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In this paper we have studied the phenomenon of nonstandard interaction mediated by a scalar field
(SNSI) in the context of P2SO experiment and compared its sensitivity with DUNE. In particular, we have
studied the capability of these two experiments to put bounds on the diagonal SNSI parameters, i.e., ηee,
ημμ, and ηττ and studied the impact of these parameters on the determination of neutrino mass ordering,

octant of θ23 and CP violation (CPV). In our analysis we find that, the parameterΔm2
31 has a nontrivial role

if one wants estimate the bounds on ημμ and ηττ assuming SNSI does not exist in nature. Our results show
that sensitivity of P2SO and DUNE to constraint ημμ and ηττ are similar whereas the sensitivity of DUNE is
slightly better for ηee. We find that the mass ordering and CPV sensitivities are mostly affected by ηee
compared to ημμ and ηττ if one assumes SNSI exists in nature. On the other hand, octant sensitivity is mostly
affected by ημμ and ηττ. These sensitivities can be either higher or lower than the standard three flavor
scenario depending on the relative sign of the SNSI parameters. Regarding the precision of atmospheric
mixing parameters, we find that the precision of θ23 deteriorates significantly in the presence of ημμ and ηττ.
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I. INTRODUCTION

The Standard Model (SM) of particle physics [1], despite
being one of the most successful theories, proven incom-
plete often. One such example is the discovery of neutrino
oscillation which shows neutrinos have nonzero masses.
To explain this phenomena one requires theories beyond
SM (BSM) [2]. In the past few decades, neutrino masses
and mixing, along with other intriguing properties, have
been unraveled by many dedicated neutrino experiments.
Some of the neutrino oscillation parameters are already
measured very precisely within the standard three flavor
scenario. However, still there are some unknowns and

degeneracies to be explored [3]. Apart from the standard
three flavor scenario, neutrino oscillation experiments can
be used to probe several new physics scenarios. The
example of one such new physics scenarios is nonstandard
interactions (NSI).
NSI mediated by a vector field is a very popular topic in

the context of neutrino oscillation [4]. NSI mediated by a
vector field can be of charge current (CC) type and neutral
current (NC) type. The CC-NSI leads to modifications in
the production and detection of neutrinos, whereas NC-NSI
appears as a matter potential term in neutrino oscillation.
However, there can also be NSI mediated by a scalar
field (SNSI). This SNSI acts as an Yukawa term in the
Lagrangian and therefore modifies the neutrino masses. If
we assume the correction to the neutrino mass matrix due to
SNSI is Hermitian, then the neutrino oscillation parameter
space is increased by three real diagonal parameters and
three complex off-diagonal parameters. Study of SNSI in
the context of neutrino oscillation experiment is very new
and therefore, in recent times there are several studies
exploring various phenomenological aspects of SNSI
[5–14]. In this paper, we will study SNSI in the context
of Protvino to Super-ORCA (P2SO) experiment [15] and
compare its sensitivity with the DUNE experiment [16].
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The future P2SO experiment will use a neutrino beam from
Protvino in Russia. In this case, the neutrinos will be
detected at the Super-ORCA detector at the KM3NeT
facility [17] located at a distance of 2595 km from Protvino.
For the upcoming DUNE experiment, the neutrinos pro-
duced at Fermilab will be detected at a distance of 1300 km.
For our present study, we will consider only the diagonal
parameters whereas the effect of the off-diagonal param-
eters will be studied in a separate work. In this work, our
objective will be to study the capability of P2SO and
DUNE to put bounds on the three diagonal SNSI param-
eters and study the effect of these parameters in the
measurement of the standard oscillation parameters. Our
work is the first to put the future expected upper bounds on
the SNSI parameters and in doing so we will point out a
nontrivial role of the atmospheric mass square difference.
The paper is organized as follows. In the next section we

will provide the theoretical background of SNSI and
present the oscillation probabilities as a function of
neutrino energy for P2SO. After that, we will briefly
describe the experimental and simulation details used in
our numerical analysis. Then we will proceed to present our
numerical results. Finally, we will summarize our main
findings and conclude.

II. NEUTRINO OSCILLATION IN PRESENCE
OF SCALAR NSI

The nonstandard interaction between the neutrinos ν and
the fermions f, mediated by a scalar field ϕ can be
represented by the Feynman diagram shown in Fig. 1.
In this case the effective Lagrangian can be written as,

Leff ¼
yfyαβ
m2

ϕ

ðν̄ανβÞðf̄fÞ; ð2:1Þ

where y’s are the Yukawa couplings and mϕ is the mass of
the scalar mediator. The Dirac equation in the presence of
SNSI can be written as:

ν̄β

�
i∂μγμ þ

�
Mβα þ

P
f Nfyfyαβ
m2

ϕ

��
να ¼ 0; ð2:2Þ

whereMβα is the Dirac mass matrix of the neutrinos andNf

is the number density of fermion f. Therefore, we see
that the effect of SNSI manifest as a correction term to
the neutrino mass matrix. This correction can be para-
metrized as

δM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔm2

31j
q 0

B@
ηee ηeμ ηeτ

ημe ημμ ημτ

ητe ητμ ηττ

1
CA; ð2:3Þ

where we have chosen to scale the size of δM relative toffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔm2

31j
p

to make the SNSI parameters, i.e., η dimension-
less. Comparing Eqs. (2.2) and (B2), one can write

ηαβ ¼
1

m2
ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔm2

31j
p X

f

Nfyfyαβ: ð2:4Þ

Here Δm2
31 ¼ m2

3 −m2
1 is the atmospheric mass square

difference. Note that the bounds of the Yukawa couplings
can come from the neutrino electron scattering experiments
[18] and cosmology [19]. It was shown inRef. [18] that same
values of the couplings satisfy a wide range of mediator
mass. Therefore, there will not be a direct correlation
between the bounds of the SNSI parameters obtained from
scattering experiments.Wewill consider δM to beHermitian
with ηαα as real and ηαβ with α ≠ β as complex. As
mentioned in the introduction, for this present work, we
will consider only the diagonal parameters. Here it is
important to note that, the parameter η in Eq. (2.4) depends
on the density.1 Therefore, when comparing the values of η
for different experiments, one should be careful to scale its
value according to the matter density profile which was
considered in those experiments. However, in our case, as
the matter densities relevant for P2SO and DUNE are very
similar, we will safely ignore this and compare the values of
η between this experiments without any scaling.
Now let us see how this δM modifies the Hamiltonian of

the neutrino oscillation. The Hamiltonian of neutrino
oscillation in the flavor basis and in presence of scalar
NSI can be written as

H ¼ Eν þ
MM†

2Eν
þ V; ð2:5Þ

where Eν is the energy of the neutrinos, V ¼
diagð ffiffiffi

2
p

GFNe; 0; 0Þ is the standard matter potential with

FIG. 1. Feynmann diagram contributing to scalar NSI.

1Note that NSI mediated by a vector field (VNSI) also depends
on the matter density. In the appendix, we have added a section
discussing the separation of VNSI from SNSI.

SINGHA, MAJHI, PANDA, GHOSH, and MOHANTA PHYS. REV. D 109, 095038 (2024)

095038-2



GF is the Fermi constant and Ne is the electron number
density. In this case, the term M becomes

M ¼ Udiagðm1; m2; m3ÞU† þ δM

¼ Udiag
�
m1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ Δm2
21

q
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ Δm2
31

q �
U†

þ δM; ð2:6Þ

where we have assumed normal ordering of the neutrino
masses i.e., m3 ≫ m2 > m1. Here Δm2

21 ¼ m2
2 −m2

1 is the
solar mass squared difference and U is the PMNS matrix
having the parameters θ12, θ13, θ23 and δCP. Neutrino
oscillation probabilities in presence of SNSI can be
calculated by diagonalizing Eq. (2.5). It is interesting to
note that, for SNSI, the neutrinos oscillation probabilities
will depend on the absolute neutrino mass m1.
In order to calculate the neutrino oscillation probabilities

in the presence of SNSI, we have modified the GLoBES
[20,21] probability engine. The results are shown in Fig. 2
(for DUNE) and Fig. 3 (for P2SO) for the neutrinos and
assuming normal ordering of the neutrino masses. In this
figure, we have considered one SNSI parameter at a time.
In each figure, the top row is for the appearance channel,
i.e., νμ → νe, and the bottom row is for the disappearance

channel i.e., νμ → νμ. In each row, the left/middle/right panel
is for ηee=ημμ=ηττ. In each panel, we have shown the
probabilities for the standard three flavor and probabilities
in the presence of SNSI. For illustration, we have taken the
values of the diagonal SNSI parameters to be�0.1 and�0.2.
In addition, we have shown the energy dependence of the νμ
fluxes of each experiment. Regarding the values of the
standard oscillation parameters, we have used the latest global
analysis results of Nufit 5.2 [3] and they are given in Table I.
To generate these figures, we have taken m1 ¼ 10−5 eV.
From Figs. 2 and 3, we observe that the sensitivity to ηee

is expected to come from the appearance channel, whereas
both the appearance and disappearance channels are
sensitive to ημμ and ηττ. Among the three parameters, the
best sensitivity is expected for the parameter ηee. We also
see some interesting features regarding the positive and
negative values of the SNSI parameters. The probabilities
for a negative (positive) values of ηee are lower (higher) as
compared to the probabilities in the standard case in the
appearance channel. This is opposite in the case of ημμ and
ηττ. In the disappearance (appearance) channel, the position
of the first oscillation minimum (maximum) is shifted in
the opposite directions due to positive and negative values
of ημμ and ηττ. In addition, the probabilities at the first
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FIG. 2. Electron neutrino appearance (disappearance) probability as a function of neutrino energy for DUNE experiment in
upper (lower) panel.
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oscillation minimum shifts from zero for the positive
(negative) values of ημμ (ηττ) in the disappearance channel.
Note that currently an analytical expression for the

appearance channel probabilities involving the diagonal
SNSI parameters does not exist in the literature and this
derivation is very complicated in nature. We have attempted
to derive an analytical expression for ηee which we discuss
in the appendix. For disappearance channel, in Ref. [7], it
was shown that at the leading order, the probability in the
presence of SNSI can be written as

Pμμ ¼ −Δ13ðημμ þ ηττ þ 2jημτj cosϕμτÞ sin 2Δ13; ð2:7Þ

where Δ13 ¼ Δm2
31L=4E, with L being the baseline and

ϕμτ being the phase of the parameter ημτ. From the above

equation we see that ημμ and ηττ appear with the same sign
in the probability. This explains the shift of the oscillation
minima for both ημμ and ηττ in the same directions for their
positive/negative values. The shifting of the minima from
zero for these parameters due to the opposite signs of these
parameters (i.e., positive values for ημμ and negative values
for ηττ) might have caused due to some subleading terms in
the probability. From the above equation, we also note that
the disappearance channel probability does not depend
upon the parameter ηee at the leading order. This confirms
our numerical observation which shows that the disappear-
ance probabilities do not change with the variation of the
parameter ηee for both P2SO and DUNE.

III. EXPERIMENTAL DETAILS

For simulating the long-baseline experiment P2SO, we
use the same configuration as used in Ref. [22]. The
Protvino accelerator with a 1.5 km-diameter U-70 synchro-
tron will generate 450 KW beam to produce 4 × 1020

protons on target (POT) per year. The neutrinos will be
detected at the Super-ORCA detector which will have a
fiducial volume in megaton (Mt) scale. We have considered
a total run-time of six years, divided into three years in
neutrino mode and three years in antineutrino mode.
For DUNE, we have used the official GLoBES files

corresponding to the technical design report [23]. For
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FIG. 3. Electron neutrino appearance (disappearance) probability as a function of energy for P2SO experiment in upper (lower) panel.

TABLE I. Oscillation parameter values with their correspond-
ing 1σ errors considered in our analysis [3].

Parameters True values �1σ

sin2 θ12 0.303þ0.012
−0.011

sin2 θ13 0.02203þ0.00056
−0.00059

sin2 θ23 0.572þ0.018
−0.023

δCP½°� 197þ42
−25

Δm2
21 [10−5 eV2] 7.41þ0.21

−0.20
Δm2

31 [10−3 eV2] 2.511þ0.028
−0.027
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DUNE, the detector will be a 40 kt liquid argon time-
projection chamber. The beam power in this case will be
1.2 MW. The total run-time for DUNE which we consid-
ered in our work is 13 years comprising of 6.5 years in
neutrino mode and 6.5 years in antineutrino mode. This
corresponds to 1.1 × 1021 POT per year.
For the estimation of the sensitivity, we use the Poisson

log-likelihood and assume that it is χ2-distributed:

χ2stat ¼ 2
Xn
i¼1

�
Ntest

i − Ntrue
i − Ntrue

i log

�
Ntest

i

Ntrue
i

��
; ð3:1Þ

where Ntest and Ntrue are the number of events in the test
and true spectra respectively, and i is the number of energy
bins. The systematic is incorporated by the method of pull
[24,25]. For systematic uncertainties, we have considered
the overall normalization and shape errors corresponding to
signal and background. We list the values of systematic
errors for P2SO and DUNE in Table II. It should be noted
that the DUNE GLoBES file contains no shape error. We
show all our results for the normal hierarchy of the neutrino
masses withm1 ¼ 10−5 eV unless otherwise specified. The
true values of the parameters that we use in our analysis are
given in Table I. In all our results, we will consider one
SNSI parameter at a time.

IV. RESULTS

A. Bounds on the SNSI parameters

First, let us try to see the capabilities of P2SO and DUNE
to constrain the diagonal SNSI parameters. Usually this is
done by taking the standard three flavor scenario in the true
spectrum of the χ2, taking SNSI in the test spectrum of the
χ2 and plotting the χ2 against the SNSI parameters. Before
presenting these results, it is important to understand the
role of Δm2

31 in putting the constraints on the SNSI
parameters. For this, in Fig. 4, we have plotted 3σ contour
in the η (test)—Δm2

31 (test) plane, taking the standard three
flavor scenario in true. In this figure, the left/middle/right
panel is for ηee=ημμ=ηττ. In generating this figure, all the
other parameters that are not shown (except δCP) are
minimized randomly using their 1σ error as priors as listed
in Table I. The parameter δCP is minimized without any

prior. The green (red) shaded allowed region is for DUNE
(P2SO). In these panels, the range in y-axis corresponds to
the current 3σ range of Δm2

31 according to Nufit 5.2. From
the figure we see that, for the parameter ηee, the standard
scenario cannot be fitted with SNSI having a value of Δm2

31

lying outside the current 3σ range. This is because in this
case, the contours for both DUNE and P2SO are not
extended beyond the plotted y-axis values of Δm2

31. But for
ημμ and ηττ, the standard scenario can also be fitted with
SNSI having a value of Δm2

31 lying outside its current 3σ
allowed range. This can be understood by observing that
for these two parameters, the contours are getting extended
beyond the y-axis ranges of Δm2

31. This implies that, when
we calculate the bounds for ημμ and ηττ, the χ2 minimum
can correspond to a value of Δm2

31 beyond the current 3σ
range.2 Therefore, it is very important to take extra care
when minimizing this parameter at the time of calculating
the bounds of ημμ and ηττ. If we minimize this parameter
taking its 1σ error as a prior, then there is a chance that the
χ2 minimizer will take a local minima near to its true value.
On the other hand, if we minimize this parameter without
any prior, then the χ2 minimum will occur beyond its
allowed 3σ values. To avoid this situation, we will
minimize this parameter by the method of systematic
sampling rather than random sampling, i.e., vary this
parameter within its current 3σ allowed range and then
choose the χ2 minimum. Here it is important to note that the
current 3σ range of Δm2

31 was calculated using the standard
three flavor scenario. However, if this parameter is mea-
sured considering SNSI in theory, the allowed 3σ region
may get extended accommodating larger values of this
parameter.3 To incorporate this situation, one may consider
to minimize this parameter with a flat prior. Since we do not
know if that is the case, we decided to vary Δm2

31 within its
current 3σ range.
In Fig. 5, we have shown the bounds on the diagonal

SNSI parameters adapting the methodology that we dis-
cussed in the previous paragraph. Left, middle and right
panels show the bounds on ηee, ημμ and ηττ, respectively. In
each panel, the blue curve represents the bound from
DUNE while the red curve is for the bound from the
P2SO experiment. From the figure we see that stringent
bounds can be obtained on these parameters from both
experiments. DUNE is better than P2SO to constraint the
parameter ηee at 3σ C:L: While in the cases of ημμ and ηττ,
bounds from P2SO and DUNE are similar. The sensitivity
limits on the parameters at 3σ C:L: are shown in Table III.

TABLE II. The values of systematic errors that we considered
in our analysis. “norm” stands for normalization error, “Sg”
stands for signal and “Bg” stands for background.

Systematics P2SO DUNE

Sg-norm νe 5% 2%
Sg-norm νμ 5% 5%
Bg-norm 12% 5% to 20%
Sg-shape 11% —
Bg-shape 4% to 11% —

2We have explicitly checked that this situation does not occur
with any other parameter.

3It will be very intriguing to see what happens to the
measurement of oscillation parameters especially Δm2

31 with
respect to the current data if one assumes SNSI exists in Nature.
However, this is beyond the scope of this present work.
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From the table, one can see that the bounds from DUNE
and P2SO are more or less similar except the case of ηee.
To understand the contribution from the appearance

channel and the disappearance channel in constraining
the diagonal SNSI parameters, in Fig. 6 we show the
neutrino events as a function of neutrino energy in standard
case and in presence of SNSI for DUNE. For the calcu-
lation of events, we have used a value of 0.04 for all the
three SNSI parameters, i.e., jηeej, jημμj and jηττj. This value
of the SNSI parameter lies well within the 3σ bound of
these parameters. Upper (lower) panel is for the appearance
(disappearance) events. Black solid curves show the event-
rates in standard case. Red and green dashed curves are the
event-rates for 0.04 and −0.04 values of SNSI parameters,
respectively. From the figure, we realize that SNSI param-
eter ηee affects significantly to νe appearance events and
mildly affects to disappearance events. While in cases of
ημμ and ηττ significant effect is observed for disappearance

channel. Interestingly, the SNSI parameters either enhance
or deteriorate the event-rates depending upon the sign of
the parameters. For example, the event-rates increased
(decreased) for þve (−ve) values of ηee in appearance
channel.
To see how the bounds on the diagonal SNSI parameters

change with respect to the lowest neutrino mass m1, in
Fig. 7 we have plotted the upper bound of the SNSI
parameters at 3σ as a function of m1. The solid (dashed)
lines represent the sensitivity of DUNE (P2SO) experiment.
We can notice from the figure that for the lightest neutrino
mass below the order 10−2 eV, the constraints on SNSI
parameters are almost unchanged. After that, the sensitivity
of both DUNE and P2SO gets deteriorated.
At this point, let us briefly discuss how these values ofm1

are compatiblewith the latest bound on the absolute neutrino
masses. The most reliable bounds on the absolute neutrino
masses come from cosmology which provides the upper
bound on the sum of neutrino masses. The most relaxed
bound on the sum of neutrino masses obtained from the
Planck data, given as

P
mν ≤ 0.54 eV at 95% C.L. [26].

According to this, the neutrinomasses are allowed to be in the
quasidegenerate regime i.e., m1 ∼m2 ∼m3 ∼ 0.1 eV. This
implies the range of x-axis which is shown in Fig. 7 is
consistent with the latest bound on the absolute neutrino
masses.
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FIG. 5. Bounds on the SNSI diagonal parameters (ηee, ημμ and ηττ) from DUNE and P2SO experiments.

FIG. 4. Allowed values of Δm2
31 at 3σ C:L: when SNSI is fitted in the theory with the standard three flavor scenario in the data.

TABLE III. Sensitivity limits on the SNSI parameters at
3σ C:L: from DUNE and P2SO experiment.

Parameters DUNE P2SO

ηee ½−0.051; 0.048� ½−0.075; 0.073�
ημμ ½−0.0457; 0.041� ½−0.042; 0.038�
ηττ ½−0.061; 0.065� ½−0.057; 0.059�
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B. Effect of SNSI in the standard scenario

Next wewill study the effect of SNSI in the measurement
of unknowns related to the standard oscillation parameters
i.e., ordering of the neutrino masses, octant of the atmos-
phericmixing angle θ23 and theCPviolation. This is usually
done by taking the SNSI parameter in both true and test.
Before doing that, first wewill study the effect of SNSI in the
precision measurement of θ23 andΔm2

31. Figure 8 shows the

allowed region sin2 θ23 and Δm2
31 in test parameter plane at

3σ C:L: by taking the value of all the three SNSI parameters
to be�0.04 in both true and test spectrum of the χ2. The true
values of sin2 θ23 and Δm2

31 are denoted by a star. All the
other parameters (except δCP) which are not shown in the
panels are minimized by random sampling using their 1σ
error as a prior. The parameter δCP is varied with a flat prior.
Solid curves are for the DUNE experiment while dashed
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DUNE experiment.
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curves are for P2SO experiment. In each plot, the red color
curve represent the standard interaction case. Positive
(negative) value of ηαβ is represented by the blue (green)
curve. In standard case, the allowed region is more con-
strained for P2SO experiment as compared to DUNE
experiment. The impact of the three SNSI parameters are
quite discernible from one another. In case of ηee, there is no
significant effect on the precision of θ23 and Δm2

31.
Interesting behaviour is observed for ημμ and ηττ. For
negative value of ημμ, the allowed parameter space increases
whereas in case of ηττ, the allowed region increases for
positive value of ηττ. However, in both the cases the
sensitivity toward sin2 θ23 gets deteriorated but the precision
ofΔm2

31 does not changemuch. Butmost importantlywe see
that in this case the values ofΔm2

31 at 3σ C:L: liewell within
its current allowed ranges according to Nufit 5.2. Therefore,
when one considers SNSI in both true and test, it is sufficient
to minimize this parameter randomly with its 1σ prior.
However, to be consistent with Fig. 5, in the following
paragraphs, while studying the capability of P2SO and
DUNE to measure the unknowns related to the standard
oscillation parameters in presence of SNSI, we will mini-
mize Δm2

31 systematically within its current 3σ range. The
SNSI parameters will be fixed at�0.04 in both true and test.
Let us first discuss the sensitivity to neutrino mass

ordering in presence of SNSI which is shown in Fig. 9
as function of true δCP. This figure shows the capability to

determine the true nature of the neutrino mass ordering.
This sensitivity is estimated by taking the normal mass
ordering in true and the inverted mass ordering in the test.
For inverted ordering we have taken m3 ¼ 10−5 eV, m1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

3 þ Δm2
31

p
and m2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ Δm2
21

p
. Solid and dashed

curves are for DUNE and P2SO, respectively. In each
panel, standard case is represented by the red curve and
blue (green) curve represents the ηαα value as þ0.04
ð−0.04Þ. Left, middle and right panels are for the param-
eters ηee, ημμ and ηττ, respectively. From the figure, it is
clear that both experiments have very high mass ordering
sensitivity. For almost all the δCP region, P2SO experiment
has higher sensitivities than DUNE in the standard sce-
nario. In presence of SNSI, mass ordering sensitivity is
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FIG. 9. Mass hierarchy sensitivity of the SNSI diagonal parameters (ηee, ημμ and ηττ) for DUNE and P2SO experiment.

TABLE IV. Appearance channel event difference for P2SO and
DUNE for δtrueCP ¼ 90°. These events corresponds to 3 years
running of P2SO and 6.5 year running of DUNE.

Appearance channel event difference
(Normal ordering—Inverted ordering)

Experiments η ¼ 0.04 η ¼ 0 η ¼ −0.04

P2SO (ηee) 6992 6273 5609
DUNE (ηee) 360 244 150

P2SO (ηττ) 5336 6273 7510
DUNE (ηττ) 151 244 343
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affected more for ηee as compared to ημμ and ηττ. After
including SNSI parameters to standard case, the sensitiv-
ities may increase or decrease depending upon the sign of
ηαβ. The sensitivity is increased (decreased) as compared to
the standard three flavor scenario for a positive (negative)
value of ηee. However, it is opposite for ηττ. This can be
better understood from Table IV.
In Table IV, we have listed the difference of event

numbers (N) between the normal ordering and inverted
ordering coming from the appearance channel correspond-
ing to δCP ðtrueÞ ¼ 90° for both P2SO and DUNE. The
events for normal ordering is calculated at the true values of
the oscillation parameters and the events for inverted
ordering are calculated corresponding to the χ2 minimum.
From this table, we see that N is higher (lower) when ηee is
positive (negative) as compared to the standard case but this
is opposite for ηττ. This explains why mass ordering
sensitivity is higher (lower) for a positive (negative) value
of ηee and a negative (positive) value of ηττ.
Next let us discuss the CP violation (CPV) discovery

sensitivity.4 Figure 10 shows the CPV sensitivities as a

function of true δCP for DUNE and P2SO experiments. In
particular, this figure shows the ability of the experiments to
exclude the CP conserving values of δCP. For each true δCP,
we have obtained the minimum χ2 for test δCP as CP
conserving values (0° and 180°). Solid and dashed curves
show the sensitivities of DUNE and P2SO, respectively. In
each plot, the red curves are for standard interaction cases,
while the blue and green curves are for SNSI parameters as
þ0.04 and −0.04, respectively. The left, middle and right
panels are for the SNSI parameter ηee, ημμ and ηττ. From the
figures one can conclude that in standard case the DUNE
experiment will have higher CPV sensitivities compared to
P2SO experiment. The effect of SNSI parameters is different
for each parameter. The parameter ηee and ημμ have signifi-
cantly higher effect on the CPV sensitivity than ηττ. Positive
value of ηαα increases the CPV sensitivities whereas the
sensitivities get decreased for negative value of these
parameters.
Finally, let us discuss the octant sensitivity of θ23 in

presence of SNSI. Octant sensitivity is the capability to
exclude the degeneracy between lower octant (LO), i.e.,
θ23 < 45° and higher octant (HO), i.e., θ23 > 45°. Figure 11
shows the octant sensitivity as a function of true sin2 θ23.
This figure is generated in the following way. If the true
sin2 θ23 is in LO (HO), then test sin2 θ23 varied in HO (LO).
In each panel, standard case is represented by the red curve
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FIG. 10. CPV sensitivity of the SNSI diagonal parameters (ηee, ημμ and ηττ) for DUNE and P2SO experiment.
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4Note that though herewe only discuss the CPV for the diagonal
SNSI parameters, the contribution for the CPV will mostly arise
from the off-diagonal SNSI parameters which are complex in
nature. We have included a section in the appendix to discuss this.
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and blue (green) curve represents the ηαα asþ0.04 ð−0.04Þ.
Left, middle and right panels are for the parameters ηee, ημμ
and ηττ, respectively. One can conclude form the figure that,
in the standard case the sensitivity of DUNE is slightly
higher than P2SO. Considering the SNSI parameters, the
parameter ηee affects the least to the sensitivity. Parameter
ημμ and ηττ have significant effect on the sensitivity. In case
of ημμ, the sensitivity is enhanced for the positive value and
deteriorated for the negative value. This observation is
reversed in presence of parameter ηττ.

V. CONCLUSION

In this paper, we have studied the nonstandard interaction
mediated by a scalar field (SNSI) in the context of the
P2SO experiment and compared its sensitivity with the
DUNE experiment. P2SO is a proposed long-baseline neu-
trino experiment at the KM3NeT facility whereas DUNE is
the upcoming long-baseline experiment at Fermilab. In the
presence of SNSI, the neutrino masses in Hamiltonian of the
neutrino oscillation gets a correction termwhich in turn alters
the probabilities of the neutrino oscillation. Interestingly, in
this case, the neutrino oscillation probabilities become
function of the absolute neutrino masses. Due to the intro-
duction of SNSI, the neutrino oscillation parameter space is
increased by 3 real SNSI parameters and 3 complex param-
eters. In this study our aim is to study the capability of P2SO
andDUNE to constrain the real SNSI parameters, i.e., ηee, ημμ
and ηττ and also study how these parameters impact the
measurement of the standard oscillation parameters by these
two experiments. We have presented our results considering
the normal ordering of the neutrino masses.
At the probability level, we have shown that the

sensitivity of ηee is expected to mainly come from the
appearance channel whereas the sensitivities to ημμ and ηττ
are expected to come from the disappearance channel.
However, some sensitivity to ημμ and ηττ can also come
from the appearance channel. While estimating the capabil-
ity of DUNE and P2SO to constrain the SNSI parameters,
we find that the parameterΔm2

31 has a nontrivial role for ημμ
and ηττ when one considers standard three flavor scenario
in the true spectrum of the χ2 and SNSI in the test spectrum
of the χ2. For these two parameters, the χ2 minimum
can appear outside the current allowed values of Δm2

31.
Therefore, the bounds on these two SNSI parameters
depend upon how Δm2

31 is minimized in the analysis. In
our work, we choose to minimize this parameter system-
atically within its current three sigma range. In our analysis,
we find that for ηee, the bound from DUNE is stronger as
compared to the bound from P2SO. For the other two
parameters, the bounds from DUNE and P2SO are com-
parable. From the event level analysis, we found that for
ηee, the events from appearance channel mostly contribute
in the sensitivity whereas for ημμ and ηττ, the events from
disappearance channel mostly contribute in the sensitivity.

Further, we also find that if we vary the lowest neutrino
mass, i.e., m1, then for m1 < 0.01 eV, the bounds of the
SNSI parameters do not change. However, when one
increases m1 beyond 0.01 eV, the sensitivity starts to fall.
While estimating the effect of the SNSI parameters on

the measurement of standard oscillation parameters, we
find that χ2 minimum always comes within the current
allowed values of Δm2

31 when one considers SNSI in both
true and test spectrum of the χ2. The value of the three SNSI
parameters that we consider in our analysis is �0.04.
Additionally, we find that in the presence of SNSI, the
precision of θ23 gets deteriorated significantly for ημμ and
ηττ but the precision of Δm2

31 does not get much affected.
For ηee, the precision ofΔm2

31 and θ23 is same as in the case
of standard three flavor scenario. Going ahead, the change
in the neutrino mass ordering sensitivity and CP violation
sensitivity due to SNSI is maximum for ηee as compared to
ημμ and ηττ whereas the change in the octant sensitivity is
maximum for ηττ. These sensitivities can be either higher or
lower than the standard three flavor scenario depending on
the relative sign of the SNSI parameters.
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APPENDIX A: SEPARATION
OF SNSI FROM VNSI

As mentioned in Sec. II, the neutrino oscillation
Hamiltonian in presence of SNSI parameter η can be
written as:

HSNSI ¼ Eν þ
MM†

2Eν
þ diagð

ffiffiffi
2

p
GFNe; 0; 0Þ; ðA1Þ

with

M ¼ Udiagðm1; m2; m3ÞU†

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔm2

31j
q 0

B@
ηee ηeμ ηeτ

ημe ημμ ημτ

ητe ητμ ηττ

1
CA: ðA2Þ
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Whereas the same Hamiltonian in presence of VNSI
parameters ϵ can is written as:

HVNSI ¼ Eν þ
1

2Eν
Udiagðm2

1; m
2
2; m

2
3ÞU†

þ
ffiffiffi
2

p
GFNe

0
B@

1þ ϵee ϵeμ ϵeτ

ϵμe ϵμμ ϵμτ

ϵτe ϵτμ ϵττ

1
CA: ðA3Þ

Comparing Eqs. (A1) and (A3), we see that SNSI has been
added as a correction term in the mass matrix whereas
VNSI is added as a correction term in the matter potential.
To understand their effect in the neutrino oscillation
probabilities, in Fig. 12, we have shown the appearance
channel probability as a function neutrino energy for both
DUNE (top row) and P2SO (bottom row) in presence of
diagonal SNSI (red curve) and VNSI (blue curve) param-
eters. These panels clearly show that for same values of the
SNSI and VNSI parameters, the values of their correspond-
ing probabilities are very different.

APPENDIX B: APPEARANCE CHANNEL
PROBABILITY EXPRESSION FOR ηee

To derive the probability formula in presence of SNSI for
ηee, we have followed the formalism as mentioned in

Ref. [27]. The effective Hamiltonian in the presence of
SNSI is mentioned in Eq. (2.5) and can be written in
expanded form as

HSNSI≈
1

2Eν
½ðMþ δMÞðMþ δMÞ†þ 2EνV�

¼ 1

2Eν
½MM†þ δMδM†þMδM†þ δMM†þ 2EνV�;

ðB1Þ

where

M¼U

0
B@
m1 0 0

0 m2 0

0 0 m3

1
CAU†; δM¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔm2

31j
q 0

B@
ηee 0 0

0 0 0

0 0 0

1
CA;

V¼Vm

0
B@
1 0 0

0 0 0

0 0 0

1
CA; ðB2Þ

withU ¼ R23U
†
δR13UδR12 and Vm ¼ ffiffiffi

2
p

GfNe. Here Rij is
the rotation matrix in (i, j) plane and Uδ ¼ diagð1; 1; eiδCPÞ.
We have used normal mass ordering for our analysis, so for
the matter of convenience we will use

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔm2

31j
p

¼
ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

p
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FIG. 12. Appearance probability as a function of neutrino energy for DUNE and P2SO experiment in presence of diagonal SNSI and
VNSI parameters.
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for further calculations. The time evolution of the neutrinos
in their flavor state is given by the equation

i
∂

∂t
jναi ¼ HSNSIjναi; ðB3Þ

and the probability amplitude of their oscillations is given
by the S matrix

S ¼ Te
−i
R

xf
xi

HSNSIðxÞdx; ðB4Þ

where the T represents the space ordering. Considering
constant matter density, it is convenient to write the S
matrix element as

Sαβ ¼ ðe−iUeffHd
SNSIU

†
effðxf−xiÞÞαβ

¼ ðUeffe−iH
d
SNSILU†

effÞαβ: ðB5Þ

Here L is the neutrino travel distance via the earth matter,
Ueff is the effective PMNS matrix in the presence of SNSI
in the matter and Hd

SNSI is the diagonalized effective
Hamiltonian of the form

Hd
SNSI ¼

0
B@

H1 0 0

0 H2 0

0 0 H3

1
CA: ðB6Þ

Defining Δeff
21 ¼ H2 −H1 and Δeff

31 ¼ H3 −H1, we can
rewrite the S matrix element by ignoring the common
phase e−iH1L as

Sαβ ¼

2
64Ueff

0
B@

1 0 0

0 e−iΔ
eff
21
L 0

0 0 e−iΔ
eff
31
L

1
CAU†

eff

3
75
αβ

: ðB7Þ

For the simplicity of calculations, we can change the flavor
basis to some auxiliary basis j eναi ¼ Uajναi by some
auxiliary rotation Ua ¼ R23U

†
δR13 which will change the

effective Hamiltonian and S matrix to

H0
SNSI ¼ Ua†HSNSIUa and S ¼ Uae−iH

0
SNSILUa†; ðB8Þ

respectively. This new effective Hamiltonian is now inde-
pendent of δCP and can be easily diagonalized by two
consecutive rotations in (1, 3) and (1, 2) plane

R0T
12R

0T
13H

0
SNSIR

0
13R

0
12 ¼

0
B@

H1 0 0

0 H2 0

0 0 H3

1
CA: ðB9Þ

Here we have neglected the (2, 3) and (3, 2) elements which
are generated after the (1, 3) and (1, 2) rotations. The
additional rotation angles θ013 and θ012 for which Eq. (B9)
holds are given in Eqs. (B13) and (B15) respectively.
Finally the effective mixing matrix in the presence of SNSI
in matter can be expressed as

Ueff ¼ R23U
†
δR13R0

13UδR0
12 ðB10Þ

Substituting Eqs. (B10) and (B9) in Eq. (B8), we will easily
recover Eq. (B7). As the S matrix elements represent the
probability amplitudes, the probability of transition from
jναi flavor to jνβi flavor is expressed as Pαβ ¼ jSαβj2. Using
the above equations, the appearance channel probability
expression for ηee becomes:

Pμe ¼ cos2ðθ13 þ θ013Þcos2θ23sin22θ012sin2
�
Δeff

21L
2

�
þ 1

16
sin22ðθ13 þ θ013Þsin2θ23

×

	
7þ cos ðΔeff

21LÞ − 4 cos ððΔeff
21 − Δeff

31 ÞLÞ − 4 cos ðΔeff
31LÞ þ 2 cos 4θ012sin

2

�
Δeff

21L
2

�

− 8 cos 2θ012 sin
�
Δeff

21L
2

�
sin

�ðΔeff
21 − 2Δeff

31 ÞL
2

�

þ PδCP

μe ðB11Þ

where PδCP
μe is the CP phase dependent part and is expressed as

PδCP
μe ¼ cos2ðθ13 þ θ013Þ sinð2θ23Þ sin ðθ13 þ θ013Þ sinð2θ012Þ sin

�
Δeff

21L
2

�

×

�
cos δCP cos 2θ012 sin

�
Δeff

21L
2

�
− cos

�
Δeff

21L
2

�
sin δCP þ sin

�
δCP þ Δeff

31L −
Δeff

21L
2

��
ðB12Þ
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In the above equations, the additional rotation in the 1, 3 plane can be expressed as

sin 2θ013 ¼
a13ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a213 þ b213
p ðB13Þ

where

a13 ¼
h
2Vm þ 2Δm2

31η
2
ee þ ðm1 þm2 þ 2m3Þ

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

q
ηee þ

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

q
ηeeðm1 −m2Þ cos 2θ12

i
sin 2θ13;

b13 ¼ 2½Δm2
31 − Δm2

21sin
2θ12 − Vm cos 2θ13 þ 2m3

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

q
ηeesin2θ13

− Δm2
31η

2
ee cos 2θ13 − 2

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

q
ηeecos2θ13ðm1cos2θ12 þm2sin2θ12Þ

i
: ðB14Þ

The additional rotation in the 1, 2 plane can be expressed as

sin 2θ012 ¼
−a12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a212 þ b212

p ; ðB15Þ

where,

a12 ¼ sin 2θ12
h
2Δm2

21 cos θ
0
13 þ

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

q
ηeeðm2 −m1Þðcos θ013 þ cosð2θ13 þ θ013ÞÞ

i
;

b12 ¼ 2
n
−cos2θ12

�
Δm2

21 − 2

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

q
m1ηee cos θ13 cos θ013 cosðθ13 þ θ013Þ

�
þ cos2θ013

�
Δm2

21sin
2θ12 þ cos2θ13

h
Δm2

31η
2
ee þ Vm þ 2

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

q
ηeem2sin2θ12

i�
þ sin2θ013

�
Δm2

31 þ sin2θ13
h
Δm2

31η
2
ee þ Vm þ 2

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

q
ηeem3

i�o
−
1

2

h
2Δm2

31η
2
ee þ

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

q
ηeeðm2 þ 2m3Þ þ 2Vm −

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

q
ηeem2 cos 2θ12

i
sin 2θ13 sin 2θ013: ðB16Þ

The effective mass square splittings are

Δeff
21 ¼ 1

8E

h
cos 2θ012

n
Δm2

21 − 2Δm2
31ð1þ η2eeÞ −

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

q
ηeeðm1 þm2 þ 2m3Þ

− 2Vm þ ð2Δm2
31 − Δm2

21Þ cos 2θ013 −
ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

q
ηeeðm1 þm2 − 2m3Þðcos 2θ13 þ cos 2θ013Þ

−
�
2Δm2

31η
2
ee þ

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

q
ηeeðm1 þm2 þ 2m3Þ þ 2Vm

�
cos 2ðθ13 þ θ013Þ

þ cos 2θ12
h
3Δm2

21 þ
ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

q
ηeeðm2 −m1Þ þ Δm2

21 cos 2θ
0
13

þ
ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

q
ηeeðm2 −m1Þ

�
cos 2θ13 þ 2 cos θ13 cosðθ13 þ 2θ013Þ

�io
þ 2

�h
2Δm2

21 þ
ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

q
ηeeðm2 −m1Þ

i
cos θ013 þ

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

q
ηeeðm2 −m1Þ cosð2θ13 þ θ013Þ

�
× sin 2θ12 sin 2θ012

i
; ðB17Þ
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Δeff
31 ¼ 1

4E

��
Δm2

21 þ
ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

q
ηeeðm2 −m1Þcos2θ13

�
cos θ013 sin 2θ12 sin 2θ

0
12

þ 2cos2θ013
�
Δm2

31 þ cos2θ012
h
−Δm2

21sin
2θ12 − cos2θ13

�
Δm2

31η
2
ee þ Vm

þ 2

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

q
ηeeðm1cos2θ12 þm2sin2θ12Þ

�i
þ
h
Δm2

31η
2
ee þ 2

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

q
ηeem3 þ Vm

i
sin2θ13

�
þ sin θ013

	
1

2

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

q
ηeeðm1 −m2Þ sin 2θ012 sin 2θ12 sin 2θ13

þ 2
�
Δm2

21sin
2θ12 þ cos2θ13

h
Δm2

31η
2
ee þ Vm þ 2

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

q
ηeem2sin2θ12

i�
sin θ013

− 2cos2θ012
�
Δm2

31 þ
h
Δm2

31η
2
ee þ 2

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

q
ηeem3 þ Vm

i
sin2θ13

�
sin θ013



þ ð1þ cos2θ012Þ

×
�
Δm2

31η
2
ee þ

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

q
ηeem3 þ Vm þ

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

q
ηeem2sin2θ12

�
sin 2θ13 sin 2θ013

þ cos2θ12
�
−2Δm2

21sin
2θ012 þ

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

q
ηeem1ð4cos2θ13sin2θ013 þ ð1þ cos2θ012Þ sin 2θ13 sin 2θ013

���
: ðB18Þ

In Fig. 13, we have shown how our analytical formula
matches with the full numerical estimations for DUNE (left
panel) and P2SO (right panel). These panels show that our
formula matches very well with the numerical estimation.
Though our analytical formula look very complicated

from the first glance, some interesting observations can be
made from them. In Eq. (B12), if we demand sin 2θ012 ¼ 0,
the probability becomes independent of δCP. This condition
yields:

sin 2θ012 ∼ 0 ⇒ a12 ¼ 0:

This in turn gives

ηee ¼
−2Δm2

21ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

p
ðm2 −m1Þð1þ cos 2θ13 − sin 2θ13 tan θ013Þ

:

ðB19Þ

If we assume the contribution to θ013 to be negligible, then
we will get ηee ∼ −0.1748. This implies the fact that for a
value of ηee ∼ −0.1748, the appearance channel probability
becomes independent of δCP and the CP sensitivity of an
experiment gets lost. This is shown recently in Ref. [28] in
the context of the ESSnuSB experiment. However, this
particular value of ηee will be ruled out at more than 3σ for
both P2SO and DUNE if these experiments do not
see SNSI.
For a more clear understanding of the above discussion,

in Fig. 14, we have plotted the CP term in the analytical
expression, i.e., Eq. (B12). In these panels, we did not
consider θ013 ¼ 0. For DUNE (P2SO) we choose
E ¼ 2.05ð4Þ GeV. From the left panel we see that for
ηee ¼ −0.165, PδCP

μe vanishes for both the experiments. This
can be also seen from the brown curve in the right panel
where PδCP

μe is plotted against δCP for P2SO. Additionally,

FIG. 13. Probability plots showing comparison between the exact numerical estimation and the analytical formula.
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we observe that for δCP ¼ 155° and 335°, PδCP
μe vanishes

irrespective of the value of ηee.
Next let us try to understand why the appearance channel

probability is higher (lower) in presence of SNSI as compared
to the standard interaction scenario for positive (negative)
values of ηee (cf. Fig. 13) from the analytical expression. For
this let us consider a situation whenPδCP

μe vanishes i.e., δCP ¼
155° and 335°. In Eq. (B11), one can neglect the sin2ðΔeff

21
L

2
Þ

terms and therefore the leading contribution to the probability
will come from the nonoscillatory amplitude of
1
16
sin22ðθ13 þ θ013Þsin2θ23 as it contains a factor “7”. Now,

in the nonoscillatory amplitude, only θ013 depends on ηee via
Eq. (B13). Taking three sample values of ηee of −0.1, 0, and
0.1, one can numerically estimate that

2θ013ðηee ¼ −0.1Þ ¼ 1.61°; 2θ013ðηee ¼ 0Þ ¼ 3.56°;

2θ013ðηee ¼ 0.1Þ ¼ 6.02°;

and hence we can conclude that

Pμeðηee < 0Þ < Pμeðηee ¼ 0Þ < Pμeðηee > 0Þ: ðB20Þ

APPENDIX C: CP SENSITIVITY OF THE
DIAGONAL VS OFF-DIAGONAL

SNSI PARAMETERS

In Sec. IV B, we mentioned that the off-diagonal SNSI
parameters are more sensitive to the δCP as compared to the
diagonal SNSI parameters. To show this explicitly, in
Fig. 15, we show the appearance channel probability as
a function of δCP for both DUNE (left panel) and P2SO
(right panel) considering both diagonal and off-diagonal
SNSI parameters. From these panels we can clearly see that
the variation of the probability with respect to δCP is more
for the off-diagonal SNSI parameters as compared to the
diagonal SNSI parameters.

FIG. 14. PδCP
μe vs ηee (left panel) and PδCP

μe vs δCP (right panel).
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FIG. 15. Appearance probability as a function of δCP for DUNE and P2SO experiment for diagonal and off-diagonal SNSI parameters.
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