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We calculate the four-top-quark operator contributions to Higgs production via gluon fusion in the
Standard Model effective field theory. The four-top operators enter for the first time via two-loop diagrams.
Owing to their chiral structure they contain γ5, so special care needs to be taken when using dimensional
regularization for the loop integrals. We use two different schemes for the continuation of γ5 to D space-
time dimensions in our calculations and present a mapping for the parameters in the two schemes. This
generically leads to an interplay of different operators, such as four-top operators, chromomagnetic
operators, or Yukawa-type operators at the loop level. We validate our results by examples of matching onto
UV models.
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I. INTRODUCTION

With the increasing precision in the measurement of the
Higgs boson couplings, the Higgs sector has become a
probe of physics beyond the Standard Model (SM). In the
absence of a clear signal of new physics, potential devia-
tions from the SM can be described as model independently
as possible by means of an effective field theory (EFT).
Under the assumption that the Higgs field transforms as an
SUð2ÞL doublet as in the SM, heavy new physics can be
described by the SM effective field theory (SMEFT); see
Refs. [1–4]. In this theory, new physics effects are
described by higher-dimensional operators suppressed by
some large mass scale Λ.
In this paper we consider a subset of the possible

dimension-six operators, namely the four-top-quark oper-
ators, and comment on their connection to other SMEFT
operators. Four-top operators are generically difficult to

probe experimentally, as direct probes require the produc-
tion of four-top quarks. Limited by the large phase space
required, four-top-quark production remains a rather rare
process, with a SM cross section of only about 12 fb
including next-to-leading (NLO) QCD and NLO electro-
weak corrections for

ffiffiffi
s

p ¼ 13 TeV [5–7]. Limits have
been mainly presented for Oð1=Λ4Þ contributions in the
matrix element squared [8], but can potentially also be
derived from the Oð1=Λ2Þ interference with the SM
only [9,10]. In particular, four-top production has been
recently observed by ATLAS and CMS [10,11], with
bounds ranging from ∼1 to ∼7 TeV−2 on the absolute
values of the four-top Wilson coefficients.
On the other hand, complementary bounds on the four-

top operators can be obtained indirectly, hence by consid-
ering loop effects on other observables. The four-top
operator contributions (via one-loop corrections) to tt̄
production were discussed in Ref. [12] with the conclusion
that the effects on the total cross section are small due to
cancellations between different phase-space regions and
due to suppressed interference with the SM QCD ampli-
tude. A differential analysis has not been performed yet.
Furthermore, Ref. [13] showed that loop contributions

from four-top operators in Higgs production processes can
be important, not only as probes of the relative Wilson
coefficients but also because in the presence of four-top
operators possible limits on the trilinear Higgs self-
coupling derived from electroweak corrections to single
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Higgs production [14–20] can become less restrictive. First
efforts to constrain the trilinear Higgs self-coupling via
single Higgs production have already been performed by
the experimental collaborations [21,22].
We are going to reconsider the gg → h computation from

Ref. [13], which included effects from four-top operators
within the SMEFT, using two different schemes for the
continuation of γ5 to D ¼ 4 − 2ϵ space-time dimensions.
While the leading poles of loop integrals are scheme
independent, cancellations of these poles with scheme-
dependent OðϵÞ terms, resulting from the Dirac algebra in
dimensional regularization, will lead to scheme-dependent
finite parts. It should be stressed that, in this context, the
finite terms can be of the same order as the logarithmically
enhanced ones (as shown in Ref. [13]); thus they are
phenomenologically relevant. Since four-top operators
contribute to gg → h via two-loop diagrams, the finite
terms are expected to be scheme dependent. Moreover, we
find a divergence which depends on the scheme, signaling a
scheme-dependent anomalous dimension. We describe in
detail how such divergence can be traced back to a finite
term (that is expected to be scheme dependent) in one of
the one-loop subamplitudes entering the computation. We
also review the results in naïve dimensional regularization
(NDR) [23] with respect to the ones obtained in Ref. [13],
and we discuss various subtleties that arise in the com-
parison with the Breitenlohner-Maison-’t Hooft-Veltman
scheme (BMHV) [24,25] for the treatment of γ5. We refer
the reader to Ref. [26] for another comparison of different
γ5 schemes within the SMEFT.
Furthermore, we point out that building the SMEFT

expansion on the counting of the canonical dimension
alone can lead to inconsistencies, as has been explained in
Ref. [27]. In a counting scheme that in addition takes into
account whether an operator is potentially loop generated,
the four-top operators and the chromomagnetic operator
enter the Higgs-gluon coupling at the same order [28–35]
and therefore should not be considered in isolation.
Our paper is structured as follows: in Sec. II we introduce

the operators considered in our analysis, and we fix our
notation. In Sec. III we discuss different schemes for theD-
dimensional continuation of γ5. Section IV is devoted to the
computation of one-loop subamplitudes required to obtain
the result for the gg → h amplitude including the operators
given in Sec. II. The two different schemes are then used for
the computation of the gg → h rate presented in Sec. V. We
also discuss how the scheme dependence of the parameters
of the theory compensates for the scheme dependence of
the matrix elements, providing a scheme-independent
physical result. In Sec. VI we validate our approach by
means of a matching with two simple models. In Sec. VII
we briefly show that a nontrivial interplay exists not only in
the case of four-top operators, as detailed in this work, but
also when other operators containing chiral vertices are
involved. In Appendix A we show the result we obtain for

Γðh → b̄bÞ as a side product of our analysis, commenting
also in this case about the scheme independence of the
result. In Appendix B we discuss the relation between the
counterterms and the anomalous dimension matrix, high-
lighting some subtleties that arise when dimensional
regularization is used. In Appendix C we report the
scheme-independent part of the gg → h amplitude, and
in Appendix D we give the Feynman rules needed for our
computation.

II. SETUP

If the new physics scale Λ is assumed to be much larger
than the electroweak scale, new physics can be described in
terms of an EFT. In this paper we use the SMEFT, where all
SM fields transform under the SM symmetries, including
the scalar field ϕ which contains the Higgs boson. At
dimension-five level there is only the lepton-number
violating “Weinberg” operator responsible for Majorana
mass generation of neutrinos [36], so the dominant new
physics effects relevant in collider physics are described by
dimension-six operators:

LD¼6 ¼ LSM þ 1

Λ2

X
i

CiOi; ð1Þ

where Oi denotes every possible nonredundant combina-
tion of SM fields with mass dimension six that preserves
the symmetries of the SM. A complete basis of dimension-
six operators was presented for the first time in Ref. [2], the
so-calledWarsaw basis, that we will adopt in the following.
In the Warsaw basis redundant operators are eliminated
making use of field redefinitions, integration-by-part iden-
tities, and Fierz identities.
We are mostly interested in the effect of the four-top

operators on Higgs production via gluon fusion (as well as
the Higgs decay to gluons). The operators that lead to four-
top interactions are given by

L4t ¼
Cð1ÞQQ

Λ2
ðQ̄LγμQLÞðQ̄Lγ

μQLÞ

þ Cð3ÞQQ

Λ2
ðQ̄Lτ

IγμQLÞðQ̄Lτ
IγμQLÞ

þ Cð1ÞQt

Λ2
ðQ̄LγμQLÞðt̄RγμtRÞ

þ Cð8ÞQt

Λ2
ðQ̄LTAγμQLÞðt̄RTAγμtRÞ

þ Ctt
Λ2

ðt̄RγμtRÞðt̄RγμtRÞ: ð2Þ

The fieldQL stands here for the SUð2ÞL doublet of the third
quark generation, tR for the right-handed top-quark field.
The SUð3ÞC generators are denoted as TA while τI are the
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Pauli matrices. We assume all the Wilson coefficients to be
real, since we are not interested in CP-violating effects.
The operators in Eq. (2) contribute to the gg → h

amplitude via two-loop diagrams. At one loop and tree
level, respectively, the following operators contribute to the
(CP-even) Higgs-gluon coupling:

L2t ¼
�
Ctϕ
Λ2

ðQ̄Lϕ̃tRÞϕ†ϕþ CtG
Λ2

Q̄Lσ
μνTAtRϕ̃GA

μν þ H:c:

�
;

Ls ¼
CϕG
Λ2

ϕ†ϕGA
μνGAμν; ð3Þ

where GA
μν ¼ ∂μGA

ν − ∂νGA
μ − gsfABCGB

μGC
ν is the gluon

field strength tensor, ϕ̃ ¼ iτ2ϕ�, and σμν ¼ i=2½γμ; γν�.
The operator in the second term of L2t is known as the
chromomagnetic operator and will have a central role in
this paper, as detailed in the following.
To summarize our EFT setup, our Lagrangian reads as

LD¼6 ¼ LSM þ L4t þ L2t þ Ls: ð4Þ

We follow Ref. [37] for what concerns the conventions
in LSM,

LSM ¼ −
1

4
GA

μνGAμν −
1

4
WI

μνWIμν −
1

4
BμνBμν

þ
X
ψ

ψ̄ i=Dψ þ ðDμϕÞ†ðDμϕÞ

− λ

�
ϕ†ϕ −

1

2
v2
�

2

− Yuϕ̃
†ūRQL þ H:c: ð5Þ

The gauge covariant derivative is Dμ ¼ ∂μ þ ig0yBμ þ
igτIWI

μ þ igsTAGA
μ , y being the hypercharge. When

spontaneous symmetry breaking occurs [ϕ ¼ ð1= ffiffiffi
2

p Þ×
ð0; ðvþ hÞÞT in the unitary gauge] one has

LD¼6 ⊃ −mtt̄t − ght̄tht̄t; ð6Þ

where the top mass and the ht̄t coupling are modified
according to

mt ¼
vffiffiffi
2

p
�
Yt −

v2

2

Ctϕ
Λ2

�
;

ght̄t ¼
1ffiffiffi
2

p
�
Yt −

3v2

2

Ctϕ
Λ2

�
¼ mt

v
−

v2ffiffiffi
2

p Ctϕ
Λ2

: ð7Þ

This establishes a connection between mt; ght̄t (broken
phase) and Yt; Ctϕ=Λ2 (unbroken phase).

III. CONTINUATION SCHEMES FOR γ5
TO D DIMENSIONS

To deal with loop integration, we have to choose a
regularization scheme. We employ dimensional regulari-
zation; see Refs. [38,39] for a review. Owing to the
presence of four-fermion operators with different chiral-
ities, γ5 matrices will be present in our loop computations.
As is well known, the treatment of γ5 in dimensional
regularization is highly nontrivial, as γ5 is an intrinsically
four-dimensional object (e.g., [40]). In this paper, we will
consider two different schemes for the γ5 matrix in dimen-
sional regularization with D ¼ 4 − 2ϵ: naïve dimensional
regularization and the Breitenlohner-Maison-t’Hooft-
Veltman scheme.

A. Naïve dimensional regularization

The NDR scheme assumes that the usual anticommuta-
tion relations valid in four dimensions hold also in D
dimensions

fγμ; γνg ¼ 2gμν; fγμ; γ5g ¼ 0; γ25 ¼ 1: ð8Þ

This is inconsistent with the cyclicity of the trace.
Assuming that the usual four-dimensional relation

Tr½γμγνγργσγ5� ¼ −4iϵμνρσ ð9Þ

holds, leads to

Tr½γμ1γμ2…γμ2nγ5� ¼ Tr½γμ2…γμ2nγ5γμ1 � þOðϵÞ; ð10Þ

for n ≥ 3. The cyclicity is hence no longer preserved, and
the computation of a Feynman diagram depends on the
starting point of reading in a fermion trace. As was shown
in Refs. [41,42], the NDR scheme in the presence of Dirac
traces with an odd number of γ5 matrices and at least six γ
matrices only leads to consistent results if the reading point
is fixed univocally for all Feynman diagrams.1

B. Breitenlohner-Maison-’t Hooft-Veltman scheme

The BMHV scheme divides the algebra in a four-
dimensional part and a (D − 4)-dimensional one by defining

γðDÞ
μ ¼ γð4Þμ þ γðD−4Þ

μ ; ð11Þ

fγð4Þμ ; γ5g ¼ 0; ½γðD−4Þ
μ ; γ5� ¼ 0: ð12Þ

For the vertices involving chiral projectors we use the
following rule, valid in the BMHV scheme:

1It was shown recently in Ref. [43] that in a computation of the
singlet axial-current operator at Oðα3sÞ between two gluons and
the vacuum a revised version of the scheme of Refs. [41,42]
becomes necessary.

γ5 SCHEMES AND THE INTERPLAY OF SMEFT … PHYS. REV. D 109, 095024 (2024)

095024-3



γð4Þμ ð1 ∓ γ5Þ → 1

2
ð1� γ5ÞγðDÞ

μ ð1 ∓ γ5Þ; ð13Þ

which is the most symmetric choice and preserves
chirality of the external fields in D dimensions (see,
e.g., Refs. [39,44,45]).
The BMHV continuation scheme breaks explicitly the

chiral symmetry. For this reason, symmetry-restoring finite
counterterms may be required, as described in Ref. [46] for
QCD corrections and in Ref. [26] in the case of the SMEFT.
For the purpose of this paper, such counterterms are not
required. We have verified that the Lorentz structure of our
final result in both schemes is the one expected from gauge
invariance [Lμ1μ2 ; see Eq. (25)], which we consider a
consistency check of the result in the BMHV scheme.

IV. SCHEME-DEPENDENT FINITE MIXING
AT ONE-LOOP ORDER

In this section we comment on the interplay between the
four-top operators and other operators entering Eq. (4).
This interplay will be important in the discussion of single
Higgs production in the next section.
In particular, we want to highlight two points. The first

one is that there is a finite mixing between the four-top and
other operators, coming already from one-loop diagrams,
as shown below. This fact implies that it would be
inconsistent to study the contribution coming from four-
top operators in isolation. The second point is that the
above mixing, being finite, depends on the γ5 scheme
employed. When combining the one-loop subamplitudes in
two-loop diagrams, in principle this could lead to divergent
terms that are scheme dependent. However, provided that
both schemes are used consistently, the physical result for
the complete two-loop amplitude is expected to be scheme
independent.
Direct evaluation of the contribution of the four-top

operators to the g → t̄t amplitude gives a contribution
proportional to an insertion of the chromomagnetic oper-
ator. Pictorially, this can be represented as follows:

ð14Þ

where the black and white square dots denote an insertion of
four-top and chromomagnetic operators, respectively. The
value of KtG in Eq. (14) depends on the γ5 scheme. We find

KtG ¼
( ffiffi

2
p

mtgs
16π2v ðNDRÞ
0 ðBMHVÞ:

ð15Þ

Wenote that Eq. (14) holds onlywhen thegluon is on shell. In
this case, only one of the two possible contractions of the

fermion lines, namely the one in Fig. 1(b) featuring an open
fermion line, gives a nonvanishing contribution. Therefore,
the difference between the two schemes in Eq. (15) does not
arise from a trace inDirac space and cannot be related to trace
ambiguities [41].
When we consider other one-loop amplitudes with four-

top operator insertions, which will enter as subamplitudes
in the gg → h computation, we find again that the finite
contributions are scheme dependent, whereas the divergent
parts are equal in the two schemes. In particular, the
diagrammatic relation concerning the finite part of the
four-top contribution to the Higgs-top coupling is

ð16Þ

where we find

Kht̄t ¼
( ðm2

h−6m
2
t Þ

16π2
ðNDRÞ

0 ðBMHVÞ:
ð17Þ

Bht̄t is scheme independent and can be expressed as

Bht̄t ¼
m2

t

4π2τ
×
�
−2β3 log

�
β − 1

β þ 1

�

þ ð3τ − 2Þ log
�
μ̃2

m2
t

�
þ 5τ − 4

�
; ð18Þ

with

β ¼
ffiffiffiffiffiffiffiffiffiffi
1 − τ

p
; τ ¼ 4m2

t

m2
h

ð19Þ

andwith μ̃2 ¼ 4πμ2e−γE .We note thatBht̄t and the analogous
B terms in this paper are scheme independent once a
convention to identify Kht̄t is defined. For example, in this
sectionwe choose theB terms such that theK terms vanish in
BMHV. However, this definition is totally arbitrary and does

FIG. 1. The two possible contractions within four-fermion
operators where all the fermions are equal: (a) closed fermion
line yielding a trace; (b) open fermion line without any traces.
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not affect the final results.What is relevant for our purpose is
the difference betweenK terms in different schemes,which is
insensitive to the convention chosen.
Regarding the corrections to the top-quark propagator

we find that only the mass term gets corrected; see
Appendix D. Diagrammatically, we have

ð20Þ

Kmt
¼

�
− m2

t

8π2
ðNDRÞ

0 ðBMHVÞ:
ð21Þ

Also in this case, Bmt
denotes the scheme-independent

contribution

Bmt
¼ m2

t ×
logð μ̃2m2

t
Þ þ 1

4π2
: ð22Þ

The results in Eqs. (14), (16), and (20) deserve some
discussion. Equation (14) shows that the chromomagnetic
and four-top operators are closely linked, even though the
latter operators come with an explicit loop diagram. A
possible interpretation of this fact is that, under the
assumption that the UV-complete theory is renormalizable
and that the SM fields are weakly coupled to the unknown
fields,2 there are operators which cannot be generated at
tree level. This means that their Wilson coefficients are
expected to contain a loop suppression factor 1=ð4πÞ2
[27,28]. The power counting can be formalized conveniently
via the chiral dimension dχ , supplementing the canonical
dimension counting in 1=Λ. We should mention that the
chiral counting is highly nontrivial and cannot be made
without some assumptions on the UV completion or kin-
ematic regime; see Ref. [3] for an in-depth discussion.
However, accepting the above-mentioned minimal

assumptions, the tree-level diagram associated with the
(loop-generated) operator OϕG enters the gg → h amplitude
at the same power as the (tree-generated) operator Otϕ

inserted into a SM-like loop diagram,which is 1=ð4πÞ21=Λ2.
Similarly, OtG inserted into a one-loop diagram for gg → h
(see Fig. 3) and the two-loop diagram stemming from
the insertion of the four-top operators into the gg → h
matrix element [Fig. 2(c)] are of the same power, which is
1=ð4πÞ41=Λ2. In the former case a loop-generated operator is
inserted into a one-loopdiagram,while in the latter case a tree-
generated operator is contained in an explicit two-loop
diagram. Therefore, in Eq. (3), CtG contains a loop suppres-
sion factor 1=ð4πÞ2 relative to Ctϕ; the same holds for CϕG.
Equation (16) shows that ght̄t (Ctϕ) and the four-top operators
are also linked; however this relation comes with a relative
suppression factor 1=Λ2 × 1=ð4πÞ2 (1=ð4πÞ2). We remark
that the connection between ght̄t and Ctϕ is given by Eq. (7).

V. CALCULATION OF THE HIGGS-GLUON
COUPLING

In this section, we compute the four-top operator con-
tribution at two-loop order to the Higgs-gluon coupling in
the two different γ5 schemes introduced in Sec. III. In the
previous section we have shown that this contribution
cannot be separated from that of the operators of L2t in
Eq. (3) [cf. Eq. (7)]. In the case of gg → h, we express the
renormalized amplitude as follows:

MTOT ¼ MSM þMEFT; ð23Þ

MEFT ¼ 1

Λ2
fC4tM4t þ CtGMtG þ CtϕMtϕ

þ CϕGMϕG þMC:T:g; ð24Þ

where M4t denotes the two-loop contribution of four-top
operators andMtG (Mtϕ) the one-loop contribution ofOtG

(Otϕ). The inclusion of OϕG is required in order to cancel
the divergent part coming from MtG. MϕG represents its
tree-level insertion, namely −4vδA1A2Lμ1μ2, with

Lμ1μ2 ¼ ðm2
h=2g

μ1μ2 − pμ2
1 p

μ1
2 Þ; ð25Þ

and A1, A2 being the color indices of the gluons.

FIG. 2. Contributions from insertions of four-top quark operators (black square dot) to gg → h at two-loop level. Diagrams (a)
contribution to the Higgs-top quark coupling, (b) contribution to the top quark propagator, and (c) contribution to the gluon-top quark
vertex are representative of the three classes of diagrams.

2In the presence of strongly coupled and/or nonrenormalizable
UV completions, operators such as OϕB ≡ ðϕ†ϕÞBμνBμν, which
are expected to be generated at loop level in weakly coupled
theories, can be generated at tree level [47].
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The contribution from Otϕ manifests itself as a modi-
fication of the SM parameters gSMht̄t ; m

SM
t [see Eq. (7)]. We

can write, at Oð1=Λ2Þ,

MSMðgSMht̄t ; mSM
t Þ þ Ctϕ

Λ2
Mtϕ ≡MSMðght̄t; mtÞ: ð26Þ

In the following, we thus consider such SMEFT contribu-
tion to be included in the SM amplitude, provided that
ght̄t; mt are given by Eq. (7).
The four-top contribution to MEFT can be split accord-

ing to the different topologies of the associated Feynman
diagrams. In Fig. 2 we show a sample of the 12 diagrams
that need to be computed. The first topology is related to a
correction to the Higgs-top-quark coupling [Fig. 2(a)], the
second one to a correction to the top-quark propagator
[Fig. 2(b)], and the third one to a correction to the gluon-
top vertex [Fig. 2(c)]. We group the first two classes of
diagrams in Aght̄tþmt

(whose expression is discussed in
Sec. VA) and the third one in Agt̄t. We generated the
diagrams with QGRAF-3.6.5 [48] and performed the algebra
with FEYNCALC [49–51]. Following the above classifica-
tion, we express the four-top contribution as

C4tM4t ¼ Aght̄tþmt

�
Cð1ÞQt þ

4

3
Cð8ÞQt

�
1

Λ2

þAgt̄t

�
Cð1ÞQt −

1

6
Cð8ÞQt

�
1

Λ2
: ð27Þ

We note that the contribution from the operators Oð1Þ
QQ;

Oð3Þ
QQ;Ott vanishes in both schemes. The two different

combinations of the Wilson coefficients in Eq. (27) arise
from the color algebra. We find that the result of Agt̄t can
be expressed in terms of the contribution to the amplitude
due to an insertion of the chromomagnetic operator

Agt̄t ¼
�
1

2
KtGMtGjDIV þ KtGMtGjFIN

�
; ð28Þ

where KtG is the same as in Eq. (15). The divergent
(MtGjDIV) and finite (MtGjFIN) parts of MtG are given,
respectively, by

MtGjDIV ¼ −gsmt
1

ϵ

ffiffiffi
2

p

2π2
Lμ1μ2ϵμ1ðp1Þϵμ2ðp2ÞδA1A2 ; ð29Þ

MtGjFIN ¼ −
gsmt

ffiffiffi
2

p

4π2
Lμ1μ2ϵμ1ðp1Þϵμ2ðp2ÞδA1A2

×

�
1

4
τlog2

�
β − 1

β þ 1

�
þ β log

�
β − 1

β þ 1

�

þ 2 log

�
μ̃2

m2
t

�
þ 1

�
: ð30Þ

We point out that the fact that KtG factorizes in Eq. (28)
does not depend on the scheme. The value of KtG depends
on the scheme, and in particular KtG ¼ 0 in BMHV.
Remarkably, this implies that the structure of the diver-
gences is different between the two schemes. This happens
because of the combination of a scheme-independent pole
of a loop integral with the scheme-dependent finite terms in
Eq. (14). On the other hand, we find that the divergent
terms in Aght̄tþmt

are scheme independent.

A. Renormalization

We use the minimal subtraction (MS) renormalization
prescription for all the parameters in the theory.
Schematically, the counterterms needed to renormalize
the amplitude are given by

ð31Þ

For the top-quark mass we have

mMS
t ¼ mð0Þ

t þ δmt; ð32Þ

with

δmt ¼
m3

t

4π2Λ2ϵ

�
Cð1ÞQt þ

4

3
Cð8ÞQt

�
: ð33Þ

We note that typically in the computation of gg → h the
top-quark mass is renormalized in the on shell scheme. In
order to simplify our point (as we find the same MS
counterterm in NDR and BMHV) we restrict the discussion
here to a pure MS renormalization.
In addition, the Wilson coefficient Ctϕ, which mixes with

the four-top operators via renormalization group equation
(RGE) running, needs to be renormalized. The coefficient
of the operator is renormalized according to

CMS
tϕ ¼ Cð0Þtϕ þ δCtϕ with δCtϕ ¼ −

1

2ϵ

1

16π2
γtϕ;jCj; ð34Þ

where γ denotes the one-loop anomalous dimension of the
SMEFT. The entries relevant for our discussion can be
obtained from Refs. [52,53]. The equation correlating δCtϕ
and the anomalous dimension matrix in Eq. (34) is
discussed in detail in Appendix B. The only four-top

Wilson coefficients contributing to γtϕ;jCj are Cð1;8ÞQt . The
operator Otϕ modifies the Higgs couplings to top quarks as
discussed previously; see Eq. (7).
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In analogy to mt, we have

gMS
ht̄t ¼ gð0Þht̄t þ δght̄t; ð35Þ

with

δght̄t ¼ ght̄t
ð6m2

t −m2
hÞ

8π2Λ2ϵ

�
Cð1ÞQt þ

4

3
Cð8ÞQt

�
: ð36Þ

From now on we will drop the superscript MS, leaving
understood that all the parameters are renormalized in the
MS scheme. We recall that the divergent parts of the
diagrams in Figs. 2(a) and 2(b) are equal in the NDR and
BMHV schemes, and they are fully removed by one-loop
diagrams with an insertion of the one-loop counterterms in
Eqs. (33) and (36).
The insertion of the chromomagnetic operator (see

Fig. 3) gives a divergent contribution to the Higgs-gluon
coupling at one loop [53–55]. We find this contribution to
be scheme independent. To remove all the divergences we
need to choose [see Eq. (28)]

δϕG ¼ ght̄tgs
Λ2ϵ4

ffiffiffi
2

p
π2

�
CtG þ KtG

2

�
Cð1ÞQt −

1

6
Cð8ÞQt

��
: ð37Þ

This entails an important consequence: the anomalous
dimension is scheme dependent, as it contains the scheme

dependent KtG. From dCð0ÞϕG=dμ ¼ 0, we obtain

16π2μ
dCϕG
dμ

¼ −4
ffiffiffi
2

p
ght̄tgs

�
CtG þ KtG

�
Cð1ÞQt −

1

6
Cð8ÞQt

��
:

ð38Þ
Notice that there is a relative factor of 2 between the

contributions from Cð1;8ÞQt in Eqs. (37) and (38). This is a
consequence of the contribution proportional to CtG being

Oðght̄tgsÞ and the contribution proportional to Cð1;8ÞQt being
Oðg2ht̄tg2sÞ.3 This (merely algebraic) fact will have important
consequences, as we will show in the following. The details
can be found in Appendix B. We stress that the form of the

RGE in Eq. (38) shows that the contributions of CtG, C
ð1;8Þ
Qt

enter at different loop orders [being KtG ¼ Oð1=ð4πÞ2Þ].

However, when the loop counting from Ref. [27] is consid-
ered, they enter at the same order, as explained in Sec. IV.
The differences in NDR and BMHVoriginating from the

finite mixing of the four-fermion operators with chiral
structure ðL̄LÞðR̄RÞ into the chromomagnetic operator are
well known, in particular in the context of flavor physics.
This effect can induce a scheme-dependent anomalous
dimension matrix at leading order [56–60]. Using the
strategy proposed in [44,56,58], we can perform a finite
renormalization of the chromomagnetic operator and write

CtG → CtG þ KtG

�
Cð1ÞQt −

1

6
Cð8ÞQt

�
: ð39Þ

This choice ensures a scheme-independent anomalous
dimension matrix.

B. Renormalized amplitude

In the previous section we discussed how to obtain the
same anomalous dimension matrix in both schemes. This is
achieved via the inclusion of the effects of a scheme-
dependent finite mixing in the Wilson coefficients. These
effects are related to one-loop subdiagrams as in Eq. (14).
One may wonder if redefinitions similar to Eq. (39) are
enough to obtain the same result for the finite part of the
amplitude in both schemes. In other words, we want to
check if the scheme dependence of the two-loop amplitude
can be accounted for simply by computing one-loop
subdiagrams. The only scheme-dependent terms in the
amplitudes are the ones stemming from a two-loop inser-
tion of the four-top operators, and they are parametrized by
KtG, Kght̄t , and Kmt

.
We express the renormalized contribution from the

diagrams in Figs. 2(a) and 2(b) as

ARen
ght̄tþmt

¼MS:I:
ght̄tþmt

þKght̄tM
SMþKmt

∂MSM

∂mt
×mt; ð40Þ

where MSM;MS:I:
ght̄tþmt

. are scheme independent, and they
can be found in Appendix C. Putting together Eqs. (27),
(28), and (40) we have the following expression for the
renormalized matrix element:

MRen
TOT ¼

�
Cð1ÞQt þ

4

3
Cð8ÞQt

�
1

Λ2
MS:I:

ght̄tþmt
:

þ
�
CtG þ

�
Cð1ÞQt −

1

6
Cð8ÞQt

�
KtG

�
1

Λ2
MtGjFIN

þ
�
1þ

�
Cð1ÞQt þ

4

3
Cð8ÞQt

�
1

Λ2
Kht̄t

�
MSM

þ
�
Cð1ÞQt þ

4

3
Cð8ÞQt

�
1

Λ2
Kmt

∂MSM

∂mt
×mt

þ CϕGMϕG
1

Λ2
: ð41Þ

FIG. 3. Contribution to the Higgs-top quark coupling with a
single insertion of the chromomagnetic operator (white square
dot). Diagrams (a) triangle topology and (b) bubble topology
represent the two possible classes of diagrams.

3Using ght̄t ¼ mt=vþOð1=Λ2Þ.
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We note thatMRen
TOT represents a physical on shell scattering

amplitude, which must be scheme independent.4 Therefore,
the scheme dependence of the K terms has to be compen-
sated for by a scheme dependence of the parameters. To
make this more evident, we define the following set of
parameters identified by a tilde:

C̃tG ¼ CtG þ
�
Cð1ÞQt −

1

6
Cð8ÞQt

�
KtG; ð42Þ

g̃ht̄t ¼ ght̄t

�
1þ

�
Cð1ÞQt þ

4

3
Cð8ÞQt

�
1

Λ2
Kht̄t

�
; ð43Þ

m̃t ¼ mt

�
1þ

�
Cð1ÞQt þ

4

3
Cð8ÞQt

�
1

Λ2
Km

�
: ð44Þ

Noting that, under a redefinition of the top mass mt →
mt þ Δmt, one has MSM→MSMþΔmt∂MSM=∂mt, we
can write the total matrix element in a more compact form
(at Oð1=Λ2Þ):

MRen
TOT ¼

�
Cð1ÞQt þ

4

3
Cð8ÞQt

�
1

Λ2
MS:I:

ght̄tþmt
þ C̃tG

Λ2
MtGjFIN

þMSMðg̃ht̄t; m̃tÞ þ
CϕG
Λ2

MϕG: ð45Þ

In the previous expression, MSMðg̃ht̄t; m̃tÞ is given by
Eq. (C2) where ght̄t; mt are replaced by g̃ht̄t; m̃t. From the
amplitudes MS:I:

ght̄tþmt
;MtG;MSM;MϕG being scheme in-

dependent, it follows that the combinations in Eqs. (42)–(44)
must be scheme independent.
It should be stressed that Eq. (42) is the same relation we

obtained in the previous section, namely Eq. (39): the same
finite shift makes both the anomalous dimension matrix and
the renormalized amplitude scheme independent. We also
remark that, at the order we are working, ght̄t and mt can be
used interchangeably with g̃ht̄t and m̃t inMtG;ϕG;MS:I:

ght̄tþmt
.

because their contribution to MTOT is already suppressed
by Oð1=Λ2Þ.

C. Summary of the computation

We can now summarize the differences between the two
schemes. From Eqs. (42)–(44) it is evident that there exists
a difference between the parameters in the two schemes
which is proportional to KNDR

X − KBMHV
X . This quantity

does not depend on the prescription used to identify the
K terms.
In BMHVall the K terms are vanishing, so the previous

redefinitions are trivial. The scheme-independence condi-
tion X̃NDR

i ¼ X̃BMHV
i (being X ¼ CtG; mt; ght̄t) allows us to

write at Oð1=Λ2Þ5

CNDRtG ¼ CBMHV
tG −

�
Cð1ÞQt −

1

6
Cð8ÞQt

� ffiffiffi
2

p
ght̄tgs

16π2
; ð46Þ

gNDRht̄t ¼ gBMHV
ht̄t − ght̄t

�
Cð1ÞQt þ

4

3
Cð8ÞQt

� ðm2
h − 6m2

t Þ
16π2Λ2

; ð47Þ

mNDR
t ¼ mBMHV

t þ
�
Cð1ÞQt þ

4

3
Cð8ÞQt

�
m3

t

8π2Λ2
: ð48Þ

The map described by Eqs. (46)–(48), establishes a con-
nection between the two schemes. When such relations are
considered, the two schemes give the same anomalous
dimension matrix and the same renormalized amplitude.
The last two equations can be recasted in terms of Yt; Ctϕ

by means of Eq. (7):

YNDR
t ¼ YBMHV

t þ
�
Cð1ÞQt þ

4

3
Cð8ÞQt

�
λv2Yt

16π2Λ2
; ð49Þ

CNDRtϕ ¼ CBMHV
tϕ þ

�
Cð1ÞQt þ

4

3
Cð8ÞQt

�
Ytðλ − Y2

t Þ
8π2

; ð50Þ

where λ ¼ m2
h=ð2v2Þ þOð1=Λ2Þ.

VI. MATCHING WITH UV MODELS

As discussed in the previous section, the differences in
the finite terms of the amplitude when using the NDR and
the BMHV scheme can be absorbed by different definitions
of the parameters CtG; ght̄t, and mt. In this section we
perform the matching with concrete UV completions of the
SM, in order to validate our EFTapproach from a top-down
point of view. The matching is performed in the unbroken
phase (following the notation used in Ref. [61]), in which
ght̄t and mt can be traded more conveniently in favor of Ctϕ
and Yt. In the remainder of the section we will use a thicker
fermion line to denote the isodoublet QL and a thinner
fermion line to denote the isosinglet tR in the Feynman
diagrams. We write the SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1Þy quan-
tum numbers as ðRC;RLÞy, R being the representation in
which the particle transforms and y its hypercharge.

A. New scalar: Φ ∼ ð8;2Þ1
2

We consider, in addition to the SM, a new heavy scalar
with a mass MΦ ≫ v and quantum numbers Φ ∼ ð8; 2Þ1

2
.

The Lagrangian in this case can be written as

4This can be best understood from a top-down perspective.

5If we had included the loop factor 1=ð4πÞ2 explicitly in the
CtG term in the Lagrangian Eq. (3), it would be manifest that
the chromomagnetic and the four-top operators contribute at the
same order in the chiral counting, because in this case the factor
1=ð4πÞ2 in Eq. (46) would be absent.
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LΦ ¼ ðDμΦÞ†DμΦ −M2
ΦΦ†Φ

− YΦðΦA;†εQ̄T
LT

AtR þ H:c:Þ; ð51Þ

where ε is the Levi-Civita pseudotensor in the isospin space
and T refers to the transposition in isospin space only. The
tree-level matching yields

L ¼ Y2
Φ

M2
Φ
ðQ̄LTAtRÞðt̄RTAQLÞ: ð52Þ

This operator does not appear in the Warsaw basis since it is
considered redundant in D ¼ 4 dimensions. In the follow-

ing it will be referred to as Rð8Þ
Qt . Using the Fierz identities,

one can recast this result in terms of operators in the
Warsaw basis [61]:

Cð1ÞQt

Λ2
¼ −

2

9

Y2
Φ

M2
Φ
;

Cð8ÞQt

Λ2
¼ 1

6

Y2
Φ

M2
Φ
: ð53Þ

Now we compute the matching at the one-loop level to the
chromomagnetic operator. The relevant diagrams are given
in Fig. 4, while diagrams with t-channel exchange within
the loop are forbidden due to the conservation of
hypercharge.
Evaluating the diagrams in Fig. 4 gives zero in both NDR

and BMHV, in contrast with our previous observations.
However, the Fierz identity we used for the matching of the
four-fermion operators is broken by OðϵÞ terms when
dimensional regularization is used (D ¼ 4 − 2ϵ), as noted
in Ref. [62]. Following this reference, we define the
evanescent operator as

E ¼ Rð8Þ
Qt −

�
−
2

9
Oð1Þ

Qt þ
1

6
Oð8Þ

Qt

�
; ð54Þ

and we compute its insertion (in both schemes). We find
that in NDR the evanescent operator contributes to the
matching to the chromomagnetic operator

NDR∶
Y2
Φ

M2
Φ
Rð8Þ

Qt ¼ −
2

9

Y2
Φ

M2
Φ

zfflfflffl}|fflfflffl{Cð1ÞQt =Λ
2

Oð1Þ
Qt þ

1

6

Y2
Φ

M2
Φ

zffl}|ffl{Cð8ÞQt =Λ
2

Oð8Þ
Qt

þ 1

16π2
Y2
Φ

M2
Φ

gsYt

4|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
CtG=Λ2

OtG þ H:c: ð55Þ

This result reproduces the term proportional to the chro-
momagnetic operator presented in Ref. [62].6 In BMHVwe
obtain

BMHV∶
Y2
Φ

M2
Φ
Rð8Þ

Qt ¼ −
2

9

Y2
Φ

M2
Φ

zfflfflffl}|fflfflffl{Cð1ÞQt =Λ
2

Oð1Þ
Qt þ

1

6

Y2
Φ

M2
Φ

zffl}|ffl{Cð8ÞQt =Λ
2

Oð8Þ
Qt : ð56Þ

We conclude that the difference between the NDR scheme
and BMHV scheme [using Eq. (53) and

ffiffiffi
2

p
mt ¼ Ytvþ

Oð1=Λ2Þ] is exactly the one described by Eq. (46).
Furthermore, we need to compute the matching to the

top Yukawa coupling as well as to Ctϕ. Doing so we find
in both schemes zero, by color. This is in trivial agree-
ment with Eqs. (47) and (48) since, within this model,

Cð1ÞQt þ 4
3
Cð8ÞQt ¼ 0. In order to test Eqs. (47) and (48) we

hence need to consider a different model, namely replacing
the color octet Φ with a color singlet φ.

B. New scalar: φ ∼ ð1;2Þ1
2

We consider, in addition to the SM, a new heavy scalar
with a mass Mφ ≫ v and quantum numbers φ ∼ ð1; 2Þ1

2
.

The Lagrangian in this case can be written as

Lφ ¼ ðDμφÞ†Dμφ −M2
φφ

†φ − Yφðφ†εQ̄T
LtR þ H:c:Þ: ð57Þ

The tree-level matching yields

L ¼ Y2
φ

M2
φ
ðQ̄LtRÞðt̄RQLÞ: ð58Þ

As in the previous case, this operator does not appear in the
Warsaw basis being redundant in D ¼ 4 dimensions. In the

following it will be referred to as Rð1Þ
Qt . We find

Cð1ÞQt

Λ2
¼ −

1

6

Y2
φ

M2
φ
;

Cð8ÞQt

Λ2
¼ −

Y2
φ

M2
φ
: ð59Þ

FIG. 4. One-loop diagrams contributing to the matching with
the chromomagnetic operator. Diagrams (a), (b) represent the two
possible classes of diagrams.

6This reference uses a different convention for the covariant
derivative with respect to the one used in Ref. [63], which we
follow in the Feynman rules. This leads to a relative minus sign in
terms with an odd power of gs. In addition, the different
normalization of the quartic Higgs self-coupling in Ref. [62]
requires the replacements λ=2 → λ, μ2 → λv2 to convert their
result into our conventions.
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Owing to the color structure, there are no contributions
to the chromomagnetic operator. The tree-level matching

implies Cð1ÞQt − 1
6
Cð8ÞQt ¼ 0, in agreement with Eq. (46) since

CNDRtG ¼ CBMHV
tG ¼ 0 within this model. Following the

procedure outlined in the previous section, we compute
the diagrams in Fig. 5 to obtain the contributions to Yt and
Ctϕ in both schemes. The matching condition for Yt (Ctϕ) is
obtained by subtracting from the diagram in Fig. 5(a) [5(b)]
the one-loop amplitude for Q̄LtR → ϕ† (Q̄LtR → ϕ†ϕϕ†)
with an insertion of four-top operators. In other words, we
are interested in computing the insertion of the evanescent
operator

E ¼ Rð1Þ
Qt −

�
−
1

6
Oð1Þ

Qt −Oð8Þ
Qt

�
: ð60Þ

In NDR we find

NDR∶
Y2
φ

M2
φ
Rð1Þ

Qt ¼ −
1

6

Y2
φ

M2
φ

zfflfflffl}|fflfflffl{Cð1ÞQt =Λ
2

Oð1Þ
Qt−

Y2
φ

M2
φ

zfflffl}|fflffl{Cð8ÞQt =Λ
2

Oð8Þ
Qt

þ 1

16π2
Y2
φ

M2
φ
ð3Y3

t − 3λYtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ctϕ=Λ2

Otϕ þ H:c:

−
1

16π2
Y2
φ

M2
φ

3

2
λv2Yt|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ΔYt

ðQ̄Lϕ̃tRÞ þ H:c:;

ð61Þ
confirming once again the results obtained in Ref. [62]. In
this notation, ΔYt represents the contribution to the top
Yukawa coupling from the matching, while Yt represents
the coefficient of the four-dimensional Yukawa opera-
tor ðQ̄Lϕ̃tRÞ.
In BMHV we find

BMHV∶
Y2
φ

M2
φ
Rð1Þ

Qt ¼ −
1

6

Y2
φ

M2
φ

zfflfflffl}|fflfflffl{Cð1ÞQt =Λ
2

Oð1Þ
Qt−

Y2
φ

M2
φ

zfflffl}|fflffl{Cð8ÞQt =Λ
2

Oð8Þ
Qt : ð62Þ

Using Eq. (7) we can compute mt; ghtt̄ and confirm
Eqs. (47) and (48).

VII. INTERPLAY BETWEEN MORE OPERATORS
IN THE SMEFT

The primary focus of this paper is the demonstration of γ5
scheme differences in the treatment of four-top operators,
since they provide a convenient playground for investigation
due to the factorization of loop integrals. However, consid-
ering a complete operator basis in SMEFT, there are other
classes of operators that share similar features regarding the
treatment of γ5. Analogous to Sec. IV (but more schemati-
cally) we demonstrate in the following that there is also a
scheme-dependent finite mixing at one-loop order for
operators in the class of ψ2ϕ2D of Ref. [2].
For the purpose of this discussion, we consider the two

operators

L2t2ϕ ¼ Cð1ÞϕQ

Λ2
Q̄LγμQLðϕ†iD

↔μ
ϕÞ þ Cϕt

Λ2
t̄RγμtRðϕ†iD

↔μ
ϕÞ;

ð63Þ
where we introduced the short-hand notation

iD
↔μ ¼ iDμ − iD⃖μ: ð64Þ

Similar to the four-top operators in Eq. (2), the operators in
Eq. (63) are composed of current-current interactions
including chiral vector currents. These current-current
operators can be generated by integrating out a new heavy
vector particle at tree level that couples to the SM currents.
A concrete and comparably easy realization is given, e.g.,
by the third family hypercharge model [64,65]. We restrict
the direct evaluation of one-loop contributions of the
operators in Eq. (63) to the gaugeless limit of the SM7

and only investigate the contribution to the chromomag-
netic form factor, since this is sufficient to point out the
necessity of a more exhaustive study in future work.
An explicit evaluation of the one-loop correction to g →

t̄t in the broken phase leads to

ð65Þ

FIG. 5. One-loop diagrams contributing to the matching to the
Yukawa coupling (a) and to Ctϕ (b).

7In the gaugeless limit, the SM gauge bosons are completely
decoupled from the rest of the theory, taking the limit g1 → 0 and
g2 → 0. The Goldstone fields of the SM Higgs doublet are
therefore massless physical degrees of freedom. The explicit
analytic results in this section are equivalent to the pure Gold-
stone contribution in Landau gauge.
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where the gluon and top quarks are taken on shell8 and the
Gordon identity for on shell fermions is applied to arrive at
this result. The ð…Þ in Eq. (65) represents contributions to
vector and axial form factors that are completely removed
using on shell renormalization of the external top fields. For
the scheme-dependent value of K2t2ϕ

tG we find

K2t2ϕ
tG ¼ −

gsmt

16
ffiffiffi
2

p
vπ2

×
�
1 ðNDRÞ
2
3

ðBMHVÞ: ð66Þ

A mapping of CtG from one scheme to the other in the
presence of the operators of Eq. (63) is therefore achieved
considering the difference

ΔK2t2ϕ
tG ¼ K2t2ϕ;NDR

tG − K2t2ϕ;BMHV
tG ¼ −

gsmt

48
ffiffiffi
2

p
vπ2

; ð67Þ

similarly as in Eq. (46).
The same difference is obtained in the unbroken phase,

evaluating diagrams of the form of Fig. 6 for both operators.
This provides a solid cross-check of the scheme-dependent
nature which even holds when the SM gauge bosons are part
of the theory, since they cannot contribute to the chromo-
magnetic operator at one-loop order.
The result of Eq. (65) (and the analogous calculation in

the unbroken phase) illustrates well that we observe a
scheme-dependent finite mixing at one loop between the
operators of Eq. (63) and other operators, just like in the
case of four-top operators. Similarly to Sec. VI a map of
finite scheme-dependent shifts in the Wilson coefficients
could be verified by an explicit on shell one-loop matching
with an adequate toy model.
Regarding the contribution of those operators to the

Higgs-gluon coupling, we refrain from performing the
complete calculation as in Sec. V in our current work.
Even in the simplified scenario of the gaugeless limit, the
contributions of the operators would lead to genuine two-
loop Feynman integrals, which is beyond the scope of what
we would like to demonstrate here. With the observed
scheme dependence at one loop, we already expect a γ5
scheme dependence for the single pole in gg → h and for
the RGE of CϕG. As in the case of four-top operators, it

should be resolved considering the map of finite shifts in
the Wilson coefficients derived at one loop. However, it is
not guaranteed that the renormalized amplitude of gg → h
would have a scheme-independent form once such shifts
are considered. On the contrary, it may be necessary to
identify finite scheme-dependent shifts appearing at the
two-loop level.

VIII. CONCLUSIONS

We have computed the contribution of four-top operators
to the Higgs-gluon coupling at the two-loop level in the
SMEFT. We have discussed in detail, for the first time for
this process, the differences between the two schemes for
the continuation of γ5 to D space-time dimensions con-
sidered in this paper, namely NDR and BMHV. This
process is an interesting showcase for the topic of scheme
dependence, because it shows some key features of two-
loop computations without adding too many difficulties
with respect to a one-loop computation.
Although the results at the two-loop level in the two γ5

schemes have a different form, this difference can be
accounted for by allowing that the parameters have differ-
ent values in the two schemes. Given this, we determined in
Eqs. (46)–(48) a mapping between the parameters in the
two schemes that makes both the anomalous dimension
matrix and the finite result scheme independent. This
extends the approach presented in Ref. [57], where the
scheme independence of the anomalous dimension matrix
only is discussed. To the best of our knowledge, this is the
first time that relations such as those in Eqs. (46)–(48) are
considered within the SMEFT. Since the latter is based on
the bottom-up approach, Eqs. (46)–(48) serve an additional
purpose compared to Ref. [57], namely they allow us to
connect the results using different schemes.
We validated the relations between the parameters in the

different schemes using some UV models, as detailed in
Sec.VI. These simplifiedUVmodels support the expectation
that the physical result does not depend on the scheme used
for γ5, if such scheme is used consistently. However, we
remark that this holds for a top-down approach, in which the
EFT (in this case, theSMEFT) is used as an intermediate step.
In the context of the SMEFT with a new physics scale

Λ ∼ 1 TeV, the finite terms in the matrix element can be of
the same size as the logarithmically enhanced contribu-
tions, and thus can be phenomenologically relevant [13].
For this reason, deriving a connection between the two
schemes is very desirable in the perspective of a global fit,
where the observables may be computed in different
schemes. To this aim, Eqs. (46)–(48) represent a first effort
in the direction of a comprehensive map between the two
schemes. We remark that the continuation scheme for γ5 is
only one of the calculational choices that could affect the
interpretation of SMEFT fits from a bottom-up point of
view (see, e.g., Refs. [66–68]).
Lastly, we have observed that the interplay of four-top and

other SMEFToperators cannot be fully understood in terms

FIG. 6. Contribution to the chromomagnetic operator with a
single insertion ofOϕt (white triangle dot) in the unbroken phase.
Diagrams (a), (b), and (c) represent the relevant diagrams.

8Even if this choice is not kinematically allowed, it simplifies
the extraction of the chromomagnetic contribution.
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of the canonical SMEFT power counting, as in some cases
operators that are expected to contribute to different orders
based on this counting cannot be treated independently.
When the canonical power counting is supplemented by a
loop counting like the one discussed in Ref. [27], the
observed interplay is more naturally accounted for, under
the generic assumption of weakly coupled and renormaliz-
able UV theories. Furthermore, when the loop counting is
considered, the shifts we have presented can be of the same
order of magnitude as the Wilson coefficients themselves
[see Eq. (46)]. As a consequence, experimental constraints
on the determination of Wilson coefficients of loop-gener-
ated operators (like CtG in this paper) could be interpreted as
suffering from large uncertainties, if scheme-dependent
contributions from tree-level-generated chiral operators
entering at higher explicit loop orders are omitted (in our
case, four-top and ψ2ϕ2D operators). This points to the
necessity of selecting operators contributing to a physical
process such that loop counting and canonical-dimension
counting are combined, even though it implies assumptions
on theUV completion. In any case, a detailed documentation
of continuation and renormalization scheme choices used in
EFT calculations and fits of Wilson coefficients is highly
recommended.
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APPENDIX A: THE HIGGS DECAY RATE TO
BOTTOM QUARKS

We would like to briefly discuss the computation of the
four-quark operators to the h → bb̄ rate both in the NDR

and BMHV scheme, which we obtain as a side product of
our analysis. The operators relevant for our discussion are

Lb ¼
Cð1ÞQb

Λ2
ðQ̄LγμQLÞðb̄RγμbRÞ

þ Cð8ÞQb

Λ2
ðQ̄LTAγμQLÞðb̄RTAγμbRÞ

þ
�
Cð1ÞQtQb

Λ2
ðQ̄LtRÞiτ2ðQ̄T

LbRÞ þ H:c:

�

þ
�
Cð8ÞQtQb

Λ2
ðQ̄LTAtRÞiτ2ðQ̄T

LT
AbRÞ þ H:c:

�

þ
�
Cbϕ
Λ2

ðϕ†ϕÞQ̄LϕbR þ H:c:

�
: ðA1Þ

We consider also scalar operators Oð1;8Þ
QbQt which are

neglected in the gg → h computation since they are sup-
pressed by a factor ofmb=mt. Including the above operators
at NLO, the Higgs decay to bottom quarks is given by
Ref. [70]9:

ΓNDR
h→bb̄

ΓSM
h→bb̄

¼ 1 −
mt

mb

m2
h

32π2Λ2

�
7Cð1ÞQtQb þ

4

3
Cð8ÞQtQb

�

×

�
2β3 log

�
β − 1

β þ 1

�
− 5β2

þ ð1 − 3β2Þ log
�
μ̃2

m2
t

�
þ 1

�

−
m2

h

16π2Λ2

�
Cð1ÞQb þ

4

3
Cð8ÞQb

��
4β3b log

�
βb − 1

βb þ 1

�

þ 7β2b þ ð6β2b − 2Þ log
�
μ̃2

m2
b

�
− 1

�
þO

�
1

Λ4

�
;

ðA2Þ

and β defined in Eq. (19) and βb is obtained from β by
replacing mt with mb. The correct branch of the logarithm
can be obtained by m2

h → m2
h þ i0. In the BMHV scheme

instead the result of the scalar operators does not change
with respect to the NDR scheme, but we obtain a different

result for the operators Cð1ÞQb and Cð8ÞQb. We find

ΓNDR
h→bb̄

− ΓBMHV
h→bb̄

ΓSM
h→bb̄

¼ Cð1ÞQb þ 4
3
Cð8ÞQb

8π2Λ2
ðm2

h − 6m2
bÞ þO

�
1

Λ4

�
:

ðA3Þ

9In this reference, the on shell renormalization scheme is
employed. For this reason, we perform the check with the bare
amplitude, Eqs. (4.13) and (4.14).
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At tree level (TL) one has ΓX;TL
h→bb̄

∝ ðgX
hb̄b

Þ2, with
X ¼ NDR;BMHV, where ghb̄b contains corrections from
the operator Obϕ, as can be seen from Eq. (7) (replacing t
with b). Taking into account the different value of such
coupling in the two regularization schemes, namely
Eq. (47), we can write

ΓNDR;TL
h→bb̄

−ΓBMHV;TL
h→bb̄

ΓSM
h→bb̄

¼ Cð1ÞQbþ 4
3
Cð8ÞQb

8π2Λ2
ð6m2

b −m2
hÞþO

�
1

Λ4

�
:

ðA4Þ

If one consistently accounts for the orders in the loop
expansion and the 1=Λ2 expansion, one is then able to
obtain a scheme-independent result for this process.

APPENDIX B: RENORMALIZATION GROUP
EQUATIONS AND COUNTERTERMS

The anomalous dimension matrix of a theory is strictly
connected to the structure of the divergences of the theory
itself. In this Appendix we analyze in detail this relation,
deriving a general formula which can be used to determine
the one-loop counterterms associated to SMEFT operators
by simply reading the corresponding entry of the renorm-
alization group equation, given for example in [52,53,71]
(or viceversa).
We present here a general argument where a generic

SMEFT operator O2 renormalizes a different operator O1.
We fix, coherently with the rest of the paper,

CMS
1 ðμÞ ¼ Cð0Þ1 þ δC1ðμÞ; ðB1Þ

δC1ðμÞ ¼
A
ϵ
YðμÞNYλðμÞNλgðμÞNgC2ðμÞ: ðB2Þ

In the previous expression, μ is the renormalization scale
(on which the MS parameters depend) and Y; λ; g denote,
respectively, a Yukawa coupling, the Higgs quartic cou-
pling, and a gauge coupling, and A is a number that does
not depend on the renormalization scale (nor implicitly or
explicitly).
When dimensional regularization is used, it is customary

to rescale the parameters in such a way that they maintain
their physical dimension: X → μκXϵX. A typical example is
given by gauge couplings, for which κg ¼ 1 is chosen to
keep them dimensionless (g → μϵg). This operation should
be done also for the coefficients of the SMEFT operators,
whose mass dimension in D space-time dimensions is
different from −2.10 Remarkably, SMEFT operators may
have a different dimension depending on their field content,
even if in the limit D → 4 they all have dimension six.

Since the product CiOi must have dimension D one has, in
principle, eight different rescaling factors κi, one for each of
the operator classes defined in [2]. As we will see at the end
of this section, taking this aspect into account is crucial in
order to find the correct relation between counterterms and
anomalous dimension entries.
The renormalization group equation for C1 can be

obtained from (dropping the superscript MS for better
readability)

0 ¼ μ
dCð0Þ1 ðμÞ

dμ
¼ μ

d
dμ

ðμκ1ϵðC1ðμÞ − δC1ðμÞÞÞ: ðB3Þ

Since in the end we will take D → 4, we need the first
term of the expansion in the β function for each of the
parameters contained in the counterterm, namely

μ
dXðμÞ
dμ

≡ βX ¼ −κXϵþOð1Þ: ðB4Þ

Performing the algebra in Eq. (B3) and using Eq. (B4) we
obtain

μ
dC1ðμÞ
dμ

¼ A × ðκ1 − κ2 − NY − Ng − 2NλÞ

× YðμÞNYλðμÞNλgðμÞNgC2ðμÞ: ðB5Þ

If we normalize the anomalous dimension matrix as

μ
dC1ðμÞ
dμ

¼ 1

16π2
γ12ðμÞC2ðμÞ; ðB6Þ

we can write (comparing this expression with Eq. (B2)11

δC1ðμÞ ¼
1

16π2ϵ
γ12ðμÞC2ðμÞ

1

κ1 − κ2 − NY − Ng − 2Nλ
:

ðB7Þ

A practical example of this formula is Eq. (34). Four-top

operators Oð1;8Þ
Qt renormalize Otϕ at OðYtλÞ [52] and at

OðY3
t Þ [53]. This means ðNY;Ng; NλÞ ¼ ð1; 0; 1Þ ((3,0,0))

for the former (latter) case. In D ¼ 4 − 2ϵ space-time
dimensions one has

dim½Cð1;8ÞQt � ¼ 2ϵ; dim½Ctϕ� ¼ 3ϵ; ðB8Þ

which implies κQt ¼ 2; κtϕ ¼ 3.
Plugging these numbers in Eq. (B7) gives Eq. (34) [for

both terms of OðYtλÞ;OðY3
t Þ].

10Within the notation used in this paper, the coefficients are
written as Ci=Λ2, Ci being a dimensionless quantity.

11A similar formula taking explicitly into account the rescaling
factor to keep the Wilson coefficients with their physical
dimension can be found in Ref. [72] in the context of b → s
transitions.
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APPENDIX C: ADDITIONAL RESULTS

We present in this Appendix AS:I:
ght̄tþmt

. introduced in Eq. (40):

AS:I:
ght̄tþmt

¼ −
ght̄tg2smt

64π4m4
h

Lμ1μ2ϵμ1ðp1Þϵμ2ðp2ÞδA1A2

�
−4

�
log

�
μ̃2

m2
t

�
þ 2

�
m4

h − 4βm2
h log

�
β − 1

β þ 1

�

×

�
2

�
log

�
μ̃2

m2
t

�
− 1

�
m2

t þm2
h

�
þ 16

�
2 log

�
μ̃2

m2
t

�
þ 3

�
m2

hm
2
t þ log2

�
β − 1

β þ 1

���
log

�
μ̃2

m2
t

�
þ 2

�
m4

h

− 4

�
3 log

�
μ̃2

m2
t

�
þ 5

�
m2

hm
2
t þ 16

�
3 log

�
μ̃2

m2
t

�
þ 4

�
m4

t

�
þ βlog3

�
β − 1

β þ 1

�
ðm2

h − 4m2
t Þ2

�
: ðC1Þ

Lμ1μ2 has been defined in Eq. (25), β in Eq. (19), and A1, A2 are the color indices of the gluons. We also report here the result
for the SM amplitude for gg → h at the one-loop level:

MSM ¼ ght̄tg2s
32π2mt

τLμ1μ2ϵμ1ðp1Þϵμ2ðp2ÞδA1A2

�
β2log2

�
β − 1

β þ 1

�
− 4

�
: ðC2Þ

APPENDIX D: FEYNMAN RULES

We follow Ref. [63] for what concerns the Feynman
rules. For the sake of completeness, we report here the
Feynman rules we used in Sec. IV:

ðD1Þ

ðD2Þ

ðD3Þ

We stress that in Eq. (D3) there is not a direct proportion-
ality to the inverse propagator structure =p − 1mt, but only
to 1mt. For this reason, we added a cross in the fer-
mion line.

Finally, we give the Feynman rule we used for the four-
top vertex in Eq. (D7). For this rule we explicitly write si, ci
(spin and color index of the ith quark) to avoid confusion.
In D ¼ 4 one has

JL;μ ¼ γð4Þμ
1 − γ5
2

; JR;μ ¼ γð4Þμ
1þ γ5

2
: ðD4Þ

As detailed in Sec. III, when NDR is used, the continuation

4 → D can be accounted for by replacing γð4Þμ → γðDÞ
μ . In

BMHV, instead, we follow Refs. [39,44,45] for the con-
tinuation to D dimensions in order to preserve the chirality
of external states.
Following Eq. (13), we have

JL;μ ¼
8<
: γðDÞ

μ
1−γ5
2

ðNDRÞ;
1þγ5
2

γðDÞ
μ

1−γ5
2

¼ γð4Þμ
1−γ5
2

ðBMHVÞ;
ðD5Þ

JR;μ ¼
8<
: γðDÞ

μ
1þγ5
2

ðNDRÞ;
1−γ5
2

γðDÞ
μ

1þγ5
2

¼ γð4Þμ
1þγ5
2

ðBMHVÞ:
ðD6Þ
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