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We consider a model where the interaction between dark matter and the Standard Model particles is
mediated by a ghost-free bigravity portal. The bigravity model invokes a massive spin-2 particle coupled to
the usual massless graviton as well as generic bimetric matter couplings. The cross sections for dark matter
direct detection are computed and confronted with the experimental bounds. The presence of the massive
spin-2 mediator resolves the core-cusp problem, which in turn significantly constrains the dark matter
coupling in such a bigravity theory. Yet, there remains a window of the parameter space where the model
can be tested in the upcoming direct detection experiments such as XENONnT and PandaX-30T. The
model also predicts a reheating temperature on the order of 106 GeV.
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I. INTRODUCTION

Null results in the nongravitational experiments, which
have achieved an extraordinary level of precision [1–6],
leave dark matter (DM) [7–9] one of the most outstanding
problems in particle physics and cosmology. If particlelike
dark matter exists, its interaction with the Standard Model
(SM) sector must be sufficiently weak so that we have not
observed it directly. In this paper, we investigate a scenario
where such a feeble interaction portal is provided by spin-2
mediators. Indeed, in Einstein’s gravity, gravitational force
mediated by the massless spin-2 graviton is much weaker
than the other three known fundamental interactions.
Thanks to its universal coupling, this graviton portal allows
us to identify the existence of dark matter [10–15]. If it is
the only SM-DM portal, dark matter cannot be observed in
direct detection experiments. We consider a model where
there is an additional massive spin-2 particle that acts as the
main SM-DM portal at short range, that is, a bigravity
model with composite matter couplings. In the bigravity
construction, the spin-2 gauge group (two copies of diffeo-
morphism invariance) necessarily breaks down to a sub-
group DiffL × DiffR → DiffV [16], which in some sense is
analogous to the symmetry breaking in the spin-1 gauge

group of the SM electroweak sector. Consequently, after
symmetry breaking, the massless spin-2 particle is the
familiar Einstein graviton. The massive spin-2 particle
mediates a short-range fifth force, which is well within
the bounds set by the current gravity tests. However, a
Higgs-like mechanism has not been found to this date to
generate the mass in this bigravity construction, and the
bigravity theory works as an effective theory below a
cutoff [17].
Our model is different from the spin-2 dark matter

models where the dark matter particles themselves are of
a spin-2 nature [18–21], where the interactions with the SM
sector are too weak to produce any direct detection signals.
Interactions between dark matter and the SM particles via
channels of a nontrivial gravitational nature have been
previously explored. Specifically, it has been considered in
the context of the Randall-Sundrum extra-dimension mod-
els, where dark matter interacts with the SM matter via
Kaluza-Klein resonances [22–27], or effective theory with
a heavy spin-2 resonance portal [28]. This is different from
the sharp-mass bigravity portal we are considering and the
difference impacts the phenomenology of these theories
[29,30]. Indeed, our model builds upon the recent develop-
ments in constructing consistent massive gravity/bigravity
models [31,32] (see [17,33] for a review), especially the
consistent forms of bimetric couplings to matter [17,34].
On the other hand, the DM relic abundance via s-channel
spin-2 portal effective interactions in the early Universe
were computed in [35], and in Ref. [36] the LHC signals
involving s-channel spin-2 mediators were examined
within a simplified phenomenological framework. In con-
trast, our investigation delves into t-channel spin-2
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mediators in the context of dark matter direct detection,
beginning with a comprehensive Lagrangian featuring
predefined theory parameters. We will see that the param-
eter choices are more limited starting from the Lagrangian,
and if such a massive spin-2 portal exists, a specific region
of the bigravity theory space is preferred in order to resolve
the small-scale anomaly in the DM astronomy, the core-
cusp problem [37–40], which can be tested in the next
generation direct detection experiments. Also, by estimat-
ing the correct dark matter relic abundance in this bigravity
model within the viable parameter region, we can predict a
reheating temperature in the early Universe.

II. THE MODEL

As mentioned, we consider a gravitational sector where
the conventional massless graviton is accompanied by a
massive counterpart, i.e., a bigravity model. Gravity models
with a massive graviton were traditionally known to be
plagued by various theoretical problems such as the
Boulware-Deser ghost [41]. Recent years have seen sig-
nificant advances in constructing and understanding ghost-
free massive gravity models, especially after the discovery
of the de Rham, Gabadadze, and Tolley (dRGT) graviton
potential [31]. Extensive literature has focused on the
possibility of a Hubble-scale mass for the spin-2 particle,
and in such a scenario the model could potentially explain
the late time cosmic acceleration or the dark energy
problem (see [17,42] for a review). Nevertheless, when
detached from the context of the dark energy problem, the
mass of the spin-2 particle can be significantly larger. In
this paper, we will explore whether such a scenario can
accommodate an interaction portal to dark matter that can
be observed in the upcoming direct detection experiments.
Let us first specify the model. A dRGT-type bigravity

Lagrangian [32,33] is given by

Sbg ¼
M2

pl

2

Z
d4x

ffiffiffiffiffi
jgj

p
R½g� þM2

f

2

Z
d4x

ffiffiffiffiffiffi
jfj

p
R½f�

þM2
fm

2

4

Z
d4x

ffiffiffiffiffiffi
jfj

p X4
n¼0

αnUnðK½g; f�Þ; ð1Þ

where R½g� and R½f� are the Ricci scalars built out of metric
gμν and fμν, respectively, Mpl is the reduced Planck mass,
and Mf is another mass scale chosen to be Mf ≪ Mpl,
which will allow strong matter couplings for the massive
spin-2 mode. αn’s are real coefficients, and we choose
α1 ¼ 0 and α2 ¼ 2 to eliminate the cosmological constant
and the tadpole term. The unique dRGT potential terms,
which completely remove the Boulware-Deser ghost
[31,43], take the form

UnðKÞ ¼ Kμ1
½μ1K

μ2
μ2…Kμn

μn�; Kμ
ν ≡ δμν −

ffiffiffiffiffiffiffiffiffiffi
f−1g

q
jμν ; ð2Þ

where ½� denotes antisymmetrization of the indices, and the
square root of the matrix f−1g (f−1 being the matrix of the
inverse metric fμν) is defined by taking its principal branch.
From the perspective of symmetries, the two copies of
diffeomorphism invariance in bigravity are broken down by
the spin-2 potential terms to a single diagonal subgroup.
We assume that the Standard Model and dark matter
particles couple to both metrics, but differently [44],

SM ¼
Z

d4x
ffiffiffiffiffiffiffiffiffi
jgeff j

q
LSM þ

Z
d4x

ffiffiffiffiffiffiffiffiffiffi
jfeff j

q
LDM; ð3Þ

with

geffμν ¼ α2fμν þ 2αβfμρ

ffiffiffiffiffiffiffiffiffiffi
f−1g

q
jρν þ β2gμν; ð4Þ

feffμν ¼ α02fμν þ 2α0β0fμρ
ffiffiffiffiffiffiffiffiffiffi
f−1g

q
jρν þ β02gμν: ð5Þ

The effective/composite metrics [17,34] geffμν and feffμν are
constructed in this way to avoid reintroducing the
Boulware-Deser ghost below the effective field theory
cutoff Λ ∼ ðm2

effMplÞ1=3 [16] either classically or under
loop corrections, thanks to utilizing the dRGT matrix Kμ

ν orffiffiffiffiffiffiffiffiffiffi
f−1g

p
in these effective metrics [17]. In fact, it can be

shown that this choice of the effective metric is the only one
to achieve this avoidance [34].
After two copies of diffeomorphism in Eq. (3) breaking

into one, we obtain a massive mode Hμν and a massless
mode hμν. At linear order, we have

geffμν ¼ ημν þ κ
Hμν

Mpl
þ ξr

hμν
Mpl

; ð6Þ

feffμν ¼ ημν þ κ0
Hμν

Mpl
þ ξr

hμν
Mpl

; ð7Þ

with ξr ≡ ð1þ r2Þ−1=2, κ≡ ξr½1 − ðβ=ξrÞ2�=r, and
κ0 ≡ ξr½1 − ðβ0=ξrÞ2�=r, where ημν ¼ diagð1;−1;−1;−1Þ,
we have defined a ratio r≡Mf=Mpl, and chosen the
normalization ðαþ βÞ2 ¼ ðα0 þ β0Þ2 ¼ 1. The mass of
the massive spin-2 mode is given by

meff ¼ m=ξr: ð8Þ

Note that since the interactions of spin-2 particles with SM
and DM in Eq. (3) lead to higher strong coupling scales at
loop order, κ−1=2Mpl and κ0−1=2Mpl, which are much greater
than the pure spin-2 strongly coupling scale ðm2

effMplÞ1=3,
so the cutoff of the theory is ðm2

effMplÞ1=3.
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III. BIGRAVITY PORTAL AND DIRECT
DETECTION CROSS SECTION

In this model, the Standard Model and dark matter
particles can interact via spin-2 portals. That is, we have the
process SMþ DM → SMþ DM as shown in Fig. 1, where
the SM particles are taken to be nucleons. This is the
primary signal channel in dark matter direct detection
experiments. The nucleon’s compositeness is negligible
for the interaction we are considering here, and it will be
treated as a spin-1=2 massive pointlike particle. Let us
compute the cross section of this process under the
assumption Mf ≪ Mpl. In this scenario, the amplitude is
proportional to M−2

pl via the massless spin-2 portal, the
same as that in general relativity, but is proportional to
ð1 − β02Þð1 − β2Þr−2M−2

pl via the massive spin-2 portal,
which can be significantly different.
To have observable signals in direct detection experi-

ments, we consider an elastic process for SMþ DM →
SMþ DM and assume DM particles are much heavier than
the nucleon, for which we only need to include the
t-channel contribution, as shown in Fig. 1. In this case,
the amplitude for the scattering between a spin-s DM
particle and a nucleon is given by

iMðsÞ ¼
X
i¼h;H

giT
μν
ðsÞP

i
μναβūNðk0Þ

�
−
i
8

�
½ðkα þ k0αÞγβ

þ ðkβ þ k0βÞγα − 2ηαβð=kþ =k0Þ þ 4mNη
αβ�uNðkÞ;

ð9Þ

where the Tμν
ðsÞ tensor for a scalar (s ¼ 0) DM particle is

Tμν
ð0Þ ¼ −

i
2
½pμp0ν þ pνp0μ þ ημνðM2 − p · p0Þ�; ð10Þ

and that of a Dirac fermionic (s ¼ 1=2) DM particle is

Tμν
ð1
2
Þ ¼ ūχðp0Þ

�
−
i
8

�
½ðpμ þ p0μÞγν þ ðpν þ p0νÞγμ

− 2ημνð=pþ =p0Þ þ 4Mημν�uχðpÞ; ð11Þ

mN and M being the nucleon mass and the DM
mass, respectively. For the massless portal, the effective

coupling is gh ¼ ξ2rM−2
pl and the massless spin-2 graviton

propagator is

Ph
μναβ ¼

1

2

−iðημαηνβ þ ημβηνα − ημνηαβÞ
q2 þ iϵ

; ð12Þ

where qμ ¼ p0μ − pμ, while, for the massive portal, the
effective coupling is gH ≡ κκ0M−2

pl and the massive spin-2
particle’s propagator is

PH
μναβ ¼

1

2

−iðη̃μαη̃νβ þ η̃μβη̃να − 2
3
η̃μνη̃αβÞ

q2 −m2
eff þ iϵ

; ð13Þ

where η̃μν ¼ −ημν þ qμqν=m2
eff .

In the center-of-mass frame, the 4-momenta can be
written as pμ ¼ ðEχ ;pÞ, kμ ¼ ðEN;−pÞ, p0μ ¼
ðEχ ;pþ qÞ, k0μ ¼ ðEN;−p − qÞ. Because of the elasticity
of the scattering, we have jpj ¼ jpþ qj and q2 ¼ −q2 ¼
2jpj2ðcos θ − 1Þ, with θ being the scattering angle between
pμ and p0μ. For DM particles in the nonrelativistic regime
with velocity v ∼ 10−3, we can approximate Eχ and EN

with M and mN , respectively. As mentioned, here we shall
restrict ourselves to the scenario of relative heavier dark
matter particlesM ≫ mN , as it results in more sizable cross
sections. With these approximations, the DM and nucleon
spin-independent cross section via the massive spin-2
portal is

σH ¼ 1

32π

ðκκ0Þ2
9M4

pl

Z
1

−1

d cos θM4m2
N

½2m2
Nv

2ð1 − cos θÞ þm2
eff �2

; ð14Þ

and that of the massless spin-2 portal is

σh ¼
1

32π

ξ4r
M4

pl

Z
1

−1

d cos θM4m2
N

½2m2
Nv

2ð1 − cos θÞ�2 : ð15Þ

We see that, due to the M4
pl suppression (recall that we are

considering ξr ∼ 1), the massless portal cross section is too
small to be observable in any DM direct detection experi-
ment. Therefore, we only need to consider the massive
spin-2 portal, which can have a sizable cross section for a
range of choices of β and β0. Note that the massless cross
section diverges at the forward limit cos θ ¼ 1. Since we
are interested in DM direct detection, this can be regulated
by the angle resolution of the experiment. The cutoff
scattering angle Δθ is related to the recoil energy by
Erecoil ¼ mNv2ð1 − cos θÞ ¼ 1

2
mNv2ðΔθÞ2. For instance, in

the LZ experiment, the resolution of Erecoil is 0.1 keV for
the xenon target, which leads to ðΔθÞ2 about 10−3.
However, for massive spin-2 portal that will be considered
later, the difference between a resolution of ðΔθÞ2 ¼ 10−3

and a perfect resolution is negligible.
FIG. 1. SM (nucleon) and DM scattering via a massless portal
(hμν) and a massive portal (Hμν).
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IV. THE CORE-CUSP PROBLEM

Now, we will see that, with suitable theory parameters,
the model we propose can provide a solution to the core-
cusp problem. The core-cusp problem [37–40] refers to
the discrepancy between the observed DM density profile
and that from simulations by collisionless cold dark
matter: The simulations predict a steep increase of density
at the center of a DM halo, while the observations of dwarf
galaxies show a flat central density profile. It can be
explained by the presence of DM self-interactions, as
DM collisions can flatten the density profile at the center
[45–47]. Thus, at work in short distances might be a light
mediator, which in our case is filled by the massive spin-2
particle.
In our bigravity model, if we take β0 to be anyOð1Þ value

outside the range ½1 − r; 1þ r�, then we have jκ0j ∼ 1=r.
Consequently, the effective fine structure constant
for the nonrelativistic DM self-scattering is given by
αDM ¼ ðκ0M=MplÞ2=4π ∼ ðM=rMplÞ2=4π, which leads to
a Yukawa potential VðRÞ ¼ −αDMe−meffR=R. On the other
hand, since both dark matter and the massive spin-2
particles are associated with beyond the Standard Model
new physics, we take the minimalist approach to assume
that there is no sizable hierarchy between Mf and the DM
mass M. This yields αDM ∼ 1=4π.
When the dark matter particle is much heavier than the

massive spin-2 particle with αDMM=meff ≫ 1, DM self-
interactions are in the nonperturbative regime. With
Mv ≫ meff , this is also a classical limit. Analytic results
have been obtained for this nonperturbative regime at the
classical limit by use of a screened Yukawa potential [48].
With these established, in order to solve the core-cusp
problem for small scales (especially for the dwarf galaxy
scales), it is found that when the effective coupling αDM ∼
0.01 to 0.1, the mass of the mediator can have a range from
10−2 to 10−4 GeV if the mass of the dark matter particle is
from 100 GeV to 10 TeV [49]. This allows us to pin down a
parameter region for meff and M. While the massless
graviton should couple to the SM sector at a strength of
M−1

pl to recover the Einstein gravity, the coupling for the
massive spin-2 particle can, in principle, be different.
However, a natural choice is that both of them are around
the same order, considering the gravitational nature of the
model. This can be effected by choosing β ¼ 1 − r=2 for a
given DM mass M (thus a given r ¼ M=Mpl). This is also
analogous to that of the electromagnetic and weak inter-
actions where they originate from the same coupling, but
the masses of the mediators lead to dramatic differences in
the interaction strength.
Concretely, for example, if we take M ¼ Mf ¼

104 GeV, β ¼ 1 − r=2 ¼ 1 − 10−14=2, and β0 ¼ 0 (thus
we have κ ¼ 1, κ0 ¼ 1014), for 10 TeV dark matter and αDM
here, the mass of the spin-2 massive particle is about
10−4 GeV (core-cusp problem solution), and then the cross

section of dark matter and proton scattering is of order
10−47 cm2. In Fig. 2, we plot how the cross section changes
with the mass of the DM particle for a range of spin-2
mediator masses from 10−4 to 10−2 GeV. We see that there
is an observable window for this model in the next
generation detectors, if the mass of the DM particle is
from 1 to 10 TeV and the mass of the massive spin-2
particle is from 100 keV to 1 MeV.
In the event of a direct detection of dark matter particles,

we would be interested in probing the mass of the massive
spin-2 particles. In Fig. 3, we plot how the cross section
changes with the spin-2 mediator mass when the mass of
the DM particle varies from 100 GeV to 10 TeV.

FIG. 2. Dark matter and proton elastic scattering cross
section σp versus mass of dark matter particle M for various
spin-2 mediator mass meff . Also plotted are the sensitivities
of the recent and projected dark matter direct detection experi-
ments [1–3,50–52] as well as the neutrino background [53].

FIG. 3. Dark matter and proton elastic scattering cross section
σp versus spin-2 mediator mass meff for various masses of the
dark matter particle M.
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V. REHEATING TEMPERATURE

An interesting prediction of this scenario is the reheating
temperature. As the DM and SM interactions are too weak
to reach a thermal equilibrium within a Hubble time, the
dark matter relic abundance in this model is generated by a
freeze-in mechanism [35,54] at the reheating epoch, in
which DM builds up its abundance slowly via interactions
with the SM thermal bath. After taking the approximation
that dark matter number density nDM ¼ 0 in the general SM
and DM converting Boltzmann equation, the production
rate of dark matter in this model is approximately

ṅDM ≃ n2SMhσvi ∝
jκκ0j2
M4

pl

T8; ð16Þ

where the SM number density nSM ∝ T3 and DM and SM
conversion cross section σ ∝ jκκ0j2T2M−4

pl by dimensional
analysis. We take the high temperature limit here and T is
much greater than any particle’s mass in the process. The
dark matter abundance produced in a Hubble time 1=H is
then

YDM ¼ nDM
s

∝
n2SMhσvi

Hs
∝
jκκ0j2
M4

pl

MplT3; ð17Þ

where H ∝ T2=Mpl and s ∝ T3 is the entropy density. The
exact proportionality depends on the spin of dark matter
[35], with which we get

ΩDMh2

0.1
≈ 0.17μðsÞ

jκκ0j2
1028

M
10 TeV

�
TR

106 GeV

�
3

; ð18Þ

where the superscript in μðsÞ denotes the spin of the dark
matter particle, with μð0Þ ¼ 1, μð1=2Þ ¼ 6.1, μð1Þ ¼ 13.2. For
our fiducial model, M ∼ 10 TeV, jκκ0j ¼ 2.4 × 1014, we
find that the reheating temperature TR for a correct relic
abundance observed is around 106 GeV. Because TR scales
with M1=3, this prediction remains highly robust across
various DM masses.

VI. GRAVITY TESTS

With a nontrivial gravitational sector involved, one n
eeds to check with the bounds from the general relativity
tests. To confront with the general relativity (GR) tests,
we consider the Yukawa potential of our massless and
massive spin-2 interactions. They are Φ ∼ κ2

M2
pl

M
L and

Φ0 ∼ κ02
M2

pl

M
L e

−meffL, respectively, for a pointlike source with

mass M at distance L. To pass the GR tests, we need the
deviation ΔΦGR=ΦGR < Oð10−8Þ at astronomical scale
L ∼ 1 A:U: (see Ref. [36]) and ΔΦGR=ΦGR < Oð10−5Þ

at laboratory GR experiment size L ∼ 1 mm, where
ΦGR ∼ 1

M2
pl

M
L . Consequently, it constrains that jκ2 − 1j <

10−8, κ02e−meffL < 10−8 at L ∼ 1 A:U: and κ02e−meffL <
10−5 at L ∼ 1 mm. Thus, the viable parameter space for
κ is determined and the choice of κ ¼ 1 in our model is
perfectly fine. The viable parameter space for κ0 and
meff is large. We will be safely living in a universe where
meffL > 100 with e−100 ∼ 10−44 for κ02 < 1036, in which
case we have meff > 0.01 eV for L ∼ 1 mm and
meff > 10−17 eV for L ∼ 1 A:U: It is also perfectly valid
that we have meff > 100 keV with κ02 < 1028 in Fig. 2.

VII. SUMMARY

We have investigated a bigravity model where the
massless spin-2 particle gives rise to the ordinary
Einstein gravity, while the massive spin-2 particle provides
a sizable portal for the SM particles to interact with dark
matter. (The massless spin-2 portal for the DM-SM
coupling is of the usual gravitational strength and negli-
gible in comparison at short range.) This is possible by
using the unique, consistent composite metric couplings to
matter, which utilizes the dRGT square-root construction.
We have computed the cross sections of spin-independent
elastic scattering between DM particles and protons and
confronted them with the experimental sensitivities of dark
matter direct detection. Since the massive spin-2 portal also
induces dark matter self-interactions, this model can
account for the core-cusp problem. For it to be a solution
to the problem, we find that there is an interesting region of
the parameter space lying between the current experimental
bounds and the sensitivity curves of the upcoming direct
DM detection experiments. Of course, in the event of a
successful DM detection, the argument can also be reversed
to constrain the mass of the spin-2 particles. Specifically, in
the viable parameter region, if the mass of the DM particle
is between 1 TeVand 10 TeV, the mass of the spin-2 portal
particle needs to be about 100 keV–1 MeV. Since a freeze-
in mechanism is needed to generate the DM relic abun-
dance in this model, it also predicts a reheating temperature
of 106 GeV for a large range of the DM mass.
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