γ and Z exchanges.
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with the numbers s and b of the signal and background
events.5 We set the critical significance value z ¼ 2 to
determine the 95% confidence level (CL) exclusion limits
on the couplings normalized to the cutoff scale squared Λ2.
The events are selected according to the selection criteria
pjet
T > 250 GeV and jηj < 2.5, applied to the most recent

monojet searches with an integrated luminosity of 139 fb−1

at the LHC energy of 13 TeV by the ATLAS Collaboration
in Ref. [77].
Figure 5 show the current exclusion limits from the LHC

(shaded region bounded by the solid lines) and the expected
sensitivities at the HL-LHC with the full running of the
3 ab−1 integrated luminosity (dashed lines). Comparing
the panels from the top left one, it is clearly seen that the
couplings in the higher-spin cases are constrained more
strongly in the whole kinematically available region

due to the higher power of the enhancement factor
Q2=4m2

χ , especially in the low mass region as indicated
in Eqs. (4.2)–(4.4).
Close to the kinematical end point of the mass

mχ ∼ 6 TeV, there is a slight reduction in the a1=Λ2

(a2=Λ2) constraint compared to the b1=Λ2 (b2=Λ2) con-
straint, due to the presence of the higher power of the
kinematical suppression factor β2χ ¼ 1–4m2

χ=Q2 for Q2 ∼
4m2

χ in the spin-1 (spin-2) case.
The dashed line in each panel shows the future sensi-

tivity of the planned HL-LHC experiment with a slightly
larger collision energy of 14 TeV and an integrated
luminosity of 3 ab−1, roughly 10 times larger than the
present LHC luminosity [76,79]. We require slightly
stronger selection criteria of the monojet events for the
HL-LHC: pjet

T > 300 GeV and jηj < 2.5. As for the num-
ber of background events at

ffiffiffi
s

p ¼ 14 TeV, we consider the
difference in the cross sections of the dominant background
process pp → Zj → νν̄j, enhanced by 11.57=9.88 ≈ 1.17
compared to the

ffiffiffi
s

p ¼ 13 TeV case [91].

FIG. 5. Exclusion limits from the monojet events at the LHC (solid line) of 13 TeV energy and 139 fb−1 luminosity and projected
sensitivities from those at the HL-LHC (dashed line) of 14 TeV energy and 3 ab−1 luminosity, respectively, derived mainly from the
parton-level process gq → qχχ, on the effective couplings and the DM mass mχ . The top (bottom) left panel shows the limits on
the normalized coupling a1=2=Λ2 (a3=2=Λ2) in the spin-1=2 (spin-3=2) case. The top (bottom) middle panel shows the limits on the
normalized coupling a1=Λ (a2=Λ2) and the top (bottom) right panel shows the limits on the normalized coupling b1=Λ2 (b2=Λ2) in the
spin-1 (spin-2) case.

5The most significant parton-level background process is gq →
qνν̄ with two invisible neutrinos in the final state produced via a
Z-boson exchange.
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The projected sensitivities become stronger as mχ

decreases. Because of the Q2 dependence of the gq →
qχχ production cross section, we expect that the 100 TeV
future circular collider experiment under R&D [93,94]
enables us to cover a much larger region of the couplings
versus the anapole DM mass.
Before closing this section, we emphasize once more that

the power of the invariant mass square in the monojet cross
section increases in proportion to the spin value of the
anapole DM particle. The enhancement arises from the
increased number of longitudinal modes of the higher-spin
anapole DM particle. It strongly indicates that the con-
straints on the couplings versus the DMmass from the LHC
and HL-LHC monojet searches become much stronger as
the spin value of the anapole DM particle increases.

V. DM DIRECT DETECTION

In this section, we describe how the exclusion limits on
the hypercharge anapole DM couplings versus the DM
mass are extracted from the recent DM direct detection
experiment XENONnT with the 1.1 ton-yr exposure [75],
which is at present the most powerful DM direct detection
experiment. Along with the exclusion limits, we consider
the projected sensitivities of the future XENONnTwith the
20 ton-yr exposure. Nonrelativistic dark matter is assumed
to move with a typical velocity of order v ≃ 10−3c in the
Galactic halo.6 Thus, the recoil energy of a DM particle
against a heavy target nucleus is expected to be in the keV
energy scale, much smaller than the typical DM mass
≳OðGeVÞ in consideration here as well as the Z-boson
mass mZ ¼ 91.2 GeV. Hence, the Z-boson exchange con-
tribution to the elastic DM scattering off the target nucleus
can be safely ignored because the momentum transfer is
significantly smaller than the Z-boson massmZ and the DM
scattering off the nucleus is dominated by the photon
exchange [11].
Taking the small recoil energy limit and ignoring the

Z-boson exchange contribution safely we can cast the
recoil-energy-dependent differential cross section into
the factorized form

dσ1=2
dER

¼ c2We
2

4π2
ja1=2j2
Λ4

AðERÞ; ð5:1Þ

dσ1
dER

¼ c2We
2

6π2
1

Λ4

�
ja1j2

�
1þmTER

2m2
χ

�
þ jb1j2

mTER

2m2
χ

�
AðERÞ;

ð5:2Þ

dσ3=2
dER

¼ 5c2We
2

36π2
ja3=2j2
Λ4

AðERÞ; ð5:3Þ

dσ2
dER

¼ c2We
2

120π2
1

Λ4

�
15ja2j2

�
1þ 13mTER

10m2
χ

�

þ 7jb2j2
mTER

2m2
χ

�
AðERÞ; ð5:4Þ

for the spin-1=2, -1, -3=2, and -2 cases, respectively, with
the target nucleus mass mT and the recoil energy ER. Note
that the momentum transfer q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mTER
p

is much smaller
than our dark matter mass in consideration. One note-
worthy feature is that the recoil-energy-dependent function
AðERÞ is factored out independently of the spin of the
anapole DM particle,

AðERÞ ¼ Z2
T

�
2mT −

�
1þmT

mχ

�
2 ER

v2χ

�
F2
Cðq2Þ

þ 2m2
T

3m2
p

�
μ̄T
μp

�
2 ER

v2χ
F2
Mðq2Þ; ð5:5Þ

with the atomic number ZT of the target nucleus and the
DM particle speed vχ relative to the nucleus. The charge
form factor FC is given by

FCðq2Þ ¼
�
3j1ðqrCÞ

qrC

�
e−q

2s2=2; ð5:6Þ

in terms of the first-kind spherical Bessel function j1 of
order 1 where rC ¼ ðc2 þ 7π2a2=3 − 5s2Þ1=2 with c≃
ð1.23A1=3 − 0.60Þ fm, a ≃ 0.52 fm, and s ≃ 0.9 fm, and
the atomic mass A of the target nucleus, while the magnetic
dipole moment form factor FM [99,100] is given by

FMðq2Þ ¼
� sinðqrMÞ

qrM
for qrM < 2.55; qrM > 4.5;

0.2168 for 2.55 < qrM < 4.5;
ð5:7Þ

with the radius rM ¼ 1.0A1=3 fm. The recoil-energy-
dependent function A in Eq. (5.5) involves the nuclear
magneton μp ¼ e=2mp with the proton mass mp and the
weighted dipole moment μ̄T for the target nuclei [101],

μ̄T ¼
�X

i

fiμ2i
si þ 1

si

�
1=2

; ð5:8Þ

where fi, μi, and si are the abundance fraction, magnetic
moment, and spin of the isotope i.
The recoil-energy-dependent distribution of the DM

direct detection process is given by integrating the differ-
ential cross section of each DM spin as in Eqs. (5.1)–(5.4)
over the DM velocity with the distribution fLABðv⃗Þ in the
laboratory frame as

6Note that the scenarios with fast-moving light DM, so-called
boosted dark matter, are proposed in Refs. [95–98], but they are
not the majority of the cosmological DM with the observed relic
abundance.
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dR
dER

¼ 1

mT

ρloc
mχ

Z
d3v⃗jv⃗jfLABðv⃗Þ

dσ
dER

; ð5:9Þ

where we use the local DM density ρloc ¼ 0.3 GeVcm−3.
In the present work, we adopt a simple Maxwell-
Boltzmann distribution in the Galactic frame truncated at
the escape speed vesc of our Galaxy,

fLABðv⃗Þ ¼ fðv⃗þ v⃗EÞ; ð5:10Þ

with the velocity v⃗E of the Earth in the Galactic frame and

fðv⃗Þ ¼
�

1
N e−v

2=v2
0 for jv⃗j ≤ vesc;

0 for jv⃗j > vesc;
ð5:11Þ

where the normalization constant N is

N ¼ ðπv20Þ3=2
�
erf

�
vesc
v0

�
−

2ffiffiffi
π

p vesc
v0

e−v
2
esc=v20

�
;

with the error function erfðzÞ ¼ 2
R
z
0 e

−t2dt=
ffiffiffi
π

p
. The val-

ues of the three different speeds are set numerically to the
escape speed vesc ¼ 544 km s−1, the speed of the Sun
relative to the DM reference frame v0 ¼ 220 km s−1, and
the Earth speed vE ¼ 232 km s−1 in the Galactic frame.
By integrating out the recoil-energy distribution dR=dER

in Eq. (5.9) and taking into account the detection efficien-
cies of the XENONnTexperiment [75], we can evaluate the
number of recoil DM detection events. For the details of
calculating the expected signal events, we refer to
Appendix B of Ref. [71]. The top (bottom) left panel of
Fig. 6 shows the 90% CL constraint on the normalized
coupling ja1=2j=Λ2 (ja3=2j=Λ2) versus the DM mass mχ in
the spin-1=2 (spin-3=2) case. The top (bottom) middle
panel shows the constraint on the normalized coupling
ja1j=Λ2 (ja2j=Λ2) versus mχ , and the top (bottom) right
panel shows the constraint on the normalized coupling
jb1j=Λ2 (jb2j=Λ2) versus mχ in the spin-1 (spin-2) case. In
each plot, the excluded region of the corresponding

FIG. 6. Exclusion limits from the DM direct detection experiment XENONnTon the effective couplings versus the DM massmχ . The
solid line is the current limit with the 1.1 ton-yr exposure, and the dashed line is the expected sensitivity with the 20 ton-yr exposure. The
top (bottom) left panel shows the limit on the normalized coupling ja1=2j=Λ2 (ja3=2j=Λ2) versus the DMmass in the spin-1=2 (spin-3=2)
case. The top (bottom) middle panel shows the limit on the normalized coupling ja1j=Λ2 (ja2j=Λ2) versus the DM mass in the spin-1
(spin-2) case while setting the other coupling to zero. The top (bottom) right panel show the limit on the normalized coupling jb1j=Λ2

(jb2j=Λ2) versus the DM mass in the spin-1 (spin-2) case while setting the other coupling to zero. The right panels clearly show that the
normalized couplings, jb1j=Λ2 and jb2j=Λ2, for the spin-1 and spin-2 DM cases get much weaker constraints than the other cases.
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coupling versus the DM mass is shown as the red-shaded
area bounded by the exclusion limit with a red solid line.
Note that each of the second terms proportional to the recoil
energy ER on the couplings, ja1j=Λ2 and ja2j=Λ2 in
Eqs. (5.2) and (5.4), is much smaller than unity, i.e.,
mTER=ð2m2

χÞ ≪ 1, and hence the direct detection bounds
on the jaij=Λ2 couplings with i ¼ 1=2; 1; 3=2, 2 are
dominantly determined by the spin-averaged factors. On
the other hand, the direct detection cross sections are
suppressed by mTER=2m2

χ once they are dominated by
the jbij=Λ2 term with i ¼ 1, 2, which results in the
negligible sensitivities as shown in the right panels. The
tiny difference between the limits on the couplings, jb1j=Λ2

and jb2j=Λ2, arise from the different spin-averaged and
polarization-weighted factors, 1=6 and 7=120, in the
detection rates, respectively. For the expected sensitivities
of the upcoming XENONnT with the 20 ton-yr exposure
shown with the dashed lines, we relied simply on scaled
statistics without accounting for potential future improve-
ments in background rejection and the control of systematic
uncertainties.
As shown previously in Fig. 5, the LHC and HL-LHC

monojet constraints on the couplings of a lower-spin particle
aremuchweaker than those on the couplings of a higher-spin
case, especially for the DM mass mχ ≲ 1 TeV. Hence, the
LHC/HL-LHC and DM direct detection experiments can
play quite complementary roles in imposing the exclusion
limits on the couplings versus the DM mass.

VI. COMBINED CONSTRAINTS AND FUTURE
SENSITIVITIES

In this section, we show the results combining all the
aforementioned experimental constraints and future sensi-
tivities on the effective couplings versus the DM mass
coming from the Planck determination of the DM relic
abundance, the LHC and HL-LHC monojet searches, and
the present DM direct detection experiment XENONnTand
its future data of 20 ton·yr exposure, which have been
evaluated systematically in the previous three sections. On
top of those experimental bounds and sensitivities, we
include an additional theoretical constraint from the NPB
for guaranteeing the validity of the EFT formalism, which
needs to be taken with a grain of salt.7 The energy-
dependent NPBs on the couplings simply read

ja1=2j
Λ2

s ≤ 4π;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ja1j2 þ jb1j2

p
Λ2

s ≤ 4π;

ja3=2j
Λ2

s ≤ 4π; and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ja2j2 þ jb2j2

p
Λ2

s ≤ 4π; ð6:1Þ

for the spin-1=2, -1, -3=2, and -2 cases, respectively. As the
CM energy

ffiffiffi
s

p
≥ 2mχ, the NPB condition (6.1) applied to

the asymptotically high-energy limit leads to the inequality
relations

ja1=2j
Λ2

≤
π

m2
χ
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ja1j2 þ jb1j2

p
Λ2

≤
π

m2
χ
;

ja3=2j
Λ2

≤
π

m2
χ
; and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ja2j2 þ jb2j2

p
Λ2

≤
π

m2
χ
; ð6:2Þ

on the effective couplings versus the DM mass mχ . The
imposition of those constraints is a very loose statement on
the tree-level perturbativity. If the limits are violated, we
naively expect that higher-loop corrections must be
included, which is beyond the scope of this paper.
Figure 7 shows the combined exclusion limits on the

effective normalized couplings versus the anapole DM
mass mχ from the Planck measurement of the DM relic
abundance (black solid), the theoretical NPB condition
(orange solid), the monojet searches at the LHC of 13 TeV
with the integrated luminosity of 139 fb−1 (blue solid) and
the full running of the HL-LHC of 14 TeV with the 3 ab−1

integrated luminosity (blue dashed), and the present DM
direct detection experiment XENONnT (red solid) with the
1.1 ton-yr exposure along with the future XENONnT with
the 20 ton-yr exposure (red dashed). The top (bottom) left
panel is the combined constraint on the normalized
coupling ja1=2j=Λ2 (ja3=2j=Λ2) versus the mass mχ in the
spin-1=2 (spin-3=2) case. The top (bottom) middle panel
shows the combined limit on the normalized coupling
ja1j=Λ2 (ja2j=Λ2), and the top (bottom) right panel shows
the combined limit on the normalized coupling jb1j=Λ2

(jb2j=Λ2) versus mχ in the spin-1 (spin-2) case. Note that
the future sensitivities of XENONnT can be reached within
about 5 years of running or the XLZD consortium of many
Xenon target experiment plans [102].
In the spin-1=2 case, two regions are still allowed. One

tiny allowed region is near the Z pole with mχ ¼ mZ=2,
where the relic abundance constraint becomes much
weaker due to the sharp Z-resonance effect. This tiny
region is expected to be completely excluded by the
upcoming DM direct detection experiments and the HL-
LHC experiment, as indicated by the red and blue dashed
lines. The other allowed region is a triangle-shape area
centered near ja1=2j=Λ2 ¼ 10−6 GeV−2 and mχ ¼ 1 TeV,
nearly half of which can be probed in the near future by
XENONnT after the 20 ton·yr exposure. This shows the
effectiveness of the complementary DM EFT approach.

7As the anapole terms are described by an effective Lagrangian
with higher-dimensional terms, the so-called tree-level unitarity
is violated in the high-energy regime as well in various processes
such as χχ → W−Wþ. However, quantitatively the combined
constraint from the tree-level unitarity condition turns out
to be much weaker than that from the naive perturbativity
condition.
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In the spin-1 case, the Z-resonance region with mχ ≃
mZ=2 is entirely ruled out by the combined constraints
arising from both relic abundance measurements and LHC
search experiments, illustrated in the upper middle and
right frames of Fig. 7. This complete exclusion arises from
two synergistic effects, independent of the constraints
posed by both the DM direct detection experiment and
the NPB bound. Compared to the spin-1=2 case, the relic
abundance constraint is bolstered by 1.5 times, attributed to
a smaller spin-averaged factor than that in the spin-1=2
case. Furthermore, the constraints imposed by the LHC
experiments are significantly heightened, primarily due to
the longitudinal mode of the spin-1 DM particle, particu-
larly noticeable for mχ less than 1 TeV. Moreover, the
spin-1 case with a nonzero ja1j but jb1j ¼ 0 is expected to
face total exclusion, as depicted in the top middle panel of
Fig. 7. Here, the combined constraints from relic abun-
dance measurements, the (HL-)LHC and (upgraded) DM
direct detection experiments, and the theoretical NPB

synergistically contribute to this complete exclusion.
Conversely, the spin-1 case with a nonzero jb1j but
ja1j ¼ 0 features a triangular-shaped allowed region cen-
tered around jb1j=Λ2 ¼ 10−6 GeV−2 and mχ ¼ 1;TeV,
even though the permitted area is substantially reduced
compared to the spin-1=2 scenario, due to the much more
strengthened constraints from the relic abundance and LHC
experiment. While the complete HL-LHC operational
phase is not anticipated to entirely cover this small
permissible region, the future 100 TeV circular pp collider
[93] promises the capability to thoroughly investigate and
potentially close off the remaining segments of this area,
because of its vastly greater collision energy and signifi-
cantly improved sensitivity.
Despite the slightly weaker XENONnT constraints on

the coupling ja3=2j=Λ2 in the spin-3=2 case than the smaller
spin cases due to the spin-averaged and polarization-
weighted factors, the currently allowed parameter region
is smaller. This is because the LHC constraint gets much

FIG. 7. Combined exclusion limits on the effective couplings versus the DM mass mχ from the measured DM relic abundance of the
Planck satellite (black solid), the theoretical NPB (orange solid), the LHC (blue solid) and HL-LHC (blue dashed) monojet search
experiments and the DM direct detection experiment XENONnT current limit with the 1.1 ton-yr exposure (red solid) and the future
prospect with the 20 ton-yr exposure (red dashed). The top (bottom) left panel shows the combined constraint on the normalized
coupling ja1=2j=Λ2 (ja3=2j=Λ2) versus the DMmass in the spin-1=2 (spin-3=2) case. The top (bottom) middle panel shows the combined
constraint on the normalized coupling ja1j=Λ2 (ja2j=Λ2) versus the DM mass, and the top (bottom) right panel shows the combined
constraint on the normalized coupling jb1j=Λ2 (jb2j=Λ2) versus the DMmass in the spin-1 (spin-2) case, while setting the other coupling
to zero.
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stronger stemming from the enhancement of the monojet
production cross section by the larger number of longi-
tudinal modes as explained in Sec. IV.
The full running of the HL-LHC is expected to probe

nearly half or more of the very tiny allowed regions. This
effect leads to a remarkable result for the higher spin case,
i.e., spin-2 DM. As shown in the bottom-middle and
bottom-right panels, the LHC monojet searches so far have
provided extremely strong constraints: full exclusion
for the ja2j=Λ2 dominated case and nearly exclusion except
for the region mχ ∼ 1.2 TeV for the jb2j=Λ2 dominated
case. The remaining region is expected to be fully probed at
the HL-LHC in particular with more effective search
strategies. Because of the gradual tightening of constraints
from relic abundance and LHC data for higher-spin cases, it
becomes evident that all hypercharge anapole dark matter
particles with masses below the GeV scale are excluded,
irrespective of their spin values, provided they adhere to the
thermal freeze-out scenario.
To cover a general model setup for spin-1 and -2 DM

including both non-negligible parity odd terms (ja1;2j=Λ2)
and even terms (jb1;2j=Λ2) in the cross sections, we display
the combined constraints and sensitivities in the two-
dimensional (jaij and jbij) plane after fixing the DM mass
mχ ¼ 1.25 TeV and the cutoff scale Λ ¼ 2 TeV in Fig. 8.
Each of the constraints is given by an ellipse due to the cross
sections beingproportional to the combinationof the absolute
squares of two couplings in the spin-1 and spin-2 cases. We
ignore the constraints on jbij fromXENONnT, which are too
weak. The left panel is for the spin-1 DM, and the right panel
is for the spin-2 DM. Note that the future XENONnT
sensitivity with the 20 ton·yr exposure (red dashed vertical
line) is comparable to those of the HL-LHC full running for
the spin-1 DM, while the latter becomes more powerful for
the spin-2 DM. We expect that a higher-spin s > 2 DM
scenario would suffer from even stronger bounds, although

further dedicated studies are needed. The right panel of Fig. 8
shows that the full running of theHL-LHCcan probe fully the
spin-2 scenario with mχ ¼ 1.25 TeV.

VII. SUMMARY AND CONCLUSION

Our investigation focused on a scenario where DM is
characterized as a Majorana particle possessing a nonzero
spin, interacting solely with SM particles via hypercharge
anapole terms. This scenario renders us to pursue the
combined analysis from various experimental results in a
complementary way via the EFT approach. For the exper-
imental/observational constraints and sensitivities, we
applied the Planck measurement of the DM relic abun-
dance, the direct detection experiment XENONnT, and the
LHC monojet searches together with the expected sensi-
tivities at the HL-LHC and the future XENONnT. Because
of the straightforward calculations and strong theoretical
foundations, we conducted a focused numerical analysis on
DM spins s ¼ 1=2, 1, 3=2, and 2, making comparative
analyses among them for the first time within the realm of
anapole DM studies. A succinct summary of the anapole
Dark Matter scenarios and experimental searches analyzed
in this paper is presented in Table I of the introduction
section, juxtaposed with previous literature for comparison.
The expectation for the higher-spin DM scenarios will be
briefly discussed at the end of this section. Considering the
theoretically allowed range of the EFT approach together
with a grain of salt, we demonstrate that the hypercharge
anapole DM scenarios are currently on the verge of being
discovered or ruled out.
The main results of the present work can be summarized

with the following key points:
(i) As easily expected, the relic abundance imposes

stronger constraints on d-wave terms than the p-
wave terms since larger couplings are required to
obtain the right relic abundance. The overall

FIG. 8. The parameter spaces of two couplings, ja1j and jb1j (left), and two couplings, ja2j and jb2j (right), for the specific values of
the DM particle mass, mχ ¼ 1.25 TeV, and the cutoff scale, Λ ¼ 2 TeV, in the spin-1 and -2 cases, respectively. The red and blue
dashed lines indicate the projected sensitivities from the XENONnTwith the 20 ton-yr exposure and the HL-LHC experiment after the
full running with the integrated luminosity of 3 ab−1, respectively.
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spin-averaged and polarization-weighted factors,
which are 1=4 (ja1=2j), 1=9 (ja1j and jb1j), 5=72
(ja3=2j), 7=300 (ja2j), and 1=20 (jb2j), in the anni-
hilation cross sections decrease as the DM spin
increases. This leads to stronger constraints for
higher spin cases. In each case, the relic abundance
constraint in the Z-pole resonance region is about a
factor of 10 times weaker than the others.

(ii) The LHC and HL-LHC monojet searches play the
most crucial role in probing the higher-spin anapole
DM lighter than about 1 TeV. This is due to the
kinematic factor associated with the longitudinal
modes of the DM particle. The monojet searches play
an essential role, especially for probing the parity-even
terms of the spin 1 or 2 DM, i.e., jb1;2j=Λ2, since their
contributions to theDMdirect detection cross sections
are suppressed by the recoil energies.

(iii) The momentum transfer in the DM direct detection
process is sufficiently small, and hence the dominant
contribution is through the t-channel photon ex-
change. The constraint on the parity-odd couplings
ja1=2j=Λ2, ja1j=Λ2, ja3=2j=Λ2, and ja2j=Λ2 are
comparable to each other, with minor deviations
due to the spin-averaged and polarization-weighted
factors, 1=2, 1=3, 5=18, and 1=4, respectively. The
cross section, when considering only the spin-1
(spin-2) parity-even coupling jb1j=Λ2 (jb2j=Λ2), is
suppressed in the nonrelativistic limit by the small
kinetic factor due to the CP selection rule. Conse-
quently, as illustrated in the top (bottom) right panel of
Fig. 6, the constraint on jb1j=Λ2 (jb2j=Λ2) is highly
suppressed by the recoil energy as mTER=2m2

χ . It is
noteworthy that the result from the near future
XENONnT with the 20 ton-yr exposure is expected
to explore the allowed region of space that coincides
with the HL-LHC expectations for the spin-1=2 case,
as shown in the top left panel of Fig. 7. Remarkably,
the upcoming XENONnT experiment has the poten-
tial to achieve the extended coverage within approx-
imately 5 years, which is significantly sooner than the
projected full operational timeline of the HL-LHC.
Thus, the future DM direct detection experiments,
such as the planned XLZD consortium involving
multiple Xenon target experiments with more than
20 ton-yr exposure, could eventually probe beyond
the allowed region bounded by the HL-LHC expect-
ation at a faster pace, in the spin-1=2 case.

(iv) The NPB condition is equally and approximately
applied to all the spin-1=2, -1, -3=2, and -2 cou-
plings. The lower NPB bound is inversely propor-
tional to the square of the DM mass, as presented in
Eq. (6.2). It is important to note that a breach of
this conceptual NPB suggests a breakdown of the
EFT framework, potentially resolvable by a more

fundamental UV theory [13–15]. Hence, the NPB
bounds need to be accepted cautiously.

Overall, the combined analysis shows that the hypercharge
anapole coupling of a higher spin DM is more stringently
constrained or expected to be probed sooner than that of a
lower spin DM as evident in Fig. 7. We expect the 100 TeV
proton-proton future circular collider (FCC) experiment,
which is currently under R&D would have a potential to
completely probe the whole remaining parameter space of
the anapole DM scenarios considered here. Note that our
analysis result combining the constraints from the observed
relic abundance and the monojet searches at the LHC can be
extended to a lighter DMmass down toOð10 MeVÞ as long
as the DM relic is determined by the freeze-out mechanism,
providing a powerful exclusion bound already.
The DM particle with its spin larger than 2 is regarded to

be innately a composite particle in order to avoid various
conceptual problems such as unitarity issues. Nevertheless,
if the scale of compositeness is significantly high, we
expect that scenarios with spins greater than 2 could
potentially be completely ruled out because of the sub-
stantial kinematic factor linked to an increased number of
longitudinal modes of the DM particle in the anapole
vertices. although no conclusive comments can be made yet
before dedicated studies.
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APPENDIX A: ALGORITHM FOR
CONSTRUCTING THE ANAPOLE VERTICES

This Appendix is devoted to a compact description of an
efficient and systematic algorithm for constructing any
U(1) gauge-invariant anapole vertex of a virtual gauge
boson and two identical Majorana particles of any spin s.
Let us begin by constructing the wave tensor of a particle

of nonzero mass m and any nonzero spin s. For a nonzero
integer spin s ¼ n, the wave function of an incoming
massive boson with momentum k and helicity λ is given by
a wave tensor defined as a product of n spin-1 polarization
vectors by
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ϵα1���αnðk; λÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sðsþ λÞ!ðs − λÞ!

ð2sÞ!

s X1
fτig¼−1

δτ1þ���þτn;λ

Ys
j¼1

ϵαjðk; τjÞffiffiffi
2

p jτjj ; ðA1Þ

and, for a half-integer spin s ¼ nþ 1=2, the wave function of the massive fermion with momentum k and helicity λ is given
by two types of wave tensors as

uα1���αnðk; λÞ ¼
X

τ¼�1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ 2τλ

2s

r
ϵα1���αnðk; λ − τÞuðk; τÞ with jλ − τj ≤ n; ðA2Þ

v̄α1���αnðk; λÞ ¼
X

τ¼�1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ 2τλ

2s

r
ϵ�α1���αnðk; λ − τÞv̄ðk; τÞ with jλ − τj ≤ n; ðA3Þ

with the helicity λ varying from −s to s. The u tensor is for
an incoming fermion and the v̄ ¼ v†γ0 tensor for an
incoming antifermion.
The wave tensors have several characteristic features.

The bosonic wave tensors are totally symmetric, traceless,
and divergence free,

εμναiαjϵ
α1���αi���αj���αsðk; λÞ ¼ 0; ðA4Þ

gαiαjϵ
α1���αi���αj���αsðk; λÞ ¼ 0; ðA5Þ

kαiϵ
α1���αi���αsðk; λÞ ¼ 0; ðA6Þ

with i; j ¼ 1;…; n, as indicated clearly by Eq. (A1), and
the fermionic wave tensors satisfy the fermionic version of
the divergence-free condition

γαiu
α1���αi���αn ¼ γβiv

β1���βi���βn ¼ 0: ðA7Þ

These four properties of the wave tensors are very effective
in constructing the general three-point vertices as well as
the gauge-invariant ones as demonstrated in a series of
works [85–90].
In the present work, we deal with the U(1) gauge-

invariant anapole χχB vertex of two Majorana particles of
any spin and a virtual hypercharge gauge boson. The U(1)
gauge invariance allows us to treat the virtual gauge boson
B� as an on-shell spin-1 particle of a varying mass m�, as
every term proportional to the 4-momentum appearing in
the numerator of the propagator is effectively killed off. The
DM pair annihilation is related to the amplitude for the
s-channel annihilation process χχ → B� and the monojet
events at the LHC and HL-LHC involve the decay process
B� → χχ, while the DM direct detection involves the
t-channel transition χ → χB�.
As all the three processes with different event topologies

are related through crossing symmetry, it is sufficient to
simply derive the covariant three-point vertex for the decay

of a spin-1 particle B� of massm� into two particles, χ1 and
χ2, of identical spin s and mass m,

B�ðp; σÞ → χ1ðk1; λ1Þ þ χ2ðk2; λ2Þ; ðA8Þ

where p and σ are the B� momentum and helicity and k1;2
and λ1;2 are the momenta and helicities of two χ particles.
The corresponding helicity amplitudes can be written in the
Jacob-Wick helicity formalism [103,104] as

MB�→χ1χ2
σ;λ1;λ2

ðθ;ϕÞ ¼ C1λ1;λ2d
1
σ;λ1−λ2ðθÞeiðσ−λ1þλ2Þϕ

with jλ1 − λ2j ≤ 1 ðA9Þ

¼ ψ̄α1���αn
1 ðk1; λ1ÞΓðsÞ

α1���αn;β1���βn;μðp; qÞψ
β1���βn
2 ðk2; λ2Þϵμðp; σÞ;

ðA10Þ

with the Wigner d function in Ref. [104] and the integer
n ¼ s or s − 1=2 for the bosonic or fermionic particle. In
the bosonic case with s ¼ n, the two spin-s wave tensors
are

ψ̄α1���αn
1 ðk1; λ1Þ ¼ ϵ�α1���αnðk1; λ1Þ; ðA11Þ

ψβ1���βn
2 ðk2; λ2Þ ¼ ϵ�β1���βnðk2; λ2Þ; ðA12Þ

which can be derived explicitly with the complex con-
jugation in Eq. (A1). In the fermionic case with
s ¼ nþ 1=2, the two spin-s wave tensors are

ψ̄α1���αn
1 ðk1; λ1Þ ¼ ūα1���αnðk1; λ1Þ; ðA13Þ

ψβ1���βn
2 ðk2; λ2Þ ¼ vβ1���βnðk2; λ2Þ; ðA14Þ

which can be derived explicitly by use of Eqs. (A2) and (A3).
Taking the procedure described in detail in Refs. [80,81],

we can construct the covariant three-point vertex system-
atically. Before writing down them in a compact form, we
introduce two fermionic basic operators defined by
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P� ¼ 1

2
ð1 ∓ κγ5Þ; ðA15Þ

W�
μ ¼ 1

2
ð�κγ⊥μ þ γμγ5Þ; ðA16Þ

where κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2=m2�

p
and γ⊥μ ¼ g⊥μνγ

ν with the
orthogonal tensor g⊥μν ¼ gμν − p̂μp̂ν þ q̂μq̂ν and also four
bosonic basic operators

S0αβ ¼ p̂αp̂β; ðA17Þ

S�αβ ¼
1

2
½g⊥αβ � ihαβp̂ q̂i�; ðA18Þ

V�
1αβ;μ ¼

1

2
p̂β½g⊥αμ � ihαμp̂ q̂i�; ðA19Þ

V�
2αβ;μ ¼

1

2
p̂α½g⊥βμ ∓ ihβμp̂ q̂i�; ðA20Þ

with the totally antisymmetric tensor hαβq̂ p̂i ¼ εαβγδp̂γq̂δ

with the convention ε0123 ¼ þ1.
The covariant fermionic three-point vertex with the half-

integer spin s ¼ nþ 1=2 is given by

½ΓF� ¼
Xn
τ¼−n

f½q̂�ðθðτÞf0τþ1½Pþ� þ θð−τÞf0τ−1½P−�Þ

þ fþτ ½Wþ� þ f−τ ½W−�g½Sτ̂�jτj½S0�n−jτj; ðA21Þ

in terms of the fermionic f0 and f� form factors, and “the
covariant bosonic three-point vertex with the integer spin
s ¼ n is given by

½ΓB� ¼
Xn
τ¼−n

fb0τ ½q̂�½Sτ̂� þ θðjτj − 1Þðbþτ ½V τ̂
1�

þ b−τ ½V τ̂
2�Þg½Sτ̂�jτj−1½S0�n−jτj; ðA22Þ

in terms of the bosonic b0 and b� form factors, where n is a
non-negative integer and τ̂ ¼ τ=jτj satisfies τ̂ ¼ þ1 for
τ ¼ 0. Further, the step function θðxÞ ¼ 1 is 1 or 0 for x ≥ 0
or x < 0, respectively.

For two identical Majorana particles (χ1 ¼ χ2) coupled
to the U(1) gauge boson, the corresponding covariant three-
point vertices ΓF and ΓB must satisfy the IP relations

CΓμ
Fβ;αðp;−qÞC−1 ¼ Γμ

Fα;βðp; qÞ for fermions; ðA23Þ

Γμ
Bβ;αðp;−qÞ ¼ Γμ

Bα;βðp; qÞ for bosons; ðA24Þ

with the charge conjugation operator C ¼ iγ2γ0 satisfying
CC† ¼ 1 and C† ¼ CT ¼ −C. These IP relations lead to
the following relations on the form factors:

f0τ�1 ¼ 0; fþτ ¼ f−τ ; ðA25Þ

b0τ ¼ 0; bþτ ¼ b−τ ; ðA26Þ

with τ ¼ −n;…; n for the non-negative integer n. As a
result, we end up with the sum Wþ þW− in the fermionic
case and the sum V�

1 þ V�
2 in the bosonic case.

Furthermore, imposing the U(1) gauge invariance condition
on the summed expression, we can obtain the modified
fermionic and bosonic vector operators8

Aμ ¼ γ⊥μγ5; ðA27Þ

V�
μ ¼ 1

2
½p̂αg⊥αμ þ p̂βg⊥αμ ∓ ihαβμq̂i⊥�; ðA28Þ

with the orthogonal gamma matrix γ⊥μ ¼ g⊥μνγ
ν and the

angle-bracket notation of the Levi-Civita tensor hαβμq̂i⊥ ¼
g⊥μ

νhαβνq̂i where the odd-parity operator hαβμq̂i⊥ is
obtained through the effective replacement

p̂βhαμp̂ q̂i − p̂αhβμp̂ q̂i¼eff − hαβμq̂i; ðA29Þ

which is guaranteed when the vertex operators are coupled
to the wave tensors of two on-shell Majorana particles of
spin s. For the detailed derivation, we refer to the works in
Refs. [73,80–82,105]).
By gathering all the basic and derived operators, we can

readily formulate the covariant representation of the effec-
tive hypercharge anapole vertices for a pair of identical
Majorana particles with arbitrary spin

½ΓB� ¼
Xn
τ¼−n

θðjτj − 1Þbτ½V τ̂�½Sτ̂�jτj−1½S0�n−jτj for an integer spin s ¼ n; ðA30Þ

½ΓF� ¼
Xn
τ¼−n

fτ½A�½Sτ̂�jτj½S0�n−jτj for a half-integer spin s ¼ nþ 1=2; ðA31Þ

8The term q̂μðq̂ · γÞ in A⊥μ vanishes when coupled to the fermionic wave tensors due to their on-shell conditions.

HUNTING FOR HYPERCHARGE ANAPOLE DARK MATTER IN … PHYS. REV. D 109, 096001 (2024)

096001-17



which can be rendered equivalent to Eqs. (2.4) and (2.5)
after a proper dimensional adjustment with the momentum-
squareds, p2 and q2, and the cutoff scale Λ. The proper
adjustment can easily be made by use of two effective
identities

gαβ ¼ Sþαβ þ S−αβ −
ðp2 − q2Þ

q2
S0αβ and pαpβ ¼ p2S0αβ;

ðA32Þ

which are effectively valid due to their contractions with the
wave tensors of two on-shell Majorana particles. As can be
checked easily, the total number of independent terms is 2s
both for the fermionic and bosonic cases as mentioned
in Ref. [73].

APPENDIX B: CALCULATION STRATEGY
OF THE DM RELIC ABUNDANCE

In this Appendix, we provide a detailed explanation of
how to calculate the DM relic abundance. This abundance
is determined by the thermal freeze-out processes illus-
trated in Fig. 2. In the absence of phase transitions, the
entropy of the Universe in a comoving frame,
S≡ sa3 ¼ ð2π2=45ÞgsT3a3, with the degrees of freedom
gs contributing to the entropy density s is conserved
throughout its evolution with the decreasing temperature
T and, accordingly, the scale factor a. The freeze-out occurs
during the radiation-dominated epoch, enabling us to write
down the energy density ρ ¼ ðπ2=30ÞgρT4, with the
degrees of freedom gρ, involved in the Hubble parameter

H ¼ ð1=aÞda=dt ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGρ=3

p
with the gravitational con-

stantG. In this case, the yield YðxÞ of DM particles, varying
over x ¼ mχ=T (that is, over time and/or temperature),
satisfies the so-called evolution equation,

dY
dx

¼ −
λann
x2

gsffiffiffiffiffigρp
�
1þ 1

3

dðln gsÞ
dðlnTÞ

�
ðY2 − Y2

eqÞ; ðB1Þ

where λann ¼ ðπ=45Þ1=2MplmχhσvMøli with the so-called
Møller velocity vMøl of two annihilating DM particles [106]
and Y ¼ n=s and Yeq ¼ neq=s including the DM number
density n and the thermal-equilibrium density neq in the
comoving frame. Here, the yield Yeq of the DM particles in
thermal equilibrium can be written as

YeqðxÞ ¼ 0.1154
gχ
gs

x2K2ðxÞ; ðB2Þ

with the DM spin degrees of freedom gχ and the second-
kind modified Bessel function K2 of order 2. The simple
asymptotic expression at large values of x ≫ 1 is

YeqðxÞ ≈ 0.145
gχ
gs

x3=2e−x: ðB3Þ

In the present work, we calculate the thermally averaged
cross section hσvMøli by adopting its explicit form [106] as

hσvMøli ¼
x

8m5
χK2

2ðxÞ
Z

∞

4m2

ds
ffiffiffi
s

p ðs − 4m2
χÞK1ð

ffiffiffi
s

p
=TÞσðsÞ;

ðB4Þ

involving the annihilation cross sections in Eq. (3.1) or
(3.2) with the second-kind modified Bessel function K1 of
order 1. This is because the conventional series expansions
of the cross sections over the relative velocity between two
annihilating DM particles do not converge when the
annihilation energy

ffiffiffi
s

p
is close to the Z-boson mass due

to the sharp Z-boson pole contribution [107]. The expo-
nentially stiff suppression of the modified Bessel functions
for large values of x ≫ 1 renders the numerical calculation
unreliable. Instead, we use its analytic asymptotic expres-
sion directly as

hσvMøli ∼
x3=2

8m5
χ

ffiffiffiffiffiffiffiffiffi
2mχ

π

r Z
∞

4m2
χ

ds s1=4ðs − 4m2
χÞ

× exp

�
x

�
2 −

ffiffiffi
s

p
mχ

���
1 −

15

4x
þ 2mχ

8x
ffiffiffi
s

p
�
σðsÞ;

ðB5Þ
for x ≫ 1. The exclusion limits on the couplings satisfying
the observed DM relic density Ωχh2 ≈ 0.12 [74] can be
derived by integrating out Eq. (B1) from x ¼ 1 to x ¼ 103

with the initial condition Y ¼ Yeq at x ¼ 1. Numerically, the
function λann dependent on the annihilation cross section
varies stiffly with the DM mass mχ in the GeV region,
reducing the accuracy of thenumerical calculation [108]. The
numerical accuracy can be enhanced greatly by taking the
integration after recasting the evolution equation as

dW
dx

¼ −
λann
x2

gsffiffiffiffiffigρp
�
1þ 1

3

d ln gs
d lnT

�
½eW − eð2Weq−WÞ�; ðB6Þ

with a more slowly varying logarithmic functionW ¼ lnY.
The relic abundance calculations described so far are
obtained semianalytically, and the results are consistent with
the MicrOMEGAs [109] calculations.
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