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We present a novel artificial intelligence approach for beyond the Standard Model parameter space scans
by augmenting an evolutionary strategy with novelty detection. Our approach leverages the power of
evolutionary strategies, previously shown to quickly converge to the valid regions of the parameter space,
with a novelty reward to continue exploration once converged. Taking the Z3 3HDM as our physics
case, we show how our methodology allows us to quickly explore highly constrained multidimensional
parameter spaces, providing up to eight orders of magnitude higher sampling efficiency when compared
with pure random sampling and up to four orders of magnitude when compared to random sampling around
the alignment limit. In turn, this enables us to explore regions of the parameter space that have been hitherto
overlooked, leading to the possibility of novel phenomenological realizations of the Z3 three Higgs doublet
model that had not been considered before.
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I. INTRODUCTION

The Standard Model (SM) of particle physics has dem-
onstrated remarkable success in accurately describing the
electroweak and strong interactions. However, experimental
challenges such as neutrino mass, dark matter, and the
baryonic asymmetry of the Universe prompt the exploration
of physics beyond the SM (BSM). In many cases, BSM
theories involve expanding the minimal scalar sector of the
SM, characterized by a single Higgs doublet. Multi-Higgs
doublet models are particularly prominent among these
extensions, primarily because they maintain the tree-level
value of the electroweak ρ parameter in good agreement with
experimental observations. The extensively studied two
Higgs doublet model (2HDM) [1] has provided valuable
insights. More recently, there has been a surge of interest in
the investigation of three Higgs doublet models (3HDMs)
[2–16], where the scalar sector encompasses three Higgs

doublets. These models show great promise as they possess
the essential ingredients to address the challenges posed by
dark matter and the baryonic asymmetry of the Universe.
With no unambiguous signs of new physics in general

and of extra exotic scalars in particular, BSM phenom-
enology is faced with an ever increasing and ever more
restricting list of (direct and indirect) experimental con-
straints, in addition to any theoretical and self-consistency
constraints. From a model building perspective, this means
that the allowed regions of BSM parameter spaces are
effectively shrinking, making finding such regions ever
more difficult or outright impractical, even if those regions
host points that are very good fits to the data. To mitigate
this, BSM phenomenologists often simplify the problem
in two possible ways. The first approach is to simplify the
constraints and leave some questions unanswered, to be
eventually addressed by an ultraviolet completion. The
second approach relies on simplifying the sampling space
by changing the priors from which the parameters are
drawn, usually by restricting the parameter space to a
subregion where known valid points had been found before
or for which there is a limiting case, such as the case of
the alignment limit in multi-Higgses models. While in the
former case one ends up with an incomplete model, in the
latter case one is left with the worrisome prospect of
missing out possible phenomenological signatures.
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In recent years, artificial intelligence (AI) in general and
machine learning (ML) in particular have received consid-
erable attention by the high energy physics community
with a wide range of applications [17]. Of particular interest
to this work are the ongoing attempts to explore the para-
meter space of highly constrained and multidimensional
BSM scenarios, where sampling points that respect theo-
retical and experimental bounds poses a great challenge.
The first attempts to mitigate this problem using AI/ML are
based on using supervised classifiers and regressors to
produce estimates of BSM predictions of physical observ-
ables and physical quantities [18–22], bypassing the com-
putational overhead often associated with these. Other
approaches leverage the active learning framework to track
the ground truth of the observables to draw the boundary of
the allowed regions of the parameter space [23,24]. How-
ever, we point out that the usage of AI/ML for BSM
parameter spaces studies is not restricted to exploration,
as generative models have been studied to provide a possible
way of replicating points from valid regions [25] or to gain
new insights through latent space visualization [26].
The approaches cited above rely heavily on the quality

of the trained ML model, namely on the coverage of the
parameter space provided by the points used, especially in
or near valid regions. A different approach was presented
in [27], where different AI-based exploration algorithms
were used to explore the parameter space of the constrained
minimal supersymmetric standard model (four parameters)
and the phenomenological minimal supersymmetric stan-
dard model (16 parameters) by reframing the problem as a
black-box optimization problem. In such an approach,
exploration starts with just a few random points from
which iterative algorithms will progressively suggest better
points through trial and error. Although the physics cases in
[27] were not especially realistic, as only Higgs mass and
dark matter relic density constraints were used, the meth-
odology provided orders of magnitude of sampling effi-
ciency improvement over random sampling, while still
capturing a global picture of the parameter space.
In this paper, we will extend and build on top of that

of [27]. In that work, an evolutionary strategy algorithm
was observed to eagerly converge to the valid region of the
parameter space and to stop exploring once converged.
To mitigate this, in [27] the algorithm was endowed with a
restart strategy to draw a more global picture of the valid
region of the parameter space. In this work, we will take a

different approach by incorporating a novelty reward into the
black-box optimization problem to drive the exploration
algorithm away from the regions already explored. As we
will see, our approach retains the benefits of drastically
improving sampling efficiency while gaining a novel
approach to charter the valid region of the parameter space.
Although the proposed approach is general to any BSM

parameter space,1 we will use our novel methodology to
perform a realistic search on the highly constrained Z3

3HDMmodel, where all known and possible constraints will
be considered. This poses a terrific challenge for sampling
valid points from the parameter space, which has led
previous studies to consider sampling around the alignment
limit. Therefore, the Z3 3HDM provides an ideal scenario
not only to develop our methodology, but to use to do new
physics by exploring points beyond random sampling
strategies around the alignment limit and to discover novel
phenomenological realizations of the Z3 3HDM that have
been obfuscated in the past such strategies.
This paper is organized as follows. In Sec. II we present

the Z3 3HDM model which is the physics subject of our
study. In Sec. III we present its constraints, both theoretical
and experimental. In Sec. IV we outline the random
sampling strategy near the alignment limit, which we will
use to compare our methodology. In Sec. V we introduce
the AI scan strategy, redefining the scan as black-box
optimization, and the novelty award based on density
estimation. In Sec. VI we present and analyze the results
obtained with our methodology, showcasing the versatility
of our approach. Finally, in Sec. VII we conclude our
discussion and point out novel directions of work.

II. THE Z3 3HDM MODEL

A. Scalar sector

For the potential of the Z3 model, denoted VZ3
, we use

the conventions of [6]. The Z3-invariant terms, given by
ϕi → ϕ0

i ¼ ðSZ3
Þijϕj, where

SZ3
¼ diag

�
1; ei

2π
3 e−i

2π
3

�
: ð1Þ

can be expressed as

VZ3
¼ V2 þ V4; ð2Þ

with the quartic part represented by

V4 ¼ λ1ðϕ†
1ϕ1Þ2 þ λ2ðϕ†

2ϕ2Þ2 þ λ3ðϕ†
3ϕ3Þ2 þ λ4ðϕ†

1ϕ1Þðϕ†
2ϕ2Þ þ λ5ðϕ†

1ϕ1Þðϕ†
3ϕ3Þ þ λ6ðϕ†

2ϕ2Þðϕ†
3ϕ3Þ þ λ7ðϕ†

1ϕ2Þðϕ†
2ϕ1Þ

þ λ8ðϕ†
1ϕ3Þðϕ†

3ϕ1Þ þ λ9ðϕ†
2ϕ3Þðϕ†

3ϕ2Þ þ
�
λ10ðϕ†

1ϕ2Þðϕ†
1ϕ3Þ þ λ11ðϕ†

1ϕ2Þðϕ†
3ϕ2Þ þ λ12ðϕ†

1ϕ3Þðϕ†
2ϕ3Þ þ H:c:

�
: ð3Þ

1In fact, the methodology presented in this paper is applicable to any sampling in highly constrained multidimensional spaces, not
only to BSM phenomenology.
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The quadratic part, denoted as V2, is given by

V2 ¼ m2
11ϕ

†
1ϕ1 þm2

22ϕ
†
2ϕ2 þm2

33ϕ
†
3ϕ3 þ

�
m2

12ðϕ†
1ϕ2Þ

þm2
13ðϕ†

1ϕ3Þ þm2
23ðϕ†

2ϕ3Þ þ H:c:
�
; ð4Þ

which includes terms, m2
12, m

2
13, and m2

23, responsible for
breaking the symmetry softly.
Following spontaneous symmetry breaking, the three

doublets can be parametrized in terms of their component
fields as

ϕi ¼
 

w†
k

ðvi þ xi þ iziÞ=
ffiffiffi
2

p
!
; ði ¼ 1; 2; 3Þ ð5Þ

where vi=
ffiffiffi
2

p
corresponds to the vacuum expectation value

(VEV) for the neutral component of ϕi. It is assumed that
the scalar sector of the model explicitly and spontaneously
conserves CP. Under this assumption, all parameters in
the scalar potential are real, and the VEVs v1, v2, v3 are
also real.
The scalar potential in Eq. (2) contains 18 parameters,

and the VEVs are parametrized as follows:

v1 ¼ v cos β1 cos β2; v2 ¼ v sin β1 cos β2;

v3 ¼ v sin β2; ð6Þ

leading to the Higgs basis [28–30] obtained by the
following rotation,

0B@H0

R1

R2

1CA ¼ Oβ

0B@ x1
x2
x3

1CA ¼

0B@ cos β2 cos β1 cos β2 sin β1 sin β2
− sin β1 cos β1 0

− cos β1 sin β2 − sin β1 sin β2 cos β2

1CA
0B@ x1

x2
x3

1CA: ð7Þ

Orthogonal matrices, denoted as R, P, and Q, diago-
nalize the squared mass matrices in the CP-even scalar,
CP-odd scalar, and charged scalar sectors. These matrices
are crucial for transforming the weak basis into the physical
mass basis for states with well-defined masses. Although
this has already been discussed before [6,10,31], for
completeness and to fix our notation, we give here the
rotations that relate the mass eigenstates to the weak basis
states.
For the neutral scalar sector, the mass terms can be

extracted through the following rotation,

0B@ h1
h2
h3

1CA ¼ Oα

0B@ x1
x2
x3

1CA; ð8Þ

where we take h1 ≡ h125 to the be the 125 GeV Higgs
boson found at LHC. The form chosen for Oα ≡R is

R≡Oα ¼ R3:R2:R1; ð9Þ

where the matrices Ri are

R1 ¼

0B@ cos α1 sin α1 0

− sin α1 cos α1 0

0 0 1

1CA; R2 ¼

0B@ cos α2 0 sin α2
0 1 0

− sin α2 0 cos α2

1CA; R3 ¼

0B@ 1 0 0

0 cos α3 sin α3
0 − sin α3 cos α3

1CA: ð10Þ

For the charged and pseudoscalar sectors, the physical
scalars can be obtained via the following 3 × 3 rotations,

0B@G0

A1

A2

1CA ¼ Oγ1Oβ

0B@ z1
z2
z3

1CA;

0B@Gþ

Hþ
1

Hþ
2

1CA ¼ Oγ2Oβ

0B@w†
1

w†
2

w†
3

1CA;

ð11Þ

where the rotation matrices are given by

Oγ1 ¼

0B@ 1 0 0

0 cos γ1 − sin γ1
0 sin γ1 cos γ1

1CA;

Oγ2 ¼

0B@ 1 0 0

0 cos γ2 − sin γ2
0 sin γ2 cos γ2

1CA: ð12Þ

For later use, we define the matrices P and Q as the
combinations that connect the weak basis to the physical
mass basis for the CP odd and charged Higgs scalars,
respectively,
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P≡Oγ1Oβ; Q≡Oγ2Oβ: ð13Þ
As the states in the physical basis have well-defined

masses, we can obtain relations between the set

fv; β1; β2; mh1; mh2; mh3; mA1; mA2; mH�
1
; mH�

2
; α1; α2;

α3; γ1; γ2g; ð14Þ
and the potential parameters in Eq. (2), as shown in
Refs. [6,10,31].

B. Higgs-fermion Yukawa interactions

In the type-I models considered here,2 fermion fields are
unaffected by the Z3 transformation, allowing them to
couple only to ϕ3. The Yukawa couplings to fermions are
expressed compactly as

LY ∋ −
mf

v
f̄
�
afj þ ibfj γ5

�
fhj; ð15Þ

where hj ≡ ðh1; h2; h3; A1; A2Þj represents the physical

Higgs fields. For completeness, we list the couplings afj
and bfj here [12]. We have

afj →
Rj;3bv3 ; j¼ 1;2;3 for all leptons and down quarks;

bfj →
Pj−2;3bv3 ; j¼ 4;5 for all leptons and down quarks;

afj →
Rj;3bv3 ; j¼ 1;2;3 for all up quarks;

bfj →−
Pj−2;3bv3 ; j¼ 4;5 for all up quarks; ð16Þ

where we have defined v̂i ¼ vi=v.
For the charged Higgs, H�

1 and H�
2 , the Yukawa

couplings to fermions are expressed as

LY ∋
ffiffiffi
2

p

v
ψdi

�
mψdi

V�
jiη

L
kPL þmψuj

V�
jiη

R
k PR

�
ψujH

−
k

þ
ffiffiffi
2

p

v
ψ̄ui

�
mψdj

Vijη
L
kPR þmψui

Vijη
R
k PL

�
ψdjH

þ
k ;

ð17Þ
where ðψui ;ψdiÞ is ðui; diÞ for quarks or ðνi;liÞ for leptons.
The coefficients ηlLk , ηlRk , ηqLk , and ηqRk are

ηlLk ¼ −
Qkþ1;3bv3 ; ηlRk ¼ 0; ηqLk ¼ −

Qkþ1;3bv3 ;

ηqRk ¼ Qkþ1;3bv3 ; k ¼ 1; 2: ð18Þ

III. CONSTRAINTS

In this section, we outline the various constraints
necessary to impose theoretical and phenomenological
consistency on the model parameters. The specifics of
these constraints in the context of 3HDM are well estab-
lished, as documented in previous works [10,12,16]. For
brevity, we provide a brief list here, deferring further
elaboration to the Appendix.
From a phenomenological standpoint, our primary

objective is to ensure the existence of an SM-like Higgs,
identifiable as the scalar boson detected at the LHC. As
demonstrated in [6], achieving this involves staying close to
the “alignment limit,” characterized in the 3HDM by the
following conditions:

α1 ¼ β1; α2 ¼ β2: ð19Þ

In this limit, the lightest CP-even scalar, denoted as h,
exhibits exact SM-like couplings at the tree level, auto-
matically satisfying constraints from Higgs signal
strengths. However, our interest lies in exploring permis-
sible deviations from this precise alignment. To this end, we
use the signal strength formalism, comparing the results
with the experimental limits [32].
Subsequently, we must address constraints stemming

from electroweak precision parameters, specifically S, T,
and U. We use the analytic expressions of Ref. [33],
contrasting them with the fit values provided in Ref. [34].
Notably, similar to the 2HDM scenario, we can bypass
T-parameter constraints by imposing [14]

mH�
1
¼ mA1; mH�

2
¼ mA2; γ1 ¼ γ2; ð20Þ

as we will explain in Sec. IV.
Additionally, we incorporate constraints arising from

flavor data, as detailed in the Appendix. Direct searches at
the LHC for the heavy nonstandard scalars are also
considered, employing HiggsTools-1.1.3 following Ref. [35],
which provides a comprehensive list of relevant experi-
mental searches.
For theoretical constraints, we insist on the perturbativity

of Yukawa couplings, perturbative unitarity, and BFB
(bounded from below) conditions. The implementation
details for these constraints can be found in the Appendix.

IV. RANDOM SCAN STRATEGY

We developed a dedicated code specifically for the Z3

constrained 3HDM,3 building upon our earlier codes
[10,38,39]. A thorough exploration of the parameter space
was conducted using Eq. (14). Our fixed inputs remained

2For a detailed discussion of all the types of Higgs-fermion
couplings that lead to natural flavor conservation, see Ref. [12].

3The Feynman rules for this model were derived with the
software FeynMaster [36,37] and automatically imported into the
code.
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v ¼ 246;GeV and mh1 ¼ 125;GeV. Random values were
assigned within the following ranges:

α1; α2; α3; γ1; γ2 ∈
	
−
π

2
;
π

2



; tan β1; tan β2 ∈ ½0.3; 10�;

mH1
≡mh2 ; mH2

≡mh3 ∈ ½125; 1000� GeV; ð21Þ

mA1
; mA2

; mH�
1
; mH�

2
∈ ½100; 1000� GeV; ð22Þ

m2
12; m

2
13; m

2
23 ∈ ½�10−1;�107� GeV2; ð23Þ

where the last expression applies only to the soft masses
that are not obtained as derived quantities (see Ref. [10] for
the complete expressions). Note that m2

ij have dimensions
of ðMassÞ2, but despite their notation they are not positive
definite.
However, this extensive scan exhibited low efficiency

(as detailed in Sec. III below). Recognizing the significance
of alignment in 3HDM [6,9,10], where alignment is defined
by the lightest Higgs scalar having SM couplings, we im-
posed constraints to enhance efficiency. Initially, aligning
α1 with β1 and α2 with β2 (19) did not yield enough good
points. Reference [9] introduced an additional condition:

γ1 ¼ γ2 ¼ −α3; mH1
¼ mA1

¼ mH�
1
;

mH2
¼ mA2

¼ mH�
2
: ð24Þ

This, alongside Eq. (19), led to a symmetric form of the
quartic part of the potential [9,40]. In fact, these conditions
simplified the potential to

VSym;Lim ¼ λSM
�ðϕ†

1ϕ1Þ þ ðϕ†
2ϕ2Þ þ ðϕ†

3ϕ3Þ
�
2; ð25Þ

where

λSM ¼ m2
h

2v2
; ð26Þ

is the SM quartic Higgs coupling. All λi vanish or are
expressed in terms of λSM. The validity of Eqs. (19) and
(24) also implies that the soft masses can be explicitly
solved, that is, they are no more independent parameters
(see Ref. [10] for complete expressions). Now it should be
clear why all such points are good points. Due to alignment,
the LHC results on the h125 are easily obeyed, whereas the
perturbativity unitarity, the oblique precision parameters,
S, T and U, and the other constraints are automatically
obeyed.
To facilitate efficiency and consider deviations from

strict alignment, two conditions were introduced [10]. The
first, denoted “Al-1,” allowed a percentage deviation:

α1
β1

;
α2
β2

∈ ½0.5; 1.5�: ðAl-1Þ ð27Þ

The condition “Al-2” was more stringent, combining Al-1
with six additional conditions:

α1
β1

;
α2
β2

;
γ2
γ1
;
−α3
γ1

;
mA1

mH1

;
mH�

1

mH1

;
mA2

mH2

;
mH�

2

mH2

∈ ½0.5;1.5�: ðAl-2Þ

ð28Þ
These conditions, especially Al-2, improved the generation
of meaningful points beyond the SM, even with a departure
from strict alignment.

V. ARTIFICIAL INTELLIGENCE BLACK-BOX
OPTIMIZER SCAN STRATEGY

To quickly explore the parameter space, we will employ
the AI black-box optimization approach to parameter space
sampling first presented in [27]. In this approach, a
constraint function, C, is introduced,

CðOÞ ¼ maxð0;−OþOLB;O −OUBÞ; ð29Þ

where O is the value of an observable (or a constrained
quantity), OLB is its lower bound (i.e., its lowest allowed
value), and OUB its upper bound (i.e., its highest allowed
value). Here, O is obtained by some computational routine
that maps the parameter space to physical quantities, where
the details of such routine are irrelevant and can therefore
be taken as a black box. If the value ofO is within its lower
and upper bounds, CðOÞ returns 0, otherwise it returns a
positive number that measures how far the value of O is
from its allowed interval.O is dependent on the parameters
of the model, θ ¼ ðα1; β1;…Þ∈P, where P is the para-
meter space defined by Eq. (23), that is, O ¼ OðθÞ, which
implies that CðOÞ ¼ CðOðθÞÞ ¼ CðθÞ. Therefore, the set
of valid points, V, that satisfy a constraint can be defined in
terms of θ as

V ¼ fθ�∶ θ∈Ps:t: CðθÞ ¼ 0g: ð30Þ

SinceCðθÞ is both vanishing and minimal in V, the same set
can be defined through the optimization statement

V ¼ fθ�∶θ∈Ps:t: θ� ¼ arg minCðθÞg: ð31Þ

Therefore, the task of finding the points in the parameter
space that satisfy constraints is the same as finding the
points that minimize CðOÞ. When faced with multiple
constraints on multiple observables or constrained quan-
tities, Oi, we can then combine them into a single loss
function, L, which we wish to minimize

LðθÞ ¼
XNC

i¼1

C
�
OiðθÞ

�
; ð32Þ

where the sum runs over all the NC constraints discussed
in Sec. III, and L ≥ 0 ∀ θ with L ¼ 0 if and only if all
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constraints are met. We notice that the quantityOi does not
need to be observable, such as the μif signal strengths
measured by the LHC. For example, the theoretical con-
straints related to BFB and unitary conditions are included
as Oi with the respective required bounds. The ability to
mix measurements, limits, and theoretical constraints in the
same loss function is a key strength of this methodology.
Although Oi included observables and other constrained
quantities, we will often abuse terminology and refer to all
Oi as observables and the space they span as observable
space, O.

A. The search algorithm: Covariant matrix
approximation evolutionary strategy

Having framed parameter space sampling as a black-box
optimization problem, we need to choose which AI black-
box optimization algorithm to perform the task. In [27],
three different algorithms were considered: a Bayesian
optimization algorithm, a genetic algorithm, and an evolu-
tionary strategy algorithm. Each realized different balances
of the so-called exploration (how much of the parameter
space explored) vs exploitation (how fast it converged to V)
trade-off. In this work, we will use the evolutionary strategy
algorithm, which provides the fastest convergence speed.
The evolutionary strategy algorithm in question is the

covariant matrix approximation evolutionary strategy
(CMAES) [41,42]. Evolutionary strategies (ES) are power-
ful numerical optimization algorithms from the broader
field of evolutionary computing. evolutionary computing
algorithms are characterized by an iterative process in
which candidate solutions for a problem are tested and the
best ones are used to generate new solutions. In our case,
the candidate solutions are points in the parameter space,
and their suitability (i.e., their fitness) is measured by the
loss function function Eq. (32). As opposed to genetic
algorithms, ES do not make use of genes to generate new
candidate points. Instead, in ES, new candidates are
sampled from a distribution, the parameters of which are
set by the best candidates from previous iterations, called
generations.
In CMAES, the distribution is a highly localized multi-

variate normal. This normal distribution is initialized with
the center at a random point in the parameter space, and its
covariant matrix is set to the identity multiplied to an
overall scaling constant σ. A generation of λ candidates is
sampled from the multivariate normal and their fitness is
evaluated by Eq. (32). Next, the λ candidates are sorted
from best to worst, and the μ best candidates are used to
compute a new mean of the normal distribution, as well as
to approximate its covariant matrix. Intuitively, the change
in mean progresses the algorithm in the direction of
steepest descent of the loss function, just like a first-order
optimization method would, and the covariant matrix
approximates the (local) Hessian of the loss function,
just like a second-order optimization method would.

The difference, however, is that CMAES does not compute
derivatives of the loss function, and therefore it is suitable
for nonconvex, ill-conditioned, and even noncontinuous
loss functions. This feature makes CMAES converge very
quickly on a wide variety of optimization problems. We
warn, however, that the intuitive description of CMAES
presented above hides many of its inner working details,
which are not relevant for the study at hand, and we point
the interested reader to the original references provided.

B. The novelty reward: Histogram based
outlier system

In [27] CMAES was shown to converge very fast
compared to other AI black-box search algorithms.
However, it was also observed that CMAES has limited
exploration capacity due to the highly localized nature of
the multivariate normal from which new candidate sol-
utions are drawn. To mitigate this, in [27] many indepen-
dent runs of CMAES with restarting heuristics were
performed to draw a more global picture of the valid
region of the parameter space. In this work, we present a
novel approach to promote exploration by adding a novelty
reward to the loss function. To achieve this, we will
compute the density of valid points already found and
add it to the loss function as penalty. In this way, the loss
function will be minimal not only when the constraints are
satisfied but also away from valid regions that have already
been found, which pushes CMAES to explore new regions
and effectively working as a novelty reward.
The addition of a penalty to the loss function in Eq. (32)

might produce new local minima. For example, consider
the addition of various penalties, pj, each taking values
pj ∈ ½0; 1�. This will create a competition between penalties
pj, and observable optimization CðOiÞ, when

P
i CðOiÞ≃P

j pj, producing local minima away from
P

i CðOiÞ ¼ 0

and therefore spoiling our attempt to find good points.
In order to prevent this, we artificially raise the value of
the loss function outside the valid region by one so that
such competition never arises; i.e., we consider a new
version of L, L̃,

L̃ðθÞ ¼
�
1þ LðθÞ if LðθÞ > 0

0 if LðθÞ ¼ 0
; ð33Þ

which guarantees that the total loss function, LT , including
Np penalties

LTðθÞ ¼ L̃ðθÞ þ 1

Np

XNp

i¼1

pi; ð34Þ

is still positive semidefinite, and such that for a valid point
we have

P
i CðOiÞ ¼ 0 ⇒ 0 ≤ LT ≤ 1 in a way that the

density penalty does not compete with the constraints since;
i.e., for invalid points we always have LT > 1.
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Having defined how penalties can be added to the loss
function without spoiling our implementation of a black-
box optimization algorithm to find valid points, we now
have to choose how to compute and quantify the penalty to
produce the novelty reward. The first thing we need to
address is how to compute the point density. This task is
known in the ML literature as density estimation, and for
large multidimensional datasets it is a very challenging
task. Furthermore, not only we want to be able to estimate
the point density accurately, we do not want the density
estimation to be prohibitively slow to compute. After some
preliminary exploratory experimentation, we identified the
histogram based outlier system (HBOS) [43] as a fast and
easy to implement solution.4 HBOS has also been pre-
viously explored in the context of model-independent
searches for new physics using anomaly detection [44].
HBOS works by fitting a histogram with a fixed number
of bins, Nbins, to each dimension, i.e., for each parameter.
A density penalty for a point θ is obtained by summing
the heights, hj, of the bins on which the values of the
parameters, θj, belong.

5 The penalties are normalized to be
p∈ ½0; 1�, so that a novelty point has penalty 0 and a point
too similar to the ones already seen has maximal penalty 1.
Furthermore, we notice that the penalty over the parameter
space density needs not to be over all parameters,
θ ¼ ðα1; β2;…Þ, but can be focused on only a subset of
these, fθjg—this is especially useful to promote focused
exploration in parameters of interest.
Whilst the discussion above focusses on parameter space

density penalty, it can be extended to other spaces. Of
particular interest, which we will include in our study, is
the space of physical quantities, O. This will allow us
to explore not only novel areas of the parameter space,
but—perhaps more importantly—cover novel areas of the
observables space, i.e., to explore novel phenomenological
aspects of the model. To do so, we need to train a penalty p
not on the values of the parameters, θ, but on its resulting
physical quantities, fOig, where the set fOig can be of all
or a subset of Oi.
In our scans, we will include the novelty reward in both

the parameter space and in the observable space, and in
each case we will study penalties focused subsets of the
parameters and the observables.

C. Further implementation details

We now discuss some implementation details of the ideas
presented above. We implemented CMAES using DEAP—
distributed evolutionary algorithms in PYTHON [45]. The
function C was slightly modified so as to force all values of
CðOiÞ to be nominally similar. To achieve this, we have
implemented in the code CðOiÞ → logðCðOiÞ þ 1Þ, which
retains the same properties: positive semidefiniteness,
continuous, and monotonically increasing away from the
allowed interval. Furthermore, to prevent any constraint
CðOiÞ from dominating over any other, we rescale them
at each generation to be bounded by [0, 1] using SCIKIT-
LEARN [46] and MINMAXSCALER before computing L̃ and
the final loss Eq. (34). We used PYOD [47] implementation of
the HBOS [43], and set Nbins ¼ 100, observing a consid-
erable computational overhead for higher values.6

The constraints that were checked in our main computa-
tional loop are listed in the Appendix. For collider limits on
novel scalars, we used HiggsTools version 1.1.3 [35]. As we
perform the signal strength, μij, checks in our main computa-
tional loop, we only use the HiggsBounds functionality of
HiggsTools, implemented using the HiggsBounds version 5 input
files using the PYTHON script provided by the HiggsTools

authors, and used the HiggsBounds dataset version 1.4.
For each scan, we ran a total of 100 independent runs,

each with a maximum of 2000 generations. We use the
CMAES default parameters, which set the population size,
λ, and the number of best candidates, μ, using a heuristic.
The values for our problem were automatically set to
λ ¼ 12 and μ ¼ 6, which means that each scan will at
most evaluate 2000×12×100¼ 2.4×106 points. CMAES
has very few parameters to be defined by the user, only the
initial mean of the multivariate normal and the overall scale
of the covariance σ. For each run, we set the mean to a
random point in the parameter space and initialize CMAES
with σ ¼ 1.
Furthermore, we follow the methodology in [27] where

we define all operations related to CMAES and density
estimation not over the parameter space but over a hyper-
cube ½0; 1�dP , where dP is the number of parameters, that
maps to the parameter space P. This allows us to treat all
parameters in an equal nominal footing, avoiding any
potential pathologies arising from having different param-
eters spanning many different orders of magnitude. For all
scans the parameter space bounds are the same used for the
random scans, defined in Eq. (23).
The final loss to be optimized to explore the parameter

space is

LTðθÞ ¼ L̃ðθÞ þ 1

2

�
pPðfθjgÞ þ pOðfOjðθÞgÞ

�
; ð35Þ

4Other possibilities were explored, such as one-class support
vector machines, isolation forest, kernel density estimation,
among others, but with considerable computational cost increase.
A systematic study of alternative novelty reward models is left for
future work.

5The usage of histograms suggests that HBOS suffers from the
so-called curse of dimensionality. In our studies below, we will
see that this manifests nontrivially as an interplay between
CMAES exploration and the geometry and topology of the valid
region of the parameter space.

6The evolutionary strategy with novelty reward implementa-
tion is made available at https://gitlab.com/miguel.romao/
evolutionary-strategy-novelty-detection-3hdm.
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where pPðfθjgÞ is the density penalty computed over the
subset of parameters fθjg effectively working as a novelty
reward in P, pOðfOjðθÞgÞ is the density penalty computed
over the subset of observables fOjg effectively working as
a novelty reward in O, NC is the number of constraints. As
discussed previously, we present different scans for differ-
ent choices of fθjg and fOjg to be included in the
computation of pP and pO to promote focused scans.

VI. ANALYSIS AND RESULTS

We now present and analyse the results for multiple
scans using the ideas presented in Sec. V, and two random
sampling scan strategies: purely random over the whole
parameter space and 50% away from the alignment limit
defined by Eq. (28). We present two analysis, one where the
HiggsBounds constraints using HiggsTools were not included in
the loss function, and one where it has. The scan without
HiggsTools runs faster in both computational overhead and
CMAES convergence (to be discussed below), which
allowed us to experiment with our methodology. The
impact of using HiggsTools, a posteriori, on points obtained
without including it in the loop is studied. We then perform
a second analysis where we included HiggsTools in the loop
to show how one can include multiple constraints from
different sources and still be able to explore the whole
parameter space of the model.
We start with scans that do not take into account

HiggsTools results in the loss function. All scans are per-
formed over the whole 16-dimensional parameter space and
all have the same 61 constraints. We then include HiggsTools

in the optimization loop by adding the respective contri-
bution to the loss function. All scans and their details can be
seen in Table I. As will be discussed in Sec. VI D, HiggsTools
reduces the number of successful runs by a factor of 2,

and therefore for these runs we allow for 200 instead of
100 scans.

A. Rewarding exploration in the parameter space

We first study the implementation of CMAES with and
without parameter space reward to show the enhanced
exploration capabilities of CMAES when including a
parameter density penalty in the loss function. In Fig. 1
we show the scatter plot of the ðsinðα1 − β1Þ; sinðα2 − β2ÞÞ
plane for different runs. In particular, we exhibit the
difficulty of random sampling finding valid points, with
Fig. 1(a) showing only 23 valid points, of which only one
passed the HiggsBounds constraints. These were obtained
from a scan that sampled an estimated Oð1013Þ.7 In
Fig. 1(b) we show the points obtained by sampling within
50% of the alignment limit, where the allowed points are
highly constrained with α1 ≃ β1, an expected result due to
the highly constraining bounds from collider measurements
of the Standard Model-like Higgs boson decay channels.
In the same graph, we can also observe the boundaries
imposed by the alignment limit, as j sinðα1 − β1Þj ≃ 0.5 and
how α2 are β2 are considerably more constrained leading to
j sinðα2 − β2Þj ≃ 0.25. In the next plot, Fig. 1(c), we show
the result of the CMAES scan without further exploration.
We observe a funneling of the results into a single region
α1; β1; α2; β2 ≃ 0, clearly providing little coverage of the
parameter space, although still providing far more valid
points than the random sampler. This lack of exploration of
CMAES was first observed in [27] and is easily understood

TABLE I. List of scans performed, where dP is the number of parameters, NC the number of constraints, pP the
novelty reward over the parameter space, pO the novelty reward over the space of physical quantities Oi.

Sampling Scan dP NC pP pO

Random Completely random 16 61 N/A N/A
Alignment limit: AL-2 16 61 N/A N/A

CMAES No penalty 16 61 None None
Parameter novelty reward 16 61 16 parameters None
Observable novelty reward 16 61 None 61 quantities Oi

α1, β1, α2, β2 focus 16 61 α1, β1, α2, β2 None
μggF;γγ , μggF;Zγ focus 16 61 None μggF;γγ , μggF;Zγ
mHþ

1
, mHþ

2
focus 16 61 mHþ

1
, mHþ

2
None

CMAES
w/ HiggsTools

Parameter novelty reward 16 67 17 parameters None
Observable novelty reward 16 67 None 67 quantities Oi

α1, β1, α2, β2 focus 16 67 α1, β1, α2, β2 None
μggF;γγ , μggF;Zγ focus 16 67 None μggF;γγ , μggF;Zγ
mHþ

1
, mHþ

2
focus 16 67 mHþ

1
, mHþ

2
None

7We can only estimate the number of points as it would have
been prohibitive to store all nonvalid points. Therefore, we
measured how long the scan took to process a few thousand
points, and kept a loose track of the random sampling run to
produce the estimate.
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from an algorithm point of view as CMAES does not
have built-in mechanisms to escape a minimum (global or
minimal).8

Despite the seemingly lacklustre result, the points in
Fig. 1(c) obtained by CMAES were obtained in a quick run
of only around Oð103Þ attempts, providing around ten
orders of magnitude sampling efficiency improvement
over the random scan (see Sec. VI D for a more detailed
discussion on convergence metrics and performance). This
allows us to change the sampling logic as to explore the
parameter space once the sampler converges into a valid
subregion of the parameter space. As explained in the
preceding sections, this is achieved by including a para-
meter density penalty. In Fig. 1(d) we show the result for
the CMAES runs when activating the novelty reward for all
parameters, i.e., using a density penalty for all parameters.

We can immediately see a much larger region of the
parameter space scanned, especially beyond the alignment
limit in the sinðα1 − β1Þ direction. We can also observe the
first artifact of this methodology: we can see sequences of
points, akin to the trail of a paintbrush, in this plane. These
trails are in fact the path that CMAES has covered while
exploring the parameter space away from previously found
points. By introducing the parameter penalty over all
parameter space, we were able to find novel points away
from the alignment limit. However, because the penalty is
computed over all the parameter space, CMAES has no
incentive to explore interesting regions of the parameter
space, as it can reduce the density penalty by spreading
across parameters which have little impact on the con-
straints.9 To mitigate this, we focus the parameter density
penalty on the four parameters described by these scatter
plots, α1, β1, α2, β2. The resulting points can be seen in
Fig. 1(e), where we see that CMAES was able to spread its
exploration even more in the ðsinðα1 − β1Þ; sinðα2 − β2ÞÞ
plane. More interestingly, the points that subsequently pass

FIG. 1. ðsinðα1 − β1Þ; sinðα2 − β2ÞÞ scatter plot for different runs without novelty reward. A point surviving HiggsTools is represented in
green, otherwise in red.

8In [27] CMAES was endowed with a restart strategy, which
mitigates this and allowed CMAES to draw a more complete
picture of the valid regions of the parameter space. In this paper,
we have not implemented this, as our focus is on developing a
novelty reward driven exploration. 9This can be seen as a variation of the curse of dimensionality.
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HiggsBounds, shown in green, cover a much larger region than
those obtained using the sampling around the alignment
limit, although the latter has arguably a better coverage over
sinðα2 − β2Þ values more uniformly over different values
of sinðα1 − β1Þ.
The above scans were produced by performing a run

without checking for the constraints coming from
HiggsBounds provided by HiggsTools. The survival rate against
HiggsTools of the points obtained using these scans is
3%–5%, or, in other words, a factor of 1=20 or less.
Furthermore, the execution time with HiggsTools increases by
a factor of around 3. To first approximation, checking for
HiggsBounds in the loop can slow down the process of finding
good points by an expected factor of 60 or more. On the
other hand, as we can see in Fig. 1 not using HiggsTools leads
to too many invalid points, and depriving CMAES of this
information will only prevent it from finding points that
survive HIGGSBOUNDS. In Fig. 2 we present the first scans
with HiggsTools in the loop to check for HiggsBounds con-
straints. The scans presented in Figs. 2(a) and 2(b) are
direct analogous to those presented in Figs. 1(d) and 1(d),
respectively. In both cases we observe a far wider coverage
of the parameter space than before, showcasing the impor-
tance of providing HiggsTools feedback to CMAES. More
importantly, both runs covered the space of valid points
around the alignment limit in this plane, but went far
beyond in the α1, β1 subspace.
We now turn to the masses of the charged scalars, which

are constrained by direct searches. In Fig. 3 we show the
points obtained in the ðmHþ

1
; mHþ

2
Þ plane. The logic is

similar to the previous discussion, with the difference that
the last plot, Fig. 3(e), shows the points from a scan where
the penalty was focused on the charge scalar masses instead
of the mixing angles. From the scan around the alignment
limit, Fig. 3(b), we can observe how HiggsBounds affects the

valid region, especially for small values of scalar masses.
Interestingly, in Fig. 3(c) we see that CMAES has provided
more coverage over this cross section of the parameter
space than before. This can be easily interpreted: CMAES
works akin to a gradient descent algorithm, but with the
performance enhanced by the approximation of local
second derivative. This means that CMAES rolls down
the loss function with momentum, following the quickest
path to its minimum. This preference for a quick con-
vergence path explains why different CMAES runs will
provide similar values of the most constrained parameters,
as it is through them that a path needs to be found so as to
minimize the loss function. This eagerness to converge is
a feature of CMAES, which is on the exploitive side of
the exploration-exploitation trade-off, as previously also
discussed [27].
In Figs. 3(d) and 3(e) we show the results of the scans

with the parameter density penalty over all parameters and
focused on the charged masses, respectively. We observe
that both were able to cover more parameter space than
the alignment limit random scan, but the scan focused on
the charged scalar masses was able to cover more of the
ðmHþ

1
; mHþ

2
Þ plane, especially in the mHþ

1=2
≳ 100 GeV

limits. This result further shows that focusing the explora-
tion reward on subsets of parameters can help uncover
novel regions overlooked by traditional scans, although in
this case most of the points with mHþ

1=2
≳ 100 GeV did not

survive HiggsBounds. Furthermore, considering that all scans
presented in Fig. 3 share the same parameter boundaries,
cf. Eq. (23), these results highlight how our methodology
can explore regions uncovered by the low sampling
efficiency of random sampler and by the simplified priors
of the alignment limit.
In Fig. 3 we can also observe a shortcoming of the

method which we will encounter throughout this work.

FIG. 2. ðsinðα1 − β1Þ; sinðα2 − β2ÞÞ scatter plot for different runs with novelty reward and HiggsTools constraints included in the loss
function.
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We can see that different runs lead to different sets of valid
points, preventing us from drawing a global picture of the
allowed points. This is due to the fact that, in each run
CMAES traverses a very localized path in the parameter
space until either the maximum number of generations has
been reached or a local minimum stopping criterion is
triggered. To mitigate this, we implemented each scan as a
collection of multiple runs, but the problem has not been
completely resolved. In Secs. VI A 1 and VI C we will
present refinements of the methodology that will allow us
to better fill in the voids left by these scans.
Analogously to the discussion above on the mixing

angles α1, β1, α2, β2, we now present the results with
HiggsTools included in the loop to check HiggsBounds in Fig. 4.
We see that both with unfocused, Fig. 4(a), and charged
masses focused, Fig. 4(b), novelty reward CMAES is able
to cover a much larger parameter space region than the
alignment limit sampling. Furthermore, the valid points
found also span a larger region than those in Fig. 3 that
survived HiggsBounds constraints, highlighting the impor-
tance of including HiggsTools in the loop.

The paths taken by CMAES while exploring the param-
eter space are very prominent in the scans just discussed. To
better understand how CMAES is exploring, in Fig. 5 we
show the path traversed by a run projected onto the
ðmHþ

1
; mHþ

2
Þ plane. This run has converged at generation

number 129, with values ðmHþ
1
;mHþ

2
Þ≃ð218.6;151.4ÞGeV.

At generation 129, the overall scale of the covariant matrix,
given by σ of the CMAES algorithm, is σ ≃ 0.002, a value
much smaller than the initialized value of σ ¼ 1. Once
converged, the density penalty is then added to the loss
function forcing CMAES to explore new values of the
parameters, as can be observed in the left pane. As it
explores, CMAES might be slowed down by the penalty;
this leads the algorithm to increase σ to find new good
points farther away. On the right pane we see this
dynamical adaptation of σ by CMAES, with higher (lower)
values of σ leading to more (less) localized samplings. This
ability to adaptively increase σ when slowed down also
provides CMAES with the capacity to escape local minima,
and in our case it provides a way of forcing CMAES to
move away from where it has been.

FIG. 3. ðmHþ
1
; mHþ

2
Þ scatter plot for different runs without novelty reward. A point surviving HiggsTools is represented in green,

otherwise in red.
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1. The mH+
1;2

≤ 150 GeV region

The above results exhibit a peculiar feature that warrants
further discussion. Upon closer inspection of the points that
survive HiggsBounds when comparing Figs. 3 to 4, we see that
the scans without HiggsTools in the loop appear to have two
islands of points at mHþ

1=2
∼ 140 GeV, which the scans with

HiggsTools in the loop missed. We present an enlarged look of
this region in Fig. 6, where we only show the points that
have passed HiggsBounds constraints. This suggests that we
have not completely mitigated the excessive eagerness of
CMAES, which might lead us to miss multimodal sol-
utions, i.e., disjoint valid regions of the parameter space.
To better understand whether CMAES is being driven

away from this region by its eagerness to converge, we
performed a dedicated scan where we restricted the
parameter space to mHþ

1;2
≤ 150 GeV, and with all other

parameter bounds unchanged. We present the result in
Fig. 7, where we notice that if restricted to that region,
CMAES will explore it extensively. Furthermore, we notice
that the points mHþ

1=2
∼ 140 GeV, which seem above to

populate two disjoint regions, do not describe isolated
islands of the valid parameter space. There are two
important conclusions to draw from this. The first con-
clusion is that the empty regions of the scatter plot of valid
points produced by CMAES do not equate to regions
without valid points. This means that one has to be very
careful when interpreting these seemingly empty regions
without studying them in detail. The second conclusion is
that when one focuses on studying these regions, one can
find a completely different picture than assumed. In this
case the previous results, both from alignment limit scan
and from CMAES without HiggsTools in the loop, suggested
that there are multiple disjoint regions of valid points in the

FIG. 5. Path of a CMAES scan with focused parameter density penalty on the ðmHþ
1
; mHþ

2
Þ plane. Left: color representing the

generation number. Right: color representing σ, the overall scale of the covariant matrix of CMAES.

FIG. 4. ðmHþ
1
; mHþ

2
Þ scatter plot for different runs with novelty reward and HiggsTools constraints included in the loss function.
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ðmHþ
1
; mHþ

2
Þ plane for mHþ

1=2
∼ 140 GeV, whereas a closer

inspection teaches us that this is not the case.

B. Rewarding exploration in the observable space

So far we have shown how we can improve the
parameter space coverage by providing CMAES with
a novelty reward in the parameter space by turning on a
density penalty in observable values pðfOigÞ. However, a
more interesting avenue is to apply the novelty reward to
the observable space, O,10 as this will allow us to assess

whether there is new phenomenology obscured by tradi-
tional random sampling techniques.
In our first study we want to assess the impact on using a

novelty reward in the observable versus the novelty reward
in the parameter space studied above. In Fig. 8 we show the
ðμggF;γγ; μggF;ZZÞ scatter plots for different scans without
HiggsTools in the loop. Similarly to the previous discussions
on parameter space coverage, we see that CMAES without
further exploration, Fig. 8(c), provides a narrower coverage
of the observable space than the alignment limit sampling
strategy, adding to the intuition that CMAES alone is too
eager to converge to be a reliable tool to draw a complete
picture of the physics. This changes considerably once we
turn on the parameter space novelty award already studied,
which also leads to a greater exploration of the observable
space, as can be seen in Fig. 8(d). This is easy to interpret,
as forcing CMAES to explore the parameter space will
always impact the value of the physical quantities of the
model. We notice, however, that this is a byproduct of the
parameter space exploration, as in this case CMAES does
not have an explicit incentive to produce new observable
values. In Fig. 8(e) we show the result of turning on the
density penalty in the observable space, therefore explicitly
forcing CMAES to find points with different phenomenol-
ogy. The result is stunningly different from all the other
scans, with CMAES finding points with a far more diverse
value than any of the other scans considered so far. Of
particular interest, we observe how CMAES can find points
with μggF;γγ ≃ 1.2, which was completely obscured using
alignment limit random sampling and painting a very
different picture of what phenomenology the Z33HDM
model can have.
Having shown how an observable space penalty can

drive CMAES exploration into novel phenomenological
realizations of the model, we now perform the scan with
HiggsTools in the loop to endow CMAES with information of

FIG. 7. ðmHþ
1
; mHþ

2
Þ scatter plot for a CMAES run with

parameter space restricted to mHþ
1;2

≤ 150 GeV.

FIG. 6. ðmHþ
1
; mHþ

2
Þ scatter plot enlarged at mHþ

1;2
≤ 150 GeV for different runs. Only points passing HiggsBounds constraints are

shown.

10We abuse terminology by calling observable all the physical
quantities which are constrained. This is not strictly correct, as
many constraints are theoretical, and some parameters (namely
the masses) are themselves physical observables. The purpose
of this section is to study how we can achieve exploration through
the constrained quantities and observables.
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the HiggsBounds constraints (themselves added to the loss
function and to the penalty). The resulting ðμggF;γγ; μggF;ZZÞ
scatter plot is shown in Fig. 9, where we observe how
CMAES was able to find points across all allowed values
(up to 2-σ with experimental measurement) for μggF;γγ with
0.89≲ μggF;ZZ ≲ 1.025, while completely rediscovering
the possible values produced by the alignment limit
sampling strategy. This result highlights the power and
versatility of our methodology to find new phenomeno-
logical realizations of a model.
Just like we could focus the parameter density on a

subset of parameters, we can also focus the observable
density penalty on a subset of constraints, allowing one to
explore to what extent the model explains certain exper-
imental results. For example, recently [48] ATLAS and
CMS have released their most recent measurements of the
Higgs decaying to Zγ with μZγ ¼ 2.2� 0.7, which is just
compatible with the Standard Model within 2-σ. Then one

FIG. 8. ðμggF;γγ ; μggF;ZZÞ scatter plot for different runs without novelty reward. A point surviving HiggsTools is represented in green,
otherwise in red.

FIG. 9. ðμggF;γγ; μggF;ZZÞ scatter plot for CMAES with novelty
reward in observable space and HiggsTools constraints included in
the loss function.
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can ask whether the Z3 3HDM model discussed in this
work could explain such a high value of μZγ , considering
that, without additional states,11 the Higgs decay channels
are considerably correlated, preventing any particular μij to
be large while all others remain small. To study this, we
performed a scan with a focused observable density penalty
over ðμggF;γγ; μggF;ZγÞ, which we present in Fig. 10 along-
side the scatter plot obtained by the CMAES run with
observable density computed over all constraints. Perhaps
surprisingly, we see that the scan with the focused density
penalty, Fig. 10(b), has covered a smaller region than the
one with the density penalty computed using all constraints,
Fig. 10(b). A possible interpretation for this is that the
focused density is too constraining, preventing CMAES
from finding other ways to populate this plane around other
constraints. Conversely, the run with penalty over all
constraints will be less demanding for CMAES to explore
this subspace, as CMAES will find a way of reducing the
penalty by spreading the possible constraint values else-
where, eventually finding a new route to new values in the
ðμggF;γγ; μggF;ZγÞ plane. In other words, although when
projected onto the ðμggF;γγ; μggF;ZγÞ plane the valid region
appears simply connected, the overall geometry and top-
ology of the valid region of the parameter space are likely
far more intricate with focused scans obfuscating these
nuances. This interplay between a focused density, the
availability of paths for CMAES to explore, and the
topological and geometrical details of the valid region is
an aspect of our methodology that will be further explored
in future work.

C. Using points as seeds for new runs

The scans performed so far have highlighted the versa-
tility of our methodology in exploring parameter (and
observable) spaces. However, the runs performed are
independent of each other, i.e., while each run has its
own parameter/observable density estimator, this is only
trained using valid points found during that run alone.
Then, one can entertain the idea of reusing the information

of previous scans to guide new runs in regions of interest.
In this section, we explore this idea and provide an example
of its implementation by choosing valid points from the
previous scans as a seed to new runs. Recalling that CMAES
can be initiated with an explicit mean, i.e., starting position,
and an overall scale of the covariant matrix, σ, we can then
use a valid point as the starting position of a new scan. In
order to start exploring the vicinity of our starting position σ
cannot be too large, and we found that setting it to σ ¼ 0.01
guarantees that CMAES starts already at the minimum of the
constraint loss function.
Seed points were identified by running HBOS on the

entire collection of valid points (left pane of Fig. 11).
For this concrete example, we evaluated the density only
on the ðmHþ

1
; mHþ

2
Þ subspace and identified the 1% outliers

(middle pane of Fig. 11), i.e., the points representing the
least explored parts of the valid region of the parameter
space. We notice some of the shortcomings of HBOS as
the density estimator in this plot: given that HBOS fits a
histogram to each dimension to compute the density, a
point might be in a relatively sparse region but might not be
picked as an outlier if one of its components is in a
populated bin. For example, we see that the outliers are not
necessarily at the rim (convex haul) of the space, but in
regions where there are few points both in mHþ

1
and mHþ

2
.

This same shortcoming of HBOS is present in the scans

FIG. 10. ðμggF;γγ ; μggF;ZγÞ scatter plot for CMAES with focused novelty reward in observable space and HiggsTools constraints included
in the loss function.

11To be able to have such a situation on has to go beyond N
Higgs doublet models, see for instance the discussion in Ref. [49].
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with novelty reward, leaving room for improvement to be
explored in future work.
With the most outlying valid points identified, we ran

100 scans not only seeded by a point randomly chosen
from the 1% outlier subset, but with the density penalty
also making use of the outliers to guide the new scans away
from the already explored regions. We did not use the
whole sample of valid points to train the density estimator
as it is comprised of over 4 × 106 valid points, considerably
slowing down the scan. In the right pane of Fig. 11 we
show the resulting valid points found by the seeded scans,
where we observe that CMAES was able to explore even
further away from the previously chartered valid region.
Clearly, one could now use the new points as new seeds in
repeated iterations to explore even more this subsection of
the parameter space, or any other section of it or of the
observable space, in order to draw an even more global
picture of the valid region. The caveat of only using
chained scans is that one can only explore regions that
are simply connected to the seed, a detail which must be
kept in mind when employing this strategy. Finally, we
notice that the scatter plot appears to have some vertical
and horizontal regions with less points, this is an artifact of
HBOS that draws a histogram with 100 × 100 bins in this
subspace, impacting the density value along horizontal and
vertical strips with width similar to the width of the bins.

D. Convergence metrics

Having discussed how density penalties can be used to
enhance the CMAES exploration of the parameter space,
we now turn to another aspect of our methodology: the
convergence speed. Recalling that CMAES operates by
minimizing the total loss function, LT from Eq. (32), we
show how its value decreases sharply after just a few
generations in Fig. 12, where we also provide the values of
random generations for comparison. More precisely, after
just 100 generations, totaling around just 1200 points,

CMAES has nearly converged to the valid region of the
parameter space.
Despite the suggestive previous plot, not all scans

converge within the budget, which we set to 100 runs of
2000 generations for each case in Table I without HiggsTools,
and to 200 runs of 2000 generations for the cases with
HiggsTools.12 We present these metrics in Table II, where in
the last two columns we show the fraction of the obtained

FIG. 11. ðmHþ
1
; mHþ

2
Þ scatter plot for the seeded run. Left: the whole collection of valid points obtained by the other scans. Middle: the

1% outliers classified by HBOS. Right: new points obtained by the seeded runs started at points randomly selected from the 1% outliers.

FIG. 12. Total loss as function of generation. Only the first 500
generations are shown. The solid (broken) lines are for the
sampler CMAES (random) while the color green (blue) indicates
whether HiggsTools was used (not used) in the loop. The random
sampler curves are over random generations of 12 points, the
same population size as CMAES. The shaded regions represent
0.95 confidence intervals computed using a bootstrap of 100 runs.

12One could alternatively increase the budget for the HiggsTools
by increasing the number of generations to 4000. Intuitively,
more runs provide a more global picture, whereas longer runs
allow for longer explorations of the valid region. The choice
between allocating more budget to one over the other depends on
the intended study.
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valid points that are within each of the alignment cases,
AL-1 from (27) and AL-2 from (28). We see that, while
most points are within AL-1, only a minority are within
AL-2. More interestingly, we observe how the scan with
novelty reward in the α1, β1, α2, β2 subspace of the
parameter space has produced the most points away from
the alignment limit. This can be visually understood in
Figs. 1 and 2 where it is clear that the novelty reward is
guiding CMAES to values of α1, β1 that are beyond the
alignment limit bounds. This is a feature of the versatility
of our methodology, as we can perform dedicated scans

explicitly away from previously considered priors and
regions of the parameter space.
As CMAES converges, it will start to find good points.

This can be seen in Fig. 13 where we observe that after
around 100 generations for the runs without HiggsTools in the
loop, and after around 200 generations for the runs with
HiggsTools in the loop, CMAES starts finding valid points.
In Fig. 14 we use a boxplot to represent the distribution

of the value of the generation number when the first valid
point was obtained for the runs with and without HiggsTools
in the loop. We see that checking for HiggsBounds postpones
the discovery of the first good point by a factor of around
2 in terms of generation number. However, this is far
better than with random sampling (both purely random
and around the alignment limit), where only at most 5%
of the points that respect all other constraints survive
HIGGSBOUNDS constraints, see Table III. Additionally, we
note that the number of trial points needed to find a good

TABLE II. Convergence and coverage statistics of the different scans presented in Table I. The last two columns
represent the fractions of valid points obtained by each of the scans that are within both alignment limits. While the
first CMAES rows correspond to scans without HiggsTools in the loop, the corresponding fractions of points in both
alignment cases are computed using points that have passed HiggsBounds constraints after the scan.

Sampling Scan Converged runs Within AL-1 Within AL-2

CMAES No penalty 97 out of 100 1.00 1.5 × 10−2

Parameter novelty reward 95 out of 100 0.90 5.1 × 10−3

Observable novelty reward 90 out of 100 0.99 1.8 × 10−4

α1, β1, α2, β2 focus 94 out of 100 0.85 5.9 × 10−3

μggF;γγ , μggF;Zγ focus 91 out of 100 1.00 4.2 × 10−5

mHþ
1
, mHþ

2
focus 90 out of 100 0.95 6.6 × 10−3

CMAES
w/ HiggsTools

Parameter novelty reward 92 out of 200 0.92 1.1 × 10−2

Observable novelty reward 111 out of 200 0.94 1.4 × 10−2

α1, β1, α2, β2 focus 102 out of 200 0.84 4.1 × 10−2

μggF;γγ , μggF;Zγ focus 101 out of 200 0.93 4.1 × 10−3

mHþ
1
, mHþ

2
focus 91 out of 200 0.98 5.3 × 10−2

FIG. 13. Number of valid points founds as function of gen-
eration. Only the first 500 generations are shown. The solid
(broken) lines are for the sampler CMAES (random) while the
color green (blue) indicates whether HiggsTools was used (not
used) in the loop. The random sampler curves are over random
generations of 12 points, the same population size as CMAES,
and have failed to produce any valid points within these
iterations. The shaded regions represent 0.95 confidence intervals
computed using a bootstrap of 100 runs.

FIG. 14. Distribution of the generation with the first valid point.
The distributions shown are obtained from all runs with and
without HiggsTools in the loop.
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valid point is aroundOð250–750Þ × 12 when not including
HiggsBounds constraints in the loop, and Oð400–1300Þ × 12
when including HiggsBounds constraints in the loop. Recall
that the efficient sampling of the random sampler is
(estimated) to be Oð10−12Þ and Oð10−13Þ, respectively,
which means that our methodology improves the sampling
efficiency by a factor of 8 orders of magnitude, even if
we do not consider the near perfect sampling efficiency
after convergence during the density penalty-guided explo-
ration phase. Unsurprisingly, the improvement over the
AL-2 alignment limit sampling strategy is more modest,
with around four orders of magnitude when considering
HiggsBounds constraints, but we reiterate that this only
pertains to the first convergence and that our algorithm
can then continue to explore the region found and go
beyond the alignment limit bounds, as was highlighted in
the previous section.
So far, we have seen the improvements to convergence

provided by CMAES by taking into account the number of
points tried, observing massive improvements over random
sampling. On the other hand, the methodology presented in
this work is only useful if it also provides a speed-up in terms
of wall time, i.e., time passed from the reference frame of the
user. In Fig. 15 we present a variation of Fig. 14 but in terms
of elapsed time, instead of generations. We see that CMAES
without including HiggsBounds constraints in the loop tends to

find points within Oð100–500Þ seconds, i.e., in minutes,
while when including HiggsBounds constraints, this increases
do Oð750–2250Þ seconds. The slowing down is easily
understood: using HiggsTools slows down the evaluation of
a point by a factor of around 3 (see below for more details),
and since converging on HiggsBounds constraints delays
CMAES in finding a good point by a factor of around 2
(see discussion above) we expect an overall wall time delay
of 5, which is what we can see here.
To better understand the impact of the different compo-

nents of our methodology in the total time, we present in
Table IV the times taken by different steps of the loop for
CMAES and the random sampler, and with and without
HiggsTools in the loop. In this table, generation time
represents the time needed to perform all the steps of a
generation including evaluation time, i.e., the time needed
to compute all observables (including HiggsBounds, when
applicable), train the density estimator (when applicable),
and perform diverse housekeeping tasks such as save
intermediate results, keep track of run metrics, etc. In this
table we see that the overall housekeeping overhead can be
assessed in the random sampler rows as for these there is
no overhead related to CMAES and to density estimation,
and it is around 0.015 (0.019) seconds without (with)
HiggsTools.13 The most important observation to take from
this table is that the overall overheard of our methodology,
including that associated with CMAES and density esti-
mation, is at most around 10% of the total generation time
for the CMAES runs without HiggsTools. Once we include
HiggsTools in the loop, the overall generation time increases
threefold, but the overhead remains mostly the same,
showing that our methodology provides even greater gains
for problems with a slow evaluation time. Additionally, we
see that our choice of HBOS for density estimator corre-
sponds to a minor fraction of the overhead. However, one
can notice that the standard deviation of the density
estimator training is greater than the mean; this is because
HBOS has a linear computational complexity with respect
to the number of valid points, effectively becoming slower to
train the more valid points we have found. Improvements
to the density estimator are left for future work.

TABLE III. Sampling efficiencies of random sampling strategies. We note that for the completely random scan the
numbers are estimated.

Before HiggsTools After HiggsTools

Points Efficiency Points Efficiency

AL-1 21 in 4.4 × 1012 Oð10−11Þ 0 in 4.4 × 1012 < Oð10−12Þ
AL-2 13 701 in 1010 Oð10−6Þ 510 in ×1010 Oð10−8Þ
Random 23 in 1013 Oð10−12Þ 1 in 1013 Oð10−13Þ

FIG. 15. Distribution of the elapsed time until the first valid
point. The distributions shown are obtained from all runs with
and without HiggsTools in the loop.

13The larger housekeeping overhead associated with HiggsTools
is due to the presence of more metrics to keep track and larger
intermediate files to save.

JORGE CRISPIM ROMÃO and MIGUEL CRISPIM ROMÃO PHYS. REV. D 109, 095040 (2024)

095040-18



VII. CONCLUSIONS

In this paper, we have developed a novel approach to
explore the highly constrained multidimensional parameter
space of the Z3 3HDM, defined in Sec. II and constrained
discussed in Sec. III and the Appendix, and go beyond
alignment limit priors presented in Sec. IV, by combining
CMAES power of exploration with a machine learning
estimator for point density.
It is important to note that, while the subject of study in

this paper was the Z3 3HDM parameter space, our approach
is general and applicable to any physics case, providing a
solution to the difficulty of sampling good points in highly
constrained multidimensional parameter spaces.
In Sec. V we introduced our strategy, using CMAES, a

powerful evolutionary strategy, in combination with HBOS,
a fast ML model for density estimation. Our approach
guarantees that the density-based novelty reward does not
compete in the loss function with the constraints on the
model and pushes CMAES to explore the parameter space
once converged. Importantly, we showed how our method-
ology is versatile, as we can turn on the novelty reward in
the parameter space or in the observable space, where the
phenomenology is realized. Additionally, the novelty reward
can be computed by estimating the density in only a subset
of parameters and/or observables, allowing for quick focused
scans on regions of interest.
In Sec. VI we presented the results of multiple scans

performed with our methodology, each with different
combinations of parameters and/or observables on which
the density penalty was computed. We showed how our
approach can effortlessly go beyond the alignment limit
sampling strategies, finding valid points in regions of the
parameter space hitherto ignored by such sampling strat-
egies. More precisely, using the novelty reward in the
parameter space, both in whole or in a subset, in Sec. VI A
we have found that it is easy to go beyond the alignment
limit in the ðα1; β1Þ plane. In the same analysis, we showed
how our methodology also exposes regions of heavy scalar
masses, even preferring it over the region excluded by
HiggsBounds, which we explored in detail in Sec. VI A 1
by restricting the parameter space to mHþ

1;2
≤ 150 GeV,

finding a considerably different picture of that region of the
parameter space that one would get from alignment limit
sampling.

While we set ourselves to explore the parameter space
with CMAES combined with a novelty reward, the physics
of the model resides its space of observables and physical
quantities. In Sec. VI B we have the results of scans where
the density penalty was computed in the observable space
instead of the parameter space. The results uncover novel
possible phenomenological realizations of the 3HDM, an
important contribution of this work that would not have
been possible to achieve without our AI-based scan.
In particular, we find that it is possible to accommodate
Higgs decay signal strengths larger than one up to their
current upper experimental bounds, a phenomenological
signature not captured by alignment limit random sampling
strategies. Given the versatility in exploring different
observables, we set to study whether the Z3 3HDM can
explain the recent measurement of μZγ ≃ 2.2 by ATLAS
and CMS [48], finding that μZγ ≲ 1.1 in the Z3 3HDM,
not a surprising result given that decay signal strengths
are highly correlated in this model and one cannot get
arbitrarily high values for one of them without spoiling
the experimental measurements of the remainder (for other
possibilities, see, for instance, the discussion in [49]).
Finally, in Sec. VI D we discuss the convergence metrics
of our algorithm and compare it with the pure and align-
ment limit random sample strategies. Our methodology is
orders of magnitude faster (both in number of tried points
and wall time) than the random sampling strategies,
providing a solution to the random sampling efficiency
problem in highly constrained multidimensional parameter
spaces.
Although the methodology presented in this work

provides impressive speedup and efficiency improvement
when compared to random sampling strategies, we have
encountered some shortcomings and less appealing char-
acteristics that we want to improve in future work. First, the
methodology used in the analyses employs independent
runs, each with its own density estimator from which the
novelty reward is derived. An alternative approach is to
share information across runs to ensure the novelty of the
exploration. In Sec. VI C we showed how such a strategy
could be implemented, where we identified the valid region
of the parameter space less populated [in the ðmHþ

1
; mHþ

2
Þ

subspace] by our scans and then used some of the points in
that region as a seed for new runs. The resulting new points

TABLE IV. Comparison of times, in seconds, taken by different parts of the loop for CMAES and random sampler
with and without HiggsTools in the loop. The times refer to a generation of 12 points in every case. The values
presented are the mean � one standard deviation over the scans falling in each of the four categories.

Sampler HiggsTools in loop Generation Evaluation Density estimator Overhead

CMAES False 0.48� 0.16 0.43� 0.15 ð3.9� 23Þ × 10−3 0.055� 0.043
True 1.6� 0.3 1.6� 0.2 ð1.9� 22Þ × 10−3 0.068� 0.048

Random False 0.33� 0.06 0.31� 0.06 N/A 0.015� 0.003
True 1.4� 0.2 1.3� 0.2 N/A 0.019� 0.012
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were significantly different from the ones found previously,
highlighting the potential for even further exploration by
chaining runs together, a methodological detail that can
be improved in the future. Second, in the same study, we
encountered some artifacts arising from the binning nature
of the HBOS, which can, in principle, be mitigated by
using a different density estimator (or a different novelty
detector). In our early exploration, we tried a variety of
alternatives, all significantly slower than HBOS, making
our methodology impractical. Producing a better way of
assigning the novelty reward could solve the binning
problem and any manifestation of the curse of dimension-
ality produced by it. Third, we have observed that our
methodology might not explore all possible regions as
CMAES intuitively follows a path of fastest descent. This
was particularly clear in Sec. VI A 1 where we addressed
the overlooked region of small charged scalar masses. By
restricting the parameter space, we were able to populate
that region easily, but the fact that it was not explored in
the first place shows that we need to be careful when
interpreting empty regions as regions without valid points.
Lastly, we have observed that the geometrical and topo-
logical details of the valid region of the parameter space
might impact the possible exploration paths of CMAES.
This can have a profound effect on the results when
there are disjointed, not simply connected, regions of the
parameter space supporting good points. We leave to future
work the development of a way to assess whether the
scans are capable of capturing multimodal valid regions
confidently.
Finally, our methodology opens up the possibility for

a complete exploration of other NHDM (or any other
BSM physics) parameter spaces in light of the current
highly constraining experimental results and theoretical
conditions. As our work shows, this could lead to novel
phenomenological realizations of these models and, ulti-
mately, to the possibility of novel experimental signatures.
We leave this phenomenological study for the future.
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APPENDIX: DESCRIPTION OF THE VARIOUS
CONSTRAINTS

In this appendix, we summarize the constraints that
have to be satisfied for a point in parameter space to be
considered a valid point. As these have already been
discussed in great detail in a series of papers [10,12,16],
here we just give a brief review and indicate the places
where to look for further information. We list the con-
straints in the order in which they are applied in the code.

1. The κs formalism

We found that it is useful to select points that are already
close to the LHC constraints, using the κs formalism. We
require them to be within 3σ of the LHC data [50]. The
expressions for the κs for the different types of fermion
couplings in the 3HDM are given in [12]. As in this work
we just consider type I, we have for the fermions,

κU ¼ sinðα2Þ
sinðβ2Þ

; κD ¼ sinðα2Þ
sinðβ2Þ

; κL ¼ sinðα2Þ
sinðβ2Þ

: ðA1Þ

The couplings with the vector bosons give, for all types,

κW ¼ cosðα2Þ cosðα1 − β1Þ cosðβ2Þ þ sinðα2Þ sinðβ2Þ;
ðA2Þ

which gives κW ¼ 1 when α1 ¼ β1 and α2 ¼ β2. We should
note that the points are subsequently tested for the signal
strengths, so this constraint is applied with a large interval
(3σ) just to make the selection faster.

2. BFB

The scalar potential has to be BFB. As explained in
Ref. [12], to find the necessary and sufficient conditions for
this to happen is a difficult task. For the 3HDM is only
known for a few cases with high symmetry in the potential.
For the Z3 3HDM that we consider here, the best we can do
is to use sufficient conditions. We refer to Ref. [12] for the
details of the implementation.

3. Oblique parameters S, T, U

To discuss the effect of the electroweak precision
parameter, S, T, and U, we use the expressions in [33]
and the experimental summary in [34,51]. The expression
for the needed matrices V (3 × 6) and U (3 × 3) is [12]

V ¼

0B@ iPT
11 RT

11 RT
12 RT

13 iPT
12 iPT

13

iPT
21 RT

21 RT
22 RT

23 iPT
22 iPT

23

iPT
31 RT

31 RT
32 RT

33 iPT
32 iPT

33

1CA; ðA3Þ

and
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U ¼ QT; ðA4Þ

where the matrices R, P, Q were defined before.

4. Unitarity

Avalid point in the parameter space must also satisfy the
perturbative unitarity constraints.
These can be expressed in terms of constraints on the λi

parameters of the potential. For this end we require that the
eigenvalues of all the two-by-two scattering matrices are
bounded by partial wave unitarity. In [52] an algorithm was
proposed to efficiently obtain the scattering matrices. For
the different symmetry constrained 3HDM these are fully
given in [11] to which we refer the reader for further details.

5. The signal strengths μij
The LHC results on the 125 GeV Higgs boson are

normally given by the signal strengths,

μif ¼
�
σ3HDMi ðpp → hÞ
σSMi ðpp → hÞ

�
BR3HDMðh → fÞ
BRSMðh → fÞ


; ðA5Þ

where the subscript “i” denotes the production mode and
the subscript “f” denotes the decay channel of the SM-like
Higgs scalar. The relevant production mechanisms include
gluon fusion (ggF), vector boson fusion (VBF), associated
production with a vector boson (VH, V ¼ W or Z), and
associated production with a pair of top quarks (ttH). The
SM cross section for the gluon fusion process is calculated
using HIGLU [53], and for the other production mecha-
nisms we use the prescription of Ref. [54]. The calculated
μif are required to be within 2σ of the LHC results [32].

6. Constraints from flavor data

In type-I, by construction, 3HDM there are no flavor
changing neutral currents at the tree level. Therefore,

the only new physics contribution at one-loop order to
observables such as b → sγ and the neutral meson mass
differences will come from the charged scalar Yukawa
couplings. We follow [9] where it was shown that the
constraints coming from the meson mass differences tend
to exclude very low values of tan β1;2. Therefore, we only
consider

tan β1;2 > 0.3; ðA6Þ

to safeguard ourselves from the constraints coming from
the neutral meson mass differences.
To deal with the constraints resulting from b → sγ, we

follow the procedure described in Refs. [10,39,55] and
impose the following restriction

2.87 × 10−4 < BRðB → XsγÞ < 3.77 × 10−4; ðA7Þ

which represents the 3σ experimental limit. As in the
2HDM, for the case of type-I, this does not put strong
constraints on the charged Higgs masses.

7. Perturbativity of the Yukawa couplings

We need to ensure the perturbativity of the Yukawa
couplings. For the type-I Yukawa structure, the top, bottom,
and tau Yukawa couplings are given by

yt ¼
ffiffiffi
2

p
mt

v sinβ2
; yb ¼

ffiffiffi
2

p
mb

v sinβ2
; yτ ¼

ffiffiffi
2

p
mτ

v sinβ2
; ðA8Þ

which follow from our convention that only ϕ3 couples to
up-type quarks, down-type quarks, and charged leptons.
To maintain the perturbativity of Yukawa couplings,
we impose jytj; jybj; jyτj <

ffiffiffiffiffiffi
4π

p
. For our case, these con-

straints are all satisfied if we take into account the lower
value of tan β2 in Eq. (A6).
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University of Lisbon, 2021, https://fenix.tecnico.ulisboa.pt/
cursos/meft/dissertacao/1128253548921973.

[32] ATLAS Collaboration, A detailed map of Higgs boson
interactions by the ATLAS experiment ten years after the
discovery, Nature (London) 607, 52 (2022).

[33] W. Grimus, L. Lavoura, O. M. Ogreid, and P. Osland,
A precision constraint on multi-Higgs-doublet models,
J. Phys. G 35, 075001 (2008).

[34] Gfitter Group, The global electroweak fit at NNLO and pros-
pects for the LHC and ILC, Eur. Phys. J. C 74, 3046 (2014).

[35] H. Bahl, T. Biekötter, S. Heinemeyer, C. Li, S. Paasch, G.
Weiglein, and J. Wittbrodt, HiggsTools: BSM scalar phenom-
enology with new versions of HiggsBounds and HiggsSignals,
Comput. Phys. Commun. 291, 108803 (2023).

[36] D. Fontes and J. C. Romao, FeynMaster: A plethora of Feynman
tools, Comput. Phys. Commun. 256, 107311 (2020).

[37] D. Fontes and J. C. Romão, Renormalization of the C2HDM
with FeynMaster 2, J. High Energy Phys. 06 (2021) 016.

[38] D. Fontes, J. C. Romão, and J. P. Silva, h → Zγ in the
complex two Higgs doublet model, J. High Energy Phys. 12
(2014) 043.

[39] R. R. Florentino, J. C. Romão, and J. P. Silva, Off diagonal
charged scalar couplings with the Z boson: Zee-type models
as an example, Eur. Phys. J. C 81, 1148 (2021).

[40] N. Darvishi and A. Pilaftsis, Classifying accidental sym-
metries in multi-Higgs doublet models, Phys. Rev. D 101,
095008 (2020).

[41] N. Hansen, The CMA Evolution Strategy: A Comparing
Review (Springer, New York, 2006).

[42] N. Hansen, The CMA evolution strategy: A tutorial,
arXiv:1604.00772.

[43] M. Goldstein and A. R. Dengel, Histogram-based outlier score
(hbos): A fast unsupervised anomaly detection algorithm,
2012, https://api.semanticscholar.org/CorpusID:3590788.

[44] M. Crispim Romão, N. F. Castro, and R. Pedro, Finding new
physics without learning about it: Anomaly Detection as a
tool for Searches at Colliders, Eur. Phys. J. C 81, 27 (2021).

[45] F.-A. Fortin, F.-M. De Rainville, M.-A. G. Gardner, M.
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