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We propose a framework to account for neutrino masses at the two-loop level. This mechanism
introduces new scalars and Majorana fermions to the Standard Model. It assumes the existence of a global
Uð1Þ × Z2 symmetry which after partial breaking provides the stability of the dark matter candidates of the
theory. The rich structure of the potential allows for the possibility of first-order phase transitions (FOPTs)
in the early Universe which can lead to the generation of primordial gravitational waves. Taking into
account relevant constraints from lepton flavor violation, neutrino physics, as well as the trilinear Higgs
couplings at next-to-leading order accuracy, we have found a wide range of possible FOPTs which are
strong enough to be probed at the proposed gravitational-wave interferometer experiments such as LISA.
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I. INTRODUCTION

The Standard Model (SM) is a highly successful theory
that describes the electromagnetic, strong, and weak inter-
actions whose predictions have been experimentally verified
at the LHC with the highest degree of accuracy. However it
has several unaddressed issues such as, for example the
current pattern of SM fermionmasses andmixing angles, the
number of SM fermion families, the measured amount of
dark matter relic density, and baryon asymmmetry observed
in the Universe, among others. Experiments with solar,
atmospheric, and reactor neutrinos have brought evidence
of neutrino oscillations caused by nonzero masses. Several
extensions of the SM have been constructed in order to

explain the tiny masses of the active neutrinos; see, e.g.,
Ref. [1] for a review and a nonextensive list [2–5] of some
comprehensive studies of one- and two-loop radiative
neutrinomassmodels. Themost economical way to generate
the tiny masses of the active neutrinos considering the SM
gauge symmetry, is by adding two right-handed Majorana
neutrinos that mix with the light active neutrinos thus
triggering a type-I seesaw mechanism [6–12], where either
the right-handed Majorana neutrinos have to be extremely
heavy with masses of the order of the grand unification scale
or they can be around the TeV scale thus implying very tiny
Dirac Yukawa couplings, in order to successfully reproduce
the neutrino data. In both scenarios, the mixing between the
active and sterile neutrinos is very tiny thus leading to
strongly suppressed charged lepton flavor (CLFV) violating
signatures, several orders of magnitude below the exper-
imental sensitivity, thus making this scenario untestable via
CLFV decays. This makes models with tree-level type-I
seesaw realizations difficult to test via charged-lepton flavor-
violating decays. Alternatively, radiative seesaw models are
examples of interesting and testable extensions of the SM
explaining tiny neutrino masses. In most radiative seesaw
models, the tiny neutrino masses arise at a one-loop level,
thus implying that in order to successfully reproduce the
experimental neutrino data, one has to rely either on very
small neutrinoYukawa couplings (of the order of the electron
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Yukawa coupling) or on an unnaturally small mass splitting
between theCP-even andCP-odd components of the neutral
scalar mediators. Two-loop neutrino mass models have been
proposed in the literature [13–21] to provide a more natural
explanation for the tiny active neutrino masses than those
ones based on one-loop level radiative seesaw mechanisms.
In this work we propose a minimally extended Inert Doublet
Model theory where the scalar sector is enlarged by the
inclusion of twoelectrically neutral gauge singlet scalars, and
the fermion sector is augmented by adding four right-handed
Majorana neutrinos. Thegauge symmetry of the SMmodel is
extended by including a spontaneously brokenUð1ÞX global
lepton number symmetry as well as a preserved Z2 discrete
symmetry. The scalar sector of ourmodel is similar to the one
of Ref. [22]; however the fermion sector is more economical
since in our model there are four right-handed Majorana
neutrinos whereas the model of [22] includes nine right-
handed Majorana neutrinos in the fermionic spectrum.
Additionally the model of Ref. [22] has a Uð1ÞB−L gauge
symmetry which is not present in our model, thus leading
to a different phenomenology. On the other hand, unlike the
model of Ref. [21], our model does not rely on doubly
charged scalar fields to implement the two-loop level
realization of active neutrino masses.

II. THEORETICAL STRUCTURE OF THE MODEL

A. Particle content and charge assignments

In this work, we augment the SM gauge groups with an
extended global Abelian symmetry Uð1Þ × Z2, where the
U(1) associated with the global lepton number is sponta-
neously broken while the Z2 is preserved. Besides the
standard particle content of the SM, additional fields are
present in the spectrum, including an inert SU(2) doublet
scalar field, η, and two scalar singlets,φ and σ. In our setup, σ
acquires a nonzero vacuum expectationvalue (VEV)whileφ
does not, such that the potential Dark Matter (DM) candi-
dates can arise from the neutral components of η or from φ.
Additional Majorana fermions are also included into this
scheme, namely, two NR fields and two ΨR. While the
electroweak (EW) gauge group does not distinguish NR and
ΨR, the extended symmetry group treats both differently.
The charge assignments of the fields are shown in Table I

for the scalar fields and in Table II for matter fields. As
shown in Table I, the SU(2) scalar doublet η and the scalar

singlet φ have nontrivialZ2 charges. Since these two scalars
do not acquire VEVs and the charge assignments do not let
neutrinos couple to the SM Higgs, light active neutrinos do
not acquire masses at tree level. The specific Uð1Þ × Z2

charge assignments of the Nk;R Majorana neutrinos and σ
scalar field enable the radiative generation of neutrino mass
and the corresponding mixing only at a two-loop level that
can be noticed from a typical topology in Fig. 1. Namely, this
is possible through the virtual exchange of the neutral
components of the inert SU(2) scalar doublet η fields as
well as of the real and imaginary parts of the inert singlet
scalar φ, with the loop closing through the σ VEV and the
VEV of the active Higgs doublet Φ. For simplicity of the
analysis, we assume that the charged lepton sector is purely
diagonal, such that the only contribution to the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) mixing matrix comes
exclusively from the loop topology shown in Fig. 1.

B. Yukawa sector and scalar potential

Based on the charge assignments of Tables I and II,
the most general and renormalizable Yukawa Lagrangian
reads as

FIG. 1. Two-loop Feynman diagram which is responsible for
the generation of the neutrino masses and mixing. Here, ν are the
neutrinos, ηR;I are the real and imaginary parts of the neutral
component of the η doublet, φR;I are the real and imaginary parts
of the φ singlet, v and vσ are the VEVs of theΦ doublet and the σ
singlet fields, respectively.

TABLE I. Charge assignments under the SM gauge group
(SUð3ÞC × SUð2ÞL × Uð1ÞY) and the supplemental global sym-
metry Uð1ÞX × Z2 for the new scalar fields (σ, η and φ) and the
Higgs doublet (Φ).

SUð3ÞC SUð2ÞL Uð1ÞY Uð1ÞX Z2

Φ 1 2 1=2 0 1
σ 1 1 0 −1 1
η 1 2 1=2 0 −1
φ 1 1 0 −1 −1

TABLE II. Charge assignments under the SM gauge group
(SUð3ÞC × SUð2ÞL × Uð1ÞY) and the supplemental global sym-
metry Uð1ÞX × Z2 for the new matter fields (NR, ΨR) and the
SM-like lepton doublet (li;L) and singlet (li;R). Here, i ¼ 1, 2, 3
and k ¼ 1, 2.

SUð3ÞC SUð2ÞL Uð1ÞY Uð1ÞX Z2

li;L 1 2 −1=2 1 1
li;R 1 1 −1 1 1
Nk;R 1 1 0 1 −1
Ψk;R 1 1 0 0 1
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−LðlÞ
Y ¼ ðylÞijli;LΦlj;R þ ðyNÞikli;Lη̃Nk;R þ ðyΩÞnkN̄n;Rφ

�Ψc
k;R þ ðmΨÞnmΨ̄n;RΨc

m;R þ H:c:; ð2:1Þ

where we have defined η̃ ¼ iσ2η†, and the superscript c in the Ψ field indicates charge conjugation. We adopt the Einstein
summation convention where repeated indices indicate sum over them, with i, j ¼ 1, 2, 3 and m, n, k ¼ 1, 2. Here, yl is a
3 × 3 matrix, yΩ and mψ are 2 × 2 matrices, and yN is a 2 × 3 matrix. The neutrino mass matrix can then be induced by the
combination of the yN and yΩ Yukawa matrices.
The complete gauge invariant scalar potential in this model is given as

V ¼ −μ2ΦðΦ†ΦÞ þ μ2ηðη†ηÞ þ μ2φðφ�φÞ − μ2σðσ�σÞ þ λ1ðΦ†ΦÞðΦ†ΦÞ þ λ2ðη†ηÞðη†ηÞ

þ λ3ðφ�φÞðφ�φÞ þ λ4ðσ�σÞðσ�σÞ þ λ5ðΦ†ΦÞðη†ηÞ þ λ6ðΦ†ηÞðη†ΦÞ þ λ7
2
½ðΦ†ηÞ2 þ H:c:�

þ λ8ðΦ†ΦÞðσ�σÞ þ λ9ðΦ†ΦÞðφ�φÞ þ λ10ðη†ηÞðσ�σÞ þ λ11ðη†ηÞðφ�φÞ þ λ12ðφ�φÞðσ�σÞ

þ λ13
2

½φ2ðσ�Þ2 þ H:c:� þ λ14½ðΦ†ηÞðφσ�Þ þ H:c:� þ λ15½ðΦ†ηÞðσφ�Þ þ H:c:�
þ ½−μ2sbσ2 þ κ1σ

3 þ κ2σ
2σ� þ κ3ðΦ†ΦÞσ þ κ4ðη†ηÞσ þ κ5ðφ�φÞσ þ H:c:�;

where we take all parameters of the potential to be real, i.e., CP symmetry is conserved in the considered scenario. Notice
that the quartic couplings λ7 and λ13 are crucial for generating neutrino masses throughout the two-loop level mechanism.
The nonzero scalar VEVs are denoted as hΦi ¼ v ∼ 246 GeV and hσi ¼ vσ . Also, the terms in the last line of the potential
that breaks the Uð1ÞX symmetry softly are incorporated in order to make the CP-odd scalar associated with σ massive. To
simplify our analysis, we take the couplings κi to be extremely small from here onward. Once the scalars Φ and σ acquire
VEVs and the EW symmetry is broken, the model will have nine physical scalars—two charged scalars ðη�Þ, four neutral
CP-even scalars (ηR, φR, h1 and h2), and three neutral CP-odd scalars (ηI , φI and σI). It is to be noted that the scalars
associated with η and φ mix only among themselves and so do the scalar fields coming from Φ and σ.1

C. Scalar mass spectrum

After employing the minimization conditions along v and vσ , the scalar mass matrices can be written as

M2
η� ¼

0
BBB@

0 0 0 0

0 0 0 0

0 0 μ2η þ v2σλ10þv2λ5
2

0

0 0 0 μ2η þ v2σλ10þv2λ5
2

1
CCCA;

M2
CP−even ¼

0
BBBBB@

2v2λ1 vvσλ8 0 0

vvσλ8 2v2σλ4 0 0

0 0 μ2η þ v2σλ10þv2λ5þv2λ6þλ7v2

2
1
4
vvσðλ14 þ λ15Þ

0 0 1
4
vvσðλ14 þ λ15Þ μ2φ þ v2σλ12þv2σλ13þv2λ9

2

1
CCCCCA;

M2
CP−odd ¼

0
BBBBB@

0 0 0 0

0 4μ2sb 0 0

0 0 μ2η þ v2σλ10þv2λ5þv2λ6−v2λ7
2

1
4
vvσðλ15 − λ14Þ

0 0 1
4
vvσðλ15 − λ14Þ μ2φ þ v2σλ12−v2σλ13þv2λ9

2

1
CCCCCA; ð2:2Þ

where the zero eigenvalues of the charged andCP-odd matrices are absorbed by the longitudinal components of theW� and
Z0 gauge bosons. To avoid constraints coming from the Higgs sector, we work closely to the alignment limit, such that
vvσλ8 ≪ 1. The above matrices can be analytically diagonalized, which results in the mass eigenvalues

1Let us note that similar scalar potentials can be found in scenarios that explain Dirac neutrino masses at the one-loop level [23]. A
detailed investigation of such scenarios, following the lines of the present work, will be dedicated in a subsequent paper.
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Charged scalars∶
n
m2

η� ¼ μ2η þ 1
2
ðλ5v2 þ λ10v2σÞ:

CP-even scalars∶

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

m2
h1
¼ λ1v2 þ λ4v2σ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1v2 − λ4v2σÞ2 þ λ28v

2v2σ
p

;

m2
h2
¼ λ1v2 þ λ4v2σ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1v2 − λ4v2σÞ2 þ λ28v

2v2σ
p

;

m2
ηR ¼ 1

4
½2ðμ2η þ μ2φÞ þ λHþv2 − fð2ðμ2η − μ2φÞ þ λH−v2Þ2

þ 2vσ2½2ðμ2η − μ2φÞðλ10 − λ12 − λ13Þ
þ v2fλH− ðλ10 − λ12 − λ13Þ þ 2ðλ14 þ λ15Þ2g� þ ΛH

−
2vσ4g1=2 þ ΛHþvσ2�;

m2
φR

¼ 1
4
½2ðμ2η þ μ2φÞ þ λHþv2 − fð2ðμ2η − μ2φÞ þ λH−v2Þ2

þ 2vσ2½2ðμ2η − μ2φÞðλ10 − λ12 − λ13Þ
þ v2fλH− ðλ10 − λ12 − λ13Þ þ 2ðλ14 þ λ15Þ2g� þ ΛH

−
2vσ4g1=2 þ ΛHþvσ2�:

CP-odd scalars∶

8>>>>>>>>>>>><
>>>>>>>>>>>>:

m2
σI ¼ 4μ2sb;

m2
ηI ¼ 1

4
½2ðμ2η þ μ2φÞ þ λAþv2 − fð2ðμ2η − μ2φÞ þ λA−v2Þ2

þ 2vσ2ð2ΛA
−ðμ2η − μ2φÞ þ v2f2ðλ14 − λ15Þ2 þ λA−ΛA

−gÞ
þ ΛA

−
2vσ4g1=2 þ ΛAþvσ2�;

m2
φI

¼ 1
4
½2ðμ2η þ μ2φÞ þ λAþv2 − fð2ðμ2η − μ2φÞ þ λA−v2Þ2

þ 2vσ2ð2ΛA
−ðμ2η − μ2φÞ þ v2f2ðλ14 − λ15Þ2 þ λA−ΛA

−gÞ
þ ΛA

−
2vσ4g1=2 þ ΛAþvσ2�:

ð2:3Þ

Here, the lightest scalar mh1 is taken to be the SM
Higgs boson of mass ∼125 GeV. To simplify the above
expressions, we have defined λH� ¼ λ5 þ λ6 þ λ7 � λ9,
ΛH
� ¼ �λ10 þ λ12 þ λ13 in the CP-even sector and λA� ¼

λ5 þ λ6 − λ7 � λ9, ΛA
� ¼ λ10 � λ12 ∓ λ13 in the CP-odd

sector. To make the numerical analysis simpler, we work
in the limit of small mixings between the two heavy
CP-even and between the two CP-odd states (effectively
we take λ14 and λ15 to be small). Under this assumption, the
above expressions can be inverted to express 7 out of the 13
quartic couplings in terms of the physical scalar masses.
Thus, the physical masses can be taken as the input
parameters in the numerical analysis. The relations that
are used in this work are

λ1 ¼
m2

h1
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm4

h1
− 2m2

h2
m2

h2
þm4

h2
− 4λ28v

2
1v

2
σÞ

q
þm2

h2

4v21
;

λ4 ¼
m2

h1
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm4

h1
− 2m2

h1
m2

h2
þm4

h2
− 4λ28v

2
1v

2
σÞ

q
þm2

h2

4v2σ
;

λ5 ≈
−2μ2η þ 2m2

η� − λ10v2σ

v21
;

λ6 ≈
m2

ηI þm2
ηR − 2m2

η�

v21
;

λ7 ≈
−m2

ηI þm2
ηR

v21
;

λ9 ≈
−2μ2sb þm2

ηI þm2
ηR − v2σλ12

v21
;

λ13 ≈
m2

ðφÞR −m2
ðφÞI

2v2σ
: ð2:4Þ

Expressions for λ1 and λ4 are exact, whereas all others are
valid in the approximation λ14, λ15 → 0.

D. Implications for collider physics
and dark matter phenomenology

Finally, to close this section we wish to provide a
brief discussion of the key phenomenological implica-
tions of the multiscalar sector in the considered model. It
is expected that the presence of electrically charged
scalars in the inert doublet will provide an extra con-
tribution to the Higgs diphoton decay rate h → γγ,
which will yield a deviation of the Higgs diphoton signal
strength from the SM expectation. However, that devia-
tion is expected to occur in the experimentally allowed
range in a large region of the model parameter space.
Besides, given that the singlet scalar field acquires a
VEV at the TeV scale, its mixing with the CP-even part
of the active doublet is suppressed implying that the
couplings of the 125 GeV SM like Higgs boson will be
very close to the SM expectation realizing the so-called
Higgs alignment limit. Thus, such a scenario appears to
be consistent with the SM in such a limit, at least, at the
leading order (LO) level.
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It is generally expected that the triple Higgs coupling can
be affected compared to its SM value in typical multiscalar
extensions of the SM. In our model, the trilinear Higgs
coupling, λhhh, deviates from the SM prediction through a
mixing with the σ field. In particular, at LO a simple
analytical expression can be derived:

λLOhhh ¼ 6cos3αhvλ1 þ 6sin3αhvσλ4 þ 3 cos αhsin2αhvλ8

þ 3cos2αh sin αhvσλ8; ð2:5Þ

where αh is the CP-even mixing angle between h1 (Higgs)
and h2. It is not hard to notice that in the limit of αh → 0,
the tree-level SM Higgs coupling λSMhhh ¼ 6vλ1 is success-
fully reproduced as we effectively work very close to the
alignment limit. Hence, the potential corrections to λLOhhh are
very suppressed, and we expect no significant deviations
from the SM expectation. On the other hand, previous
works [24–26] have suggested that one-loop corrections to
the λhhh can actually be quite sizable in some beyond-SM
(BSM) extensions, resulting, in some cases, in an increase
of order Oð50%Þ for certain combinations of coupling/
mass parameters. In our case, next-to-leading order (NLO)
contributions will be dominant and represent the bulk
of the new physics contribution to λhhh. So, for a correct
understanding of the impact on λhhh, one must take these
contributions into account. In this regard, we have com-
puted all relevant one-loop contributions to the triple Higgs
coupling using the formalism of Ref. [27]. Note that the
formulas derived here are valid in the limit of zero external
momentum, and therefore, only the contributions coming
from the heavier states are relevant. In particular, we have
considered all possible contributions coming from all
physical scalars of the model (η�, h1, h2, ηR, φR, σI, ηI
and φI), as well as the loop diagram involving the virtual
exchange of the top quark. The loops containing the gauge
bosons and the lighter scalar bosons were neglected, as they
are expected to be subdominant. The full one-loop formulas
are listed in Appendix. In what follows, in our numerical
analysis we will take into account the existing constraints
on λhhh available from the LHC [28,29]. Future collider
measurements [30,31] can further probe possible deviations
of λhhh from the SM value.
Another interesting implication of our model is for

understanding the structure of DM. The Majoron σI , which
is the pseudo-Nambu-Goldstone boson associated with the

spontaneous breaking of the global lepton number sym-
metry, can be identified as the Weakly Interating Massive
Particle DM candidate. Its relic density can be generated by
the standard freeze-out mechanism. Assuming for simplic-
ity that the cosmological DM is dominated by such a scalar
DM candidate, it would annihilate mainly intoWW, ZZ, tt̄,
bb̄ and h1h1 channels in the early Universe via a Higgs
portal scalar interaction. These interactions will contribute
to the DM relic density, which can be accommodated for
appropriate values of the scalar DM mass, which in most
cases are at the TeV scale. Such a scalar DM candidate
would also scatter off a nuclear target in a detector via
Higgs boson exchange in the t channel, giving rise to a
constraint on the Higgs portal scalar interaction coupling.
In the low mass region, the invisible Higgs decay con-
straints should be taken into account and would imply a
lower bound for the scalar DM candidate mass of about
60 GeV. Besides that, in a small window around half of the
SM Higgs boson mass, the DM relic density constraints
will be successfully accounted for. In Fig. 3, we have
plotted the parameter space that gives the correct relic
density in the mσI − λ8 plane, where λ8 is the Higgs portal
coupling. In calculating the relic density, we have assumed
for simplicity that the dominant annihilation channels of the
DM are the ones into WW, ZZ, h1h1, tt̄, bb̄, and the
components of the doublet η. The corresponding Feynman

FIG. 2. Dominant Feynman diagrams contributing to the DM annihilation for the scenario considered.

FIG. 3. Parameter space that gives the correct relic density in
the mσI − λ8 plane. The pink band is disfavored by perturbativity.
The gray region is excluded by XENON1T [36] while the blue
line corresponds to the sensitivity of DARWIN [37].
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diagrams are given in Fig. 2. The cross sections for the
relevant annihilation channels are given as [32]

vrelσðσIσI →WWÞ ¼ λ8
32π

sð1þ 12m4
W

s2 − 4m2
W

s Þ
ðs−m2

h1
Þ2þm2

h1
Γ2
h1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4m2
W

s

r
;

ð2:6Þ

vrelσðσIσI → ZZÞ ¼ λ8
64π

sð1þ 12m4
Z

s2 − 4m2
Z

s Þ
ðs −m2

h1
Þ2 þm2

h1
Γ2
h1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
Z

s

r
;

ð2:7Þ

vrelσðσIσI → qq̄Þ ¼ Ncλ
2
8m

2
q

16π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 4m2

q

s Þ3
q

ðs −m2
h1
Þ2 þm2

h1
Γ2
h1

; ð2:8Þ

vrelσðσIσI → h1h1Þ ¼
λ28

64πs

�
1þ 3m2

h1

s −m2
h1

−
2λ8v2

s − 2m2
h1

�2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
H1

s

s
; ð2:9Þ

vrelσðσIσI → ηiηiÞ ¼
λ210
64πs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
ηi

s

s
; ð2:10Þ

where
ffiffiffi
s

p
is the center-of-mass energy, Nc ¼ 3 stands for

the color factor, mh1 ¼ 125.7 GeV, and Γh1 is the total
decay width of the SM Higgs boson which is equal to
4.1 MeV. From the above scattering cross sections, the
current DM relic abundance in the Universe can be
obtained as (cf. Ref. [33,34])

Ωh2 ¼ 0.1 pb
hσvi ; hσvi ¼ A

n2eq
; ð2:11Þ

where hσvi is the thermally averaged annihilation cross
section, A is the total annihilation rate per unit volume at
temperature T, and neq is the equilibrium value of the
particle density, which are given as [33]

A ¼ T
32π4

Z
∞

4m2
σI

X
p¼W;Z;t;b;H1;ηi

g2p
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

σI

q
2

× vrelσðσIσI → ppÞK1

� ffiffiffi
s

p
T

�
ds;

neq ¼
T
2π2

X
p¼W;Z;t;b;H1;ηi

gpm2
σIK2

�
mσI

T

�
; ð2:12Þ

with K1 and K2 being the modified Bessel functions of the
second kind of order 1 and 2, respectively. We have taken

T ¼ mmσI
=20 following Ref. [33]. The DM relic density

thus determined should match the required value [35],

ΩDMh2 ¼ 0.1200� 0.0012: ð2:13Þ

In generating Fig. 3, we have varied λ8 from 0 to 4π
and the masses of ηR, ηI , and η� in the range 0.2–5 TeV.
In this figure, the pink band is disfavored by perturba-
tivity bounds. The gray region is excluded by the
constraints from XENON1T [36] whereas the blue line
corresponds to the sensitivity of DARWIN [37]. From
this figure, one can see that most of the allowed
parameter space corresponds to a dark matter mass in
the TeV range though there are a few allowed points in
the sub-TeV region as well.

III. NEUTRINO MASS AND LEPTON
FLAVOR VIOLATION

OnceΦ and σ develop VEVs, a nontrivial contribution to
the neutrino mass matrix is generated at the two-loop level,
whose diagram is illustrated in Fig. 1. The active light
neutrino mass matrix in this case is given as

ðMνÞij ¼
ðyNÞinðy�ΩÞnkðy†ΩÞkrðyTNÞrjmΨk

4ð4πÞ4

×
Z

1

0

dα
Z

1−α

0

dβ
1

αð1−αÞ
× ½Gðm2

Ψk
;m2

RR;m
2
RIÞ−Gðm2

Ψk
;m2

IR;m
2
IIÞ�; ð3:1Þ

where n, k, r ¼ 1, 2. Here, the loop integral I can be written
as [22]

Gðx2; y2; z2Þ ¼
x2y2 logðy2x2Þ þ y2z2 logðz2y2Þ þ z2x2 logðx2z2Þ

ðx2 − y2Þðx2 − z2Þ ;

m2
ab ¼

βm2
ðηÞa þ αm2

ðφÞb
αð1− αÞ ða;b¼ R∶or∶IÞ: ð3:2Þ

Note that the lightest active neutrino is massless which
implies that there is only one Majorana phase in the
PMNS matrix. A convenient way to incorporate the
bounds from the neutrino oscillation data is to express
the Yukawa coupling matrix using the Casas-Ibarra para-
metrization. For the model considered in this paper, one can
express yN as

yN ¼ U�
PMNS

ffiffiffiffiffiffiffiffiffiffiffi
Mdiag

ν

q
RTA−1; ð3:3Þ

where U�
PMNS is the 3 × 3 PMNS neutrino mixing matrix,

Mdiag
ν ¼ diagðm1; m2; m3Þ is the diagonal neutrino mass

matrix, R is a 2 × 3 matrix that is given as
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R ¼
�
0 cos z − sin z

0 sin z cos z

�
for normal hierarchy of light neutrino masses ðm1 ¼ 0Þ and

R ¼
�
cos z − sin z 0

sin z cos z 0

�
for inverted hierarchy of light neutrino masses ðm3 ¼ 0Þ:

The matrix A is given by

A ¼ y�ΩΛy
†
Ω;

where Λ ¼
�Λ1

0
0

Λ2

�
with

Λk ¼
mΨk

4ð4πÞ4
Z

1

0

dα
Z

1−α

0

dβ
1

αð1 − αÞ ½Gðm
2
Ψk
; m2

RR;m
2
RIÞ −Gðm2

Ψk
; m2

IR; m
2
IIÞ�:

Under this parametrization, the experimentally observed
neutrino mass differences and the PMNSmixing matrix can
be given as input in the numerical scan, with the Yukawa
coupling being found as output. Since we do not have
control over the magnitude of the Yukawa couplings, we
only allow solutions which respect perturbativity, i.e.,
jYN j; jYΩj <

ffiffiffiffiffiffi
4π

p
. For the purpose of numerical scans,

we only consider the normal ordering scenario for the
neutrino masses (that is, m1 ¼ 0).
The presence of the Majorana fermions can induce

Lepton Flavor Universality (LFV) decays, such as μ → eγ,
which are strongly constrained by experiment. In our
model, such decays are mediated at the one-loop level
via virtual exchanges of the neutral fermions and the
charged scalars. The branching fraction for the two-
body decay process li → ljγ, where i ¼ e, μ, τ is given
as [38–41]

BRðli → ljγÞ ¼
3ð4πÞ3αem

4G2
F

���� xðνÞis x
ðνÞ
js

2ð4πÞ2m2
η�
F

�
m2

NsR

m2
η�

�����
2

× BRðli → ljνiνjÞ; ð3:4Þ

with s ¼ 1, 2. Here, αem ¼ 1=137 is the fine-structure

constant, xðνÞis ¼ P
3
k¼1ðyNÞðνÞks ðV†

lLÞik, with V being the left-
handed charged lepton mixing matrix, GF ¼ 1.166364 ×
10−5 GeV−2 is the Fermi constant, which in our case is the
identity matrix, mφ� are the masses of the charged scalar
components of the SUð2ÞL inert doublet φ, and mNsR

(s ¼ 1, 2) correspond to the masses of the right-handed
Majorana neutrinos NsR, which due to the charge assign-
ment, are generated at the one-loop level. The loop function
F is written as

FðxÞ ¼ 1 − 6xþ 3x2 þ 2x3 − 6x2 ln x
6ð1 − xÞ : ð3:5Þ

The masses of the right-handed neutrinos NsR are given as

mN ¼ yΩ2mψ

8π2

�
m2

φR

m2
φR

−m2
ψ
ln

�
m2

φR

m2
ψ

�
−

m2
φI

m2
φI
−m2

ψ
ln

�
m2

φI

m2
ψ

�	
;

ð3:6Þ

where we have taken yΩ and mψ to be diagonal and
degenerate for simplicity.
The most stringent bounds for LFV come from muon

decay measurements, namely, μ → eγ. Current experimen-
tal results put an upper bound on the branching ratio,
which reads as BRðμ → eγÞ < 4.2 × 10−13 [42]. The
model can also give rise to μ → e conversion in the atomic
nucleus. But the existing bounds are not as restrictive as
the ones from BRðμ → eγÞ. However, among various
planned experiments, the μ → e conversion in the Al nuclei
has the best projected sensitivity of ∼10−17 [43]. The
branching ratio for this process can approximately be
expressed as [41]

CRðμAl → eAlÞ ≈ 1

350
BRðμ → eγÞ: ð3:7Þ

In this regard, Fig. 4 shows the predictions for
BRðμ → eγÞ (green points) and CRðμAl → eAlÞ (red
points) as functions of Tr½y†NyN �. Only the values that
are within the existing bounds are shown, whose limit is
indicated by a dashed horizontal line in the plot. The cyan
points correspond to the region within the projected
sensitivity for μAl → eAl conversion.
For all the points shown in Fig. 4, neutrino oscillation

data are respected, with the relevant experimental param-
eters (namely, neutrino mass differences and the PMNS
mixing angles) being given as input and allowed to vary
within their respective 3σ uncertainties [44–46]. The
Majorana phase is also varied in the range ½0; π�, and yΩ
is taken to be diagonal where the entries are allowed to vary
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in the range [0, 1]. Here, z is defined as x1 þ y1iwith x1 and
y1 being varied in the range ½−2;þ2�, and the fermions ΨkR
are taken to be degenerate, with their masses varied in the
range [0.5, 5] TeV. For the scalar potential parameters, we
employ the inverted equations in (2.4) to allow for the
physical masses to be given as input. In this regard, we have
considered the following parameter ranges:
(1) mηI ;mφI

→ ½0.5;3.2� TeV, mηR → ½mηI ;mηI þ5GeV�,
mφR

→ ½mφI
;mφI

þ5GeV�, mη� → ½mηI −5GeV;mηI �
(2) v1 ¼ 246 GeV, mh2 → ½0.5; 5� TeV, vσ →

½5; 30� TeV,
(3) λ2;5;8;9;10;11;12 → ½0; 1�. The remaining λ’s are treated

as outputs in the inversion procedure. Notice that we
have inverted the expressions for λ5 and λ9, which
can be solved such that μ2η and μ2φ are instead given
as output parameters, where we have taken them to
both be greater than 0. Also, in the parameter space
that has been considered, we have ensured that all
the quartic couplings, λi > 0, even though this is
only a sufficient condition but not necessary.

IV. PHASE TRANSITIONS AND PRIMORDIAL
GRAVITATIONAL WAVES

One of the more interesting phenomenological conse-
quences of extended scalar sectors compared to the SM
framework is the possibility for the existence of FOPTs.
Indeed, such a phenomenon is not present in the SM (both
the EW and QCD phase transitions are of second order),
making it pure BSM driven physics. Such transitions can
lead to the generation of PGWs. With the detection of GWs
at LIGO [47], a new era of multimessenger astronomy has
arisen, where such events may give us unique perspectives
into new physics beyond the SM. It has been recently
proposed that the cosmological phase transitions between
different vacua at finite temperatures (such as those

associated with symmetry breaking in BSM models) may
give rise to gravitational imprints that should beobservable in
future ground- and space-based experiments [48,49]. The
Primordial Gravitational Wave (PGW) signals can also
provide hints into the nature of the neutrino masses in the
context of distinct seesaw mechanisms [50].
As was mentioned above, PGWs can arise from FOPTs,

which produce a stochastic Gravitational Wave (GW)
background in the early Universe which is formed out of
equilibrium due to fast-expanding vacuum bubbles [51].
These bubbles eventually collide and merge to give rise to
the GW echoes [52]. The characteristics of the phase
transition such as its strength and inverse duration are
determined by the structure of the effective potential at
finite temperatures and are highly sensitive, in particular, to
the properties of the potential barrier between the phases
and to the critical temperature of the transition (see, e.g.,
Refs. [48,53–57] and references therein). The phenomenon
of strong FOPTs is quite generic for multiscalar extensions
of the SM (in particular, for those that undergo several
symmetry breaking steps) such as the one we address in this
article. Therefore, PGWs emerging from cosmological
FOPTs are often considered as a potentially useful source
of phenomenological information about multiscalar exten-
sions of the SM which may be complementary to con-
straints coming from collider searches.
In order to fully classify and study the PGW spectra

emergent in our model, there are a total of five main
ingredients. The first one is inherently dependent on the
considered model structure—the finite temperature effective
potential [58–60]. Generically, it can be written as [61,62]

Veff ¼ Vð0Þ þ Vð1Þ
CW þ VT≠0 þ VCT; ð4:1Þ

where the first term, Vð0Þ, is the tree-level scalar potential
given inEq. (2.2). The second term is theColeman-Weinberg
one-loop correction,

Vð1Þ
CW ¼

X
a

ð−1ÞFna
m2

aðϕbÞ
64π2

�
ln

�
m2

aðϕbÞ
μ2

�
− Ca

	
; ð4:2Þ

where F is 0 for bosons and 1 for fermions, maðϕbÞ is the
ϕa-field dependentmass of the particle a, na is the number of
degrees of freedom for each particle a, and μ is a renorm-
alization scale. The particle degrees of freedom can be
computed as ð−1Þ2sQNð2sþ 1Þ, where s is the spin of
the particle,Q ¼ 1ð2Þ for neutral (charged) particles, and N
is the number of colors. In this work, we consider the MS
renormalization scheme such that we have Ca ¼ 3=2 for
scalars, fermions, and longitudinally polarized gauge
bosons, and Ca ¼ 1=2 for transverse gauge bosons.
Additionally, the renormalization scale is fixed as μ ¼Q

n
i¼1m

1=n
ϕi

where i runs over all BSM scalars in the model.

FIG. 4. The predictions for BRðμ → eγÞ (green points) and
CRðμAl → eAlÞ (red points) as functions of Tr½y†NyN �. All the
points shown are within the existing experimental bounds marked
by the horizontal dashed line. The cyan points correspond to the
region within the projected sensitivity for μAl → eAl conversion.
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Since we allow for varying the masses of the scalar fields, μ
will be different for each sampled point.
The third term encodes thermal corrections to the

potential,

VT≠0 ¼
T4

2π2
X
a

ð−1ÞFnaJa
�
m2

aðϕaÞ
T2

	
; ð4:3Þ

where T is the temperature and J0 (for bosons) and J1 (for
fermions) are the standard thermal integrals found, e.g., in
Ref. [61]. At the leading ðm=TÞ2 order in thermal expan-
sions of Ja, Eq. (4.3) can be approximated as

ΔVðTÞ ≃ T4

2π2

�
TrfM2ðϕαÞg þ

X
i¼W;Z;γ

nim2
i ðϕαÞ

þ
X
i¼fi

ni
2
m2

i ðϕαÞ
�
; ð4:4Þ

where in the last sum, all the fermions of the model are
included. Here, M is the field-dependent Hessian matrix in
the classical field approximation where all fields are fixed
to their classical (background) components, that is

Φ→

�
0

vΦ=
ffiffiffi
2

p
�
; σ → vσ; η→

�
0

0

�
; φ→ 0; ð4:5Þ

and the degrees of freedom, ni, for different states are as
follows [61]: for quarks na ¼ 12, for charged leptons
na ¼ 4, for neutral leptons na ¼ 2, for the gauge bosons
nW ¼ 6, nZ ¼ 3, nγ ¼ 2, and for the longitudinal compo-
nent of the photon nγL ¼ 1. Additional higher-order cor-
rections must also be included in the form of Daisy (ring)
diagrams [58,63–65]. These can be parametrized as thermal
corrections to the quadratic mass terms of the bare potential
and read as

μ2ðTÞ → μ2 þ cϕðT2Þ≡ μ2 þ δ2ΔVðT;ϕaÞ
δϕa

: ð4:6Þ

For the considered model, we have

cϕðT2Þ ¼ T2

24

�
3g2 þ 3

2
ðg2 þ g2YÞ þ 12ðy2b þ y2t Þ þ 4y2τ

þ 12λ1 þ 4λ5 þ 2ðλ6 þ λ8 þ λ9Þ
	

cσðT2Þ ¼ T2

24
ð4ðλ10 þ λ8Þ þ 2λ12 þ 8λ4Þ; ð4:7Þ

where g (gY) are the SU(2) (U(1)) gauge couplings and yi
are the Yukawa couplings for each of the SM-like third-
generation fermions. The gauge boson masses also gain
thermal corrections, and, since there are no new gauge

bosons in the model, the formula is identical to what is
found in the previous literature [see, e.g., Ref. [61] ].
The last relevant part of the effective potential in

Eq. (4.1) is the counterterm potential VCT. The counter-
terms are defined such that the minima of the tree-level
potential remains fixed at zero temperature (i.e., the tree-
level masses remain the same at one-loop level), which is
guaranteed by imposing that the first and second derivatives
of the counterterm potential match the first and second
derivatives of the Coleman-Weinberg one-loop potential
(for a pedagogical discussion, see for instance Ref. [55] and
references therein). In our case, this results in the following
conditions:

δμϕ ¼ 3

2vΦ

∂Vð1Þ
CW

∂h1
−
1

2

∂
2Vð1Þ

CW

∂h21
þ vσ
2vΦ

∂
2Vð1Þ

CW

∂h2∂h1
;

δμsb ¼
3

4vσ

∂Vð1Þ
CW

∂h2
þ vΦ
4vσ

∂
2Vð1Þ

CW

∂h2∂h1
−
1

4

∂
2Vð1Þ

CW

∂h22
;

δλ1 ¼
1

2v3Φ

�
vΦ

∂
2Vð1Þ

CW

∂h21
−
∂Vð1Þ

CW

∂h1

�
;

δλ4 ¼
1

2v3σ

�
vσ

∂
2Vð1Þ

CW

∂h22
−
∂Vð1Þ

CW

∂h2

�
;

δλ8 ¼
1

vΦvσ

∂Vð1Þ
CW

∂h2∂h1
; ð4:8Þ

while for other parameters, we set δλi ¼ δμi ¼ 0.
The remaining four ingredients determine the First Order

Phase Transition (FOPT) dynamics, which include [52]
(1) The inverse timescale of the phase transition, β. This

parameter essentially determines the bubble nucle-
ation rate. Normalizing it conventionally to the
Hubble expansion rate, H, one writes

β

H
¼ Tn

∂

∂T

�
SðVeffÞ

T

�����
T¼Tn

; ð4:9Þ

where SðVeffÞ is the Euclidean action which depends
on the structure of the effective potential in Eq. (4.1).

(2) Nucleation temperature, Tn. It represents the temper-
ature of the Universe directly after the phase
transition, and can be computed by requiring that
the probability for a single bubble nucleation per
horizon volume is equal to 1 [66].

(3) Phase transition strength α, which is related to the
released latent heat during the phase transition. It is
found in terms of the difference between the effec-
tive potential values before and after the transition
via the following relation [67,68]:

α¼ 30

g�π2T2
n

�
Veff;i −Veff;f −

T
4

�
∂Veff;i

∂T
−
∂Veff;f

∂T

�	
;

ð4:10Þ
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being also normalized to the radiation energy
density of the Universe at the nucleation temper-
ature. Here, g� is the effective number of relativ-
istic degrees of freedom in the cosmic plasma.
The effective potential is evaluated at initial
(metastable) phase, Veff;i, and at the final (stable)
phase, Veff;f.

(4) Bubble wall velocity, vb. This quantity represents
the speed of the new phase at the interface of the
nucleating bubble. In the current we will simply
assume the case of supersonic detonations with
vb ¼ 0.95. An improved analysis using the recently
developed methods for the determination of the
speed of sound [69] and wall velocity [70] is left
for future work.

From this set of FOPT characteristics, the power spec-
trum associated with the production of PGWs can arise
from three distinct sources,

h2ΩGW ¼ h2ΩBC þ h2ΩSW þ h2ΩTURB: ð4:11Þ

Here, h2ΩBC is the power for the GW spectrum produced
via collision of vacuum bubbles and is a particularly
important effect when such bubbles “run away”, that is,
the friction created by the thermal plasma at the boundaries
is not enough to stop the acceleration of the wall [52]. A
study has shown that this effect is subleading compared to
the rest, and can usually be neglected [71]. The second
term, h2ΩSW is the power of GWs emerging from sound
waves triggered in the plasma once the bubble wall sweeps
through the plasma at relativistic speeds. In this case, a vast
portion of the released energy is converted to the waves’
propagation in the plasma that surrounds the walls as sound
waves [52]. The last term is due to magnetohydrodynamic
turbulence effects that arise due to nonlinear effects on the
sound waves in the plasma that are largely uncertain but
expected to be less relevant for the considered FOPTs than
the sound waves. For analytical expressions that connect
each term of Eq. (4.11) with the various parameters of the
FOPTs introduced above, see [52,72,73] and references
therein.

A. Numerical results

We have implemented the thermal effective potential of
the considered scotogenic two-loop neutrino mass model
into the COSMOTRANSITIONS package [74] which enables
us to compute numerically the bounce action and hence
the probability for bubble nucleation at any given temper-
ature. The key parameters that control the dynamics of the
phase transitions, β=H and α, depend on the derivative of
the Euclidean effective action; hence, they can exhibit
numerical instabilities if the action is not well behaved. To
minimize the corresponding numerical uncertainties, we
perform an interpolation of the action on a point-by-point
basis. The technique for the smoothing of the Euclidean

action is described in detail in some of the author’s previous
work [55]. Furthermore, for the scan, we have extended
the ranges of various parameters to be more inclusive.
Namely, we now perform a logarithmic scan over the
quartic couplings in the ranges of ½10−8; 4π� and the masses
of the BSM scalars to be above 200 GeV. Constraints
from neutrino physics and LFVs are also imposed in the
data points.
First, we show in Fig. 5 the spectral GW peak signal,

h2Ωpeak
GW , as a function of the peak frequency, fpeak in Hz;

both axes are shown in logarithmic scale. Focusing first
on the panels (a), (b), and (c) where we display in the
color axis the relevant GW observables for the dynamics
of the signal, namely, the phase transition strength (a), the
inverse timescale of the phase transition (b), and the
nucleation temperature (c). Let us note that there are
several planned GW interferometers that could explore
the PGW signals predicted by the model. They include
the Laser Interferometer Space Antenna (LISA) [73,75,76],
the Big Bang Observer (BBO) [77] and the Deci-hertz
Interferometer Gravitational wave Observatory (DECIGO)
[78], indicating that the gravitational channel may offer a
complementary approach to standard collider channels in
probing our model.
As expected, a strong correlation between the GW

observables and the signal strength is found. Indeed,
higher values of α imply a stronger FOPT which in turn
implies lower values for both the nucleation temperature Tn
and β=H. In particular, points which can be observed at
LISA fall within the ranges α ¼ ½0.13; 0.88�, β=H ¼
½81.13; 362.82�, and Tn ¼ ½99.77; 520.70� GeV. For the
points that fall within the LISA sensitivity domain, we
have also computed the SNR, as showcased in Fig. 6, where
we note that for the strongest transitions that we found, the
corresponding SNR is greater than 200, indicating that
most of these points can indeed be probed by the LISA
experiment [67,73,79].
Now, we focus our attention on the bottom panels of

Fig. 5, where we display various model parameters in
the color axis, namely, the VEVof the singlet field σ (d), the
mass of the second heaviest CP-even scalar h2 (e) and the
branching ratio μ → eγ (f). Here, we note that there is no
strong correlation between the physical parameters of the
model and the GW observables. Nevertheless, we find that
the higher values of the singlet VEVand of the mass of h2,
while allowing for the existence of FOPTs, give rise to
the PGWs in higher frequency domains which fall outside
the sensitivity of the future GW experiments. Indeed,
for the parameter space regions which are accessible at
LISA, the σ VEV is typically below 5 TeV whereas the h2
mass is below 3 TeV. As for the last panel (f), we do not find
any correlation with the μ → eγ process. Indeed, we find
that various distinct possibilities for its branching ratio can
be accommodated across different values of the frequency
and the signal strength.
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In general, finding certain complementarity between the
physical parameters of the model and PGW observables is
relevant for exploring the model’s parameter space. In the
context of PGW studies, it has been noted in Refs. [80–83]

that potentially large corrections to the trilinear Higgs
coupling compared to the SM expectation can significantly
affect the type and the strength of the cosmological phase
transitions. Indeed, strong FOPTs are typically driven by
large trilinear scalar couplings as they strongly influence
the potential barrier between different vacua.
We show in Fig. 7 the scatter plots for the BSM-to-SM

ratio of the trilinear Higgs coupling computed for our BSM
scenario versus its SM value, i.e., κ ≡ λBSMhhh =λSMhhh, as a
function of the sine of the CP-even mixing angle, with
the logarithm of the GW signal strength in color. Here,
λBSMhhh ¼ λLOhhh þ λNLOhhh is the full NLO result for the trilinear
Higgs coupling in our model, and λSMhhh corresponds to the
SM prediction.
Most of the generated points satisfy sin αh < 0.07.

Indeed, for such low values of the scalar mixing angle,
Eq. (2.5) asymptotically tends toward the SM prediction.
However, NLO contributions result in a sizeable contribu-
tion to λhhh. We can also observe from panel (b) that the
points with larger GW signal strength tend to accumulate
as one approaches the alignment limit. However, this
does not represent a solid trend as we find signal strengths
well below the sensitivity ranges of LISA, BBO, and
DECIGO also for low values of the CP-even mixing angle,
as can be readily noted in panel (a). Besides, one observes
that there is a part of the parameter space that can already
be excluded by the current data (gray bands), and it can
be further reduced by future measurements both at the
high-luminosity and high-energy phases of the LHC.

FIG. 5. Peak amplitude of the GW signal, h2ΩGW as a function of the peak frequency, fpeak, in Hz. In color, we have the logarithm of
the phase transition strength α (a), the logarithm of the inverse timescale of the phase transitions normalized to the Hubble parameter (b),
the nucleation temperature in GeV (c), the VEVof the singlet σ field in TeV (d), the mass of the second heaviest CP-even scalar (e), and
logarithm of the branching ratio of μ → eγ (f). For all panels, the x-axis is displayed in logarithmic scale. All points shown here are also
consistent with neutrino physics constraints as well as with constraints from the triple Higgs coupling measurements [28,29].

FIG. 6. Signal-to-noise ratio (SNR) plot for a LISA mission
profile of 3 years. In the x axis we show the strength of the phase
transition (α), and in the y axis the inverse time duration in
Hubble units. In the color axis, we indicate the magnitude of the
phase transition h2Ωpeak

GW . The colored isolines (corresponding to
the values 1, 5, 20, 50, 100, and 200) are representative of the
expected values for the SNR. As a general rule of thumb, points
with an SNR greater than 5 can be potentially observed. The gray
area corresponds to the region where the sound-wave component
is dominant. All points shown in the plot correspond to the points
potentially detectable by the LISA experiment (that is, above the
red LISA curves of Fig. 5).
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However, the message to retain is that even within those
regions there still exist parameter space points that feature
FOPTs potentially detectable at future GW facilities.
In Fig. 8 we show a selection of plots showing the impact

of different quartic couplings and physical masses in the
energy density amplitude of the GW spectra (color axis).
For panels (a), (b), and (c), we find various islands with

distinct ranges of quartic couplings which lead to a strong
PGWsignal having bothOð1Þ couplings, such as, e.g.,λ2 and
λ10 and much smaller couplings such as λ8. Besides,
we note that λ8 is correlated with the size of the mixing
for the CP-even states, and its smallness is related to
the fact that we work very close to the alignment limit.
Additionally, taking into account the results shown in Fig. 3,

FIG. 7. The BSM-to-SM ratio of trilinear Higgs couplings κ ≡ λBSMhhh =λSMhhh as a function of the sine of the CP-even mixing angle αh. On
the color axis we show the logarithm of the GW intensity. On panel (a), the results from the full collected dataset are showcased, whereas
on (b) a cut on h2Ωpeak

peak was imposed, such that only points which are visible at future GWexperiments (LISA, BBO, and DECIGO) are
displayed. We note that all constraints from neutrino physics and LFVare applied here. Regions marked by gray bands are excluded at
95% confidence level (CL) based on the latest results from the LHC, the blue band region corresponds to the expected sensitivity at the
high-luminosity phase of the LHC [30] while the red band region corresponds to the expected sensitivity at the high-energy phase of the
LHC [31].

FIG. 8. Scatter plots of various physical parameters of the considered model (namely, quartic couplings, physical scalar masses, and
VEVs) with the logarithm of the GW intensity shown in the color axis. In particular, we show λ2 as a function of λ5 (a), λ2 as a function of
λ8 (b), λ4 as a function of λ10 (c), the mass of ηR as a function of the φR mass (d), the h2 mass as a function of the singlet σ VEV (e), and
the mass of the charged scalar η� as a function of the branching ratio of μ → eγ decay. The masses are given in units of GeV. Here, a cut
on h2Ωpeak

peak was imposed, such that only points which are visible at future GW experiments (either at LISA, BBO, or DECIGO) are
displayed. In panel (f), the x axis is shown in logarithmic scale.
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the constraints on λ8 imposed by DM direct detection (both
DARWIN and XENON1T) do not impact the presence of
phase transitions and the corresponding GW spectra, since
much lower values of λ8 allow for the generation of phase
transitions. Much tighter limits on the Higgs portal coupling
would be needed if onewould need to confront both DM and
GW physics. In panels (d), (e), and (f) we notice that a wide
range of physical scalar masses can be successfully accom-
modated with the observable GW signals. Let us stress that
we did not find neither correlations nor further restrictions on
the quartic couplings λ7 and λ13 involved in the neutrinomass
generation. These parameters can take either small or large
values without modifying the conclusions of this section. It
can also be noted that no apparent correlation between the
μ → eγ decay rate and the mass of the charged scalar field is
present, exhibiting a distinct flat distribution where most of
the charged scalar masses tend to be below 1 TeV.

V. CONCLUSIONS

In this work, we have presented a new scotogenic two-
loop neutrino mass model where the SM gauge group is
extended with an additional global Uð1Þ × Z2 symmetry.
The scalar sector of this framework contains the standard
Higgs doublet, inert scalar doublet, and singlet scalar fields,
as well as an active scalar singlet. Additionally, the model
features the sector of right-handed Majorana neutrinos
which in combination with the new exotic scalars leads
to the generation of neutrino mass and mixing at the two-
loop level. The presence of Majorana neutrinos, together
with a physical charged scalar field, also generates highly
suppressed contributions to the tightly constrained LFV
observables.
The presence of such a rich scalar sector in this model

opens the door for new possibilities for future new physics
searches at collider, DM, and GW experiments. In particu-
lar, our model features the generation of cosmological
FOPTs in the early Universe that can lead to the formation
of potentially observable stochastic PGWs. Focusing pri-
marily on the phenomenologically favorable Higgs align-
ment limit, where the mixing between the CP-even states is
small, we have performed a parameter scan of the model
taking into account relevant constraints from LFV proc-
esses (such as μ → eγ decay) and those from neutrino
physics. We have explored the model’s parameter space in
detail and identified the domains that can successfully
accommodate the existing constraints and give rise to
strong FOPTs that lead to observable PGWs at LISA. In
addition, we have taken into account the constraints on the
trilinear Higgs coupling at the NLO, and found a number of
points with strong PGW signals that can be probed in both
the collider and GW measurements in the future. We have
found that the current constraints from the Higgs portal
coupling do not impose severe constraints to the presence
of observable GWs coming from phase transitions.
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APPENDIX: ONE-LOOP EXPRESSION FOR THE
PHYSICAL TRILINEAR HIGGS COUPLING

In the limit where the external momentum goes to zero,
only the fields with mass near or above the Higgs field
provide with leading corrections to the Higgs triple
coupling, which in our model includes the top quark and
all BSM scalar fields at the NLO. The neutral heavy
Majorana fields do not contribute to the amplitude, since
they do not couple directly to the Higgs boson before and
after the EW symmetry breaking. Following Ref. [27], the
one-loop corrections involving the top quark read as

λthhh ¼
1

32π2
½−36ðF ðmt;mtÞ − 1Þλð0Þtthλ

ð0Þ
tthh

− 24F ðmt;mt; mtÞðλð0ÞtthÞ3�; ðA1Þ
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where mt ≈ 172.76 GeV is the top mass. The NLO contribution coming from the scalar fields reads as

λϕhhh ¼
1

32π2

�
4F ðmη� ; mη� ; mη�Þðλð0Þh1η�η�

Þ3 þ 2
X8
k¼2

F ðmk;mk;mkÞðλð0Þh1kk
Þ3

þ 6F ðmh2 ; mh2 ; mh1Þðλð0Þh1h1h2
Þ2
X3
k¼2

λð0Þh1kk
þ 2F ðmηR ; mηR ; mηRÞðλð0Þh1ηRηR

Þ3

− 3
X8
k¼2

ðF ðmk;mkÞ − 1Þλð0Þh1kk
λð0Þh1h1kk

þ 6ðF ðmη� ; mη�Þ − 1Þλð0Þh1η�η�
λð0Þh1h1η�η�

þ 6ðF ðmh1 ; mh2Þ − 1Þλð0Þh1h1h2
λð0Þh1h1h2h2

þ
�
6

X
k¼ηR;φR

λð0Þh1ηRk
ðλð0Þh1kφR

Þ2F ðmϕR
; mηR ; kÞ þ ðR → IÞ

	

þ ½6λð0Þh1ηRφR
λð0Þh1h1ηRφR

F ðmηR ; mφR
Þ þ ðR → IÞ�

	
; ðA2Þ

where for simplicity of presentation we have k ¼ 1…8≡ η�; h1; h2; ηR;φR; σI; ηI;φI. The superscript “(0)” indicates tree-
level accuracy. The loop function F is defined as [27]

F ðma1…maN Þ ¼
XN
x¼1

m2
ax logð

m2
ax
μ2
Þ

Πy≠xðm2
ax −m2

ayÞ
; ðA3Þ

where μ is the renormalization scale. Here, we have used the same definition for the scale as in the calculation of the
Coleman-Weinberg potential, i.e., the renormalization scale is defined as μ ¼ Q

n
i¼1m

1=n
ϕi

, where i runs over all BSM scalars
in the model. The various λ couplings in the previous expressions are written as

λð0Þthh ¼ 4 cosðαhÞy2t v; ðA4Þ

λð0Þtthh ¼ 4cos2ðαhÞy2t ; ðA5Þ

λð0Þ
h1η�η∓

¼ − sinðαhÞλ10vσ þ cosðαhÞλ5v; ðA6Þ

λð0Þh1h1h1
¼ 6cos3ðαhÞvλ1 þ 6sin3ðαhÞvσλ4 þ 3 cosðαhÞsin2ðαhÞvλ8 þ 3cos2ðαhÞ sinðαhÞvσλ8; ðA7Þ

λð0Þh1h2h2
¼ 6λ1vsin2ðαhÞ cosðαhÞ þ λ8vcos3ðαhÞ − 2λ8vsin2ðαhÞ cosðαhÞ
− 6λ4vσ sinðαhÞcos2ðαhÞ − λ8vσsin3ðαhÞ þ 2λ8 sinðαhÞcos2ðαhÞ; ðA8Þ

λð0Þh1ηRηR
¼ cos2ðαHÞ½v cosðαhÞðλ5 þ λ7Þ − λ10vσ sinðαhÞ� þ sin2ðαHÞ½λ9v cosðαhÞ − vσ sinðαhÞðλ12 þ λ13Þ�

−
1

4
sinð2αHÞðλ14 þ λ15Þ½vσ cosðαhÞ − v sinðαÞ�; ðA9Þ

λð0Þh1φRφR
¼ sin2ðαHÞ½v cosðαhÞðλ5 þ λ7Þ − λ10vσ sinðαhÞ� þ cos2ðαHÞ½λ9v cosðαhÞ − vσ sinðαhÞðλ12 þ λ13Þ�

þ 1

4
sinð2αHÞðλ14 þ λ15Þ½vσ cosðαhÞ − v sinðαÞ�; ðA10Þ

λð0Þh1ηRφR
¼ 1

4
½2 sinð2αHÞfv cosðαhÞðλ5 þ λ7 − λ9Þ þ vσ sinðαhÞð−λ10 þ λ12 þ λ13Þg

þ cosð2αHÞðλ14 þ λ15Þfvσ cosðαhÞ − v sinðαhÞg�; ðA11Þ

λð0Þh1σIφI
¼ 1

4
½2 sinð2βHÞfv cosðαhÞðλ5 − λ7 − λ9Þ − vσ sinðαhÞðλ10 − λ12 þ λ13Þg

− cosð2βHÞðλ14 − λ15Þfvσ cosðαhÞ − v sinðαhÞg�; ðA12Þ
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λð0Þh1σIσI
¼ cos2ðβHÞ½v cosðαhÞðλ5 − λ7Þ − λ10vσ sinðαhÞ� þ sin2ðβHÞ½λ9v cosðαhÞ þ vσ sinðαhÞðλ13 − λ12Þ�

þ 1

4
sinð2βHÞðλ14 − λ15Þ½vσ cosðαhÞ − v sinðαhÞ�; ðA13Þ

λð0Þh1ηIηI
¼ v1 cosðαhÞðλ5 − λ7Þ − λ10vσ sinðαhÞ; ðA14Þ

λð0Þh1φIφI
¼ 1

4
v sinðαhÞ sinð2βHÞðλ14 − λ15Þ þ sin2ðβHÞ½v cosðαhÞðλ5 − λ7Þ − λ10vσ sinðαhÞ�

þ cos2ðβHÞ½λ9v cosðαhÞ þ vσ sinðαhÞðλ13 − λ12Þ� þ
1

2
vσ cosðαhÞ sinðβHÞ cosðβHÞðλ15 − λ14Þ; ðA15Þ

λð0Þh1h1h2
¼ 6λ1v sinðαhÞcos2ðαhÞ þ λ8vsin3ðαhÞ − 2λ8v sinðαhÞcos2ðαhÞ
þ 6λ4vσsin2ðαhÞ cosðαhÞ þ λ8vσcos3ðαhÞ − 2λ8vσsin2ðαhÞ cosðαhÞ; ðA16Þ

λð0Þ
h1h1η�η�

¼ λ10sin2ðαhÞ þ λ5cos2ðαhÞ; ðA17Þ

λð0Þh1h1h1h1
¼ 6λ1cos4ðαhÞ þ 6λ4sin4ðαhÞ þ 6λ8sin2ðαhÞcos2ðαhÞ; ðA18Þ

λð0Þh1h1h2h2
¼ 6λ1sin2ðαhÞcos2ðαhÞ þ 6λ4sin2ðαhÞcos2ðαhÞ þ λ8sin4ðαhÞ þ λ8cos4ðαhÞ − 4λ8sin2ðαhÞcos2ðαhÞ; ðA19Þ

λð0Þh1h1h1h2
¼ 3

2
sinð2αhÞ½cosð2αhÞðλ1 þ λ4 − λ8Þ þ λ1 − λ4�; ðA20Þ

λð0Þh1h1ηRηR
¼ sin2ðαhÞ½λ10cos2ðαHÞ þ sin2ðαHÞðλ12 þ λ13Þ� þ sinðαhÞ cosðαhÞ sinðαHÞ cosðαHÞðλ14 þ λ15Þ
þ cos2ðαhÞ½cos2ðαHÞðλ5 þ λ7Þ þ λ9sin2ðαHÞ�; ðA21Þ

λð0Þh1h1φRφR
¼ sin2ðαhÞ½λ10sin2ðαHÞ þ cos2ðαHÞðλ12 þ λ13Þ� − sinðαhÞ cosðαhÞ sinðαHÞ cosðαHÞðλ14 þ λ15Þ
þ cos2ðαhÞ½sin2ðαHÞðλ5 þ λ7Þ þ λ9cos2ðαHÞ�; ðA22Þ

λð0Þh1h1σIσI
¼ sin2ðαhÞ½λ10cos2ðβHÞ þ sin2ðβHÞðλ12 − λ13Þ� þ sinðαhÞ cosðαhÞ sinðβHÞ cosðβHÞðλ15 − λ14Þ
þ cos2ðαhÞ½cos2ðβHÞðλ5 − λ7Þ þ λ9sin2ðβHÞ�; ðA23Þ

λð0Þh1h1ηIηI
¼ λ10sin2ðαhÞ þ cos2ðαhÞðλ5 − λ7Þ; ðA24Þ

λð0Þh1h1φIφI
¼ sin2ðαhÞ½λ10sin2ðβHÞ þ cos2ðβHÞðλ12 − λ13Þ� þ sinðαhÞ cosðαhÞ sinðβHÞ cosðβHÞðλ14 − λ15Þ
þ cos2ðαhÞ½sin2ðβHÞðλ5 − λ7Þ þ λ9cos2ðβHÞ�; ðA25Þ

λð0Þh1h1ηRφR
¼ sinðαHÞcosðαHÞ½sin2ðαhÞðλ10− λ12− λ13Þþ cos2ðαhÞðλ5þ λ7− λ9Þ�−

1

4
sinð2αhÞcosð2αHÞðλ14þ λ15Þ; ðA26Þ

λð0Þh1h1σIφI
¼ 1

4
ðsinð2αhÞ cosð2βHÞðλ14 − λ15Þ − sinð2βHÞ½cosð2αhÞðλ10 − λ12 þ λ13 − λ5 þ λ7 þ λ9Þ − λ10 þ λ12 − λ13

− λ5 þ λ7 þ λ9�Þ; ðA27Þ

such that the trilinear Higgs coupling at one-loop accuracy is determined as λNLOhhh ¼ λð0Þh1h1h1
þ λthhh þ λϕhhh. Here, αH is the

mixing angle between the heavy ηR and φR fields and βH is the mixing angle between the CP-odd fields ηI and φI .
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