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Direct detection experiments are looking for nuclear recoils from scattering of sub-GeV dark matter
(DM) in crystals, and have thresholds as low as ∼10 eV or DM masses of ∼100 MeV. Future experiments
are aiming for even lower thresholds. At such low energies, the free nuclear recoil prescription breaks
down, and the relevant final states are phonons in the crystal. Scattering rates into single as well as multiple
phonons have already been computed for a harmonic crystal. However, crystals typically exhibit some
anharmonicity, which can significantly impact scattering rates in certain kinematic regimes. In this work,
we estimate the impact of anharmonic effects on scattering rates for DM in the mass range ∼1–10 MeV,
where the details of multiphonon production are most important. Using a simple model of a nucleus in a
bound potential, we find that anharmonicity can modify the scattering rates by up to two orders of
magnitude for DM masses ofOðMeVÞ. However, such effects are primarily present at high energies where
the rates are suppressed, and thus only relevant for very large DM cross sections. We show that anharmonic
effects are negligible for masses larger than ∼10 MeV.
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I. INTRODUCTION

Over the past few decades, a significant theoretical and
experimental effort has been dedicated to detect dark matter
(DM), but the particle nature of DM still remains a mystery.
Direct detection experiments look for the direct signatures
left by halo DM depositing energy inside the detectors.
Traditionally, such experiments have looked for elastic
nuclear recoils induced by DM particles in detectors [1].
This strategy has had tremendous sensitivity for DM
particles with masses higher than the GeV-scale that interact
with nuclei [2–4]. However, in recent years it has also been
recognized that sub-GeV dark matter models are also
compelling and motivated dark matter candidates [5–12].
These DMparticles would leave much lower energy nuclear
recoils, motivating experimental efforts to lower the
detector thresholds for nuclear recoils. Inelastic processes
like the Migdal effect [13–17] or bremsstrahlung [18]
provide alternative channels to detect nuclear scattering in
the sub-GeV DM regime.
The majority of experiments achieving lower thresholds

in nuclear recoils (down to∼10 eV) are doing sowith crystal
targets [19–22], although there is also progress in using
liquid helium [23]. Future experiments like SPICE [24] will

reach even lower thresholds bymeasuring athermal phonons
produced in crystals like GaAs and sapphire (i.e. Al2O3). In
crystal targets, DM-nucleus scattering can deviate substan-
tially from the picture of a free nucleus undergoing elastic
recoils. Nuclei (or atoms) are subject to forces from the rest
of the lattice, which play a role at the lower energies relevant
for sub-GeV DM. For recoil energies below the typical
binding energy of the atom to the lattice [Oð10 eVÞ], the
atoms are instead treated as being bound in a potential well.
At even lower energies, the relevant degrees of freedom are
the collective excitations of the lattice, known as phonons. In
this regime, single phonon excitations with typical energies
≲0.1 eV are possible.
In the DM scattering rate, crystal scattering effects are all

encoded within a quantity known as the dynamic structure
factor, Sðq;ωÞ. The differential cross section for a DM
particle of velocity v and mass mχ to scatter with energy
deposition ω and momentum transfer q can be written in
terms of Sðq;ωÞ as:

dσ
d3qdω

¼ b2p
μ2χ

1

v
Ωc

2π
jF̃ðqÞj2Sðq;ωÞδðω − ωqÞ; ð1Þ

Here bp is the scattering length of the DM with a proton, μχ
is the reduced DM-proton mass, Ωc ≡ V=N is the volume
of the unit cell in the crystal with total volume V and N unit
cells, and ωq ¼ q · v − q2=2mχ is equal to the energy ω lost
by the DM particle when it transfers momentum q to the
lattice. The q-dependence of the DM-nucleus interaction is
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encapsulated in the DM form factor F̃ðqÞ. Sðq;ωÞ can thus
be viewed as a form factor for the crystal response. For a
recent review, see Ref. [25].
Understanding Sðq;ωÞ in crystals is critical to direct

detection of sub-GeV dark matter. Thus far, the limiting
behavior of Sðq;ωÞ is well understood [26]. In the limit of
large ω and q (ω≳ eV and q ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mNω

p
for nucleus of

mass mN), the structure factor behaves as Sðq;ωÞ ∝
δðq2=ð2mNÞ − ωÞ, reproducing the cross section for free
elastic recoils. At low ω comparable to the typical phonon
energy ω0 and q comparable to the inverse lattice spacing,
Sðq;ωÞ instead is dominated by single phonon production.
Here ω0 is an averaged phonon energy, taking into account
the total phonon density of states in the material, including
both optical and acoustic phonons. The intermediate
regime, particularly q ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mNω0

p
, is dominated by multi-

phonon production. For a large number of phonons
being produced, this should merge into the free nuclear
recoil limit.
For DM masses below ∼MeV, the momentum-transfers

are smaller than the typical inverse lattice spacing of
crystals, q < 2π=a ∼OðkeVÞ, where a is the lattice spac-
ing. The dominant process is the production of a single
phonon. In recent years, the single phonon contribution to
Sðq;ωÞ has been computed extensively in a variety of
materials, often using first-principles approaches for the
phonons [27–37]. In most of the crystals, single phonons
have a maximum energy of Oð100 meVÞ, however, requir-
ing extremely low experimental thresholds to detect them.

Production of multiphonons is an enticing channel to
look for sub-GeV DM with detectors having thresholds
higher than Oð100 meVÞ. They are also important to
understand in the near term as experiments lower their
thresholds. However, multiphonon production has been
more challenging to compute. The numerical first-princi-
ples approach taken for single phonon production does not
scale well with number of phonons being produced, where
even the two-phonon rate becomes very complicated.
Alternate analytic methods are thus valuable. In Fig. 1,
we show a classification of the different regimes in which a
multiphonon calculation has been performed, including this
work. We discuss the details of these regimes and calcu-
lations below.
One analytic approach was taken in Ref. [38], which

calculated the two-phonon rate in the long-wavelength
limit, but this study was limited to the regime q < 2π=a and
focused on acoustic phonons only. For q > 2π=a, a differ-
ent approximation is possible, the incoherent approxima-
tion, which drops interference terms between different
atoms of the crystal in calculating Sðq;ωÞ. Then scattering
is dominated by recoiling off of individual atoms. This
approach was taken in [26], which found a general
n-phonon production rate scaling as ðq2=ð2mNω0ÞÞn.
This result also showed how the free nuclear recoil cross
section was reproduced in the multiphonon structure factor
as q ≫

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mNω0

p
.

However, one limitation of the multiphonon production
rate in Ref. [26] was that it worked in the harmonic

FIG. 1. Left: due to the computational challenges of obtaining the multiphonon scattering rate in crystals, analytic approximations are
valuable. Here we show a classification of regimes in which a multiphonon calculation has been performed, as well as approximations
made in each case. In this work, we show that anharmonic corrections can be significant for q≲ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mNω0

p
(Sec. III B) but are negligible

when q ≫
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mNω0

p
(Sec. III C). We obtain results for all q using numerical calculations (Sec. IVA). Right: to estimate anharmonic

effects, we take a toy model of dark matter scattering off an atom in a 1D anharmonic potential. We obtain the anharmonicity by fitting to
empirical models of interatomic potentials.
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approximation, where higher order phonon interactions like
the three-phonon interaction are neglected. Typical crystals
have some anharmonicity which introduces phonon self-
interactions, leading to various observable effects like
phonon decays, thermal expansion, and thermal conduc-
tivity of crystals [39–41]. Using a simplified model of
anharmonic phonon interactions, Ref. [26] estimated that
anharmonic three-phonon interactions may give the dom-
inant contribution to the two-phonon rate q < 2π=a, and
are larger than the harmonic piece by almost an order of
magnitude in the regime. On the other hand, we do not
expect anharmonic effects to be important in the opposite
limit of large q (q ≫

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mNω0

p
), where the nucleus can be

treated as a free particle. It is thus necessary to bridge these
two extremes and estimate the anharmonic effects in the
intermediate regime where multiphonons dominate the
scattering.
In this work, we estimate the anharmonic effects on the

rate of multiphonon production by working in the incoher-
ent approximation and q > 2π=a. In this limit, the multi-
phonon scattering rate looks similar to that of an atom in a
potential [42], although the spectrum of states is smeared
out due to interactions between neighboring atoms. Given
this similarity, we will take a toy model of an atom in a 1D
potential. This gives a simple approach to including
anharmonic effects, which is also illustrated in the right
panel of Fig. 1. The anharmonic corrections to the atomic
potential only capture a part of the contributions to
anharmonic phonon interactions, but they have a similar
size (in the appropriate dimensionless units) and should
give a reasonable estimate of the size of the effect. We can
therefore use this approach to estimate theoretical uncer-
tainties and gain analytic understanding for the multi-
phonon production rate. However, the result should not
be taken as a definitive calculation of the anharmonic
corrections. Fortunately, we will find that anharmonic
corrections are large only in certain parts of the phase
space which are more challenging to observe, and that the
multiphonon rate quickly converges to the harmonic result
for DM masses above a few MeV.
The outline of this paper is as follows: In Sec. II, we

discuss the formalism of DM scattering in a crystal and the
dynamic structure factor, which encodes the information
about the crystal response. We consider the calculation of
the structure factor under the incoherent approximation,
and motivate the anharmonic 1D toy potentials we use in
this paper. In Sec. III, we study the behavior of the dynamic
structure factor analytically for the anharmonic 1D poten-
tials. Using perturbation theory, we show that anharmonic
corrections can dominate for q ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mNω0

p
and become

more important for higher phonon number. In the opposite
limit q ≫

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mNω0

p
, we use the impulse approximation to

show that anharmonic corrections are negligible and that
the structure factor indeed approaches that of an elastic
recoil. In Sec. IV, we present numerical results for the

structure factor in anharmonic 1D potentials obtained from
realistic atomic potentials in various crystals. In Sec. IVA,
we calculate the impacts of including anharmonic effects on
DM scattering rates. We conclude in Sec. V.
Appendix A gives the details of the modeling of

the interatomic forces on the lattice, used to extract 1D
single atom potentials. Appendix B gives additional details
of the analytic perturbation theory estimates of the anhar-
monic structure factor. Appendix C includes additional
details relevant to the impulse approximation calculation.
Appendix D summarizes the exactly solvable Morse poten-
tialmodel, which further validates the results in themain text.

II. DARK MATTER SCATTERING
IN A CRYSTAL

Consider DM that interacts with nuclei in the crystal. We
will parametrize the interaction with the lattice by a
coupling strength fld relative to that of a single proton,
where l denotes the lattice vector of a unit cell and d
denotes the atoms in the unit cell. In the DM scattering
cross section, (1), the material properties of the crystal are
encoded in the structure factor Sðq;ωÞ which is defined as,

Sðq;ωÞ≡ 2π

V

X
f

���X
l

X
d

fldhΦfjeiq·rld j0i
���2

× δðEf − E0 − ωÞ; ð2Þ

where jΦfi is the final excited state of the crystal with
energy Ef and rld denotes the position of the scattered
nucleus. The crystal is considered to be in the ground state
j0i initially. Note for simplicity we assume a pure crystal
where each atom has a unique coupling strength; the
scattering is modified if there is a statistical distribution
for the interaction strengths at each lattice site, for instance
if different isotopes are present [26].
The states jΦfi are the phonon eigenstates of the lattice

Hamiltonian,

Hlattice ¼
X
ld

p2
ld

2mld
þ V lattice þ E0; ð3Þ

where the first term is the kinetic energy of the atoms in the
lattice and the lattice potential V lattice in general is given by,

V lattice ¼
1

2

X
l;d;l0;d0

X
α;β

kð2Þαβ ðld;l0d0ÞuαðldÞuβðl0d0Þ

þ 1

3!

X
l;d;l0;d0;l00;d00

X
α;β;γ

kð3Þαβγðld;l0d0;l00d00Þ

× uαðldÞuβðl0d0Þuγðl00d00Þ þ � � � ð4Þ

where the uαðldÞ is the displacement from the equilibrium
position in the Cartesian direction α for the atom at the
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position d in the unit cell located at l, and kð2Þαβ , k
ð3Þ
αβγ are the

second-, and third-order force constants respectively. Note
that as the displacements are considered around equilib-
rium, we do not have a term in the potential which is linear
in the displacements.
A number of approximations are useful in evaluating

Sðq;ωÞ. The first is the harmonic approximation, which
amounts to keeping the terms up to second-order force

constants and neglecting the higher order terms (kð3Þαβγ ¼ 0).
This vastly simplifies the Hamiltonian into a harmonic
oscillator system, and has been used in most previous
calculations of DM scattering in crystals. While this is
generally an excellent approximation in crystals, including
higher order terms in the Hamiltonian (anharmonicity) is
necessary to explain a number of observable effects, as we
will discuss further below.
The second approximation is the incoherent approxima-

tion, used for scattering with momentum transfers much
bigger than the inverse lattice spacing of the crystal,
q ≫ 2π=a. In this limit, we drop the interference terms
between different atoms in the crystal in (2). This amounts
to summing over the squared matrix elements of individual
atoms in the structure factor in (2),

Sðq;ωÞ ≈ 2π

V

X
f

X
l

X
d

jfldj2
���hΦfjeiq·rld j0i

���2
× δðEf − E0 − ωÞ: ð5Þ

The calculation of the structure factor then simplifies to
computing matrix elements jhΦfjeiq·rld j0ij2 which are
identical for the atoms in all unit cells l.
Below, we will first discuss this calculation under the

approximation of a harmonic crystal, before going on to
setting up a model that accounts for anharmonicity in
crystals.

A. Harmonic approximation

In the harmonic approximation, the lattice Hamiltonian
can be written as a sum of harmonic oscillators in Fourier
space [43],

HHarmonic
lattice ¼

X3n
ν

X
q

ωq;ν

�
â†q;νâq;ν þ

1

2

�
; ð6Þ

where the phonon eigenmodes of the lattice are labeled by
the momentum q and the 3n branches ν with n being the
number of atoms in the unit cell. The â†q;ν (âq;ν) are the
creation (annihilation) operators, and ωq;ν are the energies
of the phonons. The lattice eigenstates that appear in (2) can
then be written as,

jΦni ¼ â†q1;ν1 â
†
q2;ν2…â†qn;νn j0i; ð7Þ

where jΦni is an n-phonon state. The displacement
operators in this harmonic approximation are given by,

uðldÞ ¼
X3n
ν

X
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2Nmdωq;ν

s �
eq;νðdÞâq;νeiq:r0ld−iωq;νt

þ H:c:
�
; ð8Þ

where the eq;νðdÞ indicates the eigenvector of the displace-
ment of atom d for that phonon. The equilibrium position
of the atom is denoted by r0ld. Using rld ¼ r0ld þ uðldÞ
inside (2), the dynamic structure factor can be calculated in
the harmonic approximation. This approach has been applied
to calculate single-phononexcitationsusingnumerical results
for phonon energies and eigenvectors [28–31,33–35], but
becomes computationally muchmore burdensome for multi-
phonons in the final state.
Under both the incoherent and harmonic approxima-

tions, it is possible to compute the multiphonon structure
factor in (5). This was given in Ref. [26] as an expansion in
the number of phonons produced n,

Sðq;ωÞ ≈ 2π
X
d

ndjfdj2e−WdðqÞ
X
n

1

n!

�
q2

2md

�
n

×

 Yn
i¼1

Z
dωi

DdðωiÞ
ωi

!
δ

 Xn
j¼1

ωj − ω

!
; ð9Þ

where DdðωÞ is the partial density of states in the crystal,
normalized to

R
dωDdðωÞ ¼ 1.WdðqÞ is the Debye-Waller

factor defined as,

WdðqÞ ¼
q2

4md

Z
dω0 Ddðω0Þ

ω0 : ð10Þ

Equation (9) shows that with higher momentum q, there is
an increased rate of multiphonons; the typical phonon

number is n ∼ q2

2mdω̄
with ω̄ a typical phonon energy. In the

limit of n ≫ 1, this reproduces the nuclear recoil limit.
In the incoherent approximation above, we still assumed

the final states jΦfi are the phonon eigenstates of the
harmonic lattice Hamiltonian in (6). Let us now make a
further approximation that the final states are isolated
atomic states, where each atom is bound in a potential.
Assuming an isotropic potential, and a single frequency ω0

for the oscillators, a toy atomic Hamiltonian for atom d in
the lattice can be written as,

Htoy
d ¼ p2

d

2md
þ 1

2
mdω

2
0r

2
d; ð11Þ

where rd is the displacement of the atom d from its
equilibrium position. Following (5), the dynamic structure
factor can be written as,
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Stoyðq;ωÞ ¼ 2π
X
d

ndjfdj2
X
n

���hn⃗jeiq·rd j0i���2
× δðEn − E0 − ωÞ; ð12Þ

where jn⃗i are the energy eigenstates of the toy harmonic
Hamiltonian considered for atom d, with n⃗ ¼ fnx; ny; nzg.
The energies with respect to the ground state equilibrium
are given by En − E0 ¼ nω0 with n ¼ nx þ ny þ nz. We
have also absorbed the sum over the lattice vector l and the
volume V into the density nd of atom d in the lattice. As
shown in [42], this structure factor is given by,

Stoyðq;ωÞ ≈ 2π
X
d

ndjfdj2e−2W
toy
d ðqÞ

×
X
n

1

n!

�
q2

2mdω0

�
n

δðnω0 − ωÞ; ð13Þ

where the Debye-Waller factor in the toy model is given
by, Wtoy

d ðqÞ ¼ q2=4mdω0.
This picture can be simplified even further by consid-

ering a toy one-dimensional harmonic potential for the
atom d given by

VdðxÞ ¼
1

2
mdω

2
0x

2: ð14Þ

Note that in general ω0 will depend on the atom d within
the unit cell, but we suppress this dependence for simplic-
ity. The structure factor in this 1D case is exactly the same
expression as the toy three-dimensional case in (13), as
expected given the isotropic 3D potential assumed. A
derivation of the 1D result is given in Sec. III A.
The toy model of DM scattering off a 1D harmonic

potential gives a simple intuitive picture for the result in (9).
We see a very similar form of the structure factor in (13),
but with a discrete spectrum of states for the isolated
oscillator of the toy model. By assuming that the final states
are isolated atomic states, we have effectively neglected the
interactions between atoms, and the excited states of all
the atoms are discrete and degenerate. In a real material, the
interaction with neighboring atoms will lead to a splitting
of the degenerate levels, and give a broad spectrum of
allowed energy levels (the phonon spectrum). The inter-
pretation for the structure factor is therefore also somewhat
different in the two cases, as it gives a probability for
exciting the nth excited state in an isolated oscillator. But
we will still continue to refer the nth excited state as the
n-phonon state to make the connection with the full
incoherent structure factor in (9).
The similarity in the structure factor gives a route

forward to including anharmonic effects, which is much
easier to understand in the toy model. We can proceed
by including anharmonic corrections to the 1D potential
in (14), and in some cases obtain analytic results that

illustrate their importance. In order to quantitatively estimate
the impact on dark matter scattering rates, a few remaining
ingredients are needed. In practice, the toy model can give
very different results in certain parts of parameter space due
to the discrete spectrum assumed and depending on the
choice ofω0.We therefore need a prescription to identify the
appropriate ω0 for the isolated oscillator, and to smear it out
appropriately to mimic a real material.
Comparing Eqs. (9) and (13), we see that the complete

structure factor can be attained by making a replacement

δðnω0−ωÞ
ωn
0

→

 Yn
i¼1

Z
dωi

DðωiÞ
ωi

!
δ

 Xn
j¼1

ωj−ω

!
: ð15Þ

In this expression, we can identify DðωÞ=ðωω−1Þ as a

normalized probability distribution for ω, where ω−1 ¼R
dω0Dðω0Þ=ω0. This distribution yields a mean value for ω

of ðω−1Þ−1. The right-hand side of (15) is proportional to
the joint probability distribution for total energy ω, and we
can simplify it when n ≫ 1 by applying the central limit
theorem. This allows us to replace the right-hand side with
a Gaussian, which simplifies computations:

δðnω0 − ωÞ
ωn
0

→

�
ω−1
�
nffiffiffiffiffiffiffiffiffiffiffiffiffi

2πnσ2
p e−

�
ω−nω−1

−1
�
2

2nσ2 Θðωmax − ωÞ: ð16Þ

Note we have included a cutoff at multiples of the
maximum allowed energy in the density of states, ωmax ¼
n × ðminðωÞjDðωÞ ¼ 0Þ so that we do not include the
region whereDðωiÞ ¼ 0 on the right-hand side of (15). The
width of the Gaussian for n ¼ 1 is given by

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω̄

ω−1
−

1

ðω−1Þ2

s
ð17Þ

and ω̄ ¼ R dω0Dðω0Þω0. This discussion therefore makes it
clear that we should identify the frequency of the 1D toy

model as ω0 ¼ 1=ω−1, which can be calculated numerically
given the phonon density of states. This approach is
validated in Fig. 2, where we compare our previous result
using the full density of states [26] to the prescription
described above. Note that small deviations at low mass
arise from the lack of a cutoff at the Brillouin zone
momentum in the previous density of states result. We
reiterate that in this work, we shall include this Brillouin
zone cutoff across all rate calculations since the incoherent
approximation and subsequent approximations are only
valid in this regime.
We will utilize this prescription to extend the multi-

phonon calculations for an anharmonic potential. To set up
toy 1D anharmonic potentials, we first need to understand
the anharmonic properties of typical crystals to extract the
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behavior of the potentials. We do this in the following
subsection.

B. Anharmonic crystal properties

In general, a crystal lattice will exhibit some anharmo-
nicity. Anharmonicity technically refers to the presence of
nonzero force constants which are higher than second-order
in the lattice potential in (4). For example, cubic anharmo-
nicity in the crystal is parametrized by the third-order force

constants kð3Þαβγðld;l0d0;l00d00Þ in (4). Such force constants
can be computed with density functional theory (DFT)
methods, similar to the harmonic case [44]. In the presence
of such terms, the phonon eigenstates are no longer the
harmonic phonon eigenstates of the crystal, and higher order
phonon interactions, such as a three-phonon interaction,
will be present. Calculating the full dynamic structure factor
in (5) for a crystal with such anharmonicity would require
accounting for these higher order force tensors in both the
matrix elements and in the final states, which quickly
becomes a very challenging numerical problem. The rough
size of the anharmonic force constants can be inferred from
measurable crystal properties, however. We will briefly
discuss some of the anharmonic effects below, and use
them to justify our estimate of anharmonic effects.
An important effect of keeping cubic or higher order terms

in (4) is to introduce interactions between the phononmodes
which are the eigenstates of the harmonic Hamiltonian. For
example, from (8), we can see that a cubic term in the
displacements uðldÞ will introduce three-phonon inter-
actions like â†q;νâq0;ν0 âq00;ν00 (i.e. annihilation of two phonons
to create a single phonon) or â†q;νâ

†
q0;ν0 âq00;ν00 (i.e. decay of a

single phonon into two phonons) in the Hamiltonian at the

first order in the anharmonic force constant kð3Þ. Phonon
lifetimes in crystals are thus directly related to the anhar-
monic force constants, and can be measured to estimate the
size of the anharmonicity [41,45,46].
Anharmonicity is also necessary to explain thermal

expansion and conductivity in crystals. In particular, the
linear volume expansion coefficient of crystals can be
directly written in terms of the mode Gruneisen constants
γqν which is defined for phonon modes labeled by the
momentum q and branch index ν as [47],

γqν ¼ −
V
ωqν

∂ωqν

∂V
: ð18Þ

Note that the change in volume in the equation above is
at a fixed temperature. In a purely harmonic crystal, the
phonon frequencies are determined by the second-order
force constants which do not get modified with changes in
volume, thus leading to zero Gruneisen constant. However,
in the presence of cubic anharmonicity, the phonon frequen-
cies are determined by the effective second-order force
constants, which receive corrections depending on both the
third-order force constants kð3Þ and the changes in volume,
thus giving a nonzero Gruneisen constant [48]. An increase
in volume leads to larger displacements of atoms, which
typically makes the effective second order constants
and the phonon frequencies smaller, providing a positive
Gruneisen constant. In the case of a nonzero Gruneisen
constant, the free energy of the crystal, which has a harmonic
contribution ∝ ΔV2, receives a volume-dependent correc-
tion ∝ −ΔVγqνĒqν, where Ēqν is the mean energy in the
phonon mode qν at a particular temperature [39]. As the
temperature increases, the mean energy Ēqν goes up, and

FIG. 2. Comparison of scattering in a harmonic crystal to 1D harmonic oscillator. The dotted lines show the DM cross section reach
computed using the multiphonon structure factor in a harmonic crystal, (9), and assuming the incoherent approximation [26]. Using the
structure factor of the toy 1D harmonic oscillator in (13) combined with the energy smearing prescription in (16) gives a very similar
result (solid lines). There are some small deviations at low momentum since we place a hard cut on the allowed momentum transfer
q > 2π=a ≈ 2 keV for the 1D oscillator.
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thus this leads to a new equilibrium volume which mini-
mizes the free energy. For a positiveGruneisen constant, this
leads to thermal volume expansion.
The Gruneisen constants are thus directly related to the

cubic force constants of the material, and have also been
used to extract them [48]. Concretely, the relationship
between the mode Gruneisen constants and the anharmonic
force constants for weak anharmonicity can be shown to
be [49],

γqν ¼ −
1

6ω2
q;ν

X
d;l0d0;l00d00

X
αβδ

kð3Þαβδð0d;l0d0;l00d00Þ

×
eβq;νðd0Þ�eδq;νðd00Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

md0md00
p r0;α0d e

iq·ðl00−l0Þ; ð19Þ

where the eβq;νðdÞ indicates the displacement of atom d in
the Cartesian direction β for the phonon qν, and r0;α0d is the
equilibrium position of atom d in the Cartesian direction α
for the unit cell at the origin. To get a rough estimate of the
maximum anharmonicity strength in the crystal, the rela-
tion in (19) can be inverted and written in terms of the
maximal mode Gruneisen constant γmax found in a crystal,

kð3Þ ∼
6mdω

2
0γ

max

l
; ð20Þ

where ω0 is the typical phonon energy of the lattice and l is
the nearest neighbor distance. Now consider a typical
displacements ∼ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mdω0

p Þ−1 of an atom in the crystal;
the change in the potential energy δVanh due to anharmonic
force constant estimated above is given by,

δVanh

ω0

∼
1

ω0

1

3!
kð3Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mdω0

p �
−3

∼ 0.02

�
md

28 GeV

�
−0.5
�

ω0

30 meV

�
−0.5

×

�
γmax

1.5

��
l

2.35 Å

�
−1
; ð21Þ

where in the second line we use parameters for Si. We use
an estimate for the maximal value of the mode Gruneisen
constant in Si from [39] at 0 K. In Ge, the maximal
Gruneisen constant is similar to that in Si, while in GaAs, it
could be as high as 3.5 for certain phonon modes [39]. The
Gruneisen constant thus provides a rough estimate of the
overall anharmonicity in the crystal, including the cubic
terms which depend on displacements of multiple atoms.
In this paper, we will work with a toy model of

anharmonic interactions similar to the 1D oscillator
model in Sec. II A. In particular, we consider excitations
for an isolated atom in a 1D anharmonic potential.
The anharmonicity is controlled by force constant terms

like kð3Þαβγðld;l0d0;l00d00Þ with ld ¼ l0d0 ¼ l00d00 which

characterize the modification to the potential of a single
atom in a lattice. Since the Gruneisen constants involve a
sum over many cubic force terms, we instead directly
obtain the single-atom anharmonic force constants with an
empirical model of the lattice.
We model the lattice assuming empirical interatomic

potentials, which have been shown to accurately reproduce
phonon dispersions and transport properties [50]. Concretely,
we assume the Tersoff-Buckingham-Coulomb interatomic
potential with the parameter set given in Ref. [50] (see
Appendix A for details). We then fix all atoms at their
equilibrium positions except for one atom denoted by ld,
which is displaced by a small distance in different directions.
The single atom potential calculated from this procedure is
shown in Fig. 3 for Si, with deviations from the harmonic
potential that depend on the direction of displacement. The
maximum anharmonicity is along the direction of the nearest
neighbor atom. Along this direction, we find that the typical
change in the potential energy for an atom displaced by
r ∼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mdω0

p Þ−1 is,
δVanh

ω0

∼ 0.01: ð22Þ

Comparing this estimate with (21), we see that the anhar-
monicity strength inferred from the potential of a single
atom is roughly of the same size as the overall anharmo-
nicity strength of the lattice inferred from the Gruneisen
constant. Thus, even though we do not perform a full
calculation of the structure factor for an anharmonic crystal
including the modification of the phonon spectrum and the
lattice states, the comparison above suggests that the effects
in a full calculation are expected to be similar in magnitude

FIG. 3. Single atomic potential: Potential of a single atom
displaced along various directions with all other atoms at their
equilibrium positions. In zincblende Si, the largest anharmonicity
is in the direction of the nearest-neighbor atom, while the smallest
anharmonicity is in the direction of the next-nearest-neighbor. We
have also included a third direction orthogonal to the other two,
with intermediate anharmonicity strength.
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to the effects we estimate in this work using single atom
potentials.

C. Toy anharmonic potential

As shown in Sec. II A for the harmonic crystal, the
features of the dynamic structure factor under the inco-
herent approximation can be well-approximated with just
a 1D toy potential for an individual atom. This gives a
much simpler path to calculating DM scattering in
anharmonic crystals for q ≫ 2π=a, where many phonons
may be produced. In contrast, prior work including
anharmonicity focused on the limit q ≪ 2π=a, restricted
to two phonons [38], and does not scale well to large
number of phonons. We can then stitch together the two
approaches to gain a more complete understanding of
anharmonic effects.
In this work, we take a 1D anharmonic potential and

calculate the 1D structure factor, in order to simplify the
problem as much as possible. Taking the 1D approximation
is more subtle in the presence of anharmonicity since a
generic potential in 3D is not separable, unlike the
harmonic case. Denoting the small displacement around
equilibrium by r, and the polar and azimuthal directions by
θ and ϕ respectively, the potential energy for atom d in the
lattice can be expanded in powers of r as,

Vdðr; θ;ϕÞ ¼
1

2
mdω

2
0r

2

þ
X
k≥3

λkω0fkðθ;ϕÞðr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
Þk; ð23Þ

where λk are dimensionless constants parametrizing the
degree of anharmonicity at kth order, and fkðθ;ϕÞ are
functions which specify the angular dependence and whose
range is ½−1; 1�. Solving the full 3D problem would require
numerically finding the eigenstates of this general potential,
while in the 1D case we can make much more progress
analytically. We will therefore select directions of maxi-
mum anharmonicity and use this for our simplified 1D
problem. Our expectation is that this gives a conservative
estimate of the importance of anharmonic couplings, in that
the full 3D calculation would give somewhat reduced
effects.
As discussed in Sec. II B, we can extract realistic single

atom potentials by modeling the interatomic potentials on
the lattice and displacing a single atom (see Appendix A for
details). We typically find that, for small displacements
around equilibrium, the anharmonicity is dominated by the
cubic and quartic terms parametrized by λ3 and λ4,
respectively. As seen in Fig. 3, the displacement potentials
for an atom are smooth up to at least the typical interatomic
distances ∼Å, and do not oscillate or diverge. This naturally
bounds higher order anharmonicities, which become
more suppressed at higher powers with λkþ1=λk ≲
ð ffiffiffiffiffiffiffiffiffiffiffi

mdω0

p
lÞ−1 ∼ 0.06ð md

30 GeVÞ−0.5ð ω0

30 meVÞ−0.5. Motivated by

these observations, we consider the following forms of
toy potentials in our study:

(i) Single cubic or quartic perturbations: We first
consider a harmonic potential with a single pertur-
bation,

VdðxÞ ¼
1

2
mdω

2
0x

2 þ λkω0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
xÞk; ð24Þ

where k ¼ 3 or 4. This case is amenable to pertur-
bation theory, and in Sec. III B, we apply it to
discuss the power counting of anharmonic cor-
rections.

(ii) Morse potential: It is possible to obtain exact
(nonperturbative) analytic results for the Morse
potential defined by,

VMorseðxÞ ¼ Bðe−2ax − 2e−axÞ; ð25Þ

where a is a parameter controlling the width of the
potential and B is the normalization. We fit these two
parameters to the cubic anharmonicity estimated
from the single atom potentials discussed earlier, and
calculate the dynamic structure factor for this po-
tential in Appendix D.

(iii) Fit to realistic atomic potentials: We numerically
calculate the structure factor in a potential with both
cubic and quartic terms, where the dimensionless
anharmonic couplings are obtained by fitting to the
actual single atom potential. The potential in this
case is given by

VdðxÞ ¼
1

2
mdω

2
0x

2 þ λ3ω0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
xÞ3

þ λ4ω0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
xÞ4: ð26Þ

We find that typically, λ3 ∼ 0.01, and λ4 ∼ 10−4.
For the 1D toy potentials discussed above, we compute

the 1D dynamic structure factor in the incoherent approxi-
mation (q ≫ 2π=a):

Stoyðq;ωÞ ¼ 2π
X
d

ndjfdj2
X
f

jhΦfjeiqxjΦ0ij2

× δðEf − E0 − ωÞ: ð27Þ

Again, we have summed over all atoms of type d in
the lattice and defined the number density of atom d by nd.
The wave functions jΦi are the eigenfunctions of the
Hamiltonian,

Htoy ¼
p2

2md
þ VdðxÞ: ð28Þ

The computation of the dynamic structure factor then boils
down to computing the ground state j0i and the excited
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eigenstates jΦfi for this Hamiltonian, and calculating the
structure factor under the incoherent approximation as
in Eq. (27).
As discussed in Sec. II A, for a 1D toy model the phonon

levels are discrete and in a real crystal there is a broad
spectrum of energy levels. Similar to the harmonic case, we
need a prescription to account for this smearing of energies.
In the case with anharmonicity, the spectrum is shifted. The
1D toy model will instead give a modified energy-con-
serving delta function:

δðfðnÞω0 − ωÞ; ð29Þ

where fðnÞω0 is the energy difference between the nth
excited state and the ground state. fðnÞ will depend on the
exact form of the potential. Guided by the harmonic result,

we again shall fix ω0 ¼ 1=ω−1 and introduce a width to the
delta function in a similar fashion:

δðfðnÞω0 − ωÞ → 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πfðnÞσ2

p e
−ðω−fðnÞω0Þ2

2fðnÞσ2 : ð30Þ

This is in the 1D approximation, and that including the full
3D anharmonic potential would be expected to have an
additional effect on the spectrum of states. However, in
practice the anharmonicity is sufficiently small that the shift
of the spectrum is subdominant to the other anharmonic
effects in the structure factor.
This forms the basis of the toy model we consider in this

paper. Focusing on the high q regime where the incoherent
approximation applies, we consider independent lattice
sites and calculate scattering in them with 1D toy anhar-
monic potentials. We now describe different approaches to
understand the dynamic structure factor in this setting.

III. ANALYTIC RESULTS
FOR STRUCTURE FACTOR

In this section, we study the features of the structure
factor for a 1D anharmonic potential with analytic methods.
This will allow us illustrate the general behavior for the
limits q ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
and q ≫

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
.

First, we review the derivation of the structure factor for a
1D harmonic potential. For n-phonon production in the
harmonic limit, the structure factor in the regime q ≫ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
is ∝ q2n=ð2mdω0Þn. Treating the anharmonic

1D potential as a perturbation, we then show that the q
dependence of the n-phonon term can be substantially
modified in the regime q ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
, leading to large

anharmonic corrections. In particular, we obtain the power
counting of the structure factor in powers of q and the
anharmonicity parameter λk, which allows us to roughly
identify the regime of q where we expect the anharmonic
effects to be dominant. As we will see later, this proves
useful to explain the numerical results for realistic potentials.

Finally, we will also use the impulse approximation to
perform an analytic estimate of the structure factor in the
regime q >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
. We show that the nuclear recoil limit

is reproduced, with the structure factor approximated by a
Gaussian envelope similar to the harmonic case.
Anharmonic terms give rise to slightly modified shape
of the Gaussian, which have negligible impact on scatter-
ing rates.

A. Harmonic oscillator

First, we briefly review the calculation of the dynamic
structure factor in the harmonic approximation. In this case
the potential VdðxÞ is given by

VdðxÞ ¼
1

2
mdω

2
0x

2: ð31Þ

The energy En of the nth excited state jni of this simple
harmonic oscillator is given by,

En ¼
�
nþ 1

2

�
ω0: ð32Þ

The structure factor in Eq. (27) thus becomes,

Stoyðq;ωÞ ¼ 2π
X
d

ndjfdj2
X
n

jhnjeiqxj0ij2δðnω0 − ωÞ:

ð33Þ

The matrix element can be evaluated in the following way,

hnjeiqxj0i ¼ 1ffiffiffiffiffi
n!

p h0janeiqxj0i

¼ 1ffiffiffiffiffi
n!

p h0jeiqx
�
aþ iqffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mdω0

p
�

n
j0i

¼ 1ffiffiffiffiffi
n!

p
�

iqffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
�

n
h0jeiqxj0i

¼ 1ffiffiffiffiffi
n!

p
�

iqffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
�

n
e−

q2

4mdω0 ; ð34Þ

where we use e−iqxaeiqx ¼ aþ iqffiffiffiffiffiffiffiffiffiffi
2mdω0

p in the second

equality. Plugging the above matrix element to the structure
factor in (33) becomes,

Stoyðq;ωÞ ¼ 2π
X
d

ndjfdj2e−2W
toy
d ðqÞ

×
X
n

1

n!

�
q2

2mdω0

�
n

δðnω0 − ωÞ; ð35Þ

where Wtoy
d ðqÞ ¼ q2=ð4mdω0Þ is the Debye-Waller

factor in the toy model. The structure factor follows a
Poisson distribution with mean number of phonons
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μ ¼ q2=ð2mdω0Þ, as also shown in the case of the
3-dimensional harmonic oscillator in [42].

B. Perturbation theory for
anharmonic oscillator: q ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p

We now turn to more general case where small anhar-
monic terms are included in the 1D toy potential. An exact
solution is no longer possible. But as we will see, in the
kinematic regime q ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
, we can use perturbation

theory to obtain the behavior of the structure factor and
illustrate the importance of the anharmonic corrections as a
function of momentum and energy deposition. Our goal in
this section then is to obtain the power counting of the
anharmonic contributions to the structure factor.
The toy Hamiltonian we consider is given by,

Htoy ¼
p2

2md
þ 1

2
mdω

2
0x

2 þ λkω0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
xÞk: ð36Þ

We will concretely consider k equal to 3 and 4, corre-
sponding to a leading cubic and quartic anharmonicity,
respectively. Treating the dimensionless anharmonicity
parameter λk as a perturbation, the eigenstates jΦni are
given by

jΦni ¼ jni þ λkjψ ð1Þ
n i þ λ2kjψ ð2Þ

n i þ � � � ; ð37Þ

and E0
n are the perturbed energies,

E0
n ¼

�
nþ 1

2

�
ω0 þ λkc

ð1Þ
n þ λ2kc

ð2Þ
n þ � � � ð38Þ

With time-independent perturbation theory, the dynamic
structure factor can be explicitly computed at different
orders in λk using (27). We defer the details of the explicit
calculation to Appendix B. Instead, from the structure of the
expansion we can already learn about the relevant correc-
tions. In general,we can express the dynamic structure factor
as an expansion in both λk and q2=ð2mdω0Þ. At zeroth order
in λk, we see from (35) that the n-phonon term appearswith a
q-scaling of q2n=ð2mdω0Þn. As we will show below,
anharmonicity introduces departures from this q-scaling
at higher orders of λk. In the kinematic regime under
consideration (q ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
), powers of q2=ð2mdω0Þ

smaller than n can lead to large anharmonic corrections
to the n-phonon term in the structure factor.1 The aim of this
section is thus to illustrate the behavior of the q-scaling at
different orders of λk.
The general expression for the dynamic structure factor

in the toy model can be written as,

Stoyðq;ωÞ ¼ 2π
X
d

ndjfdj2e−2W
toy
d ðqÞ

×
X
n

δðE0
n − E0

0 − ωÞ
�
1

n!

�
q2

2mdω0

�
n

þ
X
i≥1

�
q2

2mdω0

�
i�
an;iλ

νðn;iÞ
k þO

�
λνðn;iÞþ1
k

��	

ð39Þ

For each n, the harmonic contribution appears at
Oððq2=ð2mdω0ÞÞnÞ as seen in (13); note that we do not
include the Debye-Waller factor in this power counting
discussion since it always appears as an overall factor. The
anharmonic corrections are included here as an expansion
in powers of q2=ð2mdω0Þ which are denoted by i. From the
orthogonality of the states jΦni with the ground states, we
see that the dynamic structure factor should vanish for
q → 0, which in turn implies that i ≥ 1. Each power i of
q2=ð2mdω0Þ appears with nonzero powers of λk, denoted
by νðn; iÞ. Here the power νðn; iÞ is the smallest allowed
power of λk for a given phonon number n and the power i of
q2=ð2mdω0Þ. However, numerical cancellations can some-
times force this leading behavior to vanish. Typically, the
bigger the difference in i and n, the larger the power of λk
that is required. We will explicitly see the behavior of the
powers νðn; iÞ for k equal to 3 and 4 below, but we first
discuss the implications of this form.
For the single phonon structure factor (i.e. for n ¼ 1),

the anharmonic terms are always suppressed compared to
the harmonic term because of the additional powers of λk
and q2=ð2mdω0Þ. But for phonon numbers n > 1, it is
possible for anharmonic contributions to dominate for
q ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
. As a simple example, in the 3-phonon state,

the harmonic contribution to the structure factor is propor-
tional to q6=ð2mdω0Þ3, while the anharmonic result con-
tains λ23q

4=ð2mdω0Þ2. So when q ≪
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
, the

anharmonic effect can lead to a large correction to the
dynamic structure factor.
In a generic n-phonon state, the harmonic piece scales

as ðq2=ð2mdω0ÞÞn. Comparing this with the anhar-

monic term ∝ λνðn;iÞk q2i=ð2mdω0Þi, we note that the anhar-
monic term dominates the harmonic term for q ≪ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
λνðn;iÞ=ð2ðn−iÞÞk . For small enough q, the behavior

is governed by the anharmonic effects. Of course, at even
smaller q ∼ qBZ one would expect the incoherent approxi-
mation to break down. For the values of λ in realistic
materials, we find that the dominance of the anharmonic
terms can happen for q above qBZ, particularly for larger n.
These corrections become larger with n since the harmonic
piece is progressively more suppressed in q2=ð2mdω0Þ.
We now illustrate the origin of the λk powers νðn; iÞ with

an example in the case of k ¼ 3. In this case, the
perturbation x3 ∼ ðaþ a†Þ3 implies the leading correction

1Perturbation theory in λk is still valid. For instance, the
expansion in (37) still holds. But the harmonic contribution in the
structure function could be suppressed by small q for multi-
phonon states.
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to the state can change the oscillator number by �1 or �3.
Then the perturbed eigenstates have the schematic form:

jΦni ∼ jni þ λ3ðjn − 3i þ jn − 1i þ jnþ 1i þ jnþ 3iÞ
þOðλ23Þ: ð40Þ

We neglect the numerical prefactor in front of each state.
Note that the terms are only present if the integer labeling
the state is non-negative, for example for the ground
state jΦ0i ∼ j0i þ λ3ðj1i þ j3iÞ þOðλ23Þ. The matrix
element appearing in the n-phonon structure factor can
be expressed as,

hΦnjeiqxjΦ0i ∼ b0 þ λ3b1 þ λ23b2 þOðλ33Þ; ð41Þ

where the coefficients are schematically given by,

b0 ∼ hnjeiqxj0i ð42Þ

b1 ∼ hn − 3jeiqxj0i
þ hn − 1jeiqxj0i þ hnþ 1jeiqxj0i
þ hnþ 3jeiqxj0i þ hnjeiqxj1i þ hnjeiqxj3i: ð43Þ

In order for given term in the coefficient to be nonzero, a
minimum number of powers of iqx are required in the
series expansion for eiqx. This therefore links the powers of
q with powers of λ3.
Taking n ¼ 3 as an example, then b0 ∝ ðiqÞ3 at leading

order in the q expansion. Meanwhile, b1 ∝ ðiqÞ2 þ
ðiqÞ4 þ…. Note that the matrix elements h0jeiqxj0i and
h3jeiqxj3i in b1 contain terms proportional to ðiqÞ0, but they
cancel each other, consistent with a matrix element that
always vanishes as q → 0. Also note that the coefficients
b0, b1 always alternate in even or odd powers of ðiqxÞ and
therefore alternate in being purely real or imaginary. The
resulting matrix element squared thus goes as

jhΦ3jeiqxjΦ0ij2∼ jb0þλ23b2þOðλ43Þj2þjλ3b1þOðλ33Þj2;
∼q6þλ23ðq4þOðq6ÞÞþOðλ43Þ: ð44Þ

For the cubic interaction, only even powers of λ3 appear in
the matrix element squared due to the alternating even and
odd powers of ðiqxÞ in the b coefficients. In this example,
in order to achieve the minimum q scaling of q2, higher
powers of λ3 are required, which will introduce more terms
in the expansion. Here we see a correction to the matrix
element squared at Oðq2λ43Þ.
The explicit derivation of νðn; iÞ is given in Appendix B.

The minimum power of λ3 required to get the leading
behavior ∝ q2=ð2mdω0Þ in the anharmonic terms is
given by,

νðn; 1Þ ¼

8>>><
>>>:

max


4 × ⌈ ðn−1Þ

6
⌉; 2

�
for odd n

4 × ⌈ ðnþ2Þ
6
⌉ − 2 for evenn:

ð45Þ

The minimum power of λ3 as a function of the phonon
number n and the power i of q2=ð2mdω0Þ for i > 1 is
given by,

νðn;iÞ¼max

�
2×⌈ jn− ij

3
⌉;2

�
; i > 1: ð46Þ

We show the expansion of the structure factor in the powers
of λ3 and q2=ð2mdω0Þ schematically in Fig. 4, where we
drop the numerical coefficients for all the terms and only
illustrate the behavior of the powers of λ3 and q2=ð2mdω0Þ.
In the right part of the schematic, we show the behavior of
the n-phonon term for n > 3, and in the left part of the
schematic, we show the expansion for n ¼ 1; 2, and 3.
The relationship between the powers in λ3 and the

powers of q2=ð2mdω0Þ in (46) can also be understood in
the following way. The powers of q2=ð2mdω0Þ that appear
at Oðλν3Þ can range from n − 3ν=2 to nþ 3ν=2, with the
minimum power allowed being 1, and ν being an even
positive integer. Contributions from powers larger than n
are suppressed in the kinematic regime q ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
. But

powers smaller than n can lead to significant corrections in
the same regime.
For example, the anharmonic contribution to the

2-phonon structure factor has a leading behavior ∝ λ23q
2=

ð2mdω0Þ, which is expected to dominate the harmonic
behavior ∝ q4=ð2mdω0Þ2 for small enough q (explicitly for
q≲ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mdω0

p
λ3). Assuming md ∼ 28 GeV, ω0 ∼ 40 meV,

and a typical value of λ3 ∼ 0.01, we expect the anharmonic
contribution to start to dominate for q≲ 0.5 keV. This
kinematic regime does not strictly satisfy the conditions for
the incoherent approximation which are assumed in this
calculation. However, it is interesting to note here that the
size of this anharmonic correction roughly matches onto the
result for the 2-phonon structure factor in the long-
wavelength limit (q ≪ 1=a) [26,38], where it was found
that anharmonic interactions give up to an order of
magnitude correction to the structure factor. At the edge
of the Brillouin Zone q ∼ 2π=a ∼OðkeVÞ, with the typical
values used above, we find in the toy model an Oð∼25%Þ
correction at the boundary of the valid region for the
incoherent approximation.
For k equal to 4, which corresponds to a quartic

perturbation to the harmonic potential, the calculation
proceeds similarly to the cubic case discussed above,
except for some key differences. All the coefficients bi
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FIG. 4. Expansion of the structure factor in phonon number n, powers of q2=ð2mdω0Þ, and powers of λ3 for a cubic perturbation [k ¼ 3
in (36)]. The right part shows the general behavior of the n-phonon term for n > 3, while the left part shows the expansion for n ¼ 1; 2,
and 3. Shaded terms show the dominant contributions when q ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
, which comes from the anharmonic terms for n ≥ 2. Here we

just illustrate the power counting; individual terms might not be present if there is a numerical cancellation in the coefficients.

FIG. 5. Expansion of the structure factor in phonon number n, q2=ð2mdω0Þ, and λ4 for a quartic perturbation [k ¼ 4 in (36)]. The right
part shows the general behavior of the n-phonon term for n > 3, while the left part shows the expansion for n ¼ 1; 2, and 3. Shaded
terms show the dominant contributions when q ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
, which comes from the anharmonic terms for n > 2. Similar to the above,

individual terms might not be present if there is a numerical cancellation in the coefficients.
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are either real or imaginary based on whether n is even or
odd respectively, and hence the anharmonic corrections
appear in all orders of λ4. We thus have corrections at
Oðλ4Þ. For even n, coefficients bi only have even powers of
q, and thus cannot generate terms ∝ q2 in the squared
matrix element. The leading behavior for even n is thus
∝ q4. For odd n however, the leading behavior is ∝ q2, and
the minimum power of λ4 is given by,

νðn; 1Þ ¼ max

�
2 ×⌈ ðn − 1Þ

4
⌉; 1

�
: ð47Þ

For powers i greater than 1, the minimum power of λ4 for
any phonon number n is given by,

νðn; i > 1Þ ¼ max

�
⌈ jn − ij

2
⌉; 1

�
: ð48Þ

We show the expansion of the structure factor in the powers
of λ4 and q2=ð2mdω0Þ schematically in Fig. 5, where we
drop the numerical coefficients for all the terms and only
illustrate the behavior of the powers of λ4 and q2=ð2mdω0Þ.
Similar to Fig. 4, we are only illustrating the minimum
allowed powers of λk in perturbation theory for n > 3. Due
to numerical cancellations, the leading λk power can vanish
in some cases.

1. Limitations of perturbation theory

Our analysis has focused on the regime q ≪
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
because this corresponds to a low mean phonon number.
For large enough n, perturbation theory will start to break
down. Equivalently, for a given n, perturbation theory will
only be valid for λk sufficiently small.
For a particular phonon number n, if the energy

correction in (38) is of the same order as the unperturbed
energy eigenvalue ðnþ 1

2
Þω0, the perturbation can no

longer be treated as small. Based on this, we set an upper
bound on jλkj by requiring that

jE0
n −
�
nþ 1

2

�
ω0j ∼ 0.1 ×

�
nþ 1

2

�
ω0: ð49Þ

At leading order, the correction for k equal to 3 (i.e. a
cubic perturbation) is given by

E0
n −
�
nþ 1

2

�
ω0 ¼ λ23ω0

�
9n3 þ 9ðnþ 1Þ3

þ ðnþ 3Þðnþ 2Þðnþ 1Þ
þ nðn − 1Þðn − 2Þ�þOðλ43Þ: ð50Þ

The equivalent result for k ¼ 4 reads,

E0
n −
�
nþ 1

2

�
ω0 ¼ λ4ω0

�ðnþ 1Þðnþ 2Þ þ ðnþ 1Þ2

þ 2ðnþ 1Þðnþ 2Þ þ n2

þ nðn − 1Þ�þOðλ24Þ: ð51Þ
Using the equations above, we get the critical value
of λ23 and λ4 compatible with the perturbation theory
expansion. These are shown in Fig. 6. With the analytic
structures of the energy corrections shown above, we see
that the perturbativity bound on λ23 (λ4) has a scaling
∝ 1=n2ð∝ 1=nÞ, where n is the phonon number. For typical
values of λ3 ∼ 0.01, we see that the perturbation theory is
valid only up to n ∼ 6–7. Furthermore, perturbation theory
is impractical for calculating corrections at small q and very
high phonon number n, since these corrections will be a
very high order in the anharmonicity parameter.
To deal with these limitations, we consider two different

approaches in this paper. Since high n is associated with
high ω and q, in the next section we will use the impulse
approximation to account for anharmonic effects at high q.
In Appendix D, we also study a special anharmonic
potential, the Morse potential, where it is possible to obtain
exact results. We use this as a case study to validate the
perturbation theory and impulse approximation results.

C. Impulse approximation for q ≫
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p

As we have shown, perturbation theory quickly goes out
of control beyond the first few number of phonons.
Resumming the anharmonic interaction is usually needed
for the structure factor when q or ω is large. Consider the
following phase space

Impulse regime∶ q ≫
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
;

ω ∼
q2

2md
þOð ffiffiffiffiffiffiffiffiffi

ωω0

p Þ; ð52Þ

FIG. 6. Perturbativity bound on λ23 and λ4 as a function of
phonon number n. The bound is based on the criteria of (49) that
the leading correction to the energy En is at most 10%. The
dashed line shows the typical coupling sizes in Si and Ge crystals.
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It has previously been shown [26,51] in the harmonic case,
that one can calculate the structure factor by using a saddle
point approximation in the time-integral representation of the
structure factor. This is called the “impulse approximation”
since the steepest-descent contour is dominated by small
times, which can be interpreted physically as an impulse.
We begin with the structure factor in Eq. (27), which can

be decomposed as contributions from each atom d,
Stoyðq;ωÞ ¼

P
d ndjfdj2Stoy;dðq;ωÞ. Then we rewrite the

energy conservation delta function as a time integral

Stoy;dðq;ωÞ

≡X
f

Z
dteiðEf−E0−ωÞtjhΦfjeiqxjΦ0ij2

¼
Z

dte−iωt
X
f

hΦ0je−iqxjΦfihΦfjeiHteiqxe−iHtjΦ0i

¼
Z

dte−iωthΦ0je−iqxeiqxðtÞjΦ0i; ð53Þ

where in the second equality we use the fact that jΦ0i and
jΦfi are eigenfunctions of H, and in the third equality we
use the completeness relation and the time-dependent
position operator xðtÞ ¼ eiHtxe−iHt. The final expression
is the well-known structure factor in the time domain.
Using the above representation of the structure factor,

Stoy;dðq;ωÞ ¼
Z

∞

−∞
dthe−iqxeiqxðtÞie−iωt

¼
Z

∞

−∞
dthe−iqxeiHteiqxie−iðE0þωÞt; ð54Þ

We can further simplify this using the fact that eiqx acts as a
translation operator on momentum p, e−iqxpeiqx ¼ pþ q.
Applying the translation on the full Hamiltonian yields

e−iqxHðx; pÞeiqx ¼ Hðx; pþ qÞ: ð55Þ

Here we generalize the impulse approximation to any 1D

Hamiltonian, Hðx; pÞ ¼ p2

2md
þ VðxÞ, which satisfies

Hðx; pþ qÞ ¼ Hðx; pÞ þ q2

2md
þ q
md

p: ð56Þ

One can also generalize impulse approximation to a generic
potential Vðx; pÞ as long as the above holds in the limit of
large q.2 In other words, we require that the Hamiltonian in
the large momentum limit is dominated by the kinetic

energy p2

2md
, not the potential. We can then obtain reliable

theoretical predictions in the impulse regime even with
large number of phonons.
Applying the above to Eq. (54), the structure function

now reads

Stoy;dðq;ωÞ ¼
Z

∞

−∞
dt
D
eiHðx;pþqÞt

E
e−iðE0þωÞt

≈
Z

∞

−∞
dt
D
eiðHþqp

md
ÞtEe−iðE0þω− q2

2md
Þt; ð57Þ

where we translate the momentum in the first line and use
Eq. (56) in the second line. Note that H ¼ Hðx; pÞ
throughout and we drop the argument for brevity. The last
line is exact for potentials that depend only on x.
Now we can apply the saddle point approximation to

evaluate the time integral. Defining H0 ≡H þ pq
md
, we can

write

Stoy;dðq;ωÞ ¼
Z

∞

−∞
dtefðtÞ; ð58Þ

where

fðtÞ≡ lnheiH0ti − it

�
E0 þ ω −

q2

2md

�
: ð59Þ

In order to calculate this object, we can expand lnheiH0ti
in small t. The first few terms in this expansion are given by

fð0Þ ¼ 0

f0ð0Þ ¼ i

�
q2

2md
− ω

�
f00ð0Þ ¼ i2ðhH02i − hH0i2Þ

¼ −
q2

m2
d

ðhp2i − hpi2Þ

fð3Þð0Þ ¼ i3ðhH03i − 3hH0ihH02i þ 2hH0i3Þ

¼ −i
�
q2

m2
d

hp½H;p�i þ q3

m3
d

hp3i
�

fð4Þð0Þ ¼ i4ð−6hH0i4 þ 12hH0i2hH02i2
− 3hH02i2 − 4hH0ihH03i þ hH04iÞ

¼ −
q2

m2
d

h½p;H�2i þ q3

m3
d

h½½p;H�; p2�i

þ q4

m4
d

ðhp4i − 3hp2i2Þ… ð60Þ

In the harmonic approximation, only the terms proportional
to q2 are nonzero. As a result, only the first few expansion
terms are needed as long as t ≪ 1

ω0
since fðnþ1Þ=fðnÞ is of

order ω0. Then one can solve for the saddle point tI by
solving f0ðtIÞ ≈ f0ð0Þ þ f00ð0ÞtI ¼ 0, which gives

2In this case, the impluse regime in Eq. (52) needs to be
replaced as ω ∼ q2

2md
þ q

md
hpi and we impose Eq. (56) holds up to

Oðω2
0=qÞ correction.
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itI ¼
m2

d



ω − q2

2md

�
q2σ2p

; ð61Þ

where

σ2p ≡ hp2i − hpi2 ¼ hp2i: ð62Þ

In the last equality we use the fact that hpi ¼ 0 for a VðxÞ
potential since hpi ∝ h½x;H�i ¼ 0. Although tI is formally
imaginary, its magnitude is small and close to the origin in
the impulse regime. Since there is no pole around this
saddle point, we can approximate the time integral by the
saddle point and find

Stoy;dðq;ωÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π

−f00ðtIÞ

s
efðtIÞ

¼
ffiffiffiffiffiffi
2π

p
md

qσp
exp

0
B@−

m2
d



ω − q2

2md

�
2

2q2σ2p

1
CA: ð63Þ

For large energy depositions the Gaussian becomes nar-
rowly peaked around ω ¼ q2=2md, and this reproduces the
nuclear recoil limit [26].
In the presence of anharmonic interactions, other powers

of q will be present in the expansion of (60). In general, the
fðnÞ term will have a qn term with coefficient of OðλÞ. In
this case, fðnþ1Þ=fðnÞ ∼ q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0=md

p
. Higher orders will then

be important in the expansion of fðtÞ for sufficiently large q
or t. For a given q, the higher order corrections become
relevant for jtj ≳ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

md=ω0

p
=q ∼ 1=

ffiffiffiffiffiffiffiffiffi
ωω0

p
in the impulse

regime. Including these corrections is difficult in general,
but we can continue to use the second order expansion
giving (63) as long as jtj≲ 1=

ffiffiffiffiffiffiffiffiffi
ωω0

p
. According to (61),

this corresponds to a condition on how close ω is to
q2=ð2mdÞ. Since q2 ∼ 2mdω and σ2p ∼mdω0, this implies
that

jtIj ∼
jω − q2

2md
j

ωω0

→jω −
q2

2md
j≲ ffiffiffiffiffiffiffiffiffi

ωω0

p
: ð64Þ

We see that the distance of ω from q2

2md
sets the size of tI ,

which in turn tells us the regime for the validity for the
approximation (63). The condition (64) is approximately
the same condition that ω is within the Gaussian width
in (63), and keeping terms in fðtÞ only up to f00ð0Þ is self-
consistent near ω ¼ q2

2md
.

Therefore, in the presence of anharmonic interactions,
the above structure factor result (63) remains valid in the
impulse regime (52). The only modification is in σ2p.
Considering perturbations in VðxÞ up to x4 and recalling

that the expectation value is with respect to the full ground
state, we find that

σ2p ¼ hp2i ¼ mdω0

2
ð1 − 44λ23 þ 12λ4 þ � � �Þ ð65Þ

at leading order in λ3, λ4. The nuclear recoil limit is again
reproduced, with a small modification to the width of the
Gaussian envelope due to anharmonic couplings. Note that

in order to calculate the structure factor far from ω ¼ q2

2md
,

we must include additional orders in fðtÞ and tI . We do not
perform these higher order calculations for the final results
in this paper since they have a negligible effect on the
integrated rates, but we provide the procedure for com-
pleteness in Appendix C.
Finally, we approximate the effect that introducing the

full crystal lattice has on this single atom result. Up until
the evaluation of various moments of H0, the impulse
approximation is fully model-independent. We just have to
make an adjustment to the final evaluation of hp2i. The
states in the full crystal theory are smeared by the phonon
density of states, so we calculate hp2i via the following
prescription

hp2i ¼ mdω0

2

�
1þ gðλÞ�

⟶
crystal

Z
dω0Dðω0Þmdω

0

2

�
1þ gðλÞ�; ð66Þ

where gðλÞ is the anharmonic correction calculated in
the single-atom potential. Essentially, we have used the
average single phonon energy to calculate hp2i. In the
harmonic limit, (63) then exactly matches the impulse
result from [26].
In summary, in this section we have demonstrated the

general behavior of anharmonic effects with q and ω. We
have shown that they are indeed negligible at high q and
ω ∼ q2=2md, consistent with the intuition that scattering
can be described by elastic recoils of a free nucleus. The
effects grow for q ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
and at low q they may

dominate the structure factor. This roughly matches onto
the results of Refs. [26,38], which found that for q < 2π=a
anharmonic effects can have a large impact on the two-
phonon rate.

IV. NUMERICAL RESULTS
FOR 1D ANHARMONIC OSCILLATOR

Having demonstrated the analytic behavior of the
dynamic structure factor in the previous section, we now
turn to obtaining numerical results using realistic poten-
tials. Wewill perform concrete calculations for Si and Ge as
representative materials while briefly commenting on
others. As discussed in Sec. II B, we adopt an empirical
model of interatomic interactions that encodes the
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anharmonicity in the potential. We use this empirical model
to calculate a single atom potential, which we then use to
evaluate the structure factor numerically.
As stated in Sec. II C, we start by fitting the single atom

potential in a particular direction onto a 1D potential of the
form,

VdðxÞ ¼
1

2
mdω

2
0x

2 þ λ3ω0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
xÞ3

þ λ4ω0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
xÞ4: ð67Þ

In the fit, ω0, λ3, λ4 are free parameters but in order to
reproduce the harmonic limit, we then make the replace-

ment ω0 ¼ 1=ω−1, which is calculated from the phonon
density of states and gives a slightly different numerical
value. This is motivated by the harmonic case discussed in
Sec. II A. We do not consider anharmonic terms ∝ xk for
k ≥ 5 as we observe that the anharmonic potential along
any direction is dominated by the cubic and the
quartic terms.
We find that the maximum anharmonicity is typically

along the nearest neighbor direction ðx; y; zÞ ¼ ð1; 1; 1Þ.
For computing results, we will consider the potential along
this direction, which represents maximum anharmonicity,
as well as the potential in an orthogonal direction
ðx; y; zÞ ¼ ð1;−2; 1Þ, which represents an intermediate
value for the anharmonicity. Using the aforementioned
interatomic models, we find anharmonicity strengths rang-
ing from λ3 ∼ 6 × 10−3 to 10−2 and λ4 ∼ ð2–3Þ × 10−4. For
Si and Ge, the results are same for either atom in the
unit cell.
Given the 1D potential in (67), we find exact solutions of

the 1D eigenvalue and eigenvector problem using a simple
finite difference method. We take a first order discretization
of the Laplace operator and solve the discretized time-
independent Schrödinger equation in a box. The box grid
interval size must be small enough to resolve the maximum
momentum scales of interest, which in this case depends on
the highest excited state needed in the calculation. Also, the
minimum box size required depends on the spatial extent of
the highest excited state used. As seen in Sec. III C, the
impulse approximation suffices for q>OðfewÞ× ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mdω0

p
.

Beyond this momentum, we no longer need to calculate
excited states since the structure factor in the impulse
limit is independent of the details of the highly excited
states. The nth excited state is most relevant at momenta
q ∼

ffiffiffi
n

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
. Therefore, to complete our calculation

below the impulse limit, we include the first 10 excited
states. The results for these eigenstates are converged
above a box size of ∼10=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
and grid size

of ∼0.1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
.

We now use these numerical eigenstates and energies to
calculate the structure factor in Eq. (27). We apply a
prescription for the energy-conserving delta function

similar to that used in the harmonic 1D oscillator, Eq. (15).
The final result at momenta below the impulse regime
(q < 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
) is,

Sðq;ωÞ ¼ 2π
X
d

ndjfdj2
X
f

jhΦfjeiqxjΦ0ij2

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πfðnÞσ2
p e

−ðω−fðnÞω0Þ2
2fðnÞσ2 × Θðωmax − ωÞ; ð68Þ

where

ω0 ¼
�Z

dωω−1DðωÞ
�

−1
; ð69Þ

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
dωωDðωÞ

ω0

−
1

ω2
0

s
; ð70Þ

ωmax ¼ fðnÞ × ðminðωÞjDðωÞ ¼ 0Þ ð71Þ

and fðnÞ; jΦ0i; jΦfi are given by the numerically solved
eigenenergies and eigenstates, respectively. DðωÞ is the
single phonon density of states calculated with DFT [52].
In this work we assume equal couplings of DM with all
nucleons so that fd ¼ Ad, where Ad is the atomic mass
number. In the equations above, we have included a sum
over all atoms in the unit cell d with density nd, and in
general the atomic potentials and density states can also
depend on d, although for Si and Ge we do not include this.
In the impulse regime (q > 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
), we have shown

in Sec. III C that the structure factor for any position-
dependent potential is approximated by a Gaussian
envelope,

Sðq;ωÞ ≈
X
d

ndjfdj2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

q2

m2
d
hp2i

vuut e

−
ðω− q2

2md
Þ2

2
q2

m2
d

hp2i
; ð72Þ

where the expectation values are all computed in the ground
state and adjusted to the average single phonon energy
via (66). Now we simply use the numerical ground state of
the anharmonic potential (67) to calculate hp2i and there-
fore obtain the structure factor. Note that the anharmonic
contribution is essentially negligible in the impulse limit,
since corrections to hp2i are ∝ λ23; λ4.
Figures 7 and 8 show numerical results on the structure

factor for Si and Ge, taking the maximum anharmonicity
in either case. In Fig. 7, the structure factor as a function
of q is shown. As ω (and therefore minimum phonon
number n) is increased, there is a larger anharmonic
correction at small q. This can be understood by looking
at the q scalings discussed in Sec. III B and illustrated in
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Figs. 4 and 5. At low q and thus DM mass, the
contributions from the anharmonic structure factor can

give smaller powers of q2

2mdω0
compared to the leading

harmonic term ð q2

2mdω0
Þn, so the enhancement grows with n.

At high q, results converge to the harmonic result,
consistent with our discussion of the impulse regime in
Sec. III C. We see this also in Fig. 8, which shows the
structure factor at different q. The impulse approximation
becomes better as q ≫

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
, and is indistinguishable

from the harmonic case.

A. Impact on DM scattering rates

We now use the numerical results for the structure factor
to compute the DM scattering rates for a range of DM
masses and experimental thresholds. Our results are sum-
marized in Figs. 9 and 10. We consider DM masses in the
range ∼1–10 MeV. The lower end of the mass range is
chosen such that the momentum transfers are large enough
to satisfy the condition for the incoherent approximation
(i.e. q > 2π=a), while at the upper end of masses it is
expected that scattering is described by the impulse
approximation [26]. It is precisely this mass range where

FIG. 7. q-dependence of structure factor: We compare the structure factor in the harmonic and anharmonic cases, where in the latter
case the structure factor is calculated numerically with the maximal anharmonicity. The lines from top to bottom show the structure
factor at different ω, corresponding to an increasing minimum phonon number n. There are large corrections for q ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
when

anharmonic interactions are included (dashed), and the corrections become more significant as the threshold is increased. For
q ≫

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
, both cases converge to the same result. For Si, we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
≈ 40 keV while for Ge,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
≈ 50 keV. For other

materials, this quantity is listed in Table I. The incoherent approximation momentum cutoff is qBZ < 2π=a ∼ 2.2 keV for both crystals.

FIG. 8. ω-dependence of structure factor: For different q values, we show the decomposition of the structure factor into individual n
phonon terms, where the energy-conserving delta function has been smeared as in (68). Note that the maximum anharmonicity has been
included in the numerical calculation, but the result is nearly identical to the harmonic result for these q values, as shown in Fig. 7. The
dotted line shows the impulse approximation, which starts to become a good approximation as q increases above

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
.
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details of multiphonon production are important. We will
also consider the two cases of scattering through heavy and
light mediators. The goal will be to identify the region of
parameter space where the anharmonic effects on the
dynamic structure factor affect the scattering rates the most.
In the isotropic limit, the observed DM event rate per unit

mass is given by [26]

R¼ 1

4πρT

ρχ
mχ

σp
μ2χ

Z
d3v

fðvÞ
v

Z
qþ

q−

dq
Z

ωþ

ωth

dωqjF̃ðqÞj2Sðq;ωÞ;

ð73Þ

where ρχ is the DM energy density, ρT is the mass density
of the target material, mχ is the DM mass, μχ is the DM-
nucleon reduced mass, σp is the DM-nucleon cross section,
and fðvÞ is the DM velocity distribution. The structure
factor Sðq;ωÞ is given by our numerical results (68)–(72)
and the integration bounds are determined by the kinemat-
ically allowed phase space

q� ≡mχv

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2ωth

mχv2

s !
; ð74Þ

ωþ ≡ qv −
q2

2mχ
; ð75Þ

where the energy threshold of the experiment is denoted
by ωth. The q-dependence of the DM-nucleus interaction
can be encapsulated in the DM form factor F̃ðqÞ, where
F̃ðqÞ ¼ 1 indicates an interaction through a heavy media-
tor, and F̃ðqÞ ¼ q20=q

2 indicates an interaction through a
light mediator for a reference momentum transfer of q0.
Note that in general, the strength of the anharmonicity

varies with the direction of the recoil of the nucleus, and the
structure factor will depend on the direction of the
momentum transfer. For simplicity, we are assuming that
the anharmonicity strength is uniform in all directions. Our
estimate with the maximum anharmonicity thus provides an
upper bound on the anharmonic effects on DM scattering.
The DM mass sets the typical momentum-transfer scale

q of the scattering, and the experimental energy threshold
ωth sets the phonon number n. Hence, to identify the DM

FIG. 9. Ratio of anharmonic to harmonic rate. For each material (Ge and Si) we consider two representative values of the anharmonic
couplings. The larger set corresponds to a direction of maximal anharmonicity while the other set corresponds to an orthogonal direction
of intermediate anharmonicity. Anharmonic effects become more important for DM masses near the MeV scale and for larger energy
thresholds.
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masses and experimental thresholds where anharmonic
effects start to become important, we first need to under-
stand the q-values where the anharmonic corrections are
large for a particular phonon number n. We can estimate
this using the perturbation theory results in Sec. III B. Note
that in our numerical calculation, we find that λ3 generally
provides the larger anharmonic contribution, so we will
focus on a purely cubic perturbation in this discussion.
For the analysis of a cubic perturbation discussed in

Sec. III B, we showed that anharmonic effects introduced
additional terms to the n-phonon structure factor of the

form ∝ λνðn;iÞ3 ð q2

2mdω0
Þi, see (39). Therefore, when q is lower

than the scale

q≲ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
λνðn;iÞ=ð2ðn−iÞÞ3 ; ð76Þ

terms in the anharmonic structure factor can be of com-
parable size to the harmonic structure factor. In order to find
the largest q-scale where the anharmonic contribution starts
to become relevant, we can evaluate (76) for all positive
i < n, and find the minimum possible exponent of λ3. For
n ¼ 2 or 3, the minimum exponent is achieved for i ¼ 1,
for which νðn; 1Þ ¼ 2. This gives a q-scaling of

q ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
λ1=ðn−iÞ3 . This tells us that for the 2-phonon

case, the anharmonic contribution should begin to become
important at q ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
λ3, while for the 3-phonon case,

the anharmonic contribution becomes important at
q ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
λ1=23 . For a larger number of phonons, this

scaling is approximately q ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
λ1=33 . So we see that

higher energy excitations have more significant anhar-
monic contributions at larger momentum transfers.
Below the q-scale identified above, the anharmonic con-
tributions are expected to increase substantially with
decreasing q, as terms ∝ q2i for i < n dominate the
harmonic scaling ∝ q2n.
We now recast our analysis concretely in terms of DM

mass and experimental energy thresholds as follows. For
both massive and massless mediators, the event rate for
n ≥ 2 phonons is always dominated by the large q portion
of phase space and energy depositions near the threshold.
Therefore the enhancement in the rate due to the anhar-
monicity roughly corresponds to the enhancement in
structure factor evaluated at Sðq ¼ 2mχv;ω ¼ ωthÞ, where
v is the DM velocity. Inserting q ¼ 2mχv into the condition
in (76) gives a condition on the DM mass:

FIG. 10. Cross section uncertainty. Comparison of the cross section corresponding to 3 events/kg-yr in the harmonic (solid) and
anharmonic (dot-dashed) cases. The anharmonic result is shown for maximal anharmonicity, and so the shaded band represents our
estimate of the theoretical uncertainty due to anharmonic effects. The effects are primarily important for high thresholds and low DM
masses, corresponding to large σn, which is generally in tension with existing astrophysical or terrestrial constraints.
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mχ ≲

8>>>>><
>>>>>:

ffiffiffiffiffiffiffiffiffiffi
2mdω0

p
λ3

2×10−3 n ¼ 2ffiffiffiffiffiffiffiffiffiffi
2mdω0

p
λ1=2
3

2×10−3 n ¼ 3ffiffiffiffiffiffiffiffiffiffi
2mdω0

p
λ1=3
3

2×10−3 n > 3;

ð77Þ

where 10−3 is the typical DM velocity. In order to
determine the appropriate phonon number n for a given
ωth we must take into account the subtlety that each
excitation energy is smeared across a width, as discussed
in Sec. II C and also given in (69). To solve for the smallest
n that contributes appreciably above ωth, we solve the
following equation:

ωth ¼ nω0 þ
ffiffiffi
n

p
σ; ð78Þ

where σ is the single-phonon width as defined in (69) and
we have for simplicity taken fðnÞ ¼ n.
Applying (77) and (78) to Si with ω0 ¼ 31 meV,

σ ¼ 18 meV, and md ¼ 26 GeV, we find the following
results

mχ ≲

8>><
>>:

0.2 MeV λ3
10−2

ωth ¼ 80 meV

2.0 MeVð λ3
10−2

Þ1=2 ωth ¼ 120 meV

4.5 MeVð λ3
10−2

Þ1=3 ωth ≥ 160 meV

ð79Þ

Below these masses, anharmonic corrections become large.
The last line applies for thresholds above 160 meV which
corresponds to n ≥ 4, and these n-phonon terms all give the
same condition on DM mass. Note that this is only a
heuristic, which does not include for example the combi-
natorial prefactors or cancellations in the perturbation
theory calculation. Nonetheless, we do see the same
qualitative features in the complete numerical result which
is given in Fig. 9.
In order to generalize (79) to other materials, we give the

necessary energy scales in Table I. Despite large differences

in ω0, the momentum scale
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
ends up being about

the same in all crystals. Then the typical DM mass scale for
anharmonic effects to become important is also about the
same for a fixed phonon number n. However, the
differences in ω0 mean that the threshold corresponding
to a given n can vary significantly. For a given threshold,
GaAs and Ge have the largest phonon number. Since
anharmonic corrections become more important with larger
n, GaAs and Ge will therefore have larger anharmonic
contributions compared to Diamond at the same threshold.
In Fig. 9, we present the ratio of scattering rates in the

anharmonic case to the harmonic case in Si and Ge, taking
two representative cases for the couplings. We also present
the cross-sections corresponding to an observed rate of 3
events per kg-yr in Fig. 10. The bands depict the possible
uncertainty that anharmonicity introduces to an experimen-
tal reach, with the solid line giving the harmonic result and
the dot-dashed the result for maximal anharmonicity. We do
not show the effects above the cross sections of σn ≳
10−28 cm2 as for these large interaction strengths, the DM
is expected to lose a significant energy in 1 km of Earth’s
crust through scattering, thus rendering DMwith such cross
sections unobservable in underground direct detection
experiments [53].
For mχ > 10 MeV, the typical q becomes similar or

larger than
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
, where there is negligible difference in

the anharmonic and harmonic structure factors. The rates
will also start to be dominated by the impulse regime
q ≫

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
. In this case, the structure factor calculated

with an anharmonic potential is nearly identical to
that calculated in the harmonic case, as discussed in
Sec. III C. We have also seen this behavior with numerical
computations in Fig. 8. The anharmonic and harmonic
scattering rates are also essentially identical for DMmasses
mχ > 10 MeV.
For DM masses mχ < 10 MeV (i.e. q <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
), the

ratio of the anharmonic to harmonic rate begins to grow
with decreasing DM mass. As the typical q decreases with

decreasing DM mass, the leading anharmonic term ∝ q2

2mdω0

grows faster compared to the harmonic term ∝ ð q2

2mdω0
Þn for

n ≥ 2. The effect is more pronounced for higher thresholds
or equivalently higher n, since the harmonic term is even
more suppressed. Therefore at larger thresholds, the anhar-
monic effects start becoming important already at larger
masses and also grows much more quickly as the DM mass
is decreased. For a given DM mass, this also implies that
the spectrum of events will have larger anharmonic
corrections on the high energy tail of events. However,
the rates are also highly suppressed in this tail, and only
observable for high scattering cross sections.
At DMmassesmχ < 1 MeV, the slope of the ratio of the

anharmonic rate to the harmonic rate starts to decrease
slightly, which is an artifact of the Brillouin zone momen-
tum cutoff that we apply across all rate calculations.

TABLE I. Single phonon properties for various crystals.
Using these energy scales, for a given experimental threshold
we can estimate the DM masses where anharmonic effects
become large, (76)–(79). For crystals with nonidentical atoms
in a unit cell, we show the quantities averaged across atoms. The
relative importance of anharmonic effects in the different materi-
als will mainly be governed by the different phonon energies ω0.

Materials

ω0 [meV] σ [meV]
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
[keV]

GaAs 16.9 9.5 48.8
Ge 18.2 10.6 49.6
Si 30.8 17.6 40.3
Diamond 109.6 35.8 49.7
Al2O3 51.6 20.4 51.1
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The incoherent and subsequent approximations are not
guaranteed to be justified in this regime, so this effect
should not be treated as physical. For sub-MeV DM
masses, the phonons again should be treated as collective
excitations, similar to the calculation of Ref. [38].
Lastly, we note an interesting feature that the anharmonic

scattering rate is strictly greater than the harmonic rate in
the entire parameter space that we probe. This is a
consequence of the sign of the leading q-scaling term
q2

2mdω0
. For the production of an excited state jΦfi in the

crystal, the term in the dynamic structure factor ∝ q2 can
only come from the term jhΦfjiqxjΦ0ij2, as the mixing

term ∝ hΦfjIjΦ0ihΦfj ðiqxÞ
2

2
jΦ0i� and its conjugate are zero

from orthogonality. Thus, the sign of the term ∝ q2 in the
anharmonic structure factor is strictly positive for producing
an excited state, whereas there is no corresponding term
∝ q2 in the harmonic case for n ≥ 2 phonons. Since we are
probing the q ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
regime, this leading term quickly

dominates the structure factor. Thus, the anharmonic scat-
tering rate exceeds the harmonic rate in this regime. A
consequence of this is that we expect the harmonic crystal
result gives a lower bound on the scattering.

V. CONCLUSIONS

Scattering of DM with nuclei in crystals necessarily goes
through production of one or many phonons for DM
masses smaller than ∼100 MeV. Previous work has
focused on calculating the multiphonon scattering rates
in a harmonic crystal under the incoherent approximation
(i.e. q > qBZ or DM mass ≳MeV). In this work, we have
studied the effects of anharmonicities in the crystal on the
scattering rates, while still working within the incoherent
approximation.
In order to obtain a tractable calculation of anharmonic

effects, we have simplified the problem into a toy model of
a single atom in a 1D anharmonic potential. In this toy
model, scattering into multiphonons can still be well-
approximated by applying a smearing on the spectrum
of quantized states to account for the phonon spectrum of a
lattice. We extract anharmonic couplings by modeling the
interatomic potentials of Si and Ge, which give rise to
realistic single atom potentials. This approach allows us to
obtain an analytic understanding and first estimate of the
impact of anharmonicity, although the numerical results
should not be taken as a definitive rate calculation.
We find that the harmonic crystal results of Ref. [26] can

be safely assumed for DM masses down to ∼10 MeV.
Below ∼10 MeV, this assumption cannot be taken for
granted. In this regime, we find that anharmonic effects on
the scattering rates increase with decreasing DM mass and
increasing experimental thresholds. Anharmonic correc-
tions up to two orders of magnitude are possible for DM
masses ∼ a few MeV and for experimental thresholds ∼ a
few times the typical single phonon energy of the crystal.

These findings are consistent with Refs. [26,38], which
studied two-phonon production from sub-MeV DM and
found up to an order of magnitude larger rate from
anharmonic couplings.
The size of the corrections is dependent on the material

through the anharmonicity strength of that crystal and also,
nontrivially, through the typical single phonon energies of
the material. For a particular energy threshold, crystals with
lower single phonon energies exhibit larger corrections
since they require larger phonon numbers to be produced.
For example, anharmonic effects in Ge can be larger by
almost an order of magnitude than those in Si for similar
DM parameter space and thresholds, even though the
anharmonic couplings in the two crystals are similar.
This is a consequence of the difference in q scaling of
the harmonic and anharmonic contributions, which become
more pronounced with larger phonon number. Materials
with low single-phonon energies, such as GaAs and Ge,
therefore have the largest anharmonic effects. The effects
will be reduced in Diamond and Al2O3, which have even
higher single phonon energies than Si.
The relevance of anharmonic effects to direct detection

experiments depends on the DM cross section. The effects
are largest for low DMmasses and high thresholds, in other
words on the tails of the recoil spectrum where the rates are
small. For a typical benchmark exposure of 1 kg−yr, the
anharmonic corrections become sizeable for DM-nucleon
cross sections above∼10−34 cm2. Being agnostic about any
terrestrial or astrophysical constraints on the DM model
and only requiring the DM to be observable in underground
direct detection experiments, the upper bound on the DM
cross section is σn ≲ 10−28 cm2 [53]. This comes from
considering an overburden of ∼km. On the other hand,
these very high DM-nucleon cross sections are typically
excluded by terrestrial and astrophysical constraints for the
simplest sub-GeV dark matter models [54–57]. DM-
nucleon cross sections σn ≳ 10−41 cm2 (σn ≳ 10−31 cm2)
are constrained for typical models with a heavy mediator
(light dark photon mediator) for a DM mass ∼MeV. With
these constraints, we see from Fig. 10 that the anharmonic
effects can only impart corrections of at most an order of
magnitude for experiments with kg-yr exposure.
Experiments with exposures above kg-yr could see larger

anharmonic effects, since they would be more sensitive to
the events at high phonon number for MeV-scale DM.
However, for solid-state direct detection experiments,
achieving exposures significantly bigger than a kg-yr is
challenging. Thus, for near-future crystal target experi-
ments, we conclude that the anharmonic effects are only
important up to Oð1Þ factors at masses of ∼ a few MeV for
the simplest DM models.
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APPENDIX A: INTERATOMIC POTENTIALS

In order to produce results for a real crystal, we adopt
atomic potentials based on Ref. [50]. The interatomic
potentials used here are a combination of various commonly
used empirical potentials. We choose to use the Tersoff-
Buckingham-Coulomb interatomic potential defined in
Ref. [50] using the parameters in the set labeled “TBC-1,”
though other interatomic potentials may be chosen and give
similar estimates for the anharmonicity strengths.
This potential includes a three-body Tersoff potential,

originally defined in [58], which we restate here for
reference.

E ¼ 1

2

X
i

X
i≠j

Vij

Vij ¼ fCðrijÞ
�
fRðrijÞ þ bijfAðrijÞ

�
; ðA1Þ

where the sum is over nearest-neighbor, and rij is the
distance between neighbors i, j. The function fC is a cutoff
function that keeps the interaction short ranged, fR and fA
are repulsive and attractive interactions, and bij is a three-
body term that is a function of the bonding angle of the
third body with the atoms i, j. Explicitly, these functions
are defined as

fCðrÞ¼

8><
>:
1 r<R−D
1
2
− 1

2
sinðπ

2
r−R
D Þ R−D<r<RþD

0 r>RþD

ðA2Þ

fRðrÞ ¼ A exp ð−λ1rÞ ðA3Þ

fAðrÞ ¼ −B exp ð−λ2rÞ ðA4Þ

bij ¼ ð1þ βnζij
nÞ− 1

2n ðA5Þ

ζij ¼
X
k≠i;j

fCðrikÞg½θijkðrij; rikÞ�

× exp ½λ3mðrij − rikÞm� ðA6Þ

gðθÞ ¼ 1þ c2

d2
−

c2

½d2 þ ðcos θ − cos θ0Þ2�
; ðA7Þ

where θijk is the angle between the displacement vectors rij
and rik. R;D; A; B; β; n; c; d; θ0; λ1; λ2; λ3 are constants that

can be found in Ref. [50]. Note that the notation in this
section matches that of Ref. [50] and is standalone from the
main text. Specifically, the parameters λ1, λ2, λ3 are not to
be confused with the anharmonicity strengths defined in the
main text. In practice, anharmonicity arises from the
asymmetry between the repulsive and attractive terms.
The directional dependence of the anharmonicity strength
is a result of the crystal’s zincblende structure and bond
angle-dependent potential.
The other components of this interatomic model include

a long-range two-body Buckingham term

VðrÞ ¼ Ce−r=ρ −
E
r6

; ðA8Þ

and a screened Coulombic interaction defined by

VðrÞ ¼ q2
�
erfcðαrÞ

r
−
erfcðαrcÞ

rc

þ
�
erfcðαrcÞ

r2c
þ 2αffiffiffi

π
p e−α

2r2c

rc

�
ðr − rcÞ

	
ðA9Þ

×Θðrc − rÞ ðA10Þ

Here q is the effective atomic charge, α is a damping
parameter, and rc is a cutoff. As discussed in Ref. [50], the
full interatomic potential model is a sum of the three
aforementioned interactions. All of the free parameters
are fit onto the actual second, third, and fourth order forces
calculated from DFT. This gives an analytic interatomic
potential that produces the correct single-phonon disper-
sions and also captures the anharmonicity in the potential by
fitting onto the higher order interatomic forces from DFT.

APPENDIX B: POWER COUNTING
IN PERTURBATION THEORY

In this appendix, we work out the explicit relation
between the powers of q2 and λk in the perturbation theory
calculation for the anharmonic Hamiltonian in (36).
The primary object we focus on in the dynamic structure

factor is the squared matrix element jhΦnjeiqxjΦ0ij2, where
jΦni are the eigenstates of the anharmonic Hamiltonian.
With perturbation theory, the eigenstates can be expanded
in powers of λk as in (37). The corrections to the nth final
state up to second order in λk are given by,

jψ ð1Þ
n i¼

X
k≠n

Vkn

ðn−kÞjki;

jψ ð2Þ
n i¼

X
k≠n

X
l≠n

VklVln

ðn−kÞðn− lÞjki−
1

2
jni
X
k≠n

jVknj2
ðn−kÞ2 ; ðB1Þ

where Vij ≡ hijð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
xÞkjji. In terms of the standard

ladder operators of the harmonic oscillator, Vij are
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given by,

Vij ¼ hijðaþ a†Þkjji: ðB2Þ

This tells us that Vij can only be nonzero when i − j is one
of the following: −k;−kþ 2; ...; k − 2, k.
With these selection rules, the corrections in Eq. (B1) can

be schematically written as,

jψ ð1Þ
n i ∼ jn − ki þ jn − kþ 2i þ � � �

þ jnþ k − 2i þ jnþ ki ðB3Þ

jψ ð2Þ
n i ∼ jn − 2ki þ jn − 2kþ 2i þ � � �

þ jnþ 2k − 2i þ jnþ 2ki ðB4Þ

This pattern continues for higher orders in λk such that at
OðλjkÞ, we have,

jψ ðjÞ
n i ∼ jn − ðj × kÞi þ jn − ðj × kÞ þ 2i þ � � �

þ jnþ ðj × kÞ − 2i þ jnþ ðj × kÞi: ðB5Þ

Note that the sum should only include terms for which the
integer labeling the state is non-negative. With the knowl-
edge of the unperturbed states appearing in jΦni, the matrix
element hΦnjeiqxjΦ0i can also be expanded in λk,

hΦnjeiqxjΦ0i ∼ b0 þ λkb1 þ λ2kb2 þ � � � ; ðB6Þ

where the coefficients bj are given by,

b0∼ hnjeiqxj0i
b1∼ hψ ð1Þ

n jeiqxj0iþhnjeiqxjψ ð1Þ
0 i

b2∼ hψ ð2Þ
n jeiqxj0iþhψ ð1Þ

n jeiqxjψ ð1Þ
0 iþhnjeiqxjψ ð2Þ

0 i ðB7Þ

In general, the coefficient bj is schematically given by,

bj ∼ hψ ðjÞ
n jeiqxj0i þ hψ ðj−1Þ

n jeiqxjψ ð1Þ
0 i þ � � �

þ hψ ð1Þ
n jeiqxjψ ðj−1Þ

0 i þ hnjeiqxjψ ðjÞ
0 i: ðB8Þ

To study the powers of q appearing in bj, we first need to
understand the structure of the matrix element hn1jeiqxjn2i
for general eigenstates jn1i and jn2i of the unperturbed
harmonic oscillator. This matrix element is given by the
following,

hn1jeiqxjn2i ¼
Xn1

l¼n1−n2þjn1−n2 j
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n1!n2!

p
l!ðn1 − lÞ!ðn2 − n1 þ lÞ!

×

�
iqffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mdω0

p
�

n2−n1þ2l
e−

q2

4mdω0 : ðB9Þ

We learn that the matrix element hn1jeiqxjn2i contains
powers of iq=ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mdω0

p Þ ranging from jn1 − n2j to

n1 þ n2. Note again that the Debye-Waller factor e−
q2

4mdω0

is not included in this power counting since e−
q2

4mdω0 ≈ 1 in
the regime of interest.
Combining this information with the structure of bj

in (B8) and the structure of jψ ðjÞ
n i in (B5), the powers of q in

bj can be identified:

bj ∼ e−
q2

4mdω0

��
iqffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mdω0

p
�

n−jk
þ
�

iqffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
�

n−jkþ2

þ � � � þ
�

iqffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
�

nþjk

: ðB10Þ

Note that only those terms with powers of q larger or equal
to 1 are present. Terms ∝ q0 have to cancel as they
otherwise lead to q0 terms in the squared matrix element
jhΦnjeiqxjΦ0ij2, which is forbidden due to orthogonality of
eigenstates.
As the kinematic regime under consideration is of

q ≪
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
, we will focus on powers of q less than n,

which corresponds to the harmonic case. We see from the
equation above that the lowest powers of q decrease with
increasing values of j. Thus, higher order corrections in λk
appear with lower powers in q. Eventually, at a sufficiently
high power of λk, we get a coefficient bj with the minimum
power of q equal to 1. The squared matrix element can then
be written in general as,

jhΦnjeiqxjΦ0ij2 ¼ e−
q2

2mdω0 ×

�
1

n!

�
q2

2mdω0

�
n

þ
X
i≥1

�
q2

2mdω0

�
i

an;iλ

νðn;iÞ
k

þO


λνðn;iÞþ1
k

��	
; ðB11Þ

where the first term on the right-hand side ∝ q2n is the
harmonic term, and the anharmonic corrections are
expanded in powers of q2 which are denoted by i, with
i ≥ 1. Every power i appears with a minimum allowed
power νðn; iÞ of λk.
To study the behavior of νðn; iÞ, we first note that, for

even k, the matrix element hΦnjeiqxjΦ0i is purely real or
purely imaginary, depending on whether n is even or odd
respectively. For instance, if n is even, then b0 is purely
real. Higher orders in λk lead to insertions of ðaþ a†Þk and
therefore matrix elements where the difference in the
harmonic oscillator states is also even, so that all coef-
ficients bj are real in this case. But for odd k, the bj
coefficients will alternate in being real and imaginary.
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This changes the structure of the squared matrix element
depending on k, as we will see below.
Odd k: We will first consider odd k. In this case, the

squared matrix element can be written as,

jhΦnjeiqxjΦ0ij2 ∼ jb0 þ λ2kb2 þ λ4kb4 þ � � � j2
þ jλkb1 þ λ3kb3 þ � � � j2 ðB12Þ

∼ jb0j2 þ λ2k
�jb1j2 þ ðb0b�2 þ b�0b2Þ

�
þ λ4k

�jb2j2 þ ðb0b�4 þ b�0b4Þ þ ðb1b�3 þ b�1b3Þ
�

þOðλ6kÞ ðB13Þ

∼ e−
q2

2mdω0

�
1

n!

�
q2

2mdω0

�
n

þ λ2k

��
q2

2mdω0

�
n−k

þ
�

q2

2mdω0

�
n−kþ1

þ � � � þ
�

q2

2mdω0

�
nþk


þ λ4k

��
q2

2mdω0

�
n−2k

þ
�

q2

2mdω0

�
n−2kþ1

þ � � � þ
�

q2

2mdω0

�
nþ2k


þOðλ6kÞ

	
: ðB14Þ

Thus we see that we get corrections at even orders in λk,
with the lowest nonzero power being λ2k. In general, at
OðλjkÞ for an even j ¼ 2j0, the lowest power of q2 is
n − ðj0 × kÞ, and the highest power is nþ ðj0 × kÞ. Note
that only terms with positive powers of q2 are present. The
term ∝ q2 can also subtly cancel in some cases as there is
no term ∝ q0 in coefficients bj. We will deal with this case
later below. But to get a power i > 1 of q2, the lowest

nonzero j0 is ⌈ jn−ij
k ⌉, with the lowest j given by 2 × ⌈ jn−ij

k ⌉.
Thus, in the squared matrix element, the lowest nonzero
power νðn; iÞ required is given by,

νðn; iÞ ¼ max

�
2 × ⌈

jn − ij
k

⌉; 2

�
: ðB15Þ

To get the lowest power i ¼ 1 of q2 i.e. the term ∝ q2, the
only possible way is to get the term ∝ q1 in the coefficient
bj as there is no term ∝ q0. For odd n, the term ∝ q1 in bj
can only be generated at an even j, since that is the only
way to satisfy n − jk ¼ 1. For every even j ¼ 2j0, the
powers of q in bj range from n − ð2kÞ × j0 to nþ ð2kÞ × j0.
The lowest j0 to get a term ∝ q1 is then given by ⌈ jn−1j

2k ⌉,

with j given by 2 × ⌈ jn−1j
2k ⌉. For an even n, the term ∝ q1 in

bj can only be generated for an odd j. For every odd
j ¼ 2j0 − 1, the lowest power of q in bj is
nþ k − ð2kÞ × j0. The lowest j0 to get a term ∝ q1 is then

given by ⌈ jnþk−1j
2k ⌉, with j given by 2 × ⌈ jnþk−1j

2k ⌉ − 1. In the
squared matrix element, the lowest nonzero power νðn; 1Þ
required is given by,

νðn;1Þ¼

8>>><
>>>:
max



4×⌈ jn−1j

2k ⌉;2
�

foroddn

4×⌈ jnþk−1j
2k ⌉−2 forevenn

ðB16Þ

Even k: Now we consider even k. In this case, the
squared matrix element is,

jhΦnjeiqxjΦ0ij2 ∼ jb0 þ λkb1 þ λ2kb2 þ � � � j2 ðB17Þ
∼ jb0j2 þ λk

�ðb0b�1 þ b�0b1Þ
�

þ λ2kðjb1j2 þ ðb0b�2 þ b�0b2Þ þOðλ3kÞ ðB18Þ

∼ e−
q2

2mdω0

�
1

n!

�
q2

2mdω0

�
n

þ λk

��
q2

2mdω0

�
n−k=2

þ
�

q2

2mdω0

�
n−k=2þ1

þ � � � þ
�

q2

2mdω0

�
nþk=2



þ λ2k

��
q2

2mdω0

�
n−k

þ
�

q2

2mdω0

�
n−kþ1

þ � � � þ
�

q2

2mdω0

�
nþk

þOðλ3kÞ

	
: ðB19Þ

Thus we see that we get corrections at all orders in λk, with
the lowest nonzero power being λk. In general, atOðλjkÞ, the
lowest power of q2 is n − ðj × kÞ=2, and the highest power
is nþ ðj × kÞ=2. Following similar arguments to the case
of odd k discussed earlier, νðn; iÞ for i > 1 is given by,

νðn; iÞ ¼ max

�
⌈
jn − ij
k=2

⌉; 1

�
: ðB20Þ

Another difference between the case of even k consid-
ered here and that of odd k is that we do not get an i ¼ 1
term for even n, as all terms in the coefficients bj contain
even powers of q. This means that the leading term will
always go as q4, with a λk power determined by (B20) for
i ¼ 2. For odd n, the lowest power of q in bj is n − k × j.
Thus, in the squared matrix element, the lowest nonzero
power νðn; 1Þ required is given by,

νðn; 1Þ ¼ max

�
2 × ⌈

jn − 1j
k

⌉; 1

�
: ðB21Þ

The calculations in this appendix up to this point
consider the overall scaling behavior of the powers of q2

and λk in the squared matrix element. We have neglected
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combinatorial factors at several steps in the calculations
that enter into the numerical coefficients an;i in (B11).
Sometimes, the numerical coefficients can also cancel with
each other, and the naive leading behavior estimated in this
section can vanish. In order to give concrete examples of
the numerical coefficients, we perform explicit calculations
of the squared matrix element using perturbation theory
with k ¼ 3 (i.e. a cubic perturbation), and phonon numbers
n ¼ 1; 2; 3, and 4. We perform this explicit calculation only
up to Oðλ23Þ. The results of various numerical coefficients
are presented below.
For a single-phonon production (i.e. n ¼ 1), the coef-

ficients an;i are given by,

a1;1 ¼ 44 ðB22Þ
a1;2 ¼ −82 ðB23Þ
a1;3 ¼ 5: ðB24Þ

For a two-phonon production (i.e. n ¼ 2), the coefficients
are given by,

a2;1 ¼ 8 ðB25Þ
a2;2 ¼ 59 ðB26Þ
a2;3 ¼ −56 ðB27Þ
a2;4 ¼ 2.5: ðB28Þ

For a three-phonon production (i.e. n ¼ 3), the coefficients
are,

a3;2 ¼ 18 ðB29Þ
a3;3 ¼ 37 ðB30Þ
a3;4 ¼ −23.04 ðB31Þ
a3;5 ¼ 0.77: ðB32Þ

Note that we do not show the coefficient a3;1 as it appears at
Oðλ43Þ. Finally, for a four-phonon production (i.e. n ¼ 4),
the coefficients are evaluated to be,

a4;1 ¼ 0 ðB33Þ
a4;2 ¼ 0 ðB34Þ
a4;3 ¼ 0.097 ðB35Þ

a4;4 ¼ 0.05 ðB36Þ
a4;5 ¼ −0.012 ðB37Þ
a4;6 ¼ 1.81 × 10−4: ðB38Þ

Note that the coefficients a4;1 and a4;2 amount to zero
because of a numerical cancellation between the two terms

in the b1 coefficient in Eq. (B7). The leading behavior of
the terms proportional to q2 and q4 in the structure factor is
instead q2λ63 and q4λ43, respectively.
As these numerical coefficients appear through combi-

nations and interferences of several combinatorial factors at
various steps of the calculation, it is hard to provide a
general expression for them. By looking at the examples
above however, we can make some general observations.
Typically, we see that the coefficients follow a pyramid
structure, with an;i being the largest for i near n, and
decreasing with i away from n. We also find that the
coefficients can vary by orders of magnitude from each
other. The terms with i near n receive contributions from
several individual matrix elements, and in general seem to
be larger. We expect to see this pattern continue for higher
phonon numbers as well. The exact values of these
coefficients play a role in determining where the anhar-
monic corrections dominate, and so our power counting
approach only gives an Oð1Þ estimate.

APPENDIX C: IMPULSE APPROXIMATION

In Sec. III C, we calculated the structure factor via the
saddle point approximation in the regime defined by (52).

This regime corresponded to values of ω near q2

2md
and

within the Gaussian width of (63). As discussed in the main
text, in order to calculate the tail of the structure factor far

from ω ¼ q2

2md
, more expansion terms are needed in f. Here

we discuss this extension of the impulse approximation.
First, in the special case of a harmonic potential, we can

start from the full result in Eq. (35). After rewriting the
energy conservation delta function as a time integral, we
find that

fðtÞ ¼ −iωtþ q2

2mdω0

ðeiω0t − 1Þ ðC1Þ

Solving f0ðtÞ ¼ 0 gives the exact result

tI ¼
i
ω0

ln

�
q2

2mdω

�
: ðC2Þ

Using the saddle point approximation for ω ≫ ω0, we find

Stoy;dðq;ωÞ ∼
1ffiffiffiffiffiffiffiffiffi
ωω0

p e−2WtoyðqÞ
�

q2

2mdω

� ω
ω0
e

ω
ω0 : ðC3Þ

The same result can also be derived by approximating the
sum over phonon states as an integral in Eq. (35). The
saddle point approximation for the harmonic oscillator
holds as long as ω ≫ ω0, and we no longer have a

condition on how close ω is to q2

2md
. In the impulse regime,

ω ∼ q2

2md
, one can check that it reduces to the previous result
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in Eq. (63). We see in this exact result that the tail at large ω
is Poissonian instead of Gaussian.
For general potentials, this exact analytic result is no

longer possible, but we can still calculate corrections to the
tail. First, we start by giving the exact saddle point
equation:

0 ¼ f0ðtIÞ ¼ −i
�
E0 þ ω −

q2

2md

�
þ i

hH0eiH0tIi
heiH0tIi ðC4Þ

which is valid at all orders. We begin by noticing that

saddle point equation (C4) is satisfied exactly at ω ¼ q2

2md
by

tI ¼ 0. Then,ω-derivatives of tI at ω ¼ q2

2md
can be found by

taking ω-derivatives of (C4) and solving for tðnÞI ½ω ¼ q2

2md
�.

This allows us to calculate tI½ω ¼ q2

2md
� in an iterative

fashion. The first few terms are

tI

�
q2

2md

	
¼ 0

t0I

�
q2

2md

	
¼ i

hH0i2 − hH02i

t00I

�
q2

2md

	
¼ i

−2hH0i3 þ 3hH0ihH02i − hH03i
ðhH0i2 − hH02iÞ3

tð3ÞI

�
q2

2md

	
¼ i

ðhH0i2 − hH02iÞ5
×
�
6hH0i6 − 18hH0i4hH02i þ 3hH02i3

þ 8hH0i3hH03i − 14hH0ihH02ihH03i
þ 3hH03i2 − hH02ihH04i
þ hH02ið12hH02i2 þ hH04iÞ� ðC5Þ

where tðnÞI denotes the nth ω-derivative of tI. In the
harmonic case, this series resums to (C2). For general
potentials, one can then use the expansions (60) and (C5) to
calculate

Stoy;dðq;ωÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π

−f00ðtIÞ

s
efðtIÞ ðC6Þ

to a desired order.

APPENDIX D: EXAXT RESULTS
FOR MORSE POTENTIAL

The Morse potential is a special case of an anharmonic
potential where the structure factor is analytically solvable.
We will use this case to illustrate the behavior of the
structure factor discussed in Sec. III B. We also use it to
validate the numerical calculations used in our final results

and check the validity of the impulse approximation in the
regime where there are n > 10 phonons.
The Morse potential is defined as

VMorse ¼ Bðe−2ax − 2e−axÞ; ðD1Þ

where a is a parameter controlling the width of the potential
and B is the normalization. Expanding this potential in
powers of x gives

VMorse ¼ −Bþ Ba2x2 − Ba3x3 þ 7

12
Ba4x4 þ � � � ðD2Þ

Matching the quadratic and the cubic terms with (26), we
find that

a ¼ −4λ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
ðD3Þ

B ¼ ω0

64λ23
: ðD4Þ

Note that theMorse potential has fewer free parameters than
the anharmonic potential up to fourth order in the displace-
ments, so we cannot simultaneously fit λ4. Nonetheless, the
realistic potential as obtained Appendix A are well approxi-
mated by this Morse potential due to the dominance and
Morse-like behavior of the fR and fA terms in the Tersoff
part of the potential.
The Morse potential approximation of our anharmonic

potential is then given by

VMorse ¼
ω0

64λ2M



e8λM

ffiffiffiffiffiffiffiffiffiffi
2mdω0

p
− 2e4λM

ffiffiffiffiffiffiffiffiffiffi
2mdω0

p
x
�
; ðD5Þ

where we take λM ¼ λ3 in order to fit up to third order
anharmonicities. In this potential, the structure factor (68) is
exactly calculable since the Morse eigenstates and eigene-
nergies are known analytically. These results [59] give
squared matrix elements between the ground state and nth
excited state of

jhΦnjeiqxjΦ0ij2

¼ð2K−2n−1Þð2K−1Þ
n!Γð2KÞΓð2K−nÞ

×

��������
Γ
�
nþ iðq=

ffiffiffiffiffiffiffiffiffiffi
2mdω0

p
Þ

4λM

�
Γ
�
2Kþ iðq=

ffiffiffiffiffiffiffiffiffiffi
2mdω0

p
Þ

4λM
−n−1

�

Γ
�

iq=
ffiffiffiffiffiffiffiffiffiffi
2mdω0

p
4λM

�
��������

2

;

ðD6Þ

with energy gaps
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En − E0 ¼
�
n −

nð1þ nÞ
2K

�
ω0; ðD7Þ

where K ¼ 1
32λ2M

.

Note that these formulas are only valid for n < K − 1
2

since above this excited state, the eigenstates are unbound
and have a different analytic form. For λM ∼ 0.01, this
condition requires n≲ 312, which corresponds to an
energy gap of OðeVÞ. Recoil energies at this scale are
comparable to the size of a typical lattice potential well and
thus the free nuclear recoil approximation holds. Then, for
typical anharmonicity strengths, the discrete states of the

Morse potential that we have used in this analysis are
sufficient to estimate the anharmonic effect in the multi-
phonon scattering regime.
Putting together expressions (D6)–(D13), (68), and (72)

we can calculate the structure factor in the Morse potential
in both the large and small q regime. We show these results
for λM ¼ λ3 in Figs. 11 and 12. Figure 11 provides a check
for our numerical results in Sec. IV. Here we see that the
numerical calculations and corresponding analytic Morse
results are almost identical. There is a modified q scaling of
the structure factor compared to the harmonic case,
as was already illustrated in Fig. 7. We can also obtain
this behavior analytically with the Morse potential.
Expanding the expression (D6) to leading order in q and
subsequently in λM, we get explicitly,

jh2jeiqxj0ij2 ¼ 8λ2Mq
2 þ… ðD8Þ

jh3jeiqxj0ij2 ¼ 512

3
λ4Mq

2 þ… ðD9Þ

jh4jeiqxj0ij2 ¼ 6144λ6Mq
2 þ…; ðD10Þ

jh5jeiqxj0ij2 ¼ 1572864

5
λ8Mq

2 þ…; ðD11Þ

jh6jeiqxj0ij2 ¼ 20971520λ10Mq2 þ…; ðD12Þ

where the ellipses include higher orders in both q and λM.
The leading λM scalings are consistent with those illustrated
in Fig. 4 for n ¼ 2 and 3. For n ¼ 4, the leading λM scaling
differs from the power counting in Fig. 4, but matches with
the explicit results obtained using perturbation theory as
presented in Appendix B. An exact numerical cancellation

FIG. 11. Comparison of analytic structure factor in the Morse
potential and the numerical calculation for Si as described in
Sec. IV. We find that the two methods give almost the same result
due to the fact that the Morse potential well approximates the
single-atom potential along the nearest-neighbor direction.

FIG. 12. ω-dependence of structure factor for the Morse potential: Comparison of the Morse (dashed rainbow) and harmonic (solid
rainbow) structure factor contributions from each individual excited state. The solid black line is the sum of contributions from the
Morse potential, and dotted is the impulse envelope. Even though the energies of each individual Morse excited state are perturbed, the
total structure factor remains essentially unchanged from the harmonic result. The small shift of order ω0 between the exact result and
impulse approximation results from dropping higher order terms in the impulse approximation as discussed in Sec. III C and
Appendix C.
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modifies the leading behavior to λ6Mq
2. We see that the

leading behavior in q; λM for n > 4 also differs from the x3-
theory power counting, suggesting a generic presence of
cancellations at lower orders of λ3 for the q2 dependence.
In Fig. 12, we demonstrate that the impulse approxima-

tion remains robust for q ≫
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω0

p
and n > 10 excited

states. Note that we can also calculate corrections to hp2i in
the Morse ground state exactly:

hp2i ¼ mdω0

2
ð1 − 16λ2MÞ; ðD13Þ

which is used in the impulse regime result (63). The
impulse result is almost identical between the Morse and
harmonic cases, since the Gaussian width is only corrected
at order λ2M, which is ∼10−4. This is also borne out in the
full calculation of the structure factor shown in Fig. 12.
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